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1 Introduction
Contribution to global public goods, such as mitigation of climate change,
production of scientific knowledge, international security or preservation of
natural resources, is one of the domains where international cooperation
matters the most. Yet, on many of these issues, even existing federations
of states or countries often choose to act in a decentralized way, such as
for military interventions in the European Union or climate policy in the
United States.
In this paper, we study the causes and consequences of strategic de-

centralization. We set up a model where pre-existing federations non-
cooperatively contribute to a global public good. The game takes place
over two stages. In the second stage, centralized federations and individual
countries play a non-cooperative global public goods game. In the first
stage, the members of each federation jointly choose a political structure,
according to which the decision of the provision of the public good is then
made within the federations. If the members of a federation choose to pro-
vide the good in a centralized way, they delegate the voluntary provision
to a centralized level, which maximizes their total surplus. If they choose
to provide the good in a decentralized way, each member maximizes its
own surplus independently by choosing its contribution. The choice of the
political structure generates a trade-off. Being centralized, a federation in-
ternalizes the externalities caused by the public good production within the
federation. Being decentralized, a federation commits itself to free riding
on the other one.
First, we study the impact of different political structures on the pro-

vision of the public good, as well as the factors that make unilateral de-
centralization beneficial to a federation. Secondly, we solve a game where
federations simultaneously choose their political structure with fully trans-
ferable utility within each federation (TU). We show that federations which
are larger or more sensitive to the public good have stronger incentives to
remain centralized. An overall increase in the sensitivity to the public
good may however lead to a lower total production of public good, because
it influences the players’ strategic incentives to decentralize. Thirdly, we
compare these results with a setup characterized by non-transferable utility
(NTU). While the trade-offs identified in the TU case remain, sensitivity
to the public good now plays an additional role, since smaller and less sen-
sitive members are more likely to prefer decentralization. All other things
equal, a more heterogeneous federation is thus more prone to decentralize.
Being a heterogeneous federation may therefore be a strategic advantage if
utility is non-transferable.
Our modeling approach differs from the traditional view of coalition for-

mation according to which individual actors seek to cooperate with each
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other on a single issue (see, for instance, d’Aspremont et al., 1983, Bloch,
1996 and Ray and Vohra, 1997).1 In contrast, we start by assuming that
countries belong to pre-existing federations – bounded by a common history
of cooperation, shared interest, or mutual trust – and are able to choose
the institutional design to maximize their combined surplus. For instance,
member states of the European Union have to agree with each other on
which institutional level should be in charge of determining the amount
of military contributions or pollution abatements within the union. But
we assume each of these issues alone does not determine which countries
leave or join the European Union. In this sense, our approach adds an
additional layer to the literature on coalition formation, by understanding
and modeling how single players (that are exogenously given in most of the
coalition-formation models) come about.
Once an institution exists, and the mutual trust between its members

is present, nothing prevents them from voting unanimously to extend the
scope of the institution’s intervention. When a federation can truthfully
design transfers among its members (TU), it is possible to centralize on
an issue that would otherwise create winners and losers (see Kosfeld et al.,
2009). For instance, the common agricultural policy was a unanimous
choice to extend the scope of the European Union, while the British gov-
ernment managed to receive a rebate on its contribution to the European
Union budget as a compensation.2 Enforcement of an agreement outside a
federation is however particularly complicated. The absence of enforcement
is often described as the main weakness of global international environmen-
tal agreements (see for instance Chapter 15 of Barrett, 2003, and Nordhaus,
2015).
Although federations exist and are relatively stable over time, it is a

striking fact that they often act in a decentralized way on specific global
issues. For instance, the United States is a federal country whose central-
ized level of government takes decisions on several global issues, such as
national defense. However, regarding global climate change, the policy of

1Yi (1997) presents number of properties of those different coalition-formation rules, in
the presence of either positive or negative externalities. Belleflamme (2000) allows
for asymmetric countries in an open membership game with negative externalities
and McGinty (2007) for one with positive externalities. Some of these models have
been applied to the context of climate change and global pollution (see for instance
Carraro and Siniscalco, 1993, Barrett, 1994 or Barrett, 2005). In a cooperative game
setting, Basile et al. (2016) give sufficient conditions for the equivalence between the
core and the set of competitive allocations in a mixed market with both individual
agents and coalitions, who choose among public projects as well as their contribution
to it.

2In 1984, the UK negotiated a mechanism (the “Fontainebleau agreement”) wherein
it automatically gets back about two-thirds of the difference between what it con-
tributes to and what it receives from the EU budget at the end of each year (Lowe
et al., 2002).
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the United States has always been “bottom up,” in that the central gov-
ernment delegates to states the choice of taking constraining decisions on
abatement targets (Lutsey and Sperling, 2008).3 A consequence is the re-
fusal of the United States administration to commit on abatements, making
the European Union complain about the “lack of American Leadership.”4
Similarly, individual member countries of the European Union have long

acted in a decentralized way on most military interventions (Howorth, 2001;
Kirchner, 2006). These include conflicts on the European continent such
as the Balkan wars in the 1990s, where most of the leadership was left
to the United States (Gordon, 1997, p.74). Since the early 2000s, some
smaller-scale military interventions have been made on behalf of the Euro-
pean Union’s Common Security and Defense Policy (CSDP) (Kaldor and
Salmon, 2006). But when the 2011 crisis in Libya escalated, “no one appar-
ently seriously considered intervention under the framework of the CSDP”
and “the European Union stood on the sidelines and watched as France
and the United Kingdom, acting within a NATO framework, intervened
militarily on the Union’s doorstep” (Menon, 2011, p.75).
We review the relevant literature in Section 2. Focusing on subgame

perfect Nash equilibria, we start by solving the second stage in Section 3
and then solve the first stage in Section 4. We discuss the case of NTU and
that of partial decentralization in Section 5 and conclude in Section 6.

2 Related literature
In this paper, we claim that decentralization can be strategic if it is in the
joint interest of the federation members. Decentralization as a means to
free ride is derived from the fact that smaller players have fewer incentives
to contribute in a non-cooperative game of public goods (see Olson and
Zeckhauser, 1966, and the more recent discussion in Buchholz and Sandler,
2016). In addition to the military and environmental examples described
above, the idea that larger players contribute more has also been largely ex-
plored in trade agreements. For instance, Ludema and Mayda (2009) show
that when free riding on trade agreements is possible (the Most Favored
Nation clause of the WTO/GATT), each exporting country’s willingness to
bear the cost of participating in negotiations depends on its market share,
so that the “smallest” countries free ride on others.
The literature on fiscal federalism has generally taken as given that public

goods (such as national defense) were precisely the cause of the formation

3The US government seems, however, able to deal in an efficient and centralized way
on environmental issues with a national impact only, such as acid rains, as shown by
the Bush senior administration in the early 1990s (Joskow et al., 1998).

4Andreas Carlgren, Sweden’s Environment Minister talking on behalf of the EU pres-
idency (Copenhagen talks, 2009, cited by The Guardian, November 2, 2009).
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of a federation (Oates, 2005, p.366), but not a cause of secession or de-
centralization. Economists have long been interested in the formation and
the maintenance of cartels producing public goods. The generally stud-
ied procedure of coalition formation is a bottom-up two-stage game. In
the first stage, countries decide whether or not to join a coalition. In the
second stage, each coalition acts as a single player who maximizes the ag-
gregate welfare of its members. This setting presumes that, conditional on
being members of a coalition, countries are able to sign binding contracts
and punish deviators. Since individual countries have a strong incentive to
free ride, these models generally predict that International Environmental
Agreements (IEAs) can achieve little more than a non-cooperative frame-
work (Barrett, 2005).
Nevertheless, in a global public goods game, the coalition maximizing

the aggregate welfare of all the players (i.e. the grand coalition) should be
feasible with transfers and/or credible punishment of deviators (see Car-
raro and Siniscalco, 1993 and Carraro et al., 2006 for a discussion of this
argument).5 There must however be a history of sequential commitments,
in the sense that a first group of countries commit themselves to acting
together, and then jointly choose to expand the coalition by providing a
transfer to an additional member. Ray and Vohra (2001) show that the
existence of transfers is not sufficient to ensure the formation of the grand
coalition, when countries are free to sequentially offer a new partition, even
after entering a coalition.
Our approach is closer to the top-down “club” coalitions in Nordhaus

(2015), with multiple clubs. Similar to this paper, we assume enforcement
is possible among the members of the clubs, and among these members only.
However, in Nordhaus’ framework, TU does not justify the assumption that
heterogeneous members of the club can maximize its joint surplus, because
each member can make a transfer proposal, which leads to instability. In
contrast, we assume a federation is an existing entity with an identified
leadership, able to maximize joint surplus and ensure participation of all
via transfers, very much like the head of a household in Bergstrom (1989).
Our contribution furthermore belongs to a growing literature which en-

riches the structure of the players involved in international cooperation.
For instance, Köke and Lange (2017) consider the political economy within
countries as a driving force of the scope and size of climate agreements,
and Marchiori et al. (2017) study the game between lobbies and govern-
ments to explain why the latter may want to use climate agreements in
order to improve their bargaining position. Interpreting our approach in
the language of coalition-formation literature, a federation can be seen as a

5Most of the environmental literature focuses on a single coalition. In an open member-
ship game, multiple coalitions may coexist in equilibrium, but must be stand-alone
stable, in the sense that no individual should be better off by deviating (Yi, 1997).
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focal point which is reachable if it is in the interest of all the member coun-
tries. Our difference with an open-membership IEA à la d’Aspremont et al.
(1983), as used for instance by Barrett (1994), is that possible members
of the federation are clearly identified. This mitigates one of the problems
leading to the lack of cooperation in IEAs: in d’Aspremont et al. (1983), if
one member of a large cartel quits, the cartel is maintained until it shrinks
to its (minimal) stable size. At this moment, no outside player wants to
join. Each remaining member knows that their withdrawal from the car-
tel will make it explode. Hence, when agreements exist, they are often of
(endogenously) small size. In our setting, a federation leader makes a take-
it-or-leave-it offer to its well-identified members. By refusing to be part of
a large agreement, each individual member is in a position to destroy the
cartel.
The result of profitable decentralization is reminiscent of at least two

important results in Industrial Organization. First, Salant et al. (1983)
show that in a Cournot environment, a horizontal merger may lower the
profits of firms. Secondly, in a similar environment, Baye et al. (1996) show
that large firms may benefit from divisionalisation and franchising. If a firm
can ex-ante commit itself to delegating the production choice to several
smaller franchises, this is equivalent to a commitment to a higher level
of production. A rather similar intuition also exists in congestion games:
Sorin and Wan (2013) show that a player may benefit from “delegating”
itself and not internalizing the congestion externality.
Our focus is also close to two papers on the link between country size,

centralization and the provision of global public goods. First, Eckert (2003)
shows that with exogenous constitution (the choice of centralization), a de-
centralized country may benefit from a better position in the negotiation
over a climate agreement, for its disagreement point is more favorable. She
builds a model with two federations, each composed of a single polluting
region and some identical, non-polluting members. A federation can be
either centralized or decentralized. She studies a bilateral agreement mod-
eled as a Nash bargain without transfers, and provides an example of a
strategic game of decentralization in this context. In contrast, we study a
game in which federations of possibly different size and sensitivity strategi-
cally choose their political structure before non-cooperatively contributing
to the public good, and compare transferable and non-transferable utility
within the federation. This allows us to understand in a more precise way
the possible equilibria, and to study the impact of a change in the sensi-
tivities to the public good. Second, Buchholz et al. (2014) show that if a
group of countries can choose a matching ratio for their contributions to a
public good, the existence of a coalition may decrease the aggregate level
of public good. However, this paper does not study strategic interaction
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among federations beyond the last stage of contribution to the global public
good .

