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Learning Latent Global Network for Skeleton-based
Action Prediction

Qiuhong Ke, Mohammed Bennamoun, Hossein Rahmani, Senjian An, Ferdous Sohel, and Farid Boussaid

Abstract—Human actions represented with 3D skeleton se-
quences are robust to clustered backgrounds and illumination
changes. In this paper, we investigate skeleton-based action
prediction, which aims to recognize an action from a partial
skeleton sequence that contains incomplete action information.
We propose a new Latent Global Network based on adversarial
learning for action prediction. We demonstrate that the proposed
network provides latent long-term global information that is
complementary to the local action information of the partial
sequences and helps improve action prediction. We show that
action prediction can be improved by combining the latent
global information with the local action information. We test
the proposed method on three challenging skeleton datasets and
report state-of-the-art performance.

Index Terms—Skeleton-based action prediction, adversarial
learning, convolutional neural networks.

I. INTRODUCTION

ACTION prediction aims to infer an action before the
action is fully executed [1]. Action prediction is very

important in a wide range of applications such as human-robot
interaction, visual surveillance and health care systems [2].

Human actions generally occur in the 3D space. 3D skeleton
sequences, i.e., 3D trajectories of human skeleton joints,
provide more comprehensive information than RGB videos
captured by 2D cameras [3]. Nowadays, accurate skeletons can
be directly generated by depth sensors in real-time. Compared
to RGB videos, the dimension of the skeleton sequences are
much lower. Besides, skeleton sequences are more robust
against clustered backgrounds and illumination changes. These
advantages make skeleton sequences more attractive for action
analysis [4], [5], [6], [7], [3], [8], [9]. In this work, we focus
on action prediction based on 3D skeleton sequences.

To recognize actions from video sequences, the long-term
global information of the complete action plays an important
role[10], [11]. Reported works on action recognition focused
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on exploring the global information from the full video
sequences using Hidden Markov Model (HMM) [12], [13]
or models based on Conditional Random Field (CRF) [14].
Deep networks such as recurrent neural networks (RNNs) with
Long-Short Term Memory (LSTM) neurons [15], [16] and
Convolutional Neural Networks (CNNs) have also been used
to learn the global representations from the full sequences for
action recognition [17], [11], [18].

Compared to action recognition where the full sequences are
available to learn the long-term global information, the testing
sequences used in action prediction are partial sequences that
contain an incomplete action execution [1]. For a complex
human action containing a large variety of human postures
and motions, the information provided by a partial sequence
is usually different from the long-term global information of
the full sequence. This makes action prediction from partial
sequences more challenging than action recognition. Given
that global action information is very important for action
inference, we present a new method which aims to capture the
latent global information of the partial sequences to improve
action prediction. The main idea of the proposed method is to
find a feature space, where the partial sequences are similar to
the full sequences. During testing, the mapping of the partial
sequence to the feature space generates a latent global rep-
resentation that provides complementary global information,
which helps predict actions more accurately.

More specifically, we minimize the difference between
the full and partial sequences using adversarial leaning to
learn the latent global information of the partial sequences.
The adversarial leaning method is inspired by the Generative
Adversarial Networks (GAN) [19], which were introduced to
generate images that are similar to real images, and have been
applied in different research areas such as object detection,
anomaly detection and domain adaptation [20], [21], [22].
GAN simultaneously learns a discriminator (which evaluates
whether an image is a fake image or a real one) and a
generator (which aims to fool the discriminator such that the
discriminator fails to discriminate between the fake and the
real images). This paper focuses on inferring semantic action
labels, rather than generating images. Instead of a generator,
the proposed framework contains an inference network (I-
Net in Fig. 1) and a discriminator (D-Net in Fig. 1). During
training, the discriminator aims to evaluate whether the input
is a full or a partial sequence. The inference network tries
to retain a high accuracy of action inference and fool the
discriminator so that it cannot distinguish the full and the
partial sequences. Once the network is trained, given a testing
partial sequence, the inference network is used to process
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the testing sequence to infer the action class. This network
is termed as a Latent Global Network (LGN), as it learns a
hidden space where the full sequence that contains the full
execution of an action shares the global information with the
partial sequence.

Although the prediction performance for the partial se-
quences with small observation ratios is still inferior to the
recognition performance of the full sequences, our experiments
suggest that using the proposed LGN helps to improve the
prediction performance and outperforms current state-of-the-
art methods for action prediction and recognition.

The contributions of this paper are summarized as follows:
1) We propose a new LGN based on adversarial feature
learning to learn the latent global information of the partial
sequences and improve action prediction. 2) We demonstrate
that exploiting both the latent global information and the
local information improves the prediction accuracy. 3) The
proposed method achieves state-of-the-art performance for
action prediction on three challenging skeleton datasets.

II. RELATED WORKS

Action prediction is relevant to action recognition. In this
section, we review current works based on deep learning for
both action recognition and action prediction.
Action Recognition: Action recognition based on RGB
videos has been extensively explored using deep learning in
recent years [23], [24], [25], [11], [17]. Most works have fo-
cused on learning the spatial information from each frame and
the temporal dynamics from the video sequences using Con-
volutional Networks (ConvNet). Simonyan et al.[23] designed
a two-stream ConvNet architecture to separately learn the
complementary spatial and temporal information from videos
for action recognition. The two-stream ConvNet contains a
spatial stream that operates on individual video frames and a
temporal stream which processes a stack of consecutive optical
flow images. The probability scores of the two streams are
fused for the final decision of the action class. Tran et al.[24]
explored a 3D ConvNet to learn the spatio-temporal features of
videos. The 3D ConvNet has shown to provide more capacity
to model the temporal information compared to 2D ConvNet
due to the spatio-temporal convolution and pooling opera-
tions, which result in a better performance. Wang et al.[11]
proposed a temporal segment network to perform video-
level predictions of actions. The temporal segment network
models a sequence of snippets, which are randomly selected
from different segments of the input video. The frame-level
scores of the snippets are fused to generate the video-level
probability scores. Varol et al.[25] designed an architecture
with long-term temporal convolutions (LTC) to learn video-
level representations. The temporal extent of representations
is increased, while the spatial resolution is decreased, thus
to keep the complexity of the proposed networks tractable.
LSTM networks have also been used to model the temporal
dependency in video sequences. Donahue et al.[17] developed
a Long-term Recurrent Convolutional Network (LRCNs) for
video recognition and description. LRCNs first use CNNs to
extract features from each frame of the input video. The output

features of the sequence are then fed to LSTMs to produce a
sequence-level prediction.

