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Abstract

We investigate sulphur, chlorine and fluorine release during explosive, effusive and intrusive phases the 2011-
2012 Cordón Caulle eruption, with a focus on the halogens. Analysis of melt inclusions, pyroclasts and lava samples
shows most sulphur to have degassed during magma decompression, but halogen release to have accompanied iso-
baric crystallisation in slowly-cooled magma that was emplaced in a lava flow and sub-vent intrusion. Fluorine
in particular mobilised only after extensive groundmass crystallisation and incipient devitrification. By 2017, gas
emitted from vent-proximal fumaroles had hydrothermal compositions, with HCl/HF ratios correlating with tem-
perature. We estimate that the eruption could eventually emit up to 0.92 Mt of SO2, 6.3 Mt of HCl, and 1.9 Mt of
HF, but only ∼16 wt.%, ∼7 wt.% and ∼2 wt.% of these were respectively emitted during opening explosive phases.
Halogen devolatilisation and its associated hazards can persist long after rhyolite eruption and/or emplacement.

Keywords: Puyehue-Cordón Caulle; Halogens; Rhyolite;

Volatile Budget; Lava Flow

1 Halogens in volcanic systems

Nearly all aspects of volcanism are controlled by
volatiles (H2O, CO2, S, Cl, F), which play different roles
at different times in the lifetime of a magma body [e.g.
Westrich et al. 1988; Carroll 1994; Sparks 2003; Cash-
man 2004; Edmonds and Wallace 2017]. Among these
major volatiles, the halogens chlorine and fluorine are
the most poorly understood [e.g. Aiuppa et al. 2009;
Webster et al. 2018]. Their release from ascending
magma is not a simple consequence of decompression,
and conditions of magma emplacement are important
in controlling if and how they become mobile [Kilinc
and Burnham 1972; Villemant and Boudon 1999; Ed-
monds et al. 2002]. Although they do not drive erup-
tions [e.g. like H2O and CO2: Cashman 2004], or pro-
vide easily-measured proxies for magmatic vitality [e.g.
like sulphur species: Giggenbach 1996; Symonds et
al. 2001], they can significantly influence melt proper-
ties [e.g. Dingwell and Hess 1998], are highly reactive
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in volcanic edifices and plumes [Symonds et al. 1987;
Wolff-Boenisch et al. 2004; Bellomo et al. 2007], play a
key role in the genesis of economically important min-
eral resources [McPhie et al. 2011], and can have detri-
mental effects on the environment, the atmosphere, an-
imals and people [Cronin et al. 2003; Delmelle 2003;
D’Alessandro 2006; von Glasow et al. 2009; Flueck and
Smith-Flueck 2013].

Methods for quantifying chlorine and fluorine
species in volcanic rocks and gases are improving [e.g.
Waters et al. 2006; Zhang et al. 2016; Roberts et al.
2017] and catalogues of halogen concentrations in vol-
canic gases are growing [Pyle and Mather 2009; Web-
ster et al. 2018]. Still, there is little information on
the behaviour of these halogens during rhyolite erup-
tions [Shinohara et al. 1993; Mori et al. 2002; Lowen-
stern et al. 2012]. This is partly because there have
been so few historical eruptions of silicic magma, and is
problematic because halogens can become highly con-
centrated in evolved melts [Carroll 1994], and because
silicic eruptions tend to be highly explosive and have
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widespread effects. Here, we examine the release of
chlorine and fluorine, and also sulphur, during dif-
ferent phases of the 2011–2012 rhyolite eruption at
Cordón Caulle volcano (Chile), in order to establish the
degree and timing of halogen output during explosive,
effusive, and intrusive rhyolite volcanism.

A weakly inverse relationship between chlorine sol-
ubility and pressure in metaluminous rhyolites means
Cl does not spontaneously degas during magma as-
cent [Metrich and Rutherford 1992]. Rather, it tends
to partition into the aqueous fluids generated by
decompression-driven exsolution of magmatic H2O
[Kilinc and Burnham 1972]. Affinity for the fluid phase
is described by the fluid-melt partitioning coefficient
Dv/mCl = [Cl]v/[Cl]m, where [Cl] is chlorine concentration
in aqueous vapour (v) and melt (m). In silicic melts,
Dv/mCl is most often in the range of 10–100, depending
on melt composition and fluid availability [Baker and
Alletti 2012, and references therein]. Chlorine diffu-
sion is slow in silicic melts, and its exsolution is kinet-
ically limited during rapid magma ascent [Baker and
Balcone-Boissard 2009]. The most prodigious release
of Cl is from magma that cools slowly in lava flows,
domes, or shallow intrusions, where higher Dv/mCl result
from Cl being incompatibly concentrated in residual
melts, where there is time for Cl diffusion out of melt,
and where second boiling and hydrothermal circulation
provide fluids into which Cl can partition [Westrich
et al. 1988; Villemant and Boudon 1999; Harford et
al. 2003; Villemant et al. 2008; Balcone-Boissard et
al. 2010; Lowenstern et al. 2012; Bégué et al. 2017].
The importance of slow isobaric crystallisation to Cl re-
lease manifests during eruptions as HCl emissions be-
ing weaker during explosive phases and stronger dur-
ing effusive phases of chemically equivalent magma
[Edmonds et al. 2002].

The mechanisms of fluorine degassing are insuffi-
ciently explained and appear paradoxical. Fluorine is
highly soluble in silicate melts [Carroll 1994], and can
be present to weight per cent levels in highly-evolved
magmas [e.g. Webster 1990]. It also has a strong affinity
for melts over aqueous fluids, with Dv/mF usually being
<1, although Dv/mF >10 have been experimentally deter-
mined for mafic systems [Baker and Alletti 2012, and
references therein]. Fluorine should therefore be ex-
pected to behave incompatibly during crystallisation of
volatile-free mineral assemblages [Aiuppa et al. 2009;
Balcone-Boissard et al. 2010]. However, there is ample
evidence for significant fluorine degassing and/or mo-
bilisation during volcanic eruptions. Direct evidence
is in the measurable fluorine in volcanic plumes [Bel-
lomo et al. 2007; Aiuppa et al. 2009; Pyle and Mather
2009]. This is usually as HF, although SiF4 has also
been measured in plumes from arc rhyolites [Mori et
al. 2002]. Fluorine is also a ubiquitous and hazardous
component of leachates from fresh ash [Cronin et al.
2003; Stewart et al. 2016]. Indirect evidence for fluo-

rine degassing is in the inferred role of HF in corroding
volcanic glass and redistributing SiO2 via SiF4, deposit-
ing it as metastable silica polymorphs (cristobalite) in
pore spaces [Wolff-Boenisch et al. 2004; de Hoog et al.
2005; Horwell et al. 2013; Schipper et al. 2017]. Our
understanding of fluorine behaviour is partly hindered
by its reactivity with aluminosilicate materials [Cronin
et al. 2003; Wolff-Boenisch et al. 2004; Delmelle et al.
2007], its tendency to be scrubbed from volcanic gases
[Symonds et al. 2001], and the solubility of its vari-
ous salts and compounds in water [Cronin et al. 2003;
D’Alessandro 2006; Wardell et al. 2008].