3 Last stage: Voluntary provision of public
goods

To solve the two-stage decentralization game by backward induction, we
begin the analysis by the last stage. The players in this stage play a game
of voluntary provision of a public good (Bergstrom et al., 1986).
There are N players, indexed by i ∈ N = {1, ..., N}. A player i is either

an autonomous country, or a centralized federation composed of a finite
number ni ≥ 2 of member countries. Each country k, autonomous or not,
is characterized by its size mk and its sensitivity to the public good sk. We
denote the set of member countries of federation i by Fi and the set of all
the countries by F . To simplify the notation, we consider an autonomous
country i as a federation consisting of only one country, so that Fi = {i}.
An autonomous country i chooses its contribution of public good Qi ≥ 0.

Being interested in how the political structure affects the production of
public good, we consider contribution of a country as proportional to its
size. In other words, we focus on qi = Qi

mi
, the per-unit contribution of

country i, its contribution divided by their size, instead of Qi, its total
contribution.
A centralized federation i chooses the per-unit contribution of public

good qk for each of its member countries k ∈ Fi, in order to maximize their
aggregate welfare.
The profile of choices is a vector q = (qk)k∈F . The aggregate level of the

public good is denoted by Q =
∑

k∈F mkqk.
The per-unit utility of a country k ∈ F , when the players’ strategy profile

is q, is
vk(q) = skB(Q)− C(qk),

where B(Q) is its benefit from the aggregate level of the public good,
and C(qk) stands for the cost of providing the public good. The (total)
utility of country k is simply mkvk(q). Throughout the paper, we assume
that B is defined on [0,+∞[, twice continuously differentiable, strictly
concave, B(0) = 0, and B′(0) > 0, while C is defined on [0,+∞[, twice
continuously differentiable, strictly increasing and strictly convex, C ′(0) =
0, and C ′(x)→ +∞ when x→ +∞.
The fact that the benefit depends on the aggregate level of public good

implies that each country’s contribution generates a positive externality on
all the other countries. The assumptions on B signify marginally decreasing
benefit from the aggregate level of public good, whereas those on C signify
marginally increasing cost of a country’s individual contribution. Finally,
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the more sensitive a country is to the public good, the more utility it derives
from the same amount of the public good.
The total utility of a federation i is the sum of those of its members:

(1) Vi(q) =
∑
k∈Fi

mkvk(q),

and its per-unit utility is

vi(q) =
Vi(q)

mi

=
∑
k∈Fi

wkvk(q),

where mi =
∑

k∈Fk mk is the total size of the federation, and wk = mk
mi

is
the relative weight of country k in federation i.
Denote this public goods game by G(N ). A strategy profile q is a Nash

equilibrium if for each player i ∈ N , its strategy qi = (qk)k∈Fi ∈ R+ni

maximizes its per-unit utility,6 given q−i = (q1, . . . , qi−1, qi+1, . . . , qN):

(2) vi(qi,q−i) = max
x∈R+ni

vi(x,q−i).

Lemma 1. The following general properties hold in G(N ):

(i) At any equilibrium q of the game, a federation i chooses the same
per-unit contribution for each of its member countries: qk = ql for all
k, l ∈ Fi.

(ii) A federation i behaves like an autonomous country with size mi and
sensitivity si, where si =

∑
k∈Fk wksk is the weighted average sensi-

tivity of its member countries.

(iii) For two member countries k and l in federation i, their per-unit util-
ities at any equilibrium q satisfies that vk(q) ≥ vl(q) if and only if
sk ≥ sl.

The proof is in Appendix B. According to this lemma, G(N ) can be
simply considered as a public goods game played by N players where each
player i, characterized by mi and si and behaving like an autonomous
country, chooses her per-unit contribution qi. Since member states within
a federation provide the same per-unit amount of public good, being highly
sensitive to the public good is an advantage for a member country, because
it benefits more from the aggregate provision while contributing the same,
proportionally. On the contrary, their sizes do not matter.

6Since in this last stage the size of players are given, a player maximizing its per-unit
utility is equivalent to maximizing its utility.

8



Lemma 2. The following general properties hold in G(N ):

(i) The game admits a unique Nash equilibrium. By abuse of notation,
let it be denoted by q = (qi)i∈N .

(ii) For two players i and j, at the equilibrium q, qi > qj if and only if
simi > sjmj.

(iii) If two players have the same sensitivity to the public good, then the
one with larger size has a lower per-unit utility at the equilibrium.

(iv) If two players have the same size, then the one with higher sensitivity
to the public good has a higher per-unit utility at the equilibrium.

(v) All other things held equal, a player i provides more public good Qi

at the equilibrium when its size mi increases, and less per-unit pub-
lic good qi at the equilibrium when the size of any other player mj

increases: ∆Qi
∆mi

> 0, ∆Qi
∆mj

< 0.

(vi) All other things held equal, a player i provides more per-unit public
good qi at the equilibrium when its sensitivity to the public good si
increases, and less per-unit public good at the equilibrium when the
sensitivity of any other player sj increases: ∆Qi

∆si
> 0, ∆Qi

∆sj
< 0.

The formal proof is in Appendix B. Lemma 2.(iii), stating that smaller
players free ride more, recovers the well-known result (Olson and Zeck-
hauser, 1966) that being small is an advantage in a public goods game.
Intuitively, the marginal return from a unit of investment in the public
good is increasing in the size of a player. Hence, being small is a com-
mitment to investing less in the public good. A small player thus more
easily free rides on the others. A large and/or highly sensitive player pro-
duces more of the public good. However, size and sensitivity do not affect
the equilibrium contributions in the same manner. For a given per-unit
contribution, a player becoming larger increases the total production of
public good. Hence, the marginal benefit of the last unit of public good
perceived by each player mechanically decreases. On the contrary, when
the sensitivity of a player increases, it only directly affects its own payoff.
In order to obtain closed form solutions, we use in Propositions 2 and 3

the specific results of a linear-quadratic model with the following functions:

B(Q) = αQ− β

2
Q2,(3)

C(q) =
γ

2
q2,(4)

where α > 0, β ≥ 0 and γ > 0 are constants.

9



In this case, the explicit expression of contributions of the federations is
given by

(5) qi =
αsimi

βθM2 + γ
, ∀i ∈ N ; Q =

αθM2

βθM2 + γ
=

α

β + γ
θM2

where M =
∑

i∈N mi and θ =
∑

i∈N si(
mi
M

)2. This shows that the per-
unit contribution of a player is linearly proportional to the product of its
size and its sensitivity. Furthermore, by rewriting qi = αsimi

β
∑
j∈N sjm2

jM+γ
,

we can see how si and mi enter differently the equilibrium production in
the denominator. The reason why mj is squared in the denominator is
that it influences the other players twice: once because for a given per-
unit production it mechanically increases Q, and once because being larger
increases the incentives for a player j to produce the public good.
Finally, note that in the case of homogeneous sensitivity among all the

players, given the total size, the more heterogeneous they are in size (i.e.
the smaller θ is), the less total contribution Q they make to the provision
of the public good.

4 Simultaneous choice of political structure
with transferable utility

4.1 Decentralization and its impacts

This section focuses on the first stage of the decentralization game. We
first formally describe this two-stage decentralization game D, then provide
some results on the externalities that unilateral decentralization generates
on the other players as well as on the aggregate provision of the public
good, and finally solve for the equilibrium of the two-stage decentralization
game with two federations in the linear-quadratic case.
The player set is N which contains federations and autonomous coun-

tries. In the first stage of the decentralization game D, all the federations
have two choices: centralization (C) – acting as one player maximizing the
aggregate utility of its member countries, and decentralization (D) – letting
the member countries act independently. Autonomous countries have only
one choice, C.
The choices of the federations, denoted by a = (ai)i∈N , ai ∈ {C,D},

induce a public goods game, which is to be played in the second stage
of D by the autonomous countries in N , the member countries of the
federation(s) having chosen decentralization, and the federation(s) having
chosen centralization. Denote the set of these second stage players by N a,
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possibly different from those of the first stage, N . We provide an example
of two-stage decentralization game in Figure 1.

Figure 1: A two-stage decentralization game with two federations, both
composed of three identical members.

F1 F2

C,C
C,D D,C

D,D

We focus on subgame perfect Nash equilibria (SPNE) of the two-stage
game. Hence at the second stage we only consider equilibrium behavior.
Section 3 shows that a unique equilibrium exists in the public goods game
G(N a). Therefore one can determine, for the first stage, the federations’
utilities associated to a pure-strategy profile a.
The average per-unit utility of a centralized federation i (ai = C) is

its equilibrium per-unit utility in the induced public goods game G(N a),
denoted by vi(N a):

uai = vi(N a).

The average per-unit utility of a decentralized federation j (aj = D) is
the weighted average of the equilibrium per-unit utilities of its member
countries in G(N a):

uaj =
∑
k∈Fj

wkvk(N a).

In our setting, the member countries of a federation make the choice
between centralization and decentralization in a fully cooperative way. It
can be because these member countries are identical to each other, so that
a collective decision can effectively be obtained without controversy. Had
countries different sensitivities or sizes, the same results could be obtained
using transfers. Indeed, suppose that the sum of the utilities of the mem-
bers of a decentralized federation acting non cooperatively is higher than
the total utility of a centralized federation. Then if the members consensu-
ally choose decentralization with additional initial transfers to compensate
the losers, then once the federation is decentralized, there is no need for fur-
ther cooperation among the members. Our assumption of full cooperation
among heterogeneous members implies that there exists a leadership of the
federation able to maximize joint surplus and make a single transfer offer
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to compensate the potential losers, very much like the head of a household
in Bergstrom (1989), to avoid the kind of unstable behavior documented
in Nordhaus (2015). We relax the assumption of fully transferable utility
(TU) in Section 5.1 to consider the case of non-transferable utility (NTU).
The following proposition summarizes the effects of decentralization.

Here, superscript “(i)” is added to all the values in the public goods game
after the unilateral decentralization of i. We say that a federation is sym-
metric if its member countries are identical.

Proposition 1. The unilateral decentralization of a federation i has the fol-
lowing effects on the equilibrium of the resulting public goods game G(N (i)):

(i) The aggregate contribution to the public good decreases: Q(i) < Q.

(ii) Each of the other players contributes more to the public good while
receiving a lower utility: Q(i)

j > Qj, u
(i)
j < uj.

(iii) The contribution to the public good from the decentralized federation
decreases Q(i)

i < Qi.

(iv) If a symmetric federation j has the same sensitivity as another sym-
metric federation i (si = sj) but is smaller than i (mi > mj), while its
member countries are not smaller than those of i, then j’s unilateral
decentralization causes a lower reduction in the aggregate contribution
of the public good Q than that of i: Q(i) < Q(j).

