Social-environmental drivers inform strategic management of coral reefs in the Anthropocene Emily S. Darling^{1,2,3*}, Tim R. McClanahan¹, Joseph Maina⁴, Georgina G. Gurney⁵, Nicholas A. J. Graham⁶, Fraser Januchowski-Hartley^{7,8}, Joshua E. Cinner⁵, Camilo Mora⁹, Christina C. Hicks⁶, Eva Maire⁷, Marji Puotinen¹⁰, William J. Skirving^{11,12}, Mehdi Adjeroud¹³, Gabby Ahmadia¹⁴, Rohan Arthur^{15,16}, Andrew G. Bauman¹⁷, Maria Beger^{18,19}, Michael L. Berumen²⁰, Lionel Bigot²¹, Jessica Bouwmeester^{20,22}, Ambroise Brenier²³, Tom Bridge^{5,24}, Eric Brown²⁵, Stuart J. Campbell^{26,27}, Sara Cannon²⁸, Bruce Cauvin²⁹, Chaolun Allen Chen³⁰, Joachim Claudet³¹, Vianney Denis³², Simon Donner²⁸, Estradivari³³, Nur Fadli³⁴, David A. Feary³⁵, Douglas Fenner³⁶, Helen Fox³⁷, Erik C. Franklin³⁸,

Alan Friedlander^{39,40}, James Gilmour¹⁰, Claire Goiran⁴¹, James Guest⁴², Jean-Paul A. Hobbs⁴³,

Andrew S. Hoey⁵, Peter Houk⁴⁴, Steven Johnson⁴⁵, Stacy Jupiter^{1,46}, Mohsen Kayal^{47,48},

Chao-yang Kuo^{5,30}, Joleah Lamb⁴⁹, Michelle A.C. Lee⁵⁰, Jeffrey Low⁵¹, Nyawira Muthiga¹,

Efin Muttaqin²⁶, Yashika Nand⁵², Kirsty L. Nash^{53,54}, Osamu Nedlic⁵⁵, John M. Pandolfi^{56,57}, Shinta Pardede²⁶, Vardhan Patankar^{58,59}, Lucie Penin²¹, Lauriane Ribas-Deulofeu^{30,60}. Zoe Richards^{43,61}, T. Edward Roberts⁵, Ku'ulei S. Rodgers³⁸, Che Din Mohd Safuan⁶², Enric Sala³⁹, George Shedrawi⁶³, Tsai Min Sin⁵⁰, Patrick Smallhorn-West⁵, Jennifer E. Smith⁶⁴, Brigitte Sommer^{57,65}, Peter D. Steinberg^{66,67}, Makamas Sutthacheep⁶⁸, Chun Hong James Tan^{62,69}, Gareth J. Williams^{64,70}, Shaun Wilson^{63,71}, Thamasak Yeemin⁷², John F. Bruno³, Marie-Josée Fortin², Martin Krkosek², and David Mouillot^{5,7} *Corresponding Author: Emily Darling, Wildlife Conservation Society, 2300 Southern Blvd, Bronx, NY, USA 10460. +1 647 779-7637, edarling@wcs.org **Affiliations:** ¹Wildlife Conservation Society, Marine Program, Bronx, New York 10460, USA ²Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada ³Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA ⁴Department of Environmental Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia ⁵Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia ⁶Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