Recognizing actions from RGB videos are challenging
due to the complex backgrounds and illumination variations.
Human actions can also be represented as trajectories of
skeleton joints. Compared to RGB videos, skeleton sequences
are more robust to variations in illumination and background
variations. Previous works have extensively explored skeleton-
based action recognition using recurrent neural networks [6],
[3], [7], [8], [26], [27], [28], [29], [30], [31], [18]. Du et al.[6]
designed a Hierarchical Recurrent Neural Network (HRNN)
to learn hierarchically the features of skeleton sequences
for action recognition. The first layer of HRNN consists of
five bidirectional recurrent neural networks (BRNNs), which
separately process five subsets of the entire skeleton. The
subsequent layers hierarchically fuse the representations of
the previous layers to generate the final representation for
action recognition. Zhu et al.[3] proposed a regularized deep
LSTM network, which contains a co-occurrence regularization
to encourage the network to learn co-occurrence of joints
for action recognition. Shahroudy et al.[7] developed a part-
aware LSTM (P-LSTM), which contains part-based cells. Each
cell of the part processes the joints of one body part. The
outputs of all parts are combined as the final representation
for action recognition. Liu et al.[8], [26] developed spatial-
temporal LSTM to capture both the spatial and temporal
information of skeleton sequences for action recognition. A
trust gate is also introduced to handle noise in skeleton
sequences. Liu et al.[27], [18] further introduced a global
context-aware attention LSTM, which uses a global context
memory cell to selectively focus on the informative joints for
action recognition. CNNs have also been successfully used for
skeleton-based action recognition [9]. Ke et al.[9] transformed
each skeleton sequence into three clips. Each clip contains
four frames, which depict the temporal information of the
skeleton sequence. The clips are then processed with multiple
CNNs, followed by a multi-task learning network for action
recognition.
Action Prediction: Compared to action recognition, which
aims to recognize actions from the full sequences of com-
plete actions, the goal of action prediction is to predict an
action from partial sequences of incomplete actions. Previous
works have attempted to explore the evolution of features
of partial sequences for action prediction based on RGB
videos. Ryoo [32] designed an integral histogram of spatio-
temporal features to capture the temporal evolution of feature
distributions across the actions. Ryoo [32] also developed a
dynamic bag-of-word to handle noisy observations. Kong et
al.[33] designed a discriminative multi-scale model to capture
the temporal structure of human actions using the features of
partial videos and small segments. Lan et al.[2] designed a
max-margin learning framework to predict actions based on a
hierarchical feature representation, which contains HOG, HOF
and MBH features to describe human appearance and motions
from atomic to coarser levels. Besides hand-crafted features,
deep networks have also been used for action prediction.
Ke et al.[34] developed a temporal convolutional network
which processes consecutive optical flow images to capture
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the temporal structure of an action. Ke et al.[35] designed a
structural model based on LSTM networks to extract scene
contextual information in two-person interactions. A ranking
score fusion method is also introduced to combine different
models to determine the final interaction class. Jain et al.[36]
designed a weighted cross-entropy which prevents the network
from over-fitting the partial sequences with small observation
ratios. Aliakbarian et al.[37] proposed a new loss combining a
weighted false positive cross-entropy with the standard cross-
entropy to train the network for action prediction. Recently,
Farha et al.[38] proposed a RNN and a CNN network for
action anticipation. Unlike previous works that predict current
action, in this paper, the goal is to anticipate future unseen ac-
tions from untrimmed videos. Ke et al.[39] introduced a time-
conditioned network to achieve efficient and effective long-
term anticipation. There are also some works focus on RGBD-
based action prediction. Hu et al.[1] proposed a regression-
based model to learn soft labels from partial sequences based
on Local Accumulative Frame Feature (LAFF), which captures
the historical information of each partial sequence. Ke [40]
introduced a global regularizer and a Temporal-aware Cross-
entropy to recognize actions from partial skeleton sequences.
Liu et al.[41], [42] proposed a Scale Selection Network that
contains a dilated convolutional network and a window scale
selection scheme to extract the information of the current
action from untrimmed videos for action prediction.

III. LATENT GLOBAL NETWORK

A complete human action generally comprises a large vari-
ety of human postures and motions. A partial action sequence
without the global motion information is usually different from
the associated full sequence, which contains the long-term
global information of the action. Considering that the long-
term global information is very important to understand the
action class, we present a latent global network (LGN), which
aims to improve action prediction by learning the latent global
information of the partial sequence. The overall architecture
of the proposed LGN is shown in Fig. 1. The main idea of the
proposed LGN is to minimize the variation between the partial
and full sequences using adversarial learning, thus to learn a
feature space, where the full sequence shares the long-term
global information with the partial sequence. In this section,
we give detailed descriptions of the proposed method.

A. Network Architecture

As shown in Fig. 1, the proposed LGN contains an inference
network (I-Net) and a discriminator (D-Net). During training,
the inference network takes as inputs both a partial sequence
and the associated full sequence. The hidden representations of
the two inputs are separately fed to the discriminator, which
aims to determine if the input is a partial or full sequence.
The inference network is trained to jointly maximize the
confusion of the discriminator and minimize the classification
cross-entropy. In this work, we build the inference network
with a deep residual network, whose feature encoding block
is similar to ResNet-50 [43]. More specifically, the feature
encoding block contains several convolutional layers which

are the same as in the ResNet-50 [43], a global average
layer, a dropout layer and a fully-connected layer for feature
reduction. The output feature of the feature encoding block is
fed to a fully connected layer and a Softmax layer to produce
the probability scores of the action. The output feature of
the feature encoding block is also fed as the input of the
discriminator. The discriminator contains a fully connected
layer and a Sigmoid layer.