(v) If a symmetric federation j is of the same size as another symmetric
federation i (mi = mj) but is less sensitive than i (si > sj), while its
member countries are not smaller than those of i, then its unilateral
decentralization causes a lower reduction in the aggregate contribution
of the public good Q than that of i, if the second derivative of C is
non increasing on R++: Q(i) < Q(j).

The formal proof is in Appendix B. The extension of (i)-(iii) to simul-
taneous decentralization of several federations is straightforward and is
collected in Corollary 1. Also remark that, while Lemma 2 asserts that
larger federations and federations more sensitive to the public good con-
tribute more to its provision, (iv) and (v) of Proposition 1 shows that the
unilateral decentralization of such federations also exerts greater negative
externalities. This is because the decentralization of larger or more sensi-
tive federations works as a commitment to free-riding by those who were
most inclined to contribute.

Corollary 1. The simultaneous decentralization of several federations has
the following effects on the equilibrium of the resulting public goods games:
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(i) The aggregate contribution to the public good decreases.

(ii) Each player other than the decentralizing federations contributes more
to the public good while receiving a lower utility.

(iii) The contribution to the public good from the decentralized federations
decreases.

To understand why a certain federation chooses decentralization, con-
sider the condition for a unilateral decentralization to be strictly profitable
to federation i:

∑
k∈Fi

skwk

B(
∑
k∈Fi

mkq
(i)
k +

∑
l∈N\{i}

mlq
(i)
l )−B(

∑
k∈Fi

mkq
(i)
k +

∑
l∈N\{i}

mlql)


+
∑
k∈Fi

wk

[
C(qk)− C(q

(i)
k )
](6)

>
∑
k∈Fi

skwk

B(
∑
k∈Fi

mkqk +
∑

l∈N\{i}

mlql)−B(
∑
k∈Fi

mkq
(i)
k +

∑
l∈N\{i}

mlql)


The left-hand side is the benefit from free riding on the other federations.

The first term is the benefits from the increase in the provision of public
good by the opponents; the second is the benefit from the lower cost of
providing public goods when being decentralized. The right-hand side cor-
responds to the loss from not internalizing the impact of the public good
within the federation.
The following proposition sheds some light on the motivation for decen-

tralization in the special case of linear quadratic utility.

Proposition 2. In the linear-quadratic case, the following is true.

(i) All other things held equal, federation i has more incentives to uni-
laterally decentralize if either the size or the sensitivity to the public
good of another player increases.

(ii) If federation i prefers to decentralize when another federation j is de-
centralized, then it also prefers to decentralize when j is centralized
(other things held equal). Conversely, if federation i prefers to cen-
tralize when another federation j is centralized, then it also prefers to
centralize when j is decentralized (other things held equal).

The formal proof is in Appendix B. The first statement of Proposition 2
directly derives from condition (6). The larger the size of a federation – or
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the more sensitive it is to the public good – the higher the incentives for
another federation to free ride on it, because it is more likely to compensate
for the loss of cooperation within the federation. Combining Proposition
1(v) and Proposition 2(i), we see that an increase in the sensitivity of a
federation to the public good may well have perverse effects. On the one
hand, Proposition 1(v) implies that a more sensitive federation has more
incentives to remain centralized. On the other hand, Proposition 2(i) means
that an increase in the sensitivity of any other player makes a federation
more inclined to decentralize. Hence, if all players see their sensitivity
increased, this may well decrease the total production of public good by
inducing more decentralization. We provide an example where this is the
case in Section 4.3.

4.2 Two-federation decentralization game

Return to the two-stage decentralization game D. We consider subgame
perfect Nash equilibrium only. Since the equilibrium of the public goods
game played in the second stage is unique, we reduce the two-stage game
to a normal-form game D̃ where each player has two choices: centralization
and decentralization. A mixed-strategy Nash equilibrium always exists in
D̃. But we are interested in pure-strategy Nash equilibria.
In this subsection, we focus on a decentralization game with two fed-

erations. This allows us to have a detailed analysis on the simultaneous,
strategic decision on decentralization of more than one player. The matrix
in Table 1(b) represents this 2× 2 game corresponding to the first stage of
D in our backward-induction analysis. The row player is federation 1 while
the column player is federation 2.

Table 1: D̃, the reduced decentralization game.

(a) Per-unit contributions
C D

C qCC1 , qCC2 qCD1 , qCD2

D qDC1 , qDC2 qDD1 , qDD2

(b) Per-unit utilities
C D

C uCC1 , uCC2 uCD1 , uCD2

D uDC1 , uDC2 uDD1 , uDD2

Corollary 2. In the linear-quadratic case, the possible pure-strategy Nash
equilibrium set of the reduced normal-form decentralization game D̃ is {(C,C)},
{(C,D)}, {(D,C)}, {(D,D)} and {(C,D), (D,C)}.

Corollary 2 follows directly from Proposition 2. In particular, Proposi-
tion 2(ii) implies that (C,C) and (D,D) are mutually exclusive as equi-
librium. It is a feature of the shape of the benefit function B′′ < 0, so
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that contributions to the public good are strategic substitutes. There are
real world examples where this may not be the case. For instance, in cli-
mate change, if there are “tipping points” around which the slope of the
marginal benefits change (see for instance Lenton et al., 2008 or Barnosky
et al., 2012), there could be strategic complementarities, and it can be
worth centralizing only if the other also does so.
We are now ready to give the explicit form of the equilibria of the reduced

normal-form decentralization game D̃ in the linear quadratic case. Accord-
ing to the proof of Proposition 2, eight parameters completely determine
the equilibria: mi, si, θi =

∑
k∈Fi skw

2
k, ξi =

∑
k∈Fi s

2
kw

3
k for i = 1, 2. In

order to display the distribution of the different possible equilibria in the
space parameterized by these variables, we choose to reduce its dimension
by removing asymmetry within a federation and focusing on the role of
the size and average sensitivity of each federation only. Since this section
assumes transferable utilities within federations, the individual sensitivity
and size of each member country are not particularly important. Indeed, a
federation makes its decision based on the aggregate utility of its members.
We thus consider the case where both federations are symmetric, and the
member countries of both federations all have the same size normalized
to 1. In this way, only four parameters determine the equilibria: n1, n2

for the sizes of the two federations, and s1, s2 for the respective common
sensitivities of their member countries. In this case, the member countries
of federation 1 (resp. 2) have the same per-unit contribution to the public
good when it is decentralized, which is denoted by qDa2i (resp. qa1Dj ) as
shown in the matrix in Table 1(a).
Finally, in this paper we consider only generic games, in the sense that

the four payoffs of each player in Table 1 are all distinct.

Proposition 3. Let federations 1 and 2 be both symmetric and composed by
unit-size member countries, characterized by (n1, s1, n2, s2) ∈ N ∗ × R++ ×
N ∗ ×R++ and n1 > 1. Consider the reduced normal-form decentralization
game D̃ with linear quadratic utilities. The pure-strategy equilibria are as
follows:

• If Γ3 < s2 < Γ1, then the unique equilibrium is (C,C).

• If Γ2 < s2 < Γ4, then the unique equilibrium is (D,D).

• If s2 < min{Γ2,Γ4} or if s2 < min{Γ1,Γ3}, then the unique equilib-
rium is (C,D).

• If s2 > max{Γ2,Γ4} or if s2 > max{Γ1,Γ3}, then the unique equilib-
rium is (D,C).

• If max{Γ1,Γ4} < s2 < min{Γ2,Γ3}, then the pure-strategy equilibria
are (C,D) and (D,C).
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where Γi(n1, n2, s1), i ∈ {1, 2, 3, 4} are explicitly provided in Appendix B.

The formal proof is in Appendix B. The function Γ1 denotes all values
of s2 such that uCC1 = uDC1 . For any s2 < Γ1 federation 1 prefers to
remain centralized in front of a centralized federation 2. By Proposition
2, this implies that being centralized is a dominant strategy for federation
1. Similarly, Γ3 denotes all the values of s2 such that uCC2 = uCD1 . For
s2 > Γ3, being centralized is a dominant strategy for federation 3. Hence,
for all s2 ∈]Γ3,Γ1[, the unique equilibrium is (C,C).
The functions Γ2 and Γ4 correspond respectively to uCD1 = uDD1 and

uDC2 = uDD2 . For all values of s2 > Γ2, federation 1 prefers to decentralize
even if federation 2 is decentralized. Hence, decentralizing is a dominant
strategy. Similarly, for all values of s2 < Γ4 decentralization is a dominant
strategy for federation 2. Hence, for all s2 ∈]Γ2,Γ4[, the unique equilibrium
is (D,D).
Condition s2 < min{Γ2,Γ4} means that decentralizing is a dominant

strategy for federation 2 but not for federation 1, s2 < min{Γ1,Γ3} means
that centralizing is a dominant strategy for federation 1, but not for feder-
ation 2. In both cases, there is only one equilibrium in the game, (C,D) in
which federation 1 centralizes and federation 2 decentralizes. Similarly, if
decentralizing is a dominant strategy for federation 1 but not federation 2
(s2 > max{Γ2,Γ4}) or if centralizing is a dominant strategy for federation 2
but not federation 1 (s2 > max{Γ1,Γ3}), the unique equilibrium is (D,C).
Finally, if no federation has a dominant strategy (max{Γ1,Γ4} < s2 <

min{Γ2,Γ3}), the game displays multiple equilibria in which one federation
remains centralized while the other decentralizes.

Figure 2: Characterizing Γi with α = γ = s1 = 1, β = 0.01, n1 = 10.

Figures 2 and 3 represent a linear-quadratic case where the concavity
of the benefit curve is low (−B′′ = β = 0.01). For all values of s2 below
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Figure 3: Equilibria of the simultaneous game with α = γ = s1 = 1, β =
.01, n1 = 10.

Γ1,7 centralization is the dominant strategy for federation 1. Above Γ3,
centralization is a dominant strategy for federation 2. In this case Γ2 is
very high and Γ4 very low (see Figure 2), so that in the range we display in
Figure 3 decentralization is never a dominant strategy. There are multiple
pure-strategy equilibria {(C,D), (D,C)} in between the curves to the left
of the intersection. Federation 2 is smaller than federation 1, but has a
much higher sensitivity to the public good. Hence, no federation has a
dominant strategy. There is a unique equilibrium (C,C) in between the
curves to the right of the intersection, as both federations are of comparable
size but none has a much different sensitivity than the other. Above the
two curves, the unique equilibrium is (D,C): federation 1 free rides on
federation 2. Centralization is a dominant strategy of federation 2 only as
it is both very sensitive to the public good and large enough to actually
provide it. Below the two curves, it is the opposite, (C,D), since federation
1 cares more about the public good, or is so much larger than it is the only
one able to provide it.
In Figure 4, all parameters are identical to those in Figures 2 and 3,

except for a higher value of −B′′ = β = 0.015. Since the marginal benefit
of the provision of public good decreases more quickly, (C,C) is never an
equilibrium as the two curves do not intersect: there are multiple equilibria
in the whole region between the two curves. As in the previous figures,
(D,D) is never an equilibrium. It is however possible to show that for
much higher values of β it is possible to have (D,D) as an equilibrium.