- ⁷MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- 40 ⁸Department of Biosciences, Swansea University, Swansea, SA2 8PP, United Kingdom
- ⁹Department of Geography, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
- 42 ¹⁰Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of
- Western Australia, Crawley, Western Australia 6009, Australia
- 44 ¹¹Coral Reef Watch, US National Oceanic and Atmospheric Administration, College Park,
- 45 Maryland 20740, USA
- 46 ¹²Global Science & Technology Inc., Greenbelt, Maryland 20770, USA
- 47 ¹³Institut de Recherche pour le Développement, UMR 9220 ENTROPIE & Laboratoire
- 48 d'Excellence CORAIL, Perpignan 66860, France
- 49 ¹⁴Oceans Conservation, World Wildlife Fund, Washington DC 20037, USA
- 50 ¹⁵Nature Conservation Foundation, Gokulam Park, Mysore 570002, India
- 51 ¹⁶Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas, Blanes,
- 52 Girona 17300, Spain
- 53 ¹⁷Experimental Marine Ecology Laboratory, Department of Biological Sciences, National
- 54 University of Singapore, 117543, Singapore
- 55 ¹⁸School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- ¹⁹ARC Centre of Excellence for Environmental Decisions, The University of Queensland,
- 57 Brisbane, Queensland 4072, Australia
- 58 ²⁰Red Sea Research Center, Biological and Environmental Science and Engineering Division,
- 59 King Abdullah University of Science and Technology, Thuwal, 23955, Saudia Arabia.
- 60 ²¹Université de La Réunion, UMR 9220 ENTROPIE & Laboratoire d'Excellence CORAIL, St
- Denis, La Réunion 97715, France
- 62 ²²Smithsonian Conservation Biology Institute, Front Royal, VA, 22630, USA
- 63 ²³WCS Papua New Guinea, Goroka, Eastern Highlands 441, Papua New Guinea
- 64 ²⁴Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum
- 65 Network, Townsville, Queensland, Australia
- 66 ²⁵Kalaupapa National Historical Park, US National Park Service, Kalaupapa, HI 96742, USA
- 67 ²⁶Wildlife Conservation Society, Indonesia Program, Bogor, West Java 16151, Indonesia
- 68 ²⁷Rare Indonesia, Bogor, West Java 16151, Indonesia
- 69 ²⁸Department of Geography, University of British Columbia, Vancouver, British Columbia V6T
- 70 1Z2, Canada
- 71 ²⁹GIP Réserve Naturelle Marine de la Réunion, La Saline, La Réunion 97434, France
- 72 ³⁰Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan

- 73 ³¹National Center for Scientific Research, PSL Research University, CRIOBE, USR 3278
- 74 CNRS-EPHE-UPVD, Paris 75005, France
- 75 ³²Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
- 76 ³³Marine and Fisheries Directorate, World Wildlife Fund Indonesia, Jakarta 12540, Indonesia
- 77 ³⁴Faculty of Marine and Fisheries, Syiah Kuala University, Banda Aceh, Aceh 23373, Indonesia
- 78 ³⁵MRAG Ltd, 18 Queen Street, London, W1J 5PN, United Kingdom
- 79 ³⁶NOAA contractor and consultant, douglasfennertassi@gmail.com
- 80 ³⁷National Geographic Society, Washington, D.C. 20036, USA
- 81 ³⁸Hawaii Institute of Marine Biology, School of Ocean and Earth Science and Technology,
- 82 University of Hawaii, Kaneohe, HI 96744, USA
- 83 ³⁹National Geographic Society, Pristine Seas Program, Washington, DC 20036, USA
- 84 ⁴⁰Fisheries Ecology Research Lab, Department of Biology, University of Hawaii, Honolulu,
- 85 Hawaii 96822, USA
- 86 ⁴¹ISEA, Université de la Nouvelle-Calédonie, Laboratoire d'Excellence CORAIL, BP R4,
- 87 Nouméa, New Caledonia 98851, France
- 88 ⁴²School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne
- 89 NE1 7RU, UK
- 90 ⁴³Curtin University, Bentley, Perth, Western Australia, 6102, Australia
- 91 ⁴⁴Marine Laboratory, University of Guam, Mangilao, Guam 96923, USA
- 92 ⁴⁵College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis,
- 93 Oregon 97331, USA
- 94 ⁴⁶Wildlife Conservation Society, Melanesia Program, Suva, Fiji
- 95 ⁴⁷Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110,
- 96 Perpignan, 66860, France
- 97 ⁴⁸Institut de Recherche pour le Développement, UMR 9220 ENTROPIE & Laboratoire
- 98 d'Excellence CORAIL, Nouméa, New Caledonia 98848, France
- 99 ⁴⁹Department of Ecology and Evolutionary Biology, University of California Irvine, California
- 100 92697, USA
- 101 ⁵⁰Tropical Marine Science Institute, National University of Singapore, 119223, Singapore
- 102 ⁵¹National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore 259569
- 103 ⁵²Wildlife Conservation Society, Fiji Program, Suva, Fiji
- 104 ⁵³Centre for Marine Socioecology, Hobart, TAS, 7000, Australia
- 105 ⁵⁴Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000,
- 106 Australia