More specifically, we denote the full and partial sequences
as sf and sp, respectively. During training, sf and sp are sep-
arately fed to the inference network in parallel. We denote the
hidden features of the full and partial sequences that are fed to
the discriminator as hf and hp, respectively. The discriminator
takes the hidden representations and classify the sequence as
a full or partial sequence. The output of the discriminator
(which is denoted as D(·)) is a 1-dimensional probability score
generated by a Sigmoid layer. The loss of the discriminator
is the cross-entropy between the predicted probability and
the ground-truth label. To train the discriminator, we set the
ground-truth labels of all the full sequences to 1, and the
ground-truth labels of all the partial sequences to 0. The loss
of the discriminator is then formulated as:

`D = −E[log(D(hf ))]− E[log(1−D(hp))] (1)

The discriminator aims to determine whether the input is a
full or a partial sequence, while the inference network aims
to update the parameters to fool the discriminator such that
the discriminator cannot classify the sequences correctly. The
adversarial loss for the inference network is formulated as:

`Ia = −E[log(D(hp))] (2)

Equation (2) is inspired by the non-saturating game [44]. It
encourages the inference network to learn a feature space,
where the discriminator has difficulty distinguishing whether
the input is a full or a partial sequence. Consequently, the
full sequences share information with the partial sequences in
learning action representations.

The output of the inference network (which is denoted as
I(·)) is an m-dimensional probability score generated by a
Softmax layer, where m denotes the number of action classes.
We denote the feature vector that is fed to the Softmax layer
by z = [z1, · · · , zm]T ∈ Rm, which is used to produce the
probability score of each class. The predicted probability of
the ith class is formulated as:

pi =
exp(zi)

m∑
j=1

exp(zj)
(3)

That is, I(·) = [p1, · · · , pm]T ∈ Rm. During training, besides
minimizing the adversarial loss `Ia, the inference network
also needs to minimize the multi-class cross-entropy of action
inference, which is formulated as:

`Ic = −E[ycf log I(sf )]− E[ycp log I(sp)] (4)

where I(sf ) and I(sp) are the outputs of the inference network
for the full sequence and the partial sequence, respectively.
ycf log I(sf ) and ycp log I(sp) denote the losses of an indi-
vidual sample. E(·) represents the mean operator of the losses
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Fig. 1: Overall architecture of the proposed LGN, which is trained iteratively with two inner steps (a) and (b). ‘I-Net’, and
‘D-Net’ are abbreviations of the inference network and the discriminator, respectively. sp and sf denote a partial sequence and
its associated full sequence. hp and hf denote the hidden feature representations of the two inputs, respectively.

of all the training samples. I(sf ) and I(sp) denote the outputs
of the inference network I-Net given the full sequence sf and
the partial sequence sp, respectively. ycf ∈ Rm is a one-hot
vector. The non-zero element corresponds to the ground-truth
action label of the input full sequence sf , e.g., if the action
class of the sequence is q, the qth element of ycf equals to
one while the other elements of ycf equal to zero. Considering
that the partial sequence contains less action information than
the full sequence, we design a pseudo label ycp ∈ Rm for the
partial sequence. The ground-truth probability of the pseudo
label ycp is smaller than that of the full sequence ycp, which
equals to 1. We observe that using the pseudo label guarantees
the convergence of the network. More specifically, if the action
class of the partial sequence is q, the qth element of ycp equals
to r while the other elements equal to zero. r is the observation
ratio of the partial sequence, which is formulated as:

r =
t

T
(5)

where t and T denote the numbers of frames of the partial
and associated full sequences, respectively.

The loss of the inference network is the combination of
the multi-class cross-entropy of action inference and the
adversarial loss. More specifically,

`I = `Ic + λ`Ia (6)

where λ is the weight that balances these two terms.

B. Network Training

The D-Net is optimized using the loss function formulated
in Equation (1), which is a binary classification loss that
encourages the D-Net to classify the features of the full
sequences as positive samples and the features of the partial
sequences as negative samples. The I-Net is optimized with
the loss function formulated in Equation (6), which contains a
multi-class cross-entropy and an adversarial loss. The adver-
sarial loss punishes partial sequences so that the output of the

D-Net for the partial sequences is 1, which is different from
the goal of the D-Net (i.e., classifies the partial sequences
as negative samples). In this case, the parameters of the D-
Net have to be fixed during the training of the I-Net, so that
the D-Net is not affected by the I-Net and does not lose its
ability to distinguish between full and partial sequences. On
the other hand, the D-Net does not consider the difference
between different actions, i.e., the partial sequences of all
actions are treated as negative samples while the full sequences
of all actions are treated as positive samples. In this case,
the I-Net should also be fixed during the training of D-Net,
so that it is not affected by the D-Net and does not lose its
distinguishing ability between different actions. Therefore, the
proposed LGN is trained iteratively in two inner steps: 1)
freeze the parameters of the inference network and train the
discriminator, and 2) freeze the parameters of the discriminator
and train the inference network to confuse the discriminator
and retain high accuracies of action inference. The overall
algorithm is illustrated in Fig. 1 and summarised in Algorithm
1.

Algorithm 1 Training algorithm.