7As we focus on the generic games, we study the area below and above the curves,
while the curves themselves correspond to the non-generic case where players are
indifferent.
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Figure 4: Equilibria of the simultaneous game with α = γ = s1 = 1, β =
.015, n1 = 10

4.3 Examples

Let us end this section by two specific examples in the setting of Subsection
4.2. The first one illustrates the direct effects described in Proposition 1.
The second illustrates the combination of the direct effects of Proposition
1 and the indirect effects of Proposition 2. In particular, we show that
an increase in the sensitivity of all players may lead to a decrease in the
aggregate production of the public good.

Example 1: If there is only one federation centralizing at the unique equi-
librium, it is the more sensitive federation among the two equal-sized ones
that remains centralized.

Table 2 shows a case where at the unique equilibrium, federation 2 stays
centralized while federation 1 chooses decentralization. The parameters are
those for Figure 3. Two federations have the same size (n1 = n2 = 10), but
federation 2 is more sensitive to the public good (s2 = 1.5). This therefore
corresponds to a point in the center of Figure 3, above both curves.

Table 2: 2-federation decentralization game, n1 =n2 = 10, s1 =1, s2 =1.5.

(a) Per-unit contributions
C D

C 2.9, 4.3 4.7, 0.7
D 0.4, 5.8 0.8, 1.2

(b) Per-unit utilities
C D

C 4.2, 6.0 2.8, 5.9
D 4.3∗, 4.7∗ 1.8, 2.7

In this example, the more sensitive federation 2 ends up producing more
public good. The unique equilibrium of the game provides the second
highest level of aggregate welfare of the first stage subgame. The highest
one, excluding full cooperation that we rule out by assumption, is obtained
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when both federations are centralized. While there are inefficiencies, the
predictions of this simultaneous game are fairly optimistic. If there is a
unique equilibrium, we can expect it to correspond to the one where the
centralized federation is also the one who is more willing (and able) to con-
tribute to the public good. Returning to the different political structures of
the United States and the European Union with respect to environmental
policy and national defense, one could argue that the US cares more about
global security while the EU cares more about climate change. The current
political structure could also result from a decentralization game with mul-
tiple equilibria, which is only possible if both the sizes and the sensitivities
to the public good of the two federations do not differ too much from each
other.

Example 2: Even if both federations become more sensitive to the public
good, there can be less public good produced at the equilibrium.

The fact that the more sensitive a federation is to the public good, the
fewer incentives it has for decentralization does not imply, however, that
higher sensitivity always yields higher total contribution. In particular, the
incentives for decentralization of the other federation also change. Compare
the following two cases presented in Tables 3 and 4. In Table 3, both
federations have size 10 and sensitivity 1, and all other parameters are the
same as in Figure 3. Hence, it is situated in the area of Figure 3 where
the unique equilibrium is (C,C), and the total production of public good
is Q = 66.

Table 3: 2-federation decentralization game, n1 =n2 =10, s1 =s2 =1.

(a) Per-unit contributions
C D

C 3.3, 3.3 4.8, 0.5
D 0.5, 4.8 0.8, 0.8

(b) Per-unit utilities
C D

C 3.9∗, 3.9∗ 2.7, 3.8
D 3.8, 2.7 1.5, 1.5

Now, assume that the sensitivities to the public good are increased by
50% for both federations, so that s1 = s2 = 1.5. The new game is pre-
sented by Table 4. There are multiple equilibria. As a matter of fact, each
federation knows that the other one cares enough about the public good to
provide, even being the only centralized federation, a large amount of it. In
comparison with Table 3, however, we remark that the aggregate amount
of public good contributed at equilibrium is reduced after the rise of the
sensitivities of both federations: Q = 63.
This result is much more pessimistic than the previous example. It shows

that, if a public good becomes particularly important in the sense that
every player cares more about it, strategic effects on decentralization may
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Table 4: 2-federation decentralization game, n1 =n2 =10, s1 =s2 =1.5.

(a) Per-unit contributions
C D

C 3.7, 3.7 5.7, 0.6
D 0.6, 5.7 1.2, 1.2

(b) Per-unit utilities
C D

C 6.3, 6.3 4.8∗, 6.4∗
D 6.4∗, 4.8∗ 3.0, 3.0

do more than compensate for the higher individual incentives to provide
the public good, so that the aggregate production is lower.

5 Additional Results

5.1 Non-transferable utility

In this section, we move to the case where utility is non-transferable within
a federation. This polar case is discussed, in contrast to the fully trans-
ferable framework of the previous section, to illustrate the importance of
monetary transfers within a federation in the choice of political structure.
As shown by Bergstrom (1989), the assumption of TU within the federation
is indeed necessary to assume that each member is interested in maximizing
the aggregate utility of its members.
The following proposition outlines which member of a federation matters

to the centralization decision.

Proposition 4. Suppose that the decentralization of one or several fed-
erations in N , including federation i, result in a public goods game with
equilibrium q̃. Denote the gain in per-unit utility of two member countries
k and l of federation i after this decentralization by ∆k = uk(q̃) − vk(q)
and ∆l = ul(q̃)− vl(q), respectively.

(i) If sk = sl, then ∆k < ∆l if and only if mk > ml.

(ii) If mk = ml, then ∆k < ∆l if and only if sk > sl.

Therefore, within a federation with equal sensitivity members, the larger
a member country is, the more it gains from centralization; the smaller it
is, the more it gains from decentralization. And within a federation with
equal size members, the more sensitive a member country is, the more it
gains from centralization; the less sensitive it is, the more it gains from
decentralization.
In the scenario of NTU, we need to consider the decision rules that apply

to a federation. A first possibility is the unanimity rule, according to which
centralization is to be maintained only if all the members of the federation
choose so. Equivalently, a single member’s veto is enough for the federation
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to be decentralized. A second one is a (possibly qualified) majority rule,
according to which centralization is to be maintained only if a majority of
members chooses so. The first rule still applies to a number of decisions
of the European Union, and is the case for any group of countries trying
to transfer power to a new entity. The second rule corresponds to more
integrated federations, in which an “upper house” represents the interest of
each member. This is for instance the case of the US senate where each
state receives two senators regardless of its population.

Corollary 3. Under full NTU,

• Suppose that unanimity rule is used to decide whether to maintain a
centralized decision-making within a federation. If the member coun-
tries have the same sensitivity (resp. size), then the utility of the
smallest country (resp. the country the least sensitive to the public
good) is relevant to the decision.

• Suppose that majority rule is used to decide whether to maintain
a centralized decision-making within a federation. If the n member
countries have the same sensitivity (resp. size), then the utility of the[
n−1

2

]
smallest countries (resp. the

[
n−1

2

]
countries the least sensitive

to the public good) are relevant to the decision.8

The proof follows directly from Proposition 4. This has implications on
where NTU is relevant. If a vote is necessary to maintain the centralization
of decision-making, the type of utility transfer that is necessary should be
from bigger to smaller members, or from more sensitive to less sensitive
members. It is also worth noting that what matters to a member country
is not only its own size and sensitivity, but how it relates to the other
members of the federation. For instance, a country with low sensitivity
might be more opposed to being part of a centralized federation under
NTU if the other members are particularly sensitive, because then it would
need to contribute more in the last stage.
A first implication of this result is that heterogeneity in either sensitivity

to a public good or size of the members can be a strategic advantage for
a federation. Consider a variation of the example described in Table 2,
in which member countries are identical and of size 1. Assume now that
half of the members of federation 2 have sensitivity s′2 = 1, while the other
half s′′2 = 2. The average sensitivity of the federation is thus still 1.5, like
in Table 2. By equation (5), we know that the total production of public
good in the federation – regardless of whether it is decentralized or not
– is not affected by the heterogeneity of sensitivity of its members, for a
given average sensitivity. Individual utility and individual contribution in
the decentralized case are however affected.

8[x] is the largest integer that is not greater than x.
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Table 5(a) reports the respective per-unit contribution of public good
from the members of the two federations. Table 5(b) shows the per-unit
utilities of the member countries, presented as (u1, (u

′
2, u
′′
2)).

The game has multiple pure-strategy equilibria {(C,D), (D,C)} if the
federation uses either the unanimous rule or the majority rule to decide
whether to maintain the centralization. In both cases, it is those mem-
bers with sensitivity 1 who hold the decision. However, all members of
federation 2 are better off at equilibrium (C,D) than at (D,C). There-
fore, a federation can have a strategic advantage by being composed of
heterogeneous members.

Table 5: Heterogeneity in sensitivity, s′2 = 1, s′′2 = 2, s2 = 1.5.

(a) Per-unit contributions
C D

C 2.9, 4.3 4.7, 0.7
D 0.4, 5.8 0.8, 1.2

(b) Per-unit utilities

C D
C 4.2, (3.7, 8.3) 2.8∗, (3.8, 8.0)∗
D 4.3∗, (2.6, 4.3)∗ 1.8, (1.4, 4.1)

Multiple equilibria with parameters identical to Table 2 but heteroge-
neous sizes among members of federation 2 can also be obtained. For in-
stance, if five of its members have sizem′2 = 0.2 and five have sizem′′2 = 1.8,
then the game has multiple equilibria. Table 6(a) reports the respective
per-unit contribution of public good from the members of the federations,
presented as (q1, (q

′
2, q
′′
2)). Table 6(b) shows the per-unit utilities of the

members, presented as (u1, (u
′
2, u
′′
2)). When federation 2 is centralized, the

utility and contribution of each member of federation 2 are identical (see
Lemma 1).

Table 6: Heterogeneity in size, m′2 = 0.2, m′′2 = 1.8.

(a) Per-unit contributions
C D

C 2.9, 4.3 4.7, (0.1, 1.2)
D 0.4, 5.8 0.8, (0.2, 2.0)

(b) Per-unit utilities
C D

C 4.2, 5.96 3.0∗, (6.01, 5.9)∗
D 4.3∗, 4.7∗ 2.2, (3.4, 3.2)

Corollary 3 also implies that member countries becoming more sensitive
to the public good may lead to a lower aggregate production of public
good at equilibrium, for reasons different from Example 2 in Section 4.3.
Consider a variant of the example in Table 2. Assume that half of the
members of federation 2 now have a higher sensitivity s′′2 = 3.5 to the
public good, while the other five still have sensitivity s′2 = 1.5. Hence,
s2 = 2.5.
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Table 7(a) displays the per-unit production of public good from the mem-
bers of the two federations. Table 7(b) shows the per-unit utilities of the
member countries, presented as (u1, (u

′
2, u
′′
2)). Comparing Table 7(a) with

Table 2(a), we first remark that the aggregate production of the public
good is increased in each cell. This is a straightforward consequence of
Lemma 2 which states that if the sensitivity of any player increases, the
aggregate production increases in the public goods game. However, the in-
crease is very marginal in the cell (C,D), where federation 2, the one that
is more sensitive to the public good, unilaterally decentralizes. The reason
is that the less sensitive federation 1, albeit centralized, will not provide a
lot of public good because it expects federation 2, albeit decentralized, to
produce a large quantity.

Table 7: Heterogeneity in sensitivity, s′2 = 1.5, s′′2 = 3.5, s2 = 2.5.