- 107 ⁵⁵Kosrae Conservation and Safety Organization, Marine Program
- 108 ⁵⁶ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia,
- 109 Queensland 4072, Australia
- 110 ⁵⁷School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072,
- 111 Australia
- 112 ⁵⁸Wildlife Conservation Society, 7th Main Road, Rajiv Gandhi Nagar, Kodigehalli, Bengaluru,
- 113 Karnataka 560 097, India
- 114 ⁵⁹Tata Institute of Fundamental Research, National Centre for Biological Sciences, GKVK
- 115 Campus, Bangalore 560 065, India
- 116 ⁶⁰Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, National
- 117 Taiwan Normal University, Taipei, Taiwan
- 118 ⁶¹Western Australian Museum, Welshpool, Western Australia 6106, Australia
- 119 ⁶²Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala
- 120 Nerus, Terengganu, Malaysia
- 121 ⁶³Western Australian Department of Parks and Wildlife, Kensington, Western Australia 6151,
- 122 Australia

- 123 ⁶⁴Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
- 124 92037, USA
- 125 ⁶⁵School of Life and Environmental Sciences, The University of Sydney, New South Wales
- 126 2006, Australia
- 127 ⁶⁶SCELSE, Nanyang Technological University, 637551, Singapore
- 128 ⁶⁷Sydney Institute of Marine Science, Mosman, New South Wales 2088, Australia
- 129 ⁶⁸Department of Biology, Ramkhamhaeng University, Bangkok 10240, Thailand
- 130 ⁶⁹School of Marine and Environment Sciences, Universiti Malaysia Terengganu, 21030 Kuala
- 131 Nerus, Terengganu, Malaysia
- 132 ⁷⁰School of Ocean Sciences, Bangor University, Bangor, Anglesey LL59 5AB, UK
- 133 ⁷¹Oceans Institute, University of Western Australia, Crawley, 6009, Western Australia, Australia
- 134 ⁷²Marine Biodiversity Research Group, Ramkhamhaeng University, Bangkok 10240, Thailand

Abstract: Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identifying the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages – the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social, and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances with longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We then propose a framework of three management strategies (*protect*, *recover*, or *transform*) by considering: (i) if reefs were above or below a proposed threshold of >10% cover of coral taxa important for structural complexity and carbonate production, and (ii) reef exposure to severe thermal stress during the 2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.

Two-sentence summary: Surveys from 2,584 sites across the Indo-Pacific identify key climate, socioeconomic, and environmental drivers associated with hard coral assemblages, the foundation species of tropical coral reefs. This informs a strategic approach to *protect*, *recover*, or *transform* coral reef management.

Introduction: With the increasing intensity of human impacts from globalization and climate change, tropical coral reefs have entered the Anthropocene^{1,2} and face unprecedented losses of up to 90% by mid-century³. Against a backdrop of globalized anthropogenic stressors, the impacts of climate change can transform coral communities⁴ and reduce coral growth rates that are crucial to maintain reef structure and track rising sea levels⁵. Under expectations of continued reef degradation and reassembly in the Anthropocene, urgent actions must be taken to protect and manage the world's remaining coral reefs. Given such concerns about the long-term functional erosion of coral communities, one conservation strategy is to prioritize the protection of reefs that currently maintain key ecological functions, i.e., reefs with abundant fast-growing

and structurally-complex corals that can maintain vertical reef growth and net carbonate production^{5,6}. However, efforts to identify potentially functioning reefs across large spatial scales are often hindered by a focus on total coral cover, an aggregate metric that can overlook taxon-specific differences in structural complexity and carbonate production^{7,8}. To date, global empirical studies of scleractinian coral communities – and their environmental and socioeconomic drivers – are rare, in part due to the absence of large-scale assemblage datasets – a key challenge that must be overcome in modern ecology. Here, we apply a method developed from trait-based approaches to evaluate regional patterns and drivers of Indo-Pacific coral assemblages.