We investigate the behaviour of chlorine and fluo-
rine at Cordón Caulle volcano (Chile, Figure 1), and
include a comparative assessment to sulphur release.
This is achieved using a combined textural and petro-
logical approach augmented with a few measurements
of post-eruptive fumarolic gas compositions. This VEI
5 eruption is the largest 21st century subaerial erup-
tion to-date, and is only the second eruption of rhyolite
magma to have been closely observed, after Chaitén in
2008–2009 [e.g. Lowenstern et al. 2012]. During the
paroxysmal phase of this eruption three distinct but co-
genetic magma bodies were simultaneously tapped [Al-
loway et al. 2015].

The 2011–2012 Cordón Caulle eruption is ideal
for investigating halogen mobility because it included
several distinctly different phases, from an early
Plinian phase, through prolonged simultaneous explo-
sive/effusive activity, to a protracted period of endoge-
nous lava advance [Castro et al. 2013; Schipper et al.
2013; Tuffen et al. 2013] (Figures 1 and 2A). Addition-
ally, there was a shallow, large-volume magmatic intru-
sion emplaced in the first month of the eruption [Cas-
tro et al. 2016]. Extrusive products experienced a wide
range of emplacement and cooling histories, and have
correspondingly diverse textural characteristics [Schip-
per et al. 2015; Magnall et al. 2018] and intrusion of the
laccolith [Castro et al. 2016] caused significant uplift
in the vent region accompanied by elevated heat and
gas fluxes at the surface (Figures 1 and 2B). This diver-
sity of magma emplacement regimes provides an op-
portunity to investigate halogen behaviour during var-
ious permutations of rhyolite volcanism.

1.1 Cordón Caulle volcano and the sampled eruption
products

The Cordón Caulle fissure system is the site of the three
most recent eruptions, in 1921, 1960, and 2011, from
the Puyehue–Cordón Caulle Volcanic Complex (PC-
CVC) in the Southern Volcanic Zone of the Chilean An-
des (Figure 1). This volcanic complex has been active
since the Pleistocene and has erupted a wide range of
magma types. Background to the PCCVC and recent
activity at Cordón Caulle can be found in Gerlach et al.
[1988], Lara et al. [2006], and Singer et al. [2008].

The samples analysed in this work were collected
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Figure 1: Location and samples. Main image was taken by the Advanced Land Imager on NASA’s Earth
Observing-1 (EO-1) satellite on January 26, 2012. Inset of 2011–2012 eruptive features and deposits is from
Google (2017, DigitalGlobe), with approximate extent of the laccolith indicated by blue dashed line [Castro et al.
2016]. Arrows indicate view directions shown in Figure 2. Inset map shows location of Puyehue–Cordón Caulle
in southern Chile.
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during several field campaigns from 2011–2017. Py-
roclastic samples include pumice from Plinian deposits
up to 24 km from the vent, and obsidian bombs ejected
to ≤1.6 km from the vent by Vulcanian blasts that oc-
curred during simultaneous explosive/effusive activity
(Figure 1).

The majority of our samples are from the extensive
2011–2012 Cordón Caulle lava flow (Figure 1). This
flow continued to advance by endogenous processes for
more than one year after the delivery of new magma to
the surface had ceased [Tuffen et al. 2013]. The main
mechanism for this was by “breakouts” from stalled
flow margins (Figure 2A), a process phenomenologi-
cally similar to that seen in advancing basaltic lavas,
and one that has been the subject of several studies at
Cordón Caulle [Tuffen et al. 2013; Farquharson et al.
2015; Magnall et al. 2017; Magnall et al. 2018]. Our
lava samples (n = 32) were mostly obtained from these
breakouts (Figure 1). This sampling strategy was partly
designed to capture the textural evolution associated
with lava advance and emplacement [Magnall et al.
2018], but was also dictated by practicality. The lava
flow is unstable, with margins several tens of metres
high that made it difficult and unsafe to physically ac-
cess the flow interior, except in a few places (Figure 2A).
Consequently, the suite of lava samples robustly cat-
alogues the range of textures found in the flow, but
over-represents its overall glass content, as breakouts
and flow surfaces tend to be partially glassy (see Fig-
ures 4 and 5), but the majority of the flow volume con-
sists of dense holocrystalline material [Schipper et al.
2015; Magnall et al. 2018]. Figure 2A shows an aerial
view of a rifted breakout, which has a partially glassy,
but thin (∼1 m) upper surface, and a dense holocrys-
talline interior. We obtained only a few samples that
are representative of this dense flow core (see Figure 4,
sample P14-L05), but observations in the field and by
aerial photogrammetry [Schipper et al. (unpublished
data)]; Figure 2A] suggest these to be most representa-
tive of the flow as a whole.

2 Analytical methods

Polished thin sections of all samples were scanned us-
ing transmitted light on a flatbed scanner. Ground-
mass textures were examined using backscatter elec-
tron (BSE) imaging on a JEOL JXA-8230 Superprobe
at Victoria University of Wellington (VUW). For each
sample, a series of five representative BSE images were
collected at 250× magnification, with brightness and
contrast optimised to allow segmentation of different
groundmass phases. The proportions of glass, plagio-
clase, pyroxene, Fe-Ti oxides, and SiO2 were quantified
by manually thresholding and calculating the area frac-
tion of each phase in each image, using ImageJ [Schnei-
der et al. 2012].

A suite of representative samples covering the dif-

ferent phases of the eruption were powdered in a
tungsten-carbide mill and fused into glass beads. Ma-
jor elements were determined by X-Ray Fluorescence
(XRF) using a Phillips MagiXPRO instrument at the
University of Mainz.