(a) Per-unit contributions
C D

C 2.2, 5.6 4.4, 1.1
D 0.3, 6.9 0.7, 1.9

(b) Per-unit utilities

C D
C 4.5, (5.6, 15.1) 3.0∗, (5.7, 14.6)∗
D 4.6∗, (4.5, 13.7)∗ 2.2, (2.6, 9.4)

Assume that either the majority rule or the unanimity rule is used to
decide whether to maintain the centralization. The five less sensitive mem-
bers of federation 2 hold the decision. According to Table 7, the game now
has multiple equilibria. In particular, (C,D) is now an equilibrium of the
game, while it was not the case in Table 2. There are two reasons why
the less sensitive members of federation 2 may now favor decentralization.
First, being in a centralized federation with five fellow countries of very
high sensitivity implies sharing more production of public good than in
the example of Table 2. Second, being in a decentralized federation im-
plies more benefits from free riding on the five fellow members of very high
sensitivity.
Comparing the two examples, all countries are either as sensitive, or

strictly more sensitive to the public good in Table 7 than in Table 2.
The economy however produces, in total, either strictly more public good
(Q = 72 for (D,C) in Table 7) or strictly less (Q = 55 for (C,D) in Table
7) than in Table 2 (where Q = 62). This is because, for a given profile
of political structure, federations always produce more public good in total
when some countries become more sensitive. But the consequent hetero-
geneity in sensitivity within some federation(s) can lead a federation to
strategically decentralize when utility is non-transferable.
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5.2 Partial decentralization

Unlike the literature on endogenous coalition formation, we discard in the
basic models (in Section 4 and Subsection 5.1) the possibility that certain
member countries of a federation form one or several smaller federations for
two reasons. First, when a federation decentralizes the decision-making, it
is natural to assume that this power is returned to the original component
members of the federation instead of some newly formed sub-federation.
We focus on the idea that players must be existing institutions, either an
existing federation or an existing state or country. Second, even if we allow
new sub-federations, they can either be created according to a joint decision
of the decentralizing federation’s members or come into existence through
an endogenous coalition-formation process. We then need to consider the
decision for each member country to join or leave the agreement, leading
to the same incentives to free ride and the same results as the literature on
self-enforcing IEAs.
As a robustness check, it is however possible to imagine the opposite

polar case, in which a federation could delegate to sub-federations of any
size if it is in the joint interest of its members to do so. Consider for
instance a variant of Table 2 where, instead of a binary choice between
centralization and full decentralization, federations can decentralize to any
number of symmetric sub-federations of size mi

x
, where x is an integer. This

implies thus that we no longer have federation members of size 1, but any
share of m1 = m2 = 10 can be designed as a sub-federation.
Table 8 displays the relevant part of the per-unit utility matrix, denoting

the size of sub-federations as mi
x
, so that m1

2
means that federation 1 splits

into two sub-federations, each of a size m1

2
. The smallest sub-federations

are not displayed in the table for the sake of clarity, since they can be
shown to be strictly dominated strategies. In each cell of the table are
the per-unit utilities of the members of the two federations, according to
the corresponding political structure. Note that both federations have ho-
mogenous members, and each chooses its political structure in order to
maximize the total utility of its members, which is equivalent to maximiz-
ing their common per-unit utility.

Table 8: Utility matrix of a partial decentralization game, s1 = 1, s2 = 1.5.

m2 m2/2 m2/3
m1 4.18, 5.97 3.68, 6.14 3.40, 6.10
m1/2 4.30, 5.42 3.77∗, 5.46∗ 3.44, 5.31
m1/3 4.31∗, 5.16∗ 3.72, 5.12 3.35, 4.90
m1/4 4.30, 5.02 3.67, 4.92 3.27, 4.64
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This reduced normal-form decentralization game has two pure-strategy
equilibria. At the first one, the less sensitive federation 1 decentralizes to
three sub-federations, while the more sensitive federation 2 remains cen-
tralized. At the second one, both federations decentralize to two sub-
federations. The intuition that the more sensitive federation remains more
often centralized still holds. Indeed, this is because Proposition 2(ii) is still
valid in the case of partial decentralization. If two federations have the
same size but different sensitivities, the less sensitive one is more willing to
decentralize to any given size of a sub-federation. Similar to Example 2 in
Subsection 4.3, we can also show that by doubling the sensitivity of both
players to s1 = 2, s2 = 3, the game has a unique SPNE in which federation
1 decentralizes into three symmetric sub-federations while federation 2 de-
centralizes into two symmetric sub-federations. Hence, the intuition that
higher sensitivity to the public good may lead to more decentralization
remains valid.
Our focus on two polar cases therefore identifies the key mechanism gen-

erating the trade-off between centralization and decentralization. If partial
decentralization is possible, however, we can expect to observe different
degrees of decentralization instead of the clear-cut solutions of our main
model.

6 Conclusion
Several federations of states and countries are active and relatively stable
over time, and provide a large number of public goods in a centralized way.
Some countries, on the contrary, will never be part of the same federation,
because binding agreements including compensations and punishments in-
volve a high level of mutual trust. The starting point of this paper is that
while it would be relatively easy for existing federations to centralize their
decision-making on global issues, this is not what they do in practice.
We show that one explanation to this phenomenon is that decentraliza-

tion can be strategic if it benefits all the members of a federation. Such
behavior acts as a commitment to free-riding. Decentralization therefore
benefits a federation when the gain from free riding on other actors exceeds
the loss caused by not internalizing the negative externalities exerted by
its members on each other. While, all other things held equal, a federation
that is relatively large or that cares relatively more about the public good
should have more incentives to centralize, an overall increase in the sensi-
tivity to the public good may actually lead to a lower aggregate production
of it. The fact that sensitivity to the public good may hinder cooperation is
reminiscent of results in the coalition-formation literature. For instance, in
Barrett (1994), the number of members of an agreement decreases when the
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sensitivity to the public good increases. Hence, by taking the question of
cooperation from the opposite perspective – federations choosing whether
to centralize instead of players choosing whether to join an agreement – we
end up identifying some rather similar problems.
In the presence of fully transferable utility, strategic effects are not af-

fected by heterogeneity within the federation. This is not the case under
non-transferable utility (NTU). We suggest that the strategic effects linked
to NTU can help explaining the reluctance of the so-called BRICS (Brazil,
Russia, India, China and South Africa) to establish a political institu-
tion, although they are holding annual meetings since 2009. While the five
countries share similar concerns about “the international dominance of the
United States, the threat of terrorism from religious fundamentalists and
ethnic movements, and the need to prioritize economic development,” they
“remain reluctant to share any burdens” (Pant, 2013). Indeed, the only
substantial cooperative institution launched by the BRICS is a joint de-
velopment bank, making Rodrik (2013) write that “[what] the world needs
from the BRICS is not another development bank, but greater leadership
on today’s great global issues. The BRICS countries are home to around
half of the world’s population and the bulk of unexploited economic po-
tential. If the international community fails to confront its most serious
challenges – from the need for a sound global economic architecture to
addressing climate change – they are the ones that will pay the highest
price.” Observers often take the behavior of these countries as a sign of
lack of interest in the global public goods. However, they may actually care
much more than they appear to do. It is a largely documented fact (see, for
instance, Bindoff et al., 2014, in the latest IPCC report) that the BRICS
countries are expected to suffer much more from climate change than Eu-
rope or the United States. However, this effect is very heterogeneous. As
BRICS countries may not have enough institutions and trust to organize
monetary transfers, the effect we document above may help explaining the
lack of advances in the BRICS as a federation.
Considering a sequential setting may lead to even less socially efficient

results. By anticipating the future behavior of other federations, the larger
or the more sensitive federation can prefer to choose to commit itself to
decentralization (very much like the first-mover advantage in a Stackelberg
game). Thus, going back to the BRICS example, before taking any signifi-
cant step towards building institutions, they need to anticipate the impact
of their decision on the strategic choices of existing federations. The real
world timing is obviously not stricto sensu a sequential decentralization
game in which the BRICS are the first group to choose its institutions, but
if there is any chance that the European Union or the United States may
be in a situation to revise their institutional structure in the near future,
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the first-mover advantage may be particularly relevant in understanding
the incentives at play.
We voluntarily rule out the possibility of additional cooperation among

federations, such as a “grand coalition” jointly deciding the level of public
good. Large scale coalitions have the well-known problem that they need
to be enforceable (see Chapter 15 of Barrett, 2005 or Nordhaus, 2015).
A grand coalition would therefore need to be among players who have
enough trust in each other or necessary institutions through which they
can commit themselves to a certain level of public good. It is easy to
see that assuming such trust would always lead to a grand coalition in
a two-federation case. With several federations, the free-rider problem
documented in the literature on IEA would remain, with multiple equilibria
involving a small number of members.
Our static analysis does not embody the fact that, when institutions

are built, actors do not necessarily anticipate every single future global
issue. For instance, it is very likely that the founding fathers of the United
States did not have climate change in mind at the time of drafting the
constitution. What we claim is that, even in the presence of uncertainty,
actors anticipate that building cooperative institutions may encourage the
rest of the world to change its institutions accordingly, and thus generates
more free-riders.

Appendix A: Notations
N : player set of a public goods game
G(N ): public goods game with player set N
F : set of all the countries, including independent ones and members of
federations
ni: number of member countries in federation i
mi: total size of federation i
mk: size of country k
wk: relative weight of country k in federation i
sk: sensitivity of country k to the public good
M : total size of all the players
θ: square-weighted average sensitivity of all the players
Fi: set of member countries of federation i
Qi: contribution of public good from player i
qi: per-unit contribution of player i
Q: aggregate production of the public good
vk: per-unit utility of country k
B(·): per-unit benefit from the aggregate production of the public good;
e.g. B(Q) = αQ− β

2
Q2

27



C(·): cost of providing the public good; e.g. C(q) = γ
2
q2

Vi (resp. vi): total (resp. per-unit utility) of federation i
D: two-stage decentralization game with players in N
D̃: reduced (normal-form) decentralization game corresponding to the first
stage of D, when only equilibrium behavior is considered in the second
stage
C: choice of centralization by a federation
D: choice of decentralization by a federation
ai: strategy in the first stage of a decentralization game
N a: player set induced by the choices of (de)centralization made by players
in N
uai : average per-unit utility of federation i in D̃

Appendix B: formal proofs
Proof of Lemma 1. (i)-(ii): For federation k, given the total contribution
from the other players Q−i, its chooses (qk)k∈Fi to maximize vi(q) =∑

k∈Fi wkvk(q) =
∑

k∈Fi wk[skB(Q) − C(qk)] =
∑

k∈Fi wkskB(Q) −∑
k∈Fi wkC(qk) = siB(Q−i + Qi) −

∑
k∈Fi wkC(qk). Federation i can solve

the program in the following two steps. First, for any given value of
Qi, it minimizes

∑
k∈Fi wkC(qk) subject to constraint

∑
k wkqk = Qi/mi.

Since C is a strictly convex function, we know by Jensen’s inequality that∑
k∈Fi wkC(qk) is minimized when qk = Qi/mi for all k ∈ Fi. Second,

federation chooses Qi to maximize siB(Q−i +Qi)− C(Qi/mi).
(iii) Recall that qi = Qi/mi is the common per-unit contribution that

federation i imposes to its member countries. At any equilibrium q, two
member countries k and l of federation i respectively have per-unit utility
vk(q) = skB(Q)− C(qi) and vl(q) = slB(Q)− C(qi).