We assembled the largest dataset of the community structure of tropical scleractinian corals from 2,584 Indo-Pacific reefs within 44 nations and territories, spanning 61° of latitude and 219° of longitude (see Methods). Surveys were conducted between 2010 and 2016 during continuous and repeated mass bleaching events, notably following the 1998 El Niño. A 'reef' was defined as a unique sampling location where coral genera and species-level community composition were evaluated on underwater transects using standard monitoring methods. Compared to coral reef locations selected at random, our dataset is representative of most geographies: 78 out of 83 Indo-Pacific marine ecoregions with coral reef habitat are represented with <5% sampling disparity, although there are exceptions of undersampled (Palawan/North Borneo and Torres Strait Northern Great Barrier Reef) and oversampled (Hawaii, Rapa-Pitcairn, and Fiji) ecoregions (Supplementary Table 1).

On each reef, we evaluated total coral cover and the abundance of different coral life history types previously developed from a trait-based approach with species characteristics of colony morphology, growth, calcification, and reproduction (https://coraltraits.org). The abundance of different coral taxa can affect key ecological processes for future reef persistence, including the provision of reef structural complexity, carbonate production (the process by which corals and some other organisms lay down carbonate on the reef), and ultimately reef growth (the vertical growth of the reef system resulting from the processes of carbonate production and erosion) 5,7,8,10. Fast-growing branching, plating and densely calcifying massive coral taxa that can contribute to these processes are expected to be functionally important, not only by maintaining critical geo-ecological functions that coral reefs provide 10, but might also help reefs

track sea level rise⁵, recover from climate disturbances¹¹, and sustain critical habitat for reef fish and fisheries^{12,13}.

Here, we adopt a previous classification of four coral life history types to evaluate Indo-Pacific patterns of total coral abundance and the composition of coral assemblages, and their key social-environmental drivers. Specifically, we consider four coral life histories (Supplementary Table 2): a 'competitive' life history describes fast-growing branching and plating corals that can accrete structurally-complex carbonate reef architectures but are disproportionately vulnerable to multiple stressors; a 'stress-tolerant' life history describes large, slow-growing and long-lived massive and encrusting corals that can build complex high-carbonate reef structures to maintain coral-dominated, healthy and productive reefs, and often persist on chronically disturbed reefs; by contrast, 'generalist' plating or laminar corals may represent a subdominant group of deeper water taxa, while smaller brooding 'weedy' corals typically have more fragile, lower-profile colonies that provide less structural complexity and contribute marginally to carbonate production and vertical growth 10,12,14. We therefore consider competitive and stress-tolerant life histories as key framework-building species given their ability to build large and structurally complex coral colonies^{8,10,12}. We hypothesize that the abundance of different life histories within a coral assemblage provides a signal of past disturbance histories or environmental conditions¹⁵ ¹⁷ that may affect resilience and persistence to future climate impacts ¹⁸.

Drawing on theoretical and empirical studies of coral reef social-ecological systems ^{19,20}, we tested the influence of 21 social, climate, and environmental covariates on coral abundance, while controlling for sampling methodologies and biogeography (Supplementary Table 3). These include: (i) climate drivers (the intensity and time since past extreme thermal stress, informed by Degree Heating Weeks, DHW), (ii) social and economic drivers (human population growth, management, agricultural use, national development statistics, the 'gravity' of nearby markets and human settlements), (iii) environmental characteristics (depth, habitat type, primary productivity, cyclone wave exposure, and reef connectivity), and (iv) sampling effects and biogeography (survey method, sampling intensity, latitude, and coral faunal province). We fit hierarchical mixed-effects regression models using the 21 covariates to predict the percent cover of total coral cover and the four coral life history types individually. Models were fit in a Bayesian multilevel modelling framework and explain ~25-48% of the observed variation across

total cover and the four life histories (Supplementary Table 4). We also fit these models to four common coral genera (*Acropora*, *Porites*, *Montipora*, *Pocillopora*) as a complementary taxonomic analysis.