Major element compositions of minerals and glasses,
and volatile (S, Cl, F) contents of glasses were de-
termined by electron probe microanalysis (EPMA),
with the JEOL JXA-8230 at VUW. In phenocrysts
and microlites, major elements were determined us-
ing an accelerating voltage of 15 kV, current of 12 nA,
peak/background count times of 30 s/15 s, and a fo-
cused beam, standardised against plagioclase (NMNH
115900), Kakanui augite (USNM 122142), and syn-
thetic oxides [Jarosewich et al. 1980]. In melt inclusions
and matrix glasses, major elements were determined
using 15 kV, 8.0 nA, peak/background count times of
30 s/15 s, and a beam defocused to 10 µm, where possi-
ble. In order to minimise sodium volatilisation during
analysis of glasses, Na was measured first, for shorter
times (10 s/5 s), and at a fixed peak position in or-
der to eliminate the need for a peak search procedure.
Major element analyses were standardised using natu-
ral and synthetic compounds [Jarosewich et al. 1980]
as follows: basaltic glass standard VGA-99 for Ca, Mg,
Fe; rhyolitic glass standard VG-568 for Si, Al, Na, K;
synthetic oxides for Ti, Mn, Cr. In highly crystalline
lava samples, regions of residual glass were too small to
accommodate a 10 µm beam. On these, the beam size
was reduced to as low as 1 µm, but regular checking
of secondary standards did not indicate any significant
volatilisation of Na even when spot analyses were used
(Figure 3A).

Volatile analyses were performed in a second run
that utilised the same pre-programmed analytical spots
as used for major element analysis [e.g. Lowenstern et
al. 2012], with accelerating voltage of 15 kV, current
of 60 nA. Sulphur and chlorine were analysed for 60
s/30 s on peak/background. Sulphur was standard-
ised against Elba Pyrite. Although the S-Kα peak po-
sition is a function of oxidation state, a narrow-band
peak search in advance of each S-Kα measurement en-
sured that sample-specific peak positions were mea-
sured on each analytical spot. Chlorine was standard-
ised against VG-568, and was analysed simultaneously
on two channels (with PETL and PETJ crystals). Detec-
tion limits for sulphur and chlorine were ∼9 ppm and
∼19 ppm, respectively. Fluorine was measured for 120
s/60 s on a W-Si multilayered pseudocrystal (LDE1).
To eliminate interference between the F-Kα and Mg-
Kβ peaks, we used pulse height analysis (PHA) set-
tings described by Witter and Kuehner [2004] for use
on JEOL instruments. To accommodate overlap be-
tween the F-Kα peak and the shoulder of the Fe-Lα
peak, we followed the method of Zhang et al. [2016],
whereby we obtained a calibration curves of apparent F
at given Fe, by analysing a suite of Fe-bearing, F-free
synthetic glasses (generously provided by C. Zhang).
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Figure 2: Key features of Cordón Caulle deposits. Images are from an aerial photogrammetry survey conducted in
November 2017 [Schipper et al. (unpublished data)], corresponding to arrows marked in Figure 1. [A] Example
breakout. Inset shows fracture that reveals internal textures of breakout material, indicating that the partially
glassy upper surface is thin and that the majority of the flow is dense, holocrystalline material. [B] Overview
of the 2011 vent, sitting atop the bulge created by syneruptive laccolith emplacement, and the locations of the
fumaroles from which gases were analysed.

The detection limit for F was calculated to be 100–120
ppm, based on the standard deviation of analyses on
Fe-bearing, F-free calibration glasses [following Zhang
et al. 2016]. Measured concentrations of S, Cl, and
F were routinely checked against a suite of secondary
standard reference glasses, both natural [Indian Ocean
Glass, VG-2, VGA-99, VG-568: Jarosewich et al. 1980;
Jochum et al. 2005], and synthetic [AC-E, DR-N, GS-E:
Zhang et al. 2016, Figure 3B–D].

The compositions of gases discharged from active fu-
maroles on the Cordón Caulle edifice were analysed in
December 2017. The temperatures of several fumaroles
were determined by a handheld, 1-metre-long K-type
thermocouple. Concentrations of major gas species dis-
charged from fumaroles were investigated using a mul-
ticomponent gas analyser system [MultiGAS: Aiuppa
2005; Shinohara 2005] built and calibrated at Palermo
University (Italy). The MultiGAS system was equipped
with sensors for CO2, relative humidity, SO2, H2S, and
H2, recording at 1 Hz and a flow rate of ∼1 Lmin−1.

Concentrations of S, Cl, and F in fumarolic gases
were determined by pumping gases at ∼1 Lmin−1

through a glass bubbler apparatus filled with 4 mo-
lar NaOH solution. Bubblers were left in operation
overnight in each fumarole. The concentrations of S
(measured as SO4 after oxidation of total S in the solu-
tion), Cl, and F in the resulting neutral solutions were
determined by ion chromatography at the National Iso-
tope Centre of the Institute of Geological and Nuclear
Sciences in Lower Hutt using a DIONEX 3000 fitted
with an AS19 column and using KOH as the eluant.

3 Results

3.1 Textures

The analysed pyroclasts range from high-porosity
pumice produced during Plinian activity to high-

Figure 3: EPMA analysis of reference glasses. [A] Na2O
measured using 1 and 10 µm diameter electron beams.
[B–D] Volatiles analysed using the method of Zhang et
al. [2016]. Error bars are ±1 standard deviation and are
often smaller than symbol sizes.
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density obsidian produced during Vulcanian blasts
(Figure 4A). Lava samples have porosities ranging from
zero to 48 % (all textural features were measured as
area %, but are assumed to represent vol.%). Texturally,
the lava samples define a continuum or maturation se-
quence of progressive vesicle flattening sub-parallel to
co-developing microlite-rich flow bands. At one end
of this continuum are samples with sub-spherical vesi-
cles set in a glassy groundmass (e.g. Figure 4B; P14-
L06). Samples with intermediate textures have some
flow banding and collapsed vesicles, as well as outsized
vesicles (e.g. Figure 4B; P14-L10) that have been pre-
viously interpreted as evidence of second boiling [Mag-
nall et al. 2018]. Some samples are completely dense
with holocrystalline groundmass throughout (e.g. Fig-
ure 4B; P14-L05). Pores in lava samples, but not in
pyroclasts, often have corroded rims and host vapour-
phase cristobalite crystals [Schipper et al. 2015; Mag-
nall et al. 2018].

Phenocryst populations in all samples are similar to
those reported by Castro et al. [2013]: ∼5 % total, of
plagioclase > 2-pyroxenes > Fe-Ti oxides +/− apatite,
with crystals often found in polymineralic glomero-
crysts. Apatite is the only observed volatile-bearing
mineral, but is only an accessory phase (�1 %). All
of the analysed pyroclast matrix glasses are free of
microlites (Figure 2A). Conversely, lava samples have
groundmasses with microlite contents ranging from
28–90 % (Figure 4B, Figure 5A).