1: Initial the Inference network I-Net;
2: Freeze the parameters of I-Net and train the discriminator

D-Net by minimizing the cost in Equation (1);
3: while not convergent do
4: Freeze D-Net and update I-Net by minimizing Equa-

tion (6);
5: Freeze I-Net and Update D-Net by minimizing the cost

in Equation (1);
6: end

C. Network Input

The inputs of the proposed LGN include the full and partial
sequences. The full sequences are provided by each dataset.
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The partial sequences are segmented from each full sequence.
Each partial sequence starts from the first frame of the full
sequence, thus to retain the accumulative history informa-
tion. More specially, we denote a full skeleton sequence as
s(1 : J, 1 : T ). J denotes the number of joints and T denotes
the number of frames. We assume that the total number of all
the partial and full sequences is n. The ith partial sequence is
then denoted as s(1 : J, 1 :

[
T ·i
n

]
). The observation ratio of this

partial sequence is i
n . Inspired by [9], we first transform each

skeleton sequence into a color image. To be more specific,
given a sequence with frame number T, we first arrange the
sequence into a 2D array with size T × J × 3, where J is
the number of joints in each frame of the sequence. Each
channel of the 2D array is transformed into a gray image with
a linear transformation. The transformation can be formulated
as Ti =

Si−min(Si)
max(Si)−min(Si)

, (i = 1, 2, 3). Si is the ith channel of
the array. min(Si) and max(Si) are the minimum value and
the maximum value of Si, respectively. The three generated
gray images Ti, (i = 1, 2, 3) are combined as a color image.
The three channels correspond to the three channels of the 3D
coordinates of the skeleton joints. Each image is resized to
224 × 224 by performing bicubic interpolation to the image.
Figure 2 shows some examples of generating images from
skeleton sequences. Each row contains sequences of the same
action performed by two different persons. It can be seen that
the generated images of the same action contain a similar
pattern.

IV. JOIN LATENT GLOBAL AND LOCAL INFORMATION FOR
ACTION PREDICTION

The proposed LGN aims to investigate latent global infor-
mation for action inference. We also propose a local network,
which aims to capture the local information of each sequence.
An action usually contains variations in human postures and
motions. Partial sequences of different observation ratios of
the action generally contain discriminative local information.
For example, a partial sequence with a small observation
ratio contains some prior sub-actions, while a partial sequence
with a larger observation ratio captures further progress of
the action. The goal of the local network is to capture the
local information of each sequence. In the experiment we
have shown that the performance of using only LGN (i.e.,
without the local network) is higher than previous methods.
The additional local network is to introduced demonstrate that
exploiting both the latent global information and the local
information improves prediction performance.

The architecture of the local network is the same as the
inference network. More specifically, it contains five convolu-
tional blocks (which are the same as ResNet-50 [43]), followed
by an average pooling layer and two fully connected layers
to generate action scores. The local network contains one
input. We use all the skeleton sequences, including all the
full and the partial sequences to train the local network. The
parameters of the local network are updated by minimizing the
classification cross-entropy between the output probabilities
and the ground-truth action labels. During training, the local
network and the global network are trained separately with

their respective loss. More specifically, the local network is
trained with the classification cross-entropy as formulated
in Equation (4). The global network is trained iteratively
using the training algorithm described in Algorithm 1. During
inference, given a testing sequence, the inference networks
of the global and the local networks are separately used to
process the sequence and generate action scores. The scores
of the global and local networks are averaged for the final
decision of the action class. More specifically, given a testing
sequence si, the output classification score of this sequence pi
is formulated as follows:

pi =
1

2
(Ig(si) + Il(si)) (7)

where Ig and Il denote the inference networks of the global
and the local networks. Ig(si) and Il(si) denote the output
class probabilities of the two networks.

V. EXPERIMENTS

The proposed method was evaluated on three skeleton
datasets, i.e., NTU Dataset [7], SYSU 3D Human-Object
Interaction (3DHOI) Dataset [45] and CMU Dataset[46]. In
this section, we present the details of our experimental results.

A. Datasets

NTU Dataset [7] is currently the largest skeleton-based
action dataset. It contains more than 4 million frames and
56000 sequences. Each skeleton contains 25 joints. This
dataset was captured by three cameras placed at different
locations and view points (80 view points in total). There are
60 action classes performed by 40 subjects. The actions consist
of complex two-person interactions such as handshaking and
one-person actions such as drinking. Due to the large intra-
class diversity and the variation of view points, this dataset is
very challenging.
SYSU 3DHOI Dataset [45] contains 480 sequences of 12
action classes, including playing with a cell phone, calling
with a cell phone, pouring, drinking, moving a chair, sitting
on a chair, packing a backpack, wearing a backpack, sweeping,
mopping, taking something out from the wallet and taking out
a wallet. This dataset is very challenging for action prediction
due to the fact that some actions contain similar motions or
the same operating object at the early temporal stage.
CMU Dataset [46] contains about 1 million frames and 2235
sequences categorized into 45 action classes [3] including
sitting and running. All actions are performed by one person.
Each skeleton contains 31 joints. This dataset is very challeng-
ing due to the large variation in the numbers of sequences.

For all datasets, we set the parameter λ in Equation (6)
to 0.01. The parameter is selected by cross-validation. The
number of units of the fully-connected layer in the feature
encoding block of the inference network is set to 512. The
numbers of units of the fully-connected layers in the inference
network and the discriminator are set to the number of action
classes and one, respectively. For each full sequence, we
segmented 9 partial sequences with an increasing observation
ratio from 0.1 to 0.9, with a step of 0.1. Each partial sequence
starts from the first frame of the full sequence.
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Fig. 2: Demonstration of image generation from skeleton sequences. Each row contains two sequences of the same action
performed by two persons.

TABLE I: Action prediction performance comparison on the
NTU dataset. Refer to Fig. 3 for more results.