Results & Discussion Across the 2,584 reefs, total hard coral cover varied from <1% to 100% (median \pm SD, 23.7 \pm 17.0%). Competitive and stress-tolerant corals were the dominant life history on 85.7% of reefs (competitive: 42.4%, n = 1,095 reefs; stress-tolerant: 43.3%, n = 1,118 reefs); generalist and weedy taxa dominated only 8.8% and 5.6% of reefs respectively (Figure 1; Supplementary Figure 1). It is striking that the majority of Indo-Pacific reefs remain dominated by structurally-important corals even following the impacts of the 1998 mass coral bleaching event and subsequent bleaching events, and given expectations of different trajectories of regime shifts and recovery following bleaching impacts or human activities 6,21,22 . Notably, these findings are in contrast to contemporary Caribbean reefs where very few reefs remain dominated by key reef-building species and instead comprised of weedy taxa with limited functional significance 8,23 . However, Indo-Pacific reefs varied in their absolute abundance of the four types (Figure 1), also suggesting the potential for dramatic structural and functional shifts away from expected historical baselines of highly abundant branching and plating corals 24 , a warning sign considering recent community shifts in the Caribbean 23 .

Climate, social and environmental drivers

Climate variables describing the frequency and intensity of past thermal stress events strongly affected coral assemblages. Reefs with more extreme past climate disturbances (assessed by maximum DHW) had fewer competitive and generalist corals, while time since the strongest past thermal disturbance was associated with more hard coral cover and the cover of all four life histories (Figure 2). These results provide some of the first large-scale empirical support for the importance of recovery windows after bleaching in structuring coral assemblages^{25,26}. Our findings are also consistent with expectations that branching and plating corals are vulnerable to temperature anomalies and bleaching^{4,11,15}. Stress-tolerant and weedy corals were less affected by the magnitude of past thermal stress, consistent with long-term studies in Indonesia⁷, the

Seychelles¹¹, and Kenya¹⁵ that have shown these coral taxa often persist through acute disturbances and maintain important reef structure^{12,27}. There was no effect of past thermal stress on total coral cover, possibly because this composite metric can overlook important differences in species and trait responses.

Our results also reveal the important role of socioeconomic drivers on some life histories: reefs influenced by human populations, markets, and agricultural use were associated with a lower abundance of competitive, stress-tolerant, and generalist corals (Figure 2). The mechanisms underpinning these relationships could include direct mortality from destructive fishing practices²⁸, tourism, or industrial activities²⁹, or indirect effects on coral growth associated with the overexploitation of grazing herbivorous fishes that control macroalgae³⁰ or declining water quality that can increase sediments and nutrients to smother or sicken corals³¹. We also observed two positive associations of coral abundance with human use: generalist corals increased near agricultural land use, and weedy corals increased near larger and more accessible markets. In some cases, these relationships require further investigation; for example, the abundance of generalists (e.g., deeper-water plating corals) was negatively associated with cropland expansion, but positively associated with cropland area. Overall, we identify human gravity and agricultural use as key social drivers that could be locally mitigated (i.e., through behaviour change³²) to promote structurally complex and calcifying reefs that can sustain important ecological functions.

Local management actions in the form of no-take reserves or restricted management (e.g., gear restrictions) were associated with higher total coral cover, and greater abundance of stress-tolerant, generalist, and weedy corals, but not competitive corals (Figure 2). Our findings suggest that management approaches typically associated with marine protected areas (MPAs) and fisheries management can both have benefits for total coral cover and some, but not all, life histories. Notably, local management did not increase the abundance of structurally-important branching and plating competitive corals. This is consistent with expectations that branching and plating corals are often extremely sensitive to extreme heat events and bleaching mortality 11,14,15, which can swamp any potential benefits of local management 15,33. Our analyses did not account for management age, size, design, or compliance, all of which could influence these outcomes; for example, older, larger, well-enforced, and isolated marine protected areas (MPAs) have been

shown to increase total coral cover, although mostly through the cover of massive (i.e., stress-tolerant) coral growth forms³⁴. Our results also suggest that partial protection (i.e., gear restrictions) can be associated with similar increases in coral abundance as fully no-take areas. For corals, any type of management that reduces destructive practices can have direct benefits for coral survival and growth²⁸. While protection from local stressors may not increase coral resilience³³, we find that managed sites are associated with a higher abundance of total coral cover and some coral life histories relative to unmanaged sites, even after accounting for climate disturbances and other environmental conditions.