Within the microlite populations, proportions of Fe–
Ti oxides (1.0 ± 0.5 %) and pyroxene (2.9 ± 0.8 %) do not
vary systematically between lava samples, but the rel-
ative proportions of other groundmass phases change
as total groundmass crystallinity increases (Figure 5A).
From 28 to 55 % crystallinity, the abundance of pla-
gioclase microlites (An17–An35; Figure 5B) increases
steadily. Above 55 % crystallinity, there is a plateau
in plagioclase abundance, and the proportion of crys-
talline SiO2 in the groundmass starts to become signif-
icant, increasing sharply in samples with >63 % micro-
lites. Above 75 % crystallinity, plagioclase abundance
begins to increase again, and the proportion of crys-
talline SiO2 continues to increase (Figure 5A). Previous
work by laser Raman analysis on Cordón Caulle lava
samples showed the crystalline SiO2 to be metastable
cristobalite, interpreted in this particular form to be the
product of incipient groundmass devitrification [Schip-
per et al. 2015].

3.2 Major elements

Whole-rock analyses of pyroclasts (69.4–70.6 wt.%
SiO2) and lava (69.5–70.2 wt.% SiO2) are indistin-
guishable in major elements (Figure 6A; Supplemen-
tary Data). Melt inclusions in plagioclase (An30–An45;
Figure 5B) and pyroxene (Mg# 53–62; Figure 5C) par-
tially overlap with whole-rock compositions, but also
extend to as high as 72.7 wt.% SiO2. Sample averages of

Figure 4: Thin sections of Cordón Caulle [A] pyro-
clasts and [B] lava samples, all at the same scale. To-
tal porosity (φ) and groundmass crystallinity (XST) are
shown as percentages, and key features are labelled.
Lava samples document a progressive fabric develop-
ment, with increased flattening of vesicles parallel to
microlite-rich flow bands, until the material is avesicu-
lar and holocrystalline (in P14-L05). The dense sample
P14-L05 is considered to be representative of the ma-
jority of the flow volume (e.g. inset to Figure 2A).

pyroclast glasses range from 70.5–73.3 wt.% SiO2, and
define major element trends that are consistent with
fractionation of the observed phenocryst assemblage.
Lava matrix glasses are shown as sample averages in
Figure 6, after individual spots with compositions in-
dicative of contamination by plagioclase, pyroxene, or
oxide crystals were rejected [Lowenstern et al. 2012].
Error bars show ±1 standard deviation, and indicate
the degree of intra-sample compositional heterogene-
ity. Lava samples with ≤75 % groundmass crystallinity
have SiO2 ranging from 73.8–76.2 wt.% In this range,
major element trends generally reflect progressive crys-
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Figure 5: [A] Microlite abundances in each sample as
a function of increasing total groundmass crystallinity
(equivalent to declining groundmass glass). Crystalline
SiO2 becomes an important groundmass phase above
∼63 % total crystallinity (vertical dashed line). Error
bars are ± 1 standard deviation to proportions in multi-
ple BSE images from each sample. [B–C] Compositions
of plagioclase and pyroxene.

tallisation of the microlite assemblage (Figure 5), in-
cluding plagioclase that is higher in K2O (Or7.0±2.4)
than the phenocrysts (Or2.0±0.3), and pyroxene that is
exclusively pigeonite (Mg# 38–49), typical of orthopy-
roxene formed during quench crystallisation [Deer et
al. 1992]. Except for a few outliers, lava matrix glasses
generally define an increasing trend in TiO2, indicating
that although ilmenite is a phenocryst phase, the mi-
crolitic oxides are exclusively magnetite. Intra-sample
variability in lava samples with ≤75 % microlites is rel-
atively small but increases with sample crystallinity as
the residual glass that was analysed was found in bands
of high and variable crystallinity (e.g. sample P14-L13
in Figure 4B).

Major elements in the matrix glass of lava sam-
ples with >5 % microlites are off-trend from the rest
of the suite and have SiO2 ranging from 77.3–80.3
wt.%. The upper end of this range pushes the limit
of silica content in pristine (e.g. non-devitrified) rhy-

olitic glasses formed at low pressures [e.g. Gualda and
Ghiorso 2013]. This, and the observation that these
samples contain groundmass cristobalite [Figure 5A;
Schipper et al. 2015] suggests that these highly crys-
talline samples are starting to show compositional ef-
fects of devitrification [Lofgren 1970; Stix et al. 1995;
Rowe et al. 2012]. The most notable changes with
increasing groundmass crystallinity (and matrix glass
SiO2) are inflections in TiO2, CaO, Na2O and K2O at
>77 wt.% SiO2 (or >5 % microlites; Figure 6A). Average
compositions of matrix glasses in highly crystalline lava
samples have large standard deviations, reflecting sig-
nificant intra-sample heterogeneity in major elements
(Figure 6A).

3.3 Volatiles

Figure 6B shows sulphur, chlorine, and fluorine con-
centrations versus SiO2 in all melt inclusions and ma-
trix glasses. Melt inclusions in plagioclase are gener-
ally lower in SiO2 and higher in volatiles than those
in pyroxene. The lowest-SiO2 melt inclusion contains
the maximum measured sulphur concentration (156
ppm) and S generally declines with increasing SiO2.
The maximum chlorine (2676 ppm) and fluorine (1365
ppm) concentrations are not in this same inclusion, and
while Cl slightly increases with increasing SiO2, F con-
centrations remain relatively constant, possibly influ-
enced by the crystallisation of accessory (�1 %) ap-
atite. Two of the plagioclase-hosted melt inclusions
have distinctly higher sulphur (149 ± 9 ppm) than the
rest. These have average chlorine (2604 ± 25 ppm) and
fluorine (1057 ± 436 ppm) values that are similar to the
averages of the entire plagioclase-hosted melt inclusion
suite (Cl = 2422 ± 202 ppm; F = 1026 ± 190 ppm).
Sulphur concentrations are low in matrix glasses of py-
roclasts and lava samples. Chlorine concentrations in
pyroclast matrix glasses are lower than in most melt
inclusions. Lava samples with <75 % microlites (<77
wt.% SiO2) have Cl in a similar range to melt inclusions,
and greater than in pyroclast matrix glasses, whereas
lava samples with >75 % microlites have dramatically
lower Cl concentrations. Fluorine in pyroclast glasses
and melt inclusions overlap. Matrix glasses in lava
samples with <75 % microlites are higher in fluorine
than melt inclusions and pyroclast glasses and increase
with increasing SiO2. However, fluorine concentrations
sharply drop off in lava glasses with >75 % microlites.

3.4 Fumarolic gas compositions

Two fumaroles located on top of the shallow intru-
sion were investigated (Figures 1 and 2B). Fumarole 1
(FUM01) was higher on the bulge created by the 2011–
2012 Cordón Caulle laccolith, and had surface temper-
ature of 420 ◦C. Fumarole 2 (FUM02) was lower on the
laccolith, and was 125 ◦C.
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Figure 6: [A] Major elements and [B] volatiles versus SiO2. Whole-rock and inclusion analyses represent individ-
ual points. Matrix glasses are plotted as averages with error bars denoting ± 1 standard deviation. Error bar sizes
tend to be larger in more microcrystalline lava samples, indicating higher degrees of intra-sample compositional
variability. Major elements are normalised to 100%, volatile-free. All data given in Supplementary Material.