Methods
Observation Ratio

0.2 0.4 0.6 0.8 1.0

[9] 8.34% 26.97% 56.78% 75.13% 80.43%

[36] 7.07% 18.98% 44.55% 63.84% 71.09%

[37] 27.41% 59.26% 72.43% 78.10% 79.09%

Local 29.32% 58.68% 70.81% 75.91% 76.47%

LGN 30.04% 61.78% 76.14% 81.57% 82.64%

Local+LGN 32.12% 63.82% 77.02% 82.45% 83.19%

The contributions of this work include 1) a new LGN
designed for action prediction, and 2) combining the local
network (Local) and the LGN (Local+LGN) for action predic-
tion. The local network can be treated as an action recognition
method except that the input consists of all the partial and
full sequences. For each dataset, we first compare the LGN
with the local network to show the benefit of learning the
latent global information for action prediction. We further
compare the proposed LGN and the Local+LGN to other
action recognition and prediction methods [9], [36], [37], [1]
to show the contributions of this work.

B. Results on the NTU Dataset

We followed the cross-subject testing protocol to evaluate
this dataset. More specifically, the training set consists of
the sequences of 20 subjects. The sequences of the other 20
subjects are used for testing. The results are shown in Table
I and Fig. 3. It can be seen that the proposed LGN signif-
icantly outperforms the local network, especially at the late
temporal stage. When the observation ratio is 0.4, i.e., using
the first 40% of all frames of each full sequence to predict

[9]
[29]
[30]
[29]
[30]

[9]

[29]
[30][37]
[36]

Fig. 3: Action prediction comparison on the NTU Dataset. The
partial sequence with observation ratio r starts from the first
frame to the (rT )th frame (T denotes the number of frames
in the full sequence). (Best viewed in color)

the action, the LGN achieves an accuracy of 61.78%. The
prediction accuracy of the local network is 58.68%. The LGN
outperforms the local network by 3.1%. The improvement of
the LGN compared to the local network is more significant
when the observation ratio increases, e.g., the performance of
the LGN with an observation ratio 0.6 is 76.14%, which is
5.33% better than the local network (70.81%). Compared to
the local network, the LGN leverages adversarial learning to
learn the latent global information, which provides a crucial
cue to accurately infer actions. The improvements of the
LGN clearly demonstrate the benefit of learning the global
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TABLE II: Action recognition performance comparison on the
NTU dataset.

Methods Accuracy

Lie Group [5] 50.1%

Dynamic Skeletons [45] 60.2%

Hierarchical RNN [6] 59.1%

Deep RNN [7] 59.3%

Deep LSTM [7] 60.7%

Part-aware LSTM [7] 62.9%

ST-LSTM + Trust Gate [8] 69.2%

GCA-LSTM [27] 74.4%

GCA-LSTM (stepwise training) [18] 76.1%

SkeletonNet [47] 75.94%

Clips+CNN+MTLN [9] 79.57%

RotClips+MTCNN [48] 81.09%

Local 76.47%

LGN 82.64%

Local+LGN 83.19%

information for action prediction. The proposed Local+LGN
further improves the performance of the LGN. When the
observation ratio is 0.4, the performance of the Local+LGN is
63.82%. Compared to the LGN (61.78%), the improvement of
the Local+LGN is 2.04%. The local network aims to explore
the local discriminative information, which is complementary
to the latent global information learned by the LGN. The
combination of the local network and the LGN thus results in
a stronger action predictor and produces a better performance
for action prediction.

We also compared the proposed method to recent state-of-
the-art action recognition and prediction methods [9], [36],
[37]. The work in [9] proposes a recognition network that
trains only on full sequences. The network is optimized using
the standard multi-class cross-entropy loss. The method in [36]
trains on all partial and full sequences using a weighted loss
function that applies different weights to the sequences. The
work in [37] also trains all the partial and full sequences using
a new loss that combines a weighted false positive cross-
entropy and the standard cross-entropy. The above methods
do not consider the missing global information in the partial
sequences. In this paper, we introduce a LGN to exploit the
missing global information, which produces a better under-
standing of the actions. The results are shown in Table I
and Fig. 3. The recognition method [9] does not see the
partial sequences during training, thus resulting in a worse
prediction performance on the partial sequences during testing.
When the observation ratio is 0.2, the performance of [9]
and the proposed method is 8.34% and 32.12%, respectively.
Compared to [9], the improvement of the proposed method is
23.78%. The prediction performance of [9] increases when the
observation ratios of the partial sequences are close to 1 (i.e.,
testing on the full sequences). Similar to [9], [36] performs
well only when the observation ratios of the testing sequences
are close to 1. The prediction accuracy of [36] on observation

TABLE III: Action prediction performance comparison on the
SYSU 3DHOI dataset. Refer to Fig. 4 for more results.

Methods
Observation Ratio

0.2 0.4 0.6 0.8 1.0

[1] 29.58% 35.42% 53.33% 58.75% 54.17%

[9] 26.76% 52.86% 72.32% 79.40% 80.71%

[36] 31.61% 53.37% 68.71% 73.96% 75.53%

[37] 56.11% 71.01% 78.39% 80.31% 78.50%

Local 57.15% 71.53% 78.69% 80.40% 77.78%

LGN 56.18% 72.60% 81.35% 84.28% 83.33%

Local+LGN 58.81% 74.21% 82.18% 84.42% 83.14%

[9]
[29]
[30]
[29]
[30]

[9]

[29]
[30][37]
[36]

[1]

Fig. 4: Action prediction performance comparison on SYSU
3DHOI Dataset. (Best viewed in color)

ratio 0.2 is 7.07%, which is 25.05% worse than the proposed
method. In [36], for each partial sequence, the weight of the
weighted loss decreases exponentially with the difference of
the number of frames between the partial sequence and the
associated full sequence. This results in a worse performance
at the early temporal stage. When the observation ratio is
0.6, [37] achieves an accuracy of 72.43%, which is 4.59%
worse than the proposed method (77.02%). Compared to the
proposed network, this method does not consider the global
information for action prediction.

The proposed method also achieves state-of-the-art perfor-
mance for action recognition. The comparisons of the proposed
method with other action recognition methods are shown in
Table II. Compared to the recent RotClips+MTCNN method
[48], the improvement of the proposed method is 2.1% (from
81.09% to 83.19%).