Environmental factors such as latitude, reef zonation (i.e., depth and habitat), primary productivity, wave exposure, and cyclone intensity were also strongly associated with coral abundance (Figure 2). Competitive corals were more abundant on reef crests, shallower reefs and on reefs with higher wave exposure, compared to stress-tolerant corals that were more abundant on deeper reefs and reefs with lower wave exposure. Stress-tolerant, weedy and generalist corals were typically associated with higher latitudes, smaller reef areas, and greater depths. Primary productivity and cyclone exposure were associated with fewer competitive, stress-tolerant and weedy corals, likely due to unfavourable conditions for coral growth in areas of eutrophication and high productivity³¹, or hydrodynamic breakage or dislodgement of coral colonies³⁵. These findings suggest that environmental conditions are important in predicting conservation baselines and guiding management investments. For example, restoring or maintaining grazer functions when environmental conditions can support abundant corals and other calcifying organisms³⁶. After controlling for method and sampling effort in the models (Figure 2), our results suggest that future comparative studies would benefit from standardized methods and replication to allow for faster comparative approaches for field-based monitoring³⁷, especially given the urgency of tracking changes to coral assemblages from climate change and bleaching events.

The four life histories showed some different responses than common genera (Supplementary Figure 2). For example, life histories were generally more sensitive to climate and social drivers (17 vs. 12 significant relationships for life histories compare to genera, respectively; Figure 2, Supplementary Figure 2). For example, competitive corals had stronger associations with two metrics of climate disturbance (years since maximum DHW and maximum DHW) compared to *Acropora* (a genus classified as competitive). Three of the four life histories

showed positive associations with local management (no-take or restricted management) compared to only one genus (*Porites*, a stress-tolerant and weedy genus); *Acropora* was negatively associated with restricted management. Overall, our results suggest that life histories might provide more sensitive signals of disturbance for coral assemblages, perhaps because life history groups integrate morphological and physiological traits that can determine coral responses to disturbance³⁸. However, further comparisons of life history and taxonomic responses, at both regional and local scales, are certainly warranted.

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

315

316

317

318

319

320

321

Management strategies in the Anthropocene

The livelihoods of millions of people in the tropics depend on healthy and productive coral reefs^{19,20}, yet coral reefs worldwide are imperilled by climate change^{3,25}. Between 2014 and 2017, reefs worldwide experienced an unprecedented long, extensive, and damaging El Niño and global bleaching event^{26,39}. The 2,584 reefs in our dataset were exposed to thermal stress ranging between 0 to 30.5 annual °C-weeks above summer maxima (i.e., Degree Heating Weeks, DHW) between 2014 and 2017 (Figure 3; Methods). Nearly three-quarters of the surveyed reefs (74.9%, n = 1,935 reefs) were exposed to greater than 4 °C-week DHW, a common threshold for ecologically significant bleaching and mortality³⁹ (Supplementary Figure 3). Previous studies have identified 10% hard coral cover as a minimum threshold for carbonate production on Caribbean⁴⁰ and Indo-Pacific^{27,41} reefs. Below this threshold (or 'boundary point'), reefs are more likely to have a neutral or negative carbonate budget and may succumb to reef submergence with rising sea levels⁵. Here, we adapt this threshold by considering only the live cover of competitive and stress-tolerant corals (hereafter, 'framework' corals) since these are two life histories that can build large, structurally-complex colonies to maintain carbonate production and vertical reef growth 10,12,27. Prior to the third global bleaching event between 2014 and 2017, 71.8% of reefs (1,856 out of 2,584) maintained a cover of framework corals above 10%, suggesting the majority of reefs could sustain net-positive carbonate budgets prior to their exposure to the 2014-2017 global bleaching event. The abundance of framework corals was independent of the thermal stress experienced in the 2014-2017 bleaching event (Figure 3). Considering these two thresholds of ecologically significant thermal stress (4 DHW) and potential ecological function (10% cover; sensitivity analysis provided in Supplementary Table

5), this creates a portfolio of three management strategies: 1) *protect* functioning reefs exposed to less intense and frequent climate disturbance during the 2014-7 bleaching event, 2) *recover* reefs exposed to ecologically significant bleaching stress that were previously above potential functioning thresholds, and 3) on degraded reefs exposed to ecologically significant bleaching stress, *transform* existing management, or ultimately assist societies to transform away from reef-dependent livelihoods (Figure 3).