MultiGAS data was only obtained at the 420 ◦C fuma-
role (FUM01). High ground temperatures around the
fumarole caused anomalous heating of the MultiGAS
instrument, causing measurements to become compro-
mised after only a few minutes. Despite this, and the
fact that the gas from FUM01 was condensing during
the measurement period, sufficient data were obtained
to semi-quantitatively assess the composition of the gas
being released. The gas was very low in total sulphur
and had a strongly hydrothermal signature, with H2S
(maximum 4.7 ppm) far exceeding SO2 (maximum 0.35
ppm). Molar proportions of H2O, CO2, SO2, H2S and
H2 recorded by the MultiGAS instrument were 97, 2,
0.003, 0.05 and 0.7 mol%, respectively (Table 1, where
data are combined with IC results).

Gas
Molar Ratio

(X/H2S)
Composition

(mol %)

H2O ∼2000 97
CO2 40 2
SO2 0.06 0.003
H2S 1 0.05
H2 14 0.7
HCl 1.6 0.08
HF 1.0 0.05

Table 1 – Gas composition from FUM01 (420 ◦C). Molar
proportions of HCl and HF determined by comparing
their ratios to total S in bubblers and MultiGAS

The NaOH bubblers produced solutions with low but
measurable chlorine and fluorine at each fumarole. Af-
ter subtraction of background concentrations in a so-
lution blank (S = 0.226 ppm; Cl = 0.74 ppm; F = 0.20
ppm), the 420 ◦C fumarole (FUM01) had Cl/F ratio of
2.9 (S = 3.55 ppm; Cl = 6.72 ppm; F = 2.25 ppm), and
the 125 ◦C fumarole (FUM02) had Cl/F ratio of 0.5 (S =
2.07 ppm; Cl = 0.87 ppm; F = 0.45 ppm).

4 Halogen degassing / devolatilisation
through each phase of the 2011 Cordón
Caulle eruption

4.1 Degassing regimes during explosion, effusion,
and intrusion of rhyolite magma

In their classical assessment of Obsidian Dome (Inyo,
California), Westrich et al. [1988] described rhyolite de-
gassing as occurring in two regimes. The first is isother-
mal decompression as magma rises to the surface. This
affects all magma involved in the eruption, and in-
cludes extensive degassing of pressure-controlled H2O,
CO2, and S, as well as partitioning of Cl and F into
aqueous fluid phases. The second is isobaric crystalli-
sation, as groundmass crystallisation concentrates in-
compatible volatiles in residual melt and drives “sec-
ond boiling”. This affects only the portions of magma
that are emplaced in thermally insulated conditions
(flows and intrusions), and includes exsolution of resid-
ual H2O and sulphur, as well as extensive partitioning
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of halogens into fluid phases. Westrich et al. [1988] con-
cluded that the shallow intrusive regime was the opti-
mal setting for maximum devolatilisation of rhyolite,
because shallow intrusions experience the full effects of
both isothermal decompression and isobaric crystalli-
sation, whereas extrusives are too rapidly quenched to
allow second boiling, and deep intrusives are at higher
pressures where volatiles are more soluble, and may
crystallise volatile-bearing phases (e.g. amphiboles,
micas, apatite [Westrich et al. 1988], fluorite [Scaillet
and Macdonald 2004], or more exotic phases [Elliott
2018]).

4.2 Volatile behaviour during isothermal
decompression

Halogen partitioning into aqueous fluids can be mod-
elled under closed- or open-system conditions [Ville-
mant and Boudon 1999; Harford et al. 2003]:

Closed : [X]f = [X]i /[(1−DBX )f +DBX ] (1)

Open : [X]f = [X]if
DBX−1 (2)

where [X]i and [X]f are initial and final melt concentra-
tions of each volatile species, and f = 1−(1+k)([H2O]i−
[H2O]f ) is the fraction of melt remaining after H2O ex-
solution and crystallisation of microlites (ς), via the fac-
tor k = (ς/[H2O]i − [H2O]f ) and a bulk partition coeffi-
cient of DBX =Dv/mX /(1 + k).

We interpret the two high-sulphur melt inclusions
(Figure 6B) to represent the least-degassed Cordón
Caulle melts captured by our analyses, and take their
average volatile contents as initial values, noting that
the low sulphur contents suggest that some degassing
had occurred before the inclusions were entrapped.
These give [S]i = 149 ppm, [Cl]i = 2604 ppm, which
are similar to maximum pre-eruptive volatile concen-
trations previously reported for Cordón Caulle (S ≤160
ppm, Cl ≤2600 ppm by Moune et al. [2012]; S ≤102
ppm, Cl ≤2040 ppm by Castro et al. [2013]), and [F]i
= 1057 ppm, which is higher than previous estimates
(F ≤800 ppm by Moune et al. [2012], although they
did not specify how they dealt with F-Kα overlaps
during EPMA analysis). Because petrological experi-
ments have shown explosively- and effusively-erupted
Cordón Caulle magma to have been stored at similar
pressure and temperature conditions before eruption
[Castro et al. 2013], we consider these initial volatile
concentrations to have been equivalent for all magma
involved in the eruption.

Textural analysis of the analysed pyroclasts shows
no evidence for microlite crystallisation during de-
compression of the Cordón Caulle magma (Fig-
ures 4 and 5A). For post-decompression (but pre-
crystallisation) melt volatile contents (denoted [X]f ,∆P )
we use the average volatile concentrations in pyro-
clast glasses: [S]f ,∆P = 25 ppm, [Cl]f ,∆P = 1914 ppm,

and [F]f ,∆P = 989 ppm. This is justified for explosive
products because volatile contents in pyroclast matrix
glasses are similar across all the investigated samples
(Figure 6B). We use the same values for effusive and in-
trusive products because they experienced the same de-
gree of decompression as the pyroclastic melt (albeit at
very different decompression rates), and because there
is no evidence for uncrystallised matrix glasses in the
lava having had volatile contents lower than those in
the pyroclasts (Figure 6B).

Water contents were not measured in this work but
are necessary for modelling aqueous fluid availability.
For [H2O]i we use 4 wt.%, the mean measured in suites
of melt inclusions from the 2011–2012 eruption [Jay et
al. 2014], and consistent with storage at ∼4.5 km depth
[Newman and Lowenstern 2002; Castro et al. 2013].
For [H2O]f we use a single value of 0.1 wt.%, from the
narrow and low range of residual H2O that has consis-
tently been measured in Cordón Caulle eruption prod-
ucts [Schipper et al. 2013; Castro et al. 2014].