The following auxiliary result is used in several proofs.

Lemma 3. A Nash equilibrium q = (q1, . . . , qN) of the public goods game
satisfies that, for every player i, qi > 0 and simiB

′(Q) = C ′(qi).

Proof. It is simply a reformulation of the first order condition of the opti-
mization problem (2).

Proof of Lemma 2. (i) Since each player’s utility vi(q) is strictly concave
in her own strategy qi, the first order condition for (2) is necessary and
sufficient. In other words, q is a Nash equilibrium if and only if for all player
i, simiB

′(Q)−C ′(qi) < 0 if qi = 0 and simiB
′(Q)−C ′(qi) = 0 if qi > 0. This

is equivalent to the variational inequality 〈simiB
′(Q)1−C ′(q),q′−q〉 ≤ 0

for all q′ ∈ R+N , i.e.
∑

i∈N (simiB
′(Q) − C ′(qi))(q′i − qi) ≥ 0 for all q′i ≥
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0, i ∈ N . According to Corollary 4.3 in Kinderlehrer and Stampacchia,
2000, this variational inequality admits a solution q ∈ R+N .
The uniqueness of the equilibrium can be proved by contradiction. Sup-

pose that q and q′ are two equilibria. Let us first show that Q = Q′,
where Q =

∑
imiqi and Q′ =

∑
imiq

′
i. If it is not true, say, for example,

Q > Q′, then B′(Q) ≤ B′(Q′). According to Lemma 3, for each player i,
simiB

′(Q) = C ′(qi), so that qi ≤ q′i. Therefore
∑

i qi ≤
∑

i q
′
i, which is

contradictory to the hypothesis that Q > Q′. Therefore, Q = Q′.
(ii) It is sufficient to notice that, at the equilibrium, C ′(qi) = simiB

′(Q)
and C ′(qj) = sjmjB

′(Q).
(iii) Suppose thatmi > mj and si = sj. Then by (ii) we know that qi > qj

at the equilibrium. Hence ui = siB(Q)− C(qi) < uj = sjB(Q)− C(qj).
(iv) Without loss of generality, assume that mi = mj = 1 and si > sj.
Recall that siB′(Q) = C ′(qi) and sjB′(Q) = C ′(qj), which implies that

si − sj =
C′(qi)−C′(qj)

B′(Q)
. Therefore, ui(q) > uj(q) i.e. siB(Q) − C(qi) >

sjB(Q) − C(qj) if and only if B(Q) >
C(qi)−C(qj)

si−sj =
C(qi)−C(qj)

C′(qi)−C′(qj)B
′(Q) or

still, B(Q)
B′(Q)

>
C(qi)−C(qj)

C′(qi)−C′(qj) .

First let us show B(Q)
B′(Q)

≥ qi + qj. By the intermediate value theorem,
B(Q)
Q

= B(Q)−B(0)
Q

= B′(Q0) for some Q0 ∈ [0, Q]. Since B is concave, one
has B(Q)

Q
≥ B′(Q) or equivalently B(Q)

B′(Q)
≥ Q. Evidently, Q ≥ qi + qj; hence

B(Q)
B′(Q)

≥ qi + qj.

Next let us show qi + qj >
C(qi)−C(qj)

C′(qi)−C′(qj) , or equivalently
1

qi+qj

C(qi)−C(qj)

qi−qj <
C′(qi)−C′(qj)

qi−qj . By the intermediate value theorem, there exists x ∈ [qj, qi] such

that C(qi)−C(qj)

qi−qj = C ′(x) = C ′(x)−C ′(0). Thus 1
qi+qj

C(qi)−C(qj)

qi−qj < C′(x)−C′(0)
x

.

It is easy to verify that function C′(x)−C′(t)
x−t is increasing in t on [0, x] and

C′(t)−C′(qj)
t−qj is increasing in t on [qj, qi]. Therefore C′(x)−C′(0)

x−0
<

C′(x)−C′(qj)
x−qj <

C′(qi)−C′(qj)
qi−qj .
(v) Suppose that mi increases and becomes m′i > mi. Suppose that

Q′ ≤ Q. Then for player j 6= i, C(q′j) = mjsjB
′(Q′) ≥ mjsjB

′(Q) = C(qj),
hence q′j ≥ qj. As a result, m′iq′i ≤ miqi because Q′ ≤ Q. Since m′i > mi,
one has q′i < qi, and thus m′isiB′(Q′) = C(q′i) < C(qi) = misiB

′(Q). But
m′i > mi, then B′(Q′) < B′(Q), which contradicts the fact that Q′ ≤ Q.
Therefore Q′ > Q and in consequence q′j < qj for every player j 6= i. This
implies that m′iq′i > miqi.
(vi) Suppose that si increases and becomes s′i > si. Suppose thatQ′ ≤ Q.

Then for player j 6= i, C(q′j) = mjsjB
′(Q′) ≥ mjsjB

′(Q) = C(qj), hence
q′j ≥ qj. As a result, q′i ≤ qi because Q′ ≤ Q, and thus mis

′
iB
′(Q′) =

C(q′i) ≤ C(qi) = misiB
′(Q). But s′i > si, then B′(Q′) < B′(Q), which
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contradicts the fact that Q′ ≤ Q. Therefore Q′ > Q and in consequence
q′j < qj for all player j 6= i. This implies that q′i > qi.

Proof of Proposition 1. Recall that q is the equilibrium in the public goods
game G(N ), and Q =

∑
j∈N mjqj. Let q(i) denote the equilibrium in public

goods game G(N (i)), which is induced by the unilateral decentralization
of federation i, and let Q(i) =

∑
j∈N (i) mjq

(i)
j . The proposition can be

reformulated as follows: (1) Q(i) < Q; (2) for each j ∈ N and j 6= i,
q

(i)
j > qj, uj(q(i)) < uj(q); (3)

∑
k∈Fi wkq

(i)
k < qi.

First notice that the member countries of federation i provide the same
quantity of public good at q(i) since they are identical. Denote q(i)

i := q
(i)
k

for all k ∈ Fi.
(i) Suppose that Q(i) ≥ Q. For all j ∈ N and j 6= i, C ′(q(i)

j ) =

sjmjB
′(Q(i)) ≤ sjmjB

′(Q) = C ′(qj), thus q
(i)
j ≤ qj. Therefore

∑
k∈Fi wkq

(i)
k

≥ qi.
On the one hand, for all k ∈ Fi, C ′(q

(i)
k ) = skwkmiB

′(Q(i)) hence∑
k∈Fi C

′(q
(i)
k ) =

∑
k∈Fi skwkmiB

′(Q(i)) = simiB
′(Q(i)) ≤ simiB

′(Q) =

C ′(qi). We have thus proved that
∑

k∈Fi C
′(q

(i)
k ) ≤ C ′(qi). Recall that

qi ≤
∑

k∈Fi wkq
(i)
k which means C ′(qi) ≤ C ′(

∑
k∈Fi wkq

(i)
k ). Therefore,∑

k∈Fi C
′(q

(i)
k ) ≤ C ′(

∑
k∈Fi wkq

(i)
k ). On the one hand, there must be some

l ∈ Fi such that q(i)
l ≥

∑
k∈Fi wkq

(i)
k . Hence C ′(q(i)

l ) ≥ C ′(
∑

k∈Fi wkq
(i)
k ) ≥∑

k∈Fi C
′(q

(i)
k ). This is impossible, because ni > 1 hence

∑
k∈Fi C

′(q
(i)
k ) >

C ′(q
(i)
l ).

We have thus proved that Q(i) < Q.
(ii-iii) For any other player j 6= i, C(q

(i)
j ) = sjmjB

′(Q(i)) > sjmjB
′(Q) =

C(qj), hence q(i)
j > qj. As a result,

∑
k∈Fk q

(i)
k < qi because Q(i) < Q.

Besides, for j 6= i, uj = sjB(Q)− C(qj) > sjB(Q(i))− C(q
(i)
j ) = u

(i)
j .

(iv) Suppose the common size of the member countries of federation i
(resp. j) is m̄i (m̄j). Recall that m̄i ≤ m̄j. For symmetric federation
i, let q(i)

i denote the common per-unit contribution of member countries
of federation i after its decentralization, and let q(j)

j be similarly defined.
(These notations and assumption are also used in the proof for (v) below.)
Let us prove: Q(i) < Q(j). Suppose that Q(i) ≥ Q(j).
Let us first show thatmiq

(i)
i +mjq

(i)
j ≥ miq

(j)
i +mjq

(j)
j . Case A: There are

only two players, federations i and j, in the game. Then miq
(i)
i +mjq

(i)
j ≥

miq
(j)
i + mjq

(j)
j is equivalent to Q(i) ≥ Q(j). Case B: There are more than

two players in the game. Consider player l 6= i, j. C ′(q(i)
l ) = slmlB

′(Q(i)) ≤
slmlB

′(Q(j)) = C ′(q
(j)
l ). Thus, q(i)

l ≤ q
(j)
l . In consequence,

∑
l 6=i,jmlq

(i)
l ≤∑

l 6=i,jmlq
(j)
l . But Q(i) ≥ Q(j), hence one deduces that miq

(i)
i + mjq

(i)
j ≥
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miq
(j)
i +mjq

(j)
j , or equivalentlymiq

(j)
i −miq

(i)
i ≤ mjq

(i)
j −mjq

(j)
j . Sincemi >

mj, one has q
(j)
i −q

(i)
i < q

(i)
j −q

(j)
j or equivalently q(j)

j −q
(i)
i < q

(i)
j −q

(j)
i . But

q
(i)
j − q

(j)
i < 0 because C′(q

(i)
j )

mj
= sjB

′(Q(i)) ≤ siB
′(Q(j)) =

C′(q
(j)
i )

mi
≤ C′(q

(j)
i )

mj

(recall that si = sj). As a result, q(j)
j < q

(i)
i .

However, C ′(q(i)
i ) = sim̄iB

′(Q(i)) ≤ sjm̄jB
′(Q(j)) = C ′(q

(j)
j ) which means

that q(j)
j ≥ q

(i)
i . This is contradictory to the previous paragraph. Therefore

Q(i) < Q(j).
(v) Let us prove: Q(i) < Q(j). Denote m = mi = mj. Suppose that

Q(i) ≥ Q(j).
By the same argument as for (iv), one has mq(i)

i +mq
(i)
j ≥ mq

(j)
i +mq

(j)
j .

Consequently q(i)
i − q

(j)
j ≥ q

(j)
i − q

(i)
j > 0. The last inequality is because

C′(q
(i)
j )

m
= sjB

′(Q(i)) < siB
′(Q(j)) =

C′(q
(j)
i )

m
(recall that si > sj). This

further implies that q(i)
j − q

(j)
j ≥ q

(j)
i − q

(i)
i > 0. The last inequality is

because q(j)
i > qi > q

(i)
i .

On the other hand, recall that C ′(q(j)
i )−C ′(q(i)

j ) = simB
′(Q(j))−sjmB′(Q(i))

and C ′(q(i)
i )−C ′(q(j)

j ) = sim̄iB
′(Q(i))−sjm̄jB

′(Q(j)). Therefore
[
C ′(q

(j)
i )−

C ′(q
(i)
j )
]
−nj

[
C ′(q

(i)
i )−C ′(q(j)

j )
]
> simB

′(Q(j))−sjmB′(Q(i))−simB′(Q(i))+

sjmB
′(Q(j)) = (si + sj)m

[
B′(Q(j))−B′(Q(i))

]
> 0.