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

A protect strategy was identified for 449 reefs (out of 2,584, or 17.4%), which were exposed to minimal bleaching-level stress (<4 DHW during 2014-2017) and had >10% cover of framework corals (Figure 3; Supplementary Table 5). These reefs were located throughout the Indo-Pacific (Figure 4, Supplementary Table 6) suggesting that it is currently possible to safeguard a regional network of functioning coral reefs^{6,42,43}. The conservation goal for *protect* reefs is to maintain reefs above functioning thresholds, while anticipating the impacts of future bleaching events. Policy actions include dampening the impacts of markets and nearby populations, placing local restrictions on damaging fishing, pollution, or industrial activities within potential refugia from climate change, while addressing the broader context of poverty, market demands, and behavioural norms^{32,44} – and ideally within areas of potential climate refugia^{43,45}. The *recover* strategy was identified for the majority of reefs: 1,407 reefs (out of 2,584, or 54.4%) exceeded 10% cover of framework corals but were likely exposed to severe bleaching-level heat stress during 2014-2017 global bleaching event (i.e., >4 DHW). As these reefs had recently maintained 10% cover, mitigating local stressors as described above, alongside targeted investments in coral reef rehabilitation and restoration could help to accelerate natural coral recovery. In this strategy, the goal is to move reefs back above the 10% threshold as quickly as possible following climate impacts. Active management to restore habitat with natural or artificial complexity, coral 'gardening', or human-assisted evolution could be considerations to quickly recover coral cover following climate disturbances⁴², although often at high cost but there are options for low-cost, long-term restoration 46. For the transform strategy, we identified 728 reefs (or 28.2%) below 10% cover that were likely on a trajectory of net erosion prior to the 2014-2017 bleaching event. Here, transformation is needed – either by management to enact new policies that urgently and effectively address drivers to rapidly restore coral cover, or ultimately, by societies who will need to reduce their dependence on coral reef livelihoods facing the loss of functioning coral reefs. Such social transformations could be assisted through long-term

investments in livelihoods, education, and adaptive capacity^{47,48}, investments which can also accompany the *protect* and *recover* strategies.

We also investigated how combinations of key drivers could affect the predicted cover of framework corals (Figure 5). While certain combinations were predicted to reduce cover below a 10% threshold (e.g., high population or market gravity with less recovery time from climate disturbances or with high cyclone exposure, and high gravity with high primary productivity), the majority of parameter space predicted coral cover above 10%. In addition, increasing management restrictions appeared to expand a safe operating space for corals above a 10% threshold. This is hopeful, in that even as the frequency of bleaching events is expected to increase, reducing the impact of local stressors may provide conditions that can sustain some functions on coral reefs. Nevertheless, management through MPAs alone have not been shown to increase climate resistance or recovery³³. Thus, addressing global climate change is paramount.

Our dataset describes contemporary coral assemblages within a period of escalating thermal stress, notably following the 1998 bleaching event^{26,39}. Patterns of coral bleaching vary spatially²⁵, and we can make no predictions about which reefs might escape future bleaching events or mortality from our dataset. The long-term persistence of corals within potential climate refuges (i.e., the *protect* strategy) requires a better understanding of future climate conditions and tracking the long-term ecological responses of different reefs^{6,37,45}. Predicting and managing coral reefs through a functional lens, such as through coral life histories, is challenging but necessary 10,49. Here, we adapt previous estimates of 10% coral cover as a threshold of netpositive carbonate production. However, this threshold is based on methods that estimate the three-dimensional structure of a reef⁴⁰, while our dataset consists primarily of planar twodimensional methods that do not account for the vertical or three-dimensional components of coral colonies⁵⁰. Thus, the 10% threshold should be considered an uncertain, but potentially precautionary, threshold of net carbonate production and reef growth, and a sensitivity analysis considering this threshold at 8% or 12% cover suggests a three-strategy framework is robust to uncertainty around these thresholds (Supplementary Table 5). Future work can help refine these thresholds by considering species-specific contributions to structural complexity and carbonate production, as has been recently developed for Caribbean corals⁸.