Post-decompression chlorine concentrations in ma-
trix glasses ([Cl]f ,∆P ) can be explained by closed-system
degassing with Dv/mCl of ∼10 (Figure 7A). This is within
the typical range ofDv/mCl for closed-system degassing of
silicic melts [Villemant and Boudon 1999; Villemant et
al. 2008; Baker and Alletti 2012] where hydrothermal
fluid infiltration is not a factor [Harford et al. 2003].
The modelled Dv/mCl is reasonable and does not require
there to have been any Cl-rich salts, brines, or exsolved
aqueous fluids in the system at the onset of H2O de-
gassing. This is despite the fact that Cl-rich brines are
stable to high pressure in magmatic systems [Balcone-
Boissard et al. 2010]. Even though there was an es-
tablished hydrothermal system at Cordón Caulle be-
fore the eruption, chloride contents of surface waters in
this system were low [Sepúlveda et al. 2004]. Further-
more, closed-system degassing as modelled is generally
accepted to be the degassing regime that drives explo-
sive volcanic eruptions [Cashman and Sparks 2013].

Post-decompression fluorine concentrations ([F]f ,∆P ),
if modelled as for chlorine, requireDv/mF to be∼2.5 (Fig-
ure 7B). This is significantly higher than the Dv/mF <1
that is usually expected in silicic magmas [Baker and
Alletti 2012, and references therein], and is noteworthy
because any Dv/mF >1 implies that fluorine loss via par-
titioning into aqueous fluids does occur during decom-
pression. The modelled Dv/mF is strongly influenced by
our assumptions about the initial concentration of flu-
orine in the melt. However, our choice of [F]i is conser-
vative, considering that had we instead used the maxi-
mum F (1365 ppm) from our suite of melt inclusions,
the modelled Dv/mF would have been >10, for which
there is no precedent in silicic melts. The use of maxi-
mum F values from a suite of melt inclusions was used
in preliminary investigations of the 2011–2012 Cordón
Caulle volatile budget [Aguilera et al. 2012a; Moune et
al. 2012], but the maxima were lower (800 ppm), and
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Figure 7: Devolatilisation of Cordón Caulle magma. [A–B] Partitioning of Cl and F into aqueous fluids during
isothermal decompression under closed (solid lines) and open (dashed lines) exsolution of H2O using different
Dv/mX . Initial H2O content is from melt inclusion maxima in the literature [Jay et al. 2014], and final H2O is esti-
mated to be 0.1 wt.% for all magma [Castro et al. 2014]. [C–E] Volatile loss extended to include isobaric crystalli-
sation. Red arrows show magnitude of devolatilisation during decompression and crystallisation. Black dashed
arrows show path of volatile incompatibility without being lost from residual melt, and the blue fields mark a re-
gion of competition between incompatibility and loss. Models for halogen partitioning during crystallisation are
rendered useless by the vast range of aqueous fluid availability that could be assumed. The high-crystallinity lava
samples are significantly degassed in Cl and F, and are considered to be representative of most of the flow vol-
ume. Sulphur appears to continue to degas, rather than behave incompatibly, across a full range of groundmass
crystallinity.

there were no details given on how fluorine EPMA over-
laps with other elements were handled in these stud-
ies. It may be that fluid-melt partitioning is not the
most appropriate mechanism by which to explain flu-
orine exsolution; but the fact remains that melt inclu-
sions have higher fluorine concentrations than matrix
glasses, indicating that exsolution of fluorine was more
dramatic than might have been expected (from litera-
ture values of Dv/mF ) during ascent and decompression
of the 2011–2012 Cordón Caulle magma. Leachates on
fresh ash from the Plinian phase of the eruption have
had F ≤167 ppm kg−1 of ash [Alloway et al. 2015; Stew-
art et al. 2016], providing additional evidence for fluo-

rine release during decompression.

4.3 Volatile behaviour during isobaric crystallisation

Halogen behaviour during isobaric crystallisation is of-
ten investigated by comparison of Cl and F concen-
trations to a non-volatile incompatible oxide such as
K2O [Lowenstern et al. 2012]. Here, we instead exam-
ine halogen contents as a simple function of ground-
mass crystallinity (Figure 7C–D), because plagioclase
microlites contain a non-trivial orthoclase component
so that K2O is not entirely incompatible during ground-
mass crystallisation. Also, at high crystallinity (>75 %),
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alkali mobility is apparent, with an inflection to de-
creasing K2O with increasing SiO2 Figure 6B). This, as
well as inflections in other major elements and halo-
gens, may represent incipient devitrification of the lava
matrix at high crystallinity [Lofgren 1970; Stix et al.
1995; Rowe et al. 2012; Schipper et al. 2015]. Qual-
itatively, most lava samples have halogen concentra-
tions below the maxima that would be expected if chlo-
rine and fluorine behaved entirely incompatibly during
isobaric microlite crystallisation (Figure 7C–D, black
dashed lines). This becomes more pronounced as crys-
tallinity increases.

The behaviour of the halogens contrasts with that of
sulphur (Figure 7E), which significantly degases dur-
ing decompression but is usually lower in lava samples
than pyroclasts, regardless of their degrees of ground-
mass crystallisation. For modelling the continued de-
gassing of sulphur during isobaric crystallisation, we
therefore use [S]f ,∆T = 9 ppm, which is the detection
limit for S by EPMA, and is equivalent to the S mea-
sured in many of the lava samples (Figure 7E).

Unfortunately, modelling of halogen partitioning
during the crystallisation process (Equations 1 and 2) is
rendered virtually meaningless by the requirement for
assuming the availability of aqueous fluids in the cool-
ing lava flow. It is evident from the progressive fabric
development shown in Figure 4B that porosity and per-
meability varied immensely in space and time within
the flow as it matured. To illustrate the limit of mod-
elling, Figure 7C and 7D illustrate: (1) a “wet” case,
where crystallisation proceeds with degassing from the
original [H2O]i = 4.0 wt.%; and (2) a “dry” case, where
fluid is exclusively from second boiling, or [H2O]i = 0.1
wt.%. Resulting curves for Dv/mX,wet = 10 fit much of the
data reasonably well but are essentially equivalent to
the curves for Dv/mX,dry =∼450 (Figure 7C–D); a discrep-
ancy too large to be of use.