Since nj > 1, one has C ′(q(j)
i )−C ′(q(i)

j ) > C ′(q
(i)
i )−C ′(q(j)

j ) > 0 and also
C ′(q

(j)
i )− C ′(q(i)

i ) > C ′(q
(i)
j )− C ′(q(j)

j ) > 0.
Suppose that q(i)

j ≥ q
(i)
i . By C ′(q(j)

i )−C ′(q(i)
j ) > C ′(q

(i)
i )−C ′(q(j)

j ) > 0 and

q
(i)
i −q

(j)
j ≥ q

(j)
i −q

(i)
j > 0, one deduces that C′(q

(j)
i )−C′(q(i)j )

q
(j)
i −q

(i)
j

>
C′(q

(i)
i )−C′(q(j)j )

q
(i)
i −q

(j)
j

>

0. By the Intermediate Value Theorem, there exists x ∈ [q
(i)
j , q

(j)
i ] and

y ∈ [q
(j)
j , q

(i)
i ] such that C′(q

(j)
i )−C′(q(i)j )

q
(j)
i −q

(i)
j

= C ′′(x), C′(q
(i)
i )−C′(q(j)j )

q
(i)
i −q

(j)
j

= C ′′(y).

Thus C ′′(x) > C ′′(y). But y ≤ q
(i)
i ≤ q

(i)
j ≤ x, hence C ′′(x) ≤ C ′′(y). This

is impossible.
Suppose that q(i)

j < q
(i)
i . By C ′(q(j)

i )−C ′(q(i)
i ) > C ′(q

(i)
j )−C ′(q(j)

j ) > 0 and

q
(i)
j −q

(j)
i ≥ q

(j)
i −q

(i)
i > 0, one deduces that C′(q

(j)
i )−C′(q(i)i )

q
(j)
i −q

(i)
i

>
C′(q

(i)
j )−C′(q(j)j )

q
(i)
j −q

(j)
j

>

0. Similarly, there must be x ∈ [q
(i)
i , q

(j)
i ] and y ∈ [q

(j)
j , q

(i)
j ] such that

C′(q
(j)
i )−C′(q(i)i )

q
(j)
i −q

(i)
i

= C ′′(x), C′(q
(i)
j )−C′(q(j)j )

q
(i)
j −q

(j)
j

= C ′′(y). Thus C ′′(x) > C ′′(y). But

y ≤ q
(i)
j < q

(i)
i ≤ x, hence C ′′(x) ≤ C ′′(y). This is impossible.
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Proof of Proposition 2. For federation i, set two constants: θi ,
∑

k∈Fi w
2
ksk,

and ξi ,
∑

k∈Fi w
3
ks

2
k. Also set constants m−i =

∑
j∈N\{i}mj and θ−i =∑

j∈N\{i} sj(
mj
m−i

)2.
With linear quadratic utility, one has

qi =
αmisi

βm2
i si + βm2

−iθ−i + γ
, qj =

αmjsj
βm2

i si + βm2
−iθ−i + γ

, j ∈ N \ {i},

q
(i)
k =

αmksk
βm2

i θi + βm2
−iθ−i + γ

, k ∈ Fi, q(i)
j =

αmjsj
βm2

i θi + βm2
−iθ−i + γ

, j ∈ N \ {i}

Q =
αsim

2
i + αθ−im

2
−i

βsim2
i + βθ−im2

−i + γ
, Q(i) =

αθim
2
i + αθ−im

2
−i

βθim2
i + βθ−im2

−i + γ

(i) Federation 1 prefers decentralization to centralization if and only if
v1 = siB(Q) − C(qi) ≤ u

(i)
1 =

∑
k∈Fi skwkB(Q(1)) −

∑
k∈Fi wkC(q

(i)
k ) or

equivalently

(βsim
2
i + γ)

[
(ξi − θ2

i )βsim
2
i + γ(s2

i − siθi + ξi)
]
≤

(s2
i − ξi)βθ−im2

−i + 2(βsim
2
i + γ)(siθi − ξi)βθ−im2

−i(7)

Notice that si =
∑

k∈Fi skwk >
∑

k∈Fi skw
2
k because wk ≤ 1 for all k and

the inequality is strict for at least one k. Also, s1θ1 − ξ1 =(∑
k∈F1

skwk
)(∑

k∈F1
skw

2
k

)
−
∑

k∈F1
s2
kw

3
k =

∑
k 6=l skwkslw

2
l > 0 and s2

1 −
ξ1 > s1θ1 − ξ1 > 0.
Hence, for fixed s1 andm1, the RHS of inequality (7) is strictly increasing

both in m−i and θ−i.
(ii) If (7) is satisfied when federation j is decentralized, then it must be

satisfied when j is centralized. To prove this, it is sufficient to show that
the value of θ−i therein when j is centralized (denoted by θ−i) is greater
than its value when j is decentralized (denoted by θ(j)

−i ), other things held
equal. By definition,

m2
−iθ−i =

∑
p∈N\{i,j}

spm
2
p + sjm

2
j =

∑
p∈N\{i,j}

spm
2
p + (

∑
l∈Fj

sl
ml

mj

)m2
j ,

m2
−iθ

(j)
−i =

∑
p∈N\{i,j}

spm
2
p +

∑
l∈Fj

slm
2
l ,

which implies that m2
−iθ−i − m2

−iθ
(j)
−i =

∑
l∈Fj slmlmj −

∑
l∈Fj slm

2
l =∑

l∈Fj slml(mj −ml) > 0.

Proof of Corollary 2. The result in Proposition 2(ii) shows that if C is
a best response to the other federation playing C, then C is a dominant
strategy, and ifD is a best response to the other playingD, D is a dominant
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strategy. In particular, (C,C) and (D,D) cannot be both equilibria at the
same time.

Proof of Proposition 3. For each fixed pair of (n1, s1), let us consider the
first quadrant of plan (n2, s2) with n2 on the horizontal axis and s2 on the
vertical axis. We trace four curves there: (i) uCC1 = uDC1 , (ii) uCD1 = uDD1 ,
(iii) uCC2 = uCD2 , (iv) uDC2 = uDD2 .

(i) uCC1 = uDC1 ,

(8) γβn3
1s1 = (2βn2

2s2 + γ)βn2
1s1 + (β2n4

2s
2
2 − γ2)n1 + (βn2

2s2 + γ)2

Let us show that the curve is the graph of a function Γ1 : R++ 7→ R++,
i.e. for each n2 > 0, there is only one s2 = Γ1(n2) > 0 satisfying (8).
Indeed, for a fixed n2 > 0, (8) implies

β2(1 + n1)n4
2s

2
2 + 2β(βn2

1s1 + γ)n2
2s2 − (γβn2

1s1 + γ2)(n1 − 1) = 0.

y(s2) = β2(1 + n1)n4
2s

2
2 + 2β(βn2

1s1 + γ)n2
2s2 − (γβn2

1s1 + γ2)(n1 − 1) is a
convex parabola in coordinate system (s2, y). Its symmetric axis is s2 =

− (βn2
1s1+γ)

β(1+n1)n2
2
< 0. Moreover, for s2 = 0, y(0) = −(γβn2

1s1 + γ2)(n1 − 1) < 0.
Therefore, the parabola has one and only one intersection with the strictly
positive part of axis s2, i.e. there is one and only one s2 > 0 satisfying (8).
Denote it by Γ1(n2). We thus define function Γ1(n2).
To decide the form of curve (8), we calculate the first and second deriva-

tives of Γ1. To this end, rewrite (8) to define function

F (n2, s2) = β2(1 + n1)n4
2s

2
2 + 2β(βn2

1s1 + γ)n2
2s2 − (γβn2

1s1 + γ2)(n1 − 1).

Then F (n2,Γ1(s2)) ≡ 0. Denote by ∂iF the partial derivative of F with
respect to its i-th variable. Then ∂1F + ∂2F

dΓ1(n2)
dn2

= 0 which implies
Γ′1(n2) = −∂1F

∂2F
= −2Γ1(n2)

n2
< 0 and consequently Γ′′1(n2) = 6Γ1(n2)

n2
2

> 0.
Hence curve (8) is strictly decreasing and strictly convex.
It is easy to show that

(9) Γ1(n2) =
(n1 − 1)

√
βn2

1s1 + γ√
βn2

1s1 + γn2
1 +

√
βn2

1s1 + γ
· γ

βn2
2

For the area below curve Γ1, γβn3
1s1 > (2βn2

2s2 + γ)βn2
1s1 + (β2n4

2s
2
2 −

γ2)n1 + (βn2
2s2 + γ)2 hence uCC1 > uDC1 , it is better to for federation

1 to centralize when federation 2 centralizes. For the area above curve
Γ1, γβn3

1s1 < (2βn2
2s2 + γ)βn2

1s1 + (β2n4
2s

2
2 − γ2)n1 + (βn2

2s2 + γ)2 hence
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uCC1 < uDC1 , it is better for federation 1 to decentralize when federation 2
centralizes.
(ii) uCD1 = uDD1 ,

(10) γβn3
1s1 = (2βn2s2 + γ)βn1s1 + (β2n2

2s
2
2 − γ2)n1 + (βn2s2 + γ)2

which implies that

β2(1 + n1)n2
2s

2
2 + 2β(βn1s1 + γ)n2s2 − [γβn1s1(n1 + 1) + γ2](n1 − 1) = 0.

With the same methods employed for curve (8), we can show that curve
(10) is the graph of a strictly positive valued function
(11)

Γ2(n2) =
(n1 − 1)(βn2

1s1 + βn1s1 + γ)√
βn1s1γ(n3

1 + n2
1 + 1) + (β2s2

1 − βs1γ + γ2)n2
1 + βn1s1 + γ

γ

βn2

Its slope is −Γ2(n2)
n2

< 0, and its second derivative is 2Γ2(n2)

n2
2

> 0.
For the area below curve Γ2, uCD1 > uDD1 , it is better for federation 1 to

centralize (when federation 2 decentralizes). For the area above curve Γ2,
uCD1 < uDD1 , it is better for federation 1 to decentralize (when federation 2
decentralizes).
(iii) uCC2 = uCD2 ,

(12) γβn3
2s2 − (2βn2

1s1 + γ)βn2
2s2 − (β2n4

1s
2
1 − γ2)n2 = (βn2

1s1 + γ)2

For simplicity, denote b = βn2
1s1 − γ. Note that b+ 2γ = βn2

1s1 + γ > 0,
2b+ 3γ = 2βn2

1s1 + γ > 0. Then (12) is rewritten as

βγn2
2

(
n2 −

2b+ 3γ

γ

)
s2 = (b+ 2γ)

[
b n2 + (b+ 2γ)

]
.