C. Results on the SYSU 3DHOI Dataset

This dataset has been used for action prediction using
the cross-subject setting [1]. In this setting, there are 30
training/testing splits, which are provided by [45]. In each
split, the sequences of 20 subjects are used for training,
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TABLE IV: Action recognition comparison on the SYSU
3DHOI dataset.

Methods Accuracy

LAFF (SKL)[1] 54.2%

Dynamic Skeletons [45] 72.5%

ST-LSTM (Joint Chain) [26] 72.1%

ST-LSTM (Joint Chain) + Trust Gate [26] 74.8%

ST-LSTM (Tree) [26] 73.4%

ST-LSTM (Tree) + Trust Gate [26] 76.5%

Local 77.78%

LGN 83.33%

Local+LGN 83.14%

and the sequences of the other 20 subjects are used for
testing. Following [1], we report the results by averaging the
accuracies over the 30 training/testing splits. The results are
shown in Table III and Fig. 4. The proposed LGN outperforms
the local network in 8 out of 10 cases. When the observation
ratio is 0.6, the performance of the LGN is 81.35%. Com-
pared to the local network (78.69%), the improvement of the
proposed LGN is 2.66%. The Local+LGN further improves
the performance of the LGN in 9 out of 10 cases. When
the observation ratio is 0.4, the prediction performance of the
Local+LGN is 72.60%, which is 1.61% better than the LGN
(74.21%). The improvement of Local+LGN compared to the
local network in this case is about 2.68% (from 71.53% to
74.21%). This clearly shows the benefits of combining the
complementary strength of the local and global information
for action prediction.

The proposed LGN and Local+LGN are also compared with
state-of-the-art action prediction and recognition methods [1],
[37], [9]. The results are shown in Table 4 and Fig. III. Similar
to the results in the NTU dataset, [9] performs well only
when the observation ratio is close to 1. It clearly shows the
importance of training partial sequences for action prediction.
The performance of [37] is 78.39% when the observation ratio
is 0.6. The proposed LGN and Local+LGN outperform [37] by
2.96% and 3.79%, respectively. These improvements clearly
show the advantages of learning the latent global information
for action prediction.

We also show the action recognition comparison of the
proposed LGN and Local+LGN with other methods. The
results are shown in Table IV. Compared to the state-of-the-
art recognition method [26], the proposed LGN improves the
recognition performance by 6.83% (from 76.5 to 83.33%).

From Table 4 and Fig. IV, we can also see that the
accuracies of most methods (including [37], the local network,
the LGN, and the Local+LGN) on an observation ratio 0.8 are
better than the accuracies on observation ratio 1. For example,
the proposed method achieves an accuracy of 84.42% on
observation ratio 0.8, which is 1.28% better than the accuracy
on observation ratio 1 (83.14%). On this dataset, most actors
at the last stage do not have any motions, which makes the
actions ambiguous. In this case, the full sequences contain
more noisy information compared to the partial sequences

TABLE V: Action prediction comparison on the CMU dataset.
Refer to Fig. 5 for more results.

Methods
Observation Ratio

0.2 0.4 0.6 0.8 1.0

[9] 33.72% 56.52% 71.33% 78.83% 80.64%

[36] 23.25% 46.99% 63.50% 71.48% 75.34%

[37] 71.08% 77.84% 81.58% 82.00% 81.07%

Local 72.62% 78.62% 81.53% 82.35% 81.62%

LGN 72.98% 79.73% 83.86% 84.65% 84.12%

Local+LGN 74.79% 80.73% 83.62% 84.94% 84.53%

without the last temporal stage. This results in a worse
performance on observation ratio 1.

D. Results on the CMU Dataset

For evaluation on this dataset, we followed the testing
protocol of four-folder cross-validation introduced by [3]. The
action prediction comparison of the proposed LGN and Lo-
cal+LGN compared to other methods are shown in Table V and
Fig. 5. The proposed Local+LGN improves the performance of
the proposed LGN in 9 out of 10 cases and outperforms recent
action recognition and prediction methods [9], [36], [37] on
all observation ratios.

From Table V and Fig. 5, we can also see that the perfor-
mance of the proposed method on observation ratio 1 (84.53%)
is 9.74% better than the performance on observation ratio
0.2 (74.79%). The improvement between the two observation
ratios on this dataset is smaller than that on the NTU dataset
(51.07%) and on the SYSU dataset (24.33%). This is due to
the fact that most actions on this dataset such as running are
repetitive and periodic. Partial sequences with small observa-
tion ratios contain similar action information to the sequences
with larger observation ratios, thus the performance at the early
stage has a smaller gap compared to the performance at the
late stage.

E. Analysis of the Weight of the Adversarial Loss

In this work, the weight parameter of the adversarial loss is
selected by cross-validation. During cross-validation, we split
the training dataset (performed by 20 subjects) into 70%/30%
training/validation split, i.e., the sequences of 14 subjects
(70%) out of the 20 subjects are used for training and the
remaining 6 subjects (30%) are used as validation data. The
validation performance of the proposed LGN with different
weights of the adversarial loss are shown in Table VI. It can be
seen that setting the weight to 0.01 produces the best validation
result, and applying a larger weight to the adversarial loss
results in a degradation of the action prediction performance.
This is because the I-Net is optimized with a combination of
the classification cross-entropy and the adversarial loss. The
classification cross-entropy encourages the I-Net to distinguish
between sequences of different actions. The adversarial loss
forces the I-Net to fool the D-Net so that the output of the
D-Net for all the partial sequences is the same as its output
for the full sequences. In this case, the difference between all
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[9]
[29]
[30]
[29]
[30]

[9]
[29]
[30]
[29]
[30]

[9]

[29]
[30][37]
[36]

Fig. 5: Action prediction comparison on the CMU Dataset.
(Best viewed in color)

the action classes is neglected. If the weight of the adversarial
loss is too large, the I-Net will lose its ability to distinguish
between different actions. As a result, the performance of
action prediction will degrade.