Notwithstanding this limitation in modelling, the
most important feature of the data is that the most
extensively crystallised samples from the core of the
lava flow are significantly depleted in halogens, not just
relative to the maxima expected during crystallisation,
but also relative to the post-decompression concentra-
tions ([X]f ,∆P in Figure 7C–D). This indicates that at
high degrees of crystallinity, halogens (as well as alka-
lis and other elements; Figure 6) become mobile. They
achieved final concentrations (denoted [X]f ,∆T in Fig-
ure 7) of [Cl]f ,∆T = 504 ppm, and [F]f ,∆T = 385 ppm,
and are not significantly retained in the fully evolved
and crystallised core of the flow. As noted above, our
sample suite contains only three such holocrystalline
samples from the flow core, but these are considered
to be representative of the majority of the flow (Fig-
ure 2A), and the most important to consider in volatile
budgets.

We cannot specify whether halogen mobilisation oc-
curs during microlite crystallisation or incipient de-
vitrification (i.e. above or below the glass transition).

Indeed, having crystalline SiO2 (cristobalite) in the
groundmass of the most crystalline lava samples in-
dicates that devitrification had begun in the flow core
[Figure 4; Damby 2012; Horwell et al. 2013; Schipper
et al. 2015], and halogens are known to become mobile
(F more so than Cl) during the devitrification of rhyo-
lites [Stix et al. 1995]. The salient point demonstrated
by the data is that halogens do mobilise out of the melt
during this late-stage evolution in the slowly cooled
portions of the lava flow. Appropriate terminology is in
question here; with “devolatilisation” being more ap-
propriate than “degassing”, as it implies only that the
halogens were lost from the melt, but does not specify
that they were released in the gas phase [Westrich et al.
1988]. Halogens that did not enter the gas phase may
have been transported in aqueous fluids, adsorbed onto
glass/mineral surfaces, or formed any number of sub-
limate crystalline phases that are not accounted for by
our analysis [e.g. Delmelle et al. 2007]. To our knowl-
edge, no post-eruptive analyses of such halogen sinks
have been made at Cordón Caulle.

The highly crystalline lava core samples are also im-
portant for giving some indication as to the state of
magma in the syneruptively emplaced laccolith [Cas-
tro et al. 2016], which is not exposed at the surface
and could not be sampled. Magma in this shallow
intrusion is subject to greater thermal insulation and
slower cooling rates than even the most central core re-
gion of the lava flow. It can therefore be expected to
experience the most extensive devolatilisation of any
Cordón Caulle magma [Westrich et al. 1988]. The lac-
colith was emplaced at slightly higher pressure than
extruded magma and may have retained enough H2O
to cause its crystallisation sequence to differ slightly
from in the flow, but the holocrystalline lava samples
are the best available proxy for the textural state of ma-
terial in the shallow subsurface. Although fluorite sta-
bility is strongly pressure-dependent [Scaillet and Mac-
donald 2004] and other rhyolitic laccoliths have under-
gone late-stage groundmass crystallisation of fluorine-
bearing phases at the nano-scale [e.g. Elliott 2018], it is
unclear if such phases would be stable in and around
the extremely shallow (∼200 metre deep) laccolith at
Cordón Caulle. Recent work on exposed rhyolitic lac-
coliths in Iceland has shown that they have textural
characteristics similar to those in the Cordón Caulle
flow, including flow banding and a high-density cryp-
tocrystalline groundmass free of any volatile-bearing
phases [Mattsson et al. 2018].

5 Total projected sulphur and halogen
output from the 2011–2012 Cordón
Caulle eruption

We estimate the total output of sulphur (likely to be a
minimum due to sulphur degassing prior to melt inclu-
sion entrapment), chlorine and fluorine for each phase
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Figure 8: Volatile budget and temporal trends. [A] Histograms of SO2, HCl, and HF output (in megatons) during
different phases of the Cordón Caulle eruption, divided into amounts released during isothermal decompression
and to-date and projected amounts from isobaric crystallisation. Previous estimates of volatile output for the
opening Plinian phase are from Moune et al. [2012]. [B] Relative molar proportions of S, Cl, and F in gases. Stars
represent the petrologically-determined gas compositions for decompression and crystallisation. Note that gas
released by isobaric crystallisation has equivalent Cl/F to that measured in the 420 ◦C fumarole (Cl/F ∼1.4), but
that both fumaroles have higher-than-predicted proportions of S. [C] Evolution of Cl/F in the melt versus degree
of groundmass crystallisation, showing that Cl is lost earlier than F in the crystallisation processes.

of the Cordón Caulle eruption, using a simple mass-
balance approach [e.g. Devine et al. 1984; Lowenstern
et al. 2012]:

GX = Vmρmκ([X]i − [X]f ) (3)

where GX is the total mass output of each compound,
Vm is magma volume, ρm is magma density (2500 km3

based on average whole rock compositions and calcu-
lation of Best [2003]), and κ is the ratio of the molecu-
lar weights of the volatile compounds to the elemental
volatiles. The budgets are expressed in terms of equiv-
alent gaseous volatile compounds (SO2, HCl, HF), al-
though we recognise that these may not have been the
only forms in which the different volatiles were emit-
ted.

We calculate the volatile output during isothermal
decompression ± isobaric crystallisation for the magma
involved in each phase of the eruption. Decompression
is considered to have equally affected all the magma in-
volved in all phases, as it degassed from [X]i to [X]f ,∆P
(Figure 7C–E). Groundmass crystallisation is consid-
ered to have only affected magma in the lava flow and

laccolith, as it degassed from [X]f ,∆P to [X]f ,∆T (Fig-
ure 7C–E).

The total mass of magma erupted as pyroclasts in
multiple phases of the Cordón Caulle eruption has been
estimated as 6.0 ± 1.1×1011 kg [Bonadonna et al. 2015;
Pistolesi et al. 2015]. Using this range with [X]i and
[X]f ,∆P gives total volatile outputs of 0.15 ± 0.03 Mt
of SO2, 0.43 ± 0.07 Mt of HCl, and 0.04 ± 0.01 Mt of
HF (Figure 8A). These new values for SO2 and HCl are
within the ranges previously estimated for the Plinian
phase of the Cordón Caulle eruption, but our HF es-
timate is lower by a factor of ∼10, seemingly because
the fluorine contents we have measured in pyroclast
matrix glasses are much higher than those previously
reported [163 ppm: Aguilera et al. 2012b; Moune et
al. 2012, although analytical details were not given
in these abstracts]. The estimated SO2 output is only
slightly lower than satellite-derived estimates of the
initial eruptive pulse of SO2 [0.2 ± 0.04 Mt; Aguilera
et al. 2012a; Moune et al. 2012].