Define function Γ̃3 :]0, 2b+ 3γ[∪]2b+ 3γ,+∞[ 7→ R as follows:

(13) Γ̃3(n2) =
b+ 2γ

βγ
· b n2 + (b+ 2γ)

n2
2

(
n2 − 2b+3γ

γ

)
Hence

Γ̃′3(n2) =
2(b+ 2γ)

βγ n3
2

(
n2 − 2b+3γ

γ

)2

[
−bn2

2 +
b2 − 3γ2

γ
n2 +

(2b+ 3γ)(b+ 2γ)

γ

]

For later use, define function g(n2) = −bn2
2 + b2−3γ2

γ
n2 + (2b+3γ)(b+2γ)

γ
, a

quadratic parabola of n2.
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Then

(14) Γ̃′3(n2) =
2(b+ 2γ)

βγ n3
2

(
n2 − 2b+3γ

γ

)2 · g(n2)

Case A: b = 0. Then Γ̃3(n2) = 4γ
βn2

2(n2−3)
, Γ̃′3(n2) = − 12γ(n2−2)

βn3
2(n2−3)2

.
Γ̃3(n2) is continuous and strictly negative over ]0, 3[, continuous and

strictly positive for n2 ∈]3,+∞[, strictly increasing for n2 ∈]0, 2], strictly
decreasing for n2 ∈ [2, 3[, and strictly decreasing for n2 ∈]3,+∞[. More-
over, Γ̃3(n2) goes to −∞ both when n2 goes to 0 from the right and when
it goes to 3 from the left; Γ̃3(n2) goes to +∞ when n2 goes to 3 from the
right and Γ̃3(n2) goes to 0 when n2 goes to +∞.
For n2 ∈ [3,+∞[, for the area below the curve, uCC2 < uCD2 , it is better

for federation 2 to decentralize (when federation 1 centralizes); for the area
above the curve, uCC2 > uCD2 , it is better for federation 2 to centralize (when
federation 1 centralizes). For n2 ∈]0, 3[, for the area above the n2-axis hence
above the curve, uCC2 < uCD2 , it is better for federation 2 to decentralize
(when federation 1 centralizes).

Case B: b > 0. Rewrite Γ̃3(n2) = b(b+2γ)
βγ
· n2+ b+2γ

b

n2
2

(
n2− 2b+3γ

γ

) .
It is easy to show that 2b+3γ

γ
> b2−3γ2

2bγ
by simple algebra.

In order to know the form of Γ̃3(n2), we look at its derivative (14).
Let us decide the sign of g(n2) over ]0, 2b+3γ

γ
[ and ]2b+3γ

γ
,+∞[. Note

that the symmetric axis of the parabola is b2−3γ2

2bγ
< 2b+3γ

γ
. Besides, g(0) =

(2b+3γ)(b+2γ)
γ

> 0, g(1) = 3
γ
(b + γ)2 > 0, g(2b+3γ

γ
) = − (2b+3γ)

γ2
(b + γ)2 < 0.

Therefore there exists n+
2 ∈]1, 2b+3γ

γ
[ such that Γ̃′3(n2) > 0 for n2 ∈]0, n+

2 [,
and Γ̃′3(n2) < 0 for n2 ∈]n+

2 ,+∞[.
Thus we deduce that Γ̃3(n2) is continuous and strictly negative over

]0, 2b+3γ
γ

[, continuous and strictly positive for n2 ∈]2b+3γ
γ

,+∞[, strictly in-
creasing for n2 ∈]0, n+

2 ], strictly decreasing for n2 ∈ [n+
2 ,

2b+3γ
γ

[, and strictly
decreasing for n2 ∈]2b+3γ

γ
,+∞[. Moreover, Γ̃3(n2) goes to −∞ both when

n2 goes to 0 from the right and when it goes to 2b+3γ
γ

from the left; Γ̃3(n2)

goes to +∞ when n2 goes to 2b+3γ
γ

from the right and Γ̃3(n2) goes to 0
when n2 goes to +∞.
For n2 ∈ [2b+3γ

γ
,+∞[, for the area below the curve, uCC2 < uCD2 , it

is better for federation 2 to decentralize (when federation 1 centralizes);
for the area above the curve, uCC2 > uCD2 , it is better for federation 2
to centralize (when federation 1 centralizes). For n2 ∈]0, 2b+3γ

γ
[, for the
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area above the n2-axis hence above the curve, uCC2 < uCD2 , it is better for
federation 2 to decentralize (when federation 1 centralizes).
We can in fact incorporate Case A into Case B by noticing that when

b = 0, n+
2 = 2.

Case C: b < 0. Rewrite Γ̃3(n2) = b(b+2γ)
βγ
· n2− b+2γ

−b

n2
2

(
n2− 2b+3γ

γ

) .
It is easy to show that 2b+3γ

γ
< b2−3γ2

2bγ
< b+2γ

−b by simple algebra.
From (13), it is easy to see that Γ̃3(n2) is continuous and strictly negative

for n2 ∈]0, 2b+3γ
γ

[, Γ̃3(n2) is continuous on ]2b+3γ
γ

,+∞[, Γ̃3(n2) > 0 for
n2 ∈]2b+3γ

γ
, b+2γ
−b [, and Γ̃3(n2) < 0 for n2 ∈] b+2γ

−b ,+∞[.
In order to know the form of Γ̃3(n2), we look at the derivative (14).
Let us decide the sign of g(n2) over ]0, 2b+3γ

γ
[ and ]2b+3γ

γ
,+∞[. Note that

the symmetric axis of the parabola is b2−3γ2

2bγ
. Besides, g(0) = (2b+3γ)(b+2γ)

γ
>

0, g(1) = 3
γ
(b + γ)2 > 0, g(2b+3γ

γ
) = − (2b+3γ)

γ2
(b + γ)2 < 0, g( b+2γ

−b ) =
b+2γ
b

(b + γ)2 < 0. Recall that 1 < 2b+3γ
γ

< b2−3γ2

2bγ
< b+2γ

−b . Therefore there
exists n∗2 ∈]1, 2b+3γ

γ
[, n∗∗2 ∈] b+2γ

−b ,+∞[ such that Γ̃′3(n2) > 0 for n2 ∈]0, n∗2[

and n2 ∈]n∗∗2 ,+∞[, and Γ̃′3(n2) for n2 ∈]n∗2, n
∗∗
2 [.

Moreover, Γ̃3(n2) goes to −∞ when n2 goes to 0 from the right and when
it goes to 2b+3γ

γ
from the left; Γ̃3(n2) goes to +∞ when n2 goes to 2b+3γ

γ

from the right and s2 goes to 0 when n2 goes to +∞.
For n2 ∈ [2b+3γ

γ
, b+2γ
−b [, for the area below the curve, uCC2 < uCD2 , it

is better for federation 2 to decentralize (when federation 1 centralizes);
for the area above the curve, uCC2 > uCD2 , it is better for federation 2 to
centralize (when federation 1 centralizes). For n2 ∈ [ b+2γ

−b ,+∞[, for the area
above the n2 axis, uCC2 > uCD2 , it is better for federation 2 to centralize
(when federation 1 centralizes). For n2 ∈]0, 2b+3γ

γ
[, for the area above the

n2-axis hence above the curve, uCC2 < uCD2 , it is better for federation 2 to
decentralize (when federation 1 centralizes).
Finally, let us define a generalized function Γ3 : R++ 7→ R+ ∪ {+∞} as

follows.

(15) Γ3(n2) =

+∞, for 0 < n2 ≤ 2b+3γ
γ

,

max

{
b+2γ
βγ
· b n2+(b+2γ)

n2
2

(
n2− 2b+3γ

γ

) , 0} , for n2 >
2b+3γ
γ

.

According to the analysis of the three cases (A, B, C), we know that for
n2 ∈ R++, for the area below curve Γ3 and above the horizontal n2-axis,
uCC2 < uCD2 , it is better for federation 2 to decentralize (when federation
1 centralizes); for the area above curve Γ3, uCC2 > uCD2 , it is better for
federation 2 to centralize (when federation 1 centralizes).
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(iv) uDC2 = uDD2 .

(16) γβn3
2s2 − (2βn1s1 + γ)βn2

2s2 − (β2n2
1s

2
1 − γ2)n2 = (βn1s1 + γ)2

The analysis for the form of curve (16) is almost the same as that for
curve (12), simply by replacing b by a, where a = βn1s1 − γ.
In particular, we define a generalized function Γ4 : R++ 7→ R+ ∪ {+∞}

as follows.

(17) Γ4(n2) =

+∞, for 0 < n2 ≤ 2a+3γ
γ

,

max

{
a+2γ
βγ
· an2+(a+2γ)

n2
2

(
n2− 2a+3γ

γ

) , 0} , for n2 >
2a+3γ
γ

.

For n2 ∈ R++, for the area below curve Γ4 and above the horizontal
n2-axis, uDC2 < uDD2 , it is better for federation 2 to decentralize (when
federation 1 decentralizes); for the area above curve Γ4, uDC2 > uDD2 , it is
better for federation 2 to centralize (when federation 1 decentralizes).

Also note that a < b, hence if a ≥ 0 then b ≥ 0, and if b < 0 then a < 0.
According to (ii) of Proposition 2, curve Γ1 is below curve Γ2; curve Γ4

is below curve Γ3 on R++. In other words, for all n2 > 0, Γ1(n2) < Γ2(n2)
and Γ4(n2) ≤ Γ3(n2).

Therefore, for a given quadruplet (n1, s1, n2, s2), the equilibria of the
corresponding two-stage simultaneous decentralization game D are decided
by the s2’s relation with Γ1(n2), Γ2(n2), Γ3(n2), Γ4(n2), respectively defined
by (9), (11), (15) and (17).
More precisely,

• If Γ3(n2) < s2 < Γ1(n2), then the unique equilibrium is (C,C).

• If Γ2(n2) < s2 < Γ4(n2), then the unique equilibrium is (D,D).

• If s2 < min{Γ2(n2),Γ4(n2)}, or if s2 < min{Γ1(n2),Γ3(n2)}, then the
unique equilibrium is (C,D).

• If s2 > max{Γ2(n2),Γ4(n2)} or if s2 > max{Γ1(n2),Γ3(n2)}, then the
unique equilibrium is (D,C).

• If max{Γ1(n2),Γ4(s2)} < s2 < min{Γ2(n2),Γ3(n2)}, then the equilib-
ria are (C,D) and (D,C).

Proof of Proposition 4. According to Lemma 1.(ii), when federation i is
centralized, all its member countries have a common per-unit contribution
qi.
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(i) Since sk = sl, uk(q) = ul(q) = siB(Q) − C(qi). While federation i is
decentralized, Lemma 2 implies that uk(q̃) = skB(Q̃) − C(q̃k) < ul(q̃) =
slB(Q̃)− C(q̃l) if and only if mk > ml.
(ii)

[
ul(q̃)−ul(q)

]
−
[
uk(q̃)−uk(q)

]
=
[
uk(q)−uk(q̃)

]
−
[
ul(q)−ul(q̃)

]
=[

skB(Q)−C(qi)−skB(Q̃) +C(q̃k)
]
−
[
slB(Q)−C(qi)−slB(Q̃) +C(q̃l)

]
=[

sk(B(Q)−B(Q̃))−(C(qi)−C(q̃k))
]
−
[
sl(B(Q)−B(Q̃))−(C(qi)−C(q̃l))

]
=

(sk − sl)(B(Q)−B(Q̃)) + (C(q̃k)−C(q̃l)) > 0 because sk > sl, Q > Q̃ (by
Corollary 1) and q̃k > q̃l (by Lemma 2).
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