TABLE VI: Validation Performance of action prediction using
different weights of the adversarial loss on the NTU dataset.

Weight
Observation Ratio

0.2 0.4 0.6 0.8 1.0

0.005 27.17 % 54.49% 66.84% 72.44% 73.97%

0.01 27.96% 55.26% 68.27% 74.14% 75.22%

0.05 26.27 % 53.88% 66.95% 72.70% 74.16%

0.1 25.54 % 51.28% 65.39% 73.30% 74.83%

1 21.99% 49.72% 64.33% 71.07% 72.92%

F. Training the Adversarial Loss on the Full Sequences

In the proposed method, the adversarial loss penalises the
partial sequences to ensure that the output of the discriminator
for the partial sequences is 1. We have conducted an exper-
iment with the adversarial loss penalising both the full and
the partial sequences. The results are shown in Table VII. It
can be seen that the results are similar. This is because the
discriminator tries to classify the full sequences as positive
samples, and the output of the discriminator for the full
sequences is already forced to be 1 using the loss of the
discriminator. In this case, an additional penalty of the full
sequences (i.e., force the output of the discriminator for the
full sequences to be 1) does not affect the convergence and
the results are similar.

G. Visualizations of Action Prediction

We show predictions of our LGN method at different
observation ratios of each sequence in Figure 6. For example,

TABLE VII: Action prediction using different adversarial
training methods on the NTU dataset.

Method
Observation Ratio

0.2 0.4 0.6 0.8 1.0

partial 30.04% 61.78% 76.14% 81.57% 82.64%

full & partial 29.42% 61.31% 75.24% 81.42% 82.93%

observation ratio 0.2 denotes that only the first 20% of the
frames of a sequence are used to predict the action. The
ground-truth action class of each sequence is shown on the
left of the sequence. Incorrect predictions are shown in red
and correct predictions in green. The first three rows show
examples of correct predictions. These actions contain distin-
guishing motions and postures and are easy to predict. The last
three rows show examples of failure. Some pairs of actions
(e.g., cross hands in front and rub two hands together) are
similar at the early temporal stage, which makes it difficult
to distinguish between them when using a small observation
ratio of the sequence. Some pairs of actions (e.g., typing
on a keyboard and playing with a phone) contain the same
motion and posture but involve different objects. It is difficult
to predict the action class with only the skeleton information.
In this case, the prediction is incorrect even when the full
action sequence (i.e., observation ratio is 1) is used.

VI. CONCLUSION

In this paper, we presented a new Latent Global Network
(LGN) for action prediction. The proposed LGN attempts
to learn the latent global information, which is important to
understand an action class. During training, the LGN leverages
adversarial learning to encourage the partial sequences to
be similar to the full sequences in a feature space. During
testing, the partial sequences are mapped to the feature space
for action inference. The proposed LGN has been shown
to improve action prediction. We further demonstrated that
the local information learned by the local network is com-
plementary to the latent global information learned by the
LGN and the combination of the LGN and the local network
further improves the performance. The proposed LGN and
Local+LGN achieve state-of-the-art performance for action
prediction and recognition on challenging skeleton datasets.
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[20] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and
G. Langs, “Unsupervised anomaly detection with generative adversarial
networks to guide marker discovery,” in International Conference on
Information Processing in Medical Imaging. Springer, 2017, pp. 146–
157.

[21] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan, “Perceptual gen-
erative adversarial networks for small object detection,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 1222–1230.

[22] S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto, “Few-shot adver-
sarial domain adaptation,” in Advances in Neural Information Processing
Systems, 2017, pp. 6670–6680.

[23] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Advances in neural information
processing systems, 2014, pp. 568–576.

[24] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Computer
Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015,
pp. 4489–4497.

[25] G. Varol, I. Laptev, and C. Schmid, “Long-term temporal convolutions
for action recognition,” IEEE transactions on pattern analysis and
machine intelligence, 2017.

[26] J. Liu, A. Shahroudy, D. Xu, A. K. Chichung, and G. Wang, “Skeleton-
based action recognition using spatio-temporal lstm network with trust
gates,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[27] J. Liu, G. Wang, P. Hu, L.-Y. Duan, and A. C. Kot, “Global context-
aware attention lstm networks for 3d action recognition,” in CVPR, 2017.

[28] Q. Ke, J. Liu, M. Bennamoun, S. An, F. Sohel, and F. Boussaid,
“Computer vision for human–machine interaction,” in Computer Vision
for Assistive Healthcare. Elsevier, 2018, pp. 127–145.

[29] J. Liu, N. Akhtar, and A. Mian, “Learning human pose models from
synthesized data for robust rgb-d action recognition,” arXiv preprint
arXiv:1707.00823, 2017.

[30] H. Rahmani, A. Mian, and M. Shah, “Learning a deep model for human
action recognition from novel viewpoints,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 3, pp. 667–681, 2018.

[31] H. Rahmani and M. Bennamoun, “Learning action recognition model
from depth and skeleton videos,” in IEEE International Conference on
Computer Vision, 2017, pp. 5832–5841.

[32] M. Ryoo, “Human activity prediction: Early recognition of ongoing
activities from streaming videos,” in ICCV, 2011, pp. 1036–1043.

[33] Y. Kong, D. Kit, and Y. Fu, “A discriminative model with multiple
temporal scales for action prediction,” in ECCV, 2014, pp. 596–611.

[34] Q. Ke, M. Bennamoun, S. An, F. Boussaid, and F. Sohel, “Human
interaction prediction using deep temporal features,” in ECCVW, 2016,
pp. 403–414.

[35] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, “Leveraging
structural context models and ranking score fusion for human interaction
prediction,” IEEE Transactions on Multimedia, 2017.

[36] A. Jain, A. Singh, H. S. Koppula, S. Soh, and A. Saxena, “Recurrent
neural networks for driver activity anticipation via sensory-fusion archi-
tecture,” in ICRA, 2016, pp. 3118–3125.