For the effusive phase of the eruption, both isother-
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mal decompression and isobaric crystallisation must be
considered. The total volume of the lava flow has been
estimated as 0.45 ± 0.05 km3 [Tuffen et al. 2013; Far-
quharson et al. 2015], over an area of ∼7.2 km2. The
partially-glassy upper surface and breakouts make up
∼15 % of the flow volume (based on upper vitryphyre
being ∼1 m thick (Figure 2A), and breakout volumes
estimated by Magnall et al. [2018]), with an average
porosity of 30 vol.%. The crystalline lava core is con-
sidered to be avesicular. The estimated total dense
rock equivalent (DRE) volume of the entire lava flow
is therefore 0.43 ± 0.05 km3, and of its crystalline core
is 0.39 ± 0.04 km3. The total output from the lava flow
through decompression (all lava) and by crystallisation
(core only) is therefore calculated to be 0.30 ± 0.03 Mt
of SO2, 2.18 ± 0.23 Mt of HCl, and 0.70 ± 0.07 Mt of HF
(Figure 8A).

The shallow intrusive environment should be the
zone of maximum devolatilisation [Westrich et al.
1988], and the Cordón Caulle laccolith therefore con-
tributes substantially to the volatile budget of the
eruption. The laccolith would have experienced both
isothermal decompression ([X]i to [X]f ,∆P ) and isobaric
crystallisation ([X]f ,∆P to [X]f ,∆T ; Figure 7C–E), and
has an estimated volume of 0.8 km3 [Castro et al. 2016].
A porosity range similar to the lava (0–30 vol.%) allows
bracketing of the DRE magma volumes in degassing
calculations, and this is highly conservative given the
negligible porosity of the holocrystalline lava samples
(Figure 4) and rhyolitic laccoliths elsewhere [Mattsson
et al. 2018]. The total potential volatile output from
decompression and crystallisation of the laccolith is
therefore 0.48 ± 0.08 Mt of SO2, 3.67 ± 0.65 Mt of HCl,
and 1.20 ± 0.21 Mt of HF (Figure 8A).

Overall, the total projected volatile output from all
phases of the 2011–2012 eruption is 0.92 Mt of SO2,
6.27 Mt of HCl, and 1.94 Mt of HF. Here, it is note-
worthy that the effusive and intrusive phases contribute
overwhelmingly to the total volatile output, with the
opening explosive phase contributing only 16 wt.% of
total SO2, 7 wt.% of total HCl and 2 wt.% of total
HF. The total SO2 output (0.92 Mt) initially appears
high, given the low satellite-derived SO2 output from
the 2011 Plinian phase [0.2 ± 0.04 Mt; Aguilera et al.
2012a; Moune et al. 2012] and the low concentrations of
total sulphur in the 420 ◦C fumarole measured in 2017
(Table 1). However, as seen in Figure 8A, the vast ma-
jority of SO2 output is attributed to decompression of
the magma that formed the lava flow and laccolith, dur-
ing an extended eruptive period over which there were
no gas measurements made. The satellite-derived esti-
mates only account for decompression during the open-
ing Plinian phase and fumarolic measurements only ac-
count for the subsequent isobaric crystallisation pro-
cess; therefore, the majority of SO2 output would have
gone unmeasured.

6 Long-term rhyolite devolatilisation

Numeric models show that the cooling of thick rhyolite
lavas and intrusions takes decades to centuries [Manley
1992; Mattsson et al. 2018], and the Cordón Caulle lac-
colith should therefore be far from fully crystalline at
the time of writing (∼7.5 years after the eruption). The
volatile budgets given above represent potential out-
put, to be eventually realised. Volatile output to-date
includes the full decompressive complement, but only
a fraction of the potential output from isobaric crys-
tallisation, which is corroborated by the dominantly
hydrothermal but halogen-bearing fumarolic gas emis-
sions. In Figure 8A we illustrate the discrepancy be-
tween to-date and eventual emissions with the crude
assumption that ∼70 % of the laccolith could still be in
a molten state. This predicts that the gas currently be-
ing emitted from the cooling laccolith should be low in
sulphur, and comparatively rich in halogens.

In Figure 8B, we compare the relative S, Cl, and
F concentrations in gases predicted by our petro-
logic models for isothermal decompression and iso-
baric crystallisation, to those measured at fumaroles
in 2017. The petrologic models predict crystallisation
to release gas that is lower in sulphur, and has higher
Cl/F than the gas released during decompression. The
gas from the 420 ◦C fumarole has Cl/F that is nearly
identical to that predicted for isobaric crystallisation;
however, both fumaroles have proportionally higher
concentrations of sulphur than the petrologic models
would predict. This “excess sulphur” from the fu-
maroles, although of very limited magnitude (e.g. low
total sulphur concentrations from the 420 ◦C fumarole:
Table 1), may be the result of degassing from other
post-eruptive (i.e. not the laccolith) intrusions into the
Cordón Caulle edifice, the deformation from which has
been documented [Delgado et al. 2016].

As crystallisation progresses, Cl deviates from in-
compatible behaviour and partitions out of the melt
earlier than F (Figure 7C–D). This is reflected in Cl/F
ratios in residual melt decreasing with increasing crys-
tallisation, although the Cordón Caulle matrix glasses
mostly remain within the typical range of Cl/F for arc
rhyolites (Figure 8C; Aiuppa et al. [2009]), and is fur-
ther reflected in the 125 ◦C fumarole having lower Cl/F
than the 420 ◦C fumarole (Figure 8B). There are few
published data on Cl/F in gases from arc rhyolites [Pyle
and Mather 2009], but the Cl/F ratios in Cordón Caulle
gases are similar to those emitted from fumaroles in the
rhyolite system at Satsuma-Iwojima [Japan: Shinohara
et al. 1993; Mori et al. 2002]. Our Cordón Caulle gas
data are too sparse to draw any strong conclusions, but
they corroborate early dominance of Cl over F in emit-
ted gases, with F becoming dominant at high degrees of
cooling and crystallisation.
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7 Conclusions

The degassing—or devolatilisation—of chlorine and
fluorine from silicic magmas can have severe impacts
on the surrounding environment [Cronin et al. 2003;
Bellomo et al. 2007], and fluorosis following the 2011–
2012 Cordón Caulle eruption has adversely affected
livestock and wild deer populations in South America
[Flueck and Smith-Flueck 2013; Stewart et al. 2016].
Our petrological approach to sulphur and halogen mo-
bilisation during the eruption highlights that while sul-
phur dominantly degases during magma decompres-
sion, halogen release is most dramatic from thermally
insulated, effusive and/or intrusive rhyolites. This
needs to be taken into consideration when evaluating
volatile budgets and long-term impacts of large erup-
tions.

The 2011–2012 eruption of Cordón Caulle is the
largest eruption to-date of the 21st century, and halo-
gen release from the magma involved in this eruption
is far from complete. Fumaroles atop the cooling laccol-
ith and hydrothermal fluids circulating through the ed-
ifice will likely continue to become progressively more
fluorine-rich with time.
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