[37] M. S. Aliakbarian, F. Saleh, M. Salzmann, B. Fernando, L. Petersson,
and L. Andersson, “Encouraging lstms to anticipate actions very early,”
in ICCV, 2017.

[38] Y. A. Farha, A. Richard, and J. Gall, “When will you do what?-
anticipating temporal occurrences of activities,” in IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2018.

[39] Q. Ke, M. Fritz, and B. Schiele, “Time-conditioned action anticipation
in one shot,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 9925–9934.

[40] Q. Ke, J. Liu, M. Bennamoun, H. Rahmani, S. An, F. Sohel, and
F. Boussaid, “Global regularizer and temporal-aware cross-entropy for
skeleton-based early action recognition,” in Asian Conference on Com-
puter Vision, 2018.

[41] J. Liu, A. Shahroudy, G. Wang, L.-Y. Duan, and A. C. Kot, “Ssnet: Scale
selection network for online 3d action prediction,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 8349–8358.

[42] J. Liu, A. Shahroudy, G. Wang, L.-Y. Duan, and A. K. Chichung,
“Skeleton-based online action prediction using scale selection network,”
IEEE transactions on pattern analysis and machine intelligence, 2019.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[44] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”
arXiv preprint arXiv:1701.00160, 2016.

[45] J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang, “Jointly learning hetero-
geneous features for RGB-D activity recognition,” in CVPR, 2015, pp.
5344–5352.

[46] CMU, “CMU graphics lab motion capture database,” in
http://mocap.cs.cmu.edu/, 2013.

[47] Q. Ke, S. An, M. Bennamoun, F. Sohel, and F. Boussaid, “Skeletonnet:
Mining deep part features for 3-d action recognition,” IEEE Signal
Processing Letters, vol. 24, no. 6, pp. 731–735, 2017.

[48] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, “Learning
clip representations for skeleton-based 3d action recognition,” IEEE
Transactions on Image Processing, 2018.

Qiuhong Ke Qiuhong Ke received her Ph.D. degree
from the University of Western Australia. She joined
The University of Melbourne as a Lecturer (Assis-
tant Professor) in January 2020. Before that she was
a Postdoctoral Researcher at Max Planck Institute
for Informatics. Her research interests include com-
puter vision, machine learning, action recognition
and action prediction.



SUBMITTED TO TRANSACTIONS ON IMAGE PROCESSING 12

Mohammed Bennamoun Mohammed Bennamoun
is Winthrop Professor in the Department of Com-
puter Science and Software Engineering at UWA
and is a researcher in computer vision, machinedeep
learning, robotics, and signalspeech processing. He
has published 4 books (available on Amazon), 1
edited book, 1 Encyclopedia article (by invitation),
14 book chapters, 120+ journal papers, 250+ confer-
ence publications, 16 invited & keynote publications.
His h-index is 48 and his number of citations is
close to 11,000 (Google Scholar). He was awarded

65+ competitive research grants (approx. $17+ million in funding) from the
Australian Research Council, and numerous other Government, UWA and
industry Research Grants. He has delivered conference tutorials at major con-
ferences, including: IEEE Computer Vision and Pattern Recognition (CVPR
2016), Interspeech 2014, IEEE International Conference on Acoustics Speech
and Signal Processing (ICASSP) and European Conference on Computer
Vision (ECCV). He was also invited to give a Tutorial at an International
Summer School on Deep Learning (DeepLearn 2017). He widely collaborated
with researchers from within Australia (e.g. CSIRO), and internationally (e.g.
Germany, France, Finland, USA). He served for two terms (3 years each term)
on the Australian Research Council (ARC) College of Experts, and the ARC
ERA 2018 (Excellence in Research for Australia).

Hossein Rahmani Hossein Rahmani received the
BSc degree in computer software engineering from
Isfahan University of Technology, Isfahan, Iran, in
2004, the MSc degree in software engineering from
Shahid Beheshti University, Tehran, Iran in 2010,
and the PhD degree from the University of Western
Australia, in 2016. He has published several papers
in top conferences and journals such as CVPR,
ICCV, ECCV, and the IEEE Transactions on Pattern
Analysis and Machine Intelligence. He is currently
an associate professor (Lecturer) in the School of

Computing and Communications at Lancaster University. Before that he was a
research fellow in the School of Computer Science and Software Engineering,
University of Western Australia. His research interests include computer
vision, action recognition, 3D shape analysis, and machine learning.

Senjian An Senjian An received his B.S degree
from Shandong University, the M.S. degree from the
Chinese Academy of Sciences, and the Ph.D. degree
from Peking University, China. He is currently a
senior lecturer in the School of Electrical Engineer-
ing, Computing and Mathematical Sciences, Curtin
University. Before that he was a Research Fellow at
the School of Computer Science and Software En-
gineering, The University of Western Australia. His
research interests include machine learning, image
processing, object detection and recognition.

Ferdous Sohel Ferdous Sohel received the PhD
degree from Monash University, Australia, in 2009.
He is currently an Associate Professor in Informa-
tion Technology at Murdoch University, Australia.
Prior to his joining Murdoch University, he was
a Research Assistant Professor/Research Fellow at
the University of Western Australia from 2008 to
2015. His research interests include computer vision,
image processing, pattern recognition, multimodal
biometrics, scene understanding, robotics, and video
coding. He is a Member of Australian Computer

Society and a Senior Member of IEEE.

Farid Boussaid Farid Boussaid received the M.S.
and Ph.D. degrees in microelectronics from the
National Institute of Applied Science (INSA),
Toulouse, France, in 1996 and 1999 respectively. He
joined Edith Cowan University, Perth, Australia, as a
Postdoctoral Research Fellow, and a Member of the
Visual Information Processing Research Group in
2000. He joined the University of Western Australia,
Crawley, Australia, in 2005, where he is currently a
Professor. His current research interests include neu-
romorphic engineering, smart sensors, and machine

learning.