Conclusions

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

Facing an Anthropocene future of intensifying climate change and globalized anthropogenic impacts^{1,2,39}, coral reef conservation must be more strategic by explicitly incorporating climate impacts and ecological functioning into priority actions for conservation and management. Given expectations that coral assemblages will shift towards smaller and simpler morphologies and slower growth rates to jeopardize reef function^{4,7,15}, our findings highlight the importance of urgently protecting and managing reefs that support assemblages of large, complex branching, plating and massive taxa that build keystone structure on coral reefs¹⁰⁻ ¹². Our findings reveal key drivers of coral assemblages, and identify some locations where societies can immediately enact strategic management to protect, recover, or transform coral reefs. Our framework also provides a way to classify management strategies based on relatively simple thresholds of potential ecological function (10% cover of framework corals) and recent exposure to thermal stress (4 DHW); thresholds that have the potential to be incorporated into measurable indicators of global action under the Convention on Biological Diversity's post-2020 Strategic Plan that will include a revised target for coral reefs. Local management alone, no matter how strategic, does not alleviate the urgent need for global efforts to control carbon emissions. The widespread persistence of functioning coral assemblages requires urgent and effective action to limit warming to 1.5°C. Our findings suggest there is still time for the strategic conservation and management of the world's last functioning coral reefs, providing some hope for global coral reef ecosystems and the millions of people who depend on them.

426

427

428

429

430

431

432

433

434

435

Methods

We conducted coral community surveys along 8,209 unique transects from 2,584 reefs throughout the Indian and Pacific Oceans, covering ~277 km of surveyed coral reef. Our dataset provides a contemporary Indo-Pacific snapshot of coral communities between 2010 and 2016; surveys occurred following repeated mass bleaching events (e.g., 1998, 2005, 2010), but were not influenced by widespread mortality during the 2014-2017 global coral bleaching event. Surveyed reefs spanned 61.2 degrees of latitude (32.7°S to 28.5°N) and 219.3 degrees of longitude (35.3°E to 105.4°W), and represented each of the 12 coral faunal provinces described for Indo-Pacific corals⁵¹. A random subsampling method was used to evaluate the representation

of our dataset across Indo-Pacific coral reefs, whereby we compared locations of empirical surveys to the global distribution of coral reefs by generating 2600 randomly selected Indo-Pacific coral reef sites using the R package $dismo^{52}$ from a 500 m resolution tropical coral reef grid⁵³. Comparing our empirical surveys (n = 2,584 reefs) to the randomly generated reefs allowed us to estimate ecoregions with relative undersampling or oversampling (Supplementary Table 1).

Climate, social and environmental covariates were organized at three spatial scales¹⁹:

- (i) Reef (n = 2,584). Coral community surveys were conducted at the scale of 'reefs', defined as a sampling location (with a unique latitude, longitude and depth) and comprised of replicate transects. Surveys occurred across a range of depths (1 40 m; mean \pm standard deviation, 8.9 ± 5.6 m), though the majority of surveys (98.8%) occurred shallower than 20 m. Surveys were conducted across a range of reef habitat zones, classified to three major categories: reef flat (including back reefs and lagoons), reef crest, and reef slope (including offshore banks and reef channels).
- (ii) Site (n = 967). Reefs within 4 km of each other were clustered into 'sites'. The choice of 4 km was informed by the spatial movement patterns of artisanal coral reef fishing activities as used in a global analysis of global reef fish biomass¹⁹. We generated a complete-linkage hierarchical cluster dendrogram based on great-circle distances between each point of latitude and longitude, and then used the centroid of each cluster to estimate site-level social, climate and environmental covariates (Supplementary Table 3). This provided a median of 2.0 reefs (+/- 2.83) per site.
- (iii) Country (n = 36). Reefs and sites were identified within geopolitical countries to evaluate national-level covariates (GDP per capita, voice and accountability in governance, and Human Development Index). Overseas territories within the jurisdiction of the France, the United Kingdom, and the United States were informed by their respective country.

Coral communities and life histories. At each reef, underwater surveys were conducted using one of three standard transect methods: point-intercept transects (n = 1,628 reefs), line-intercept transects (n = 399 reefs) and photo quadrats (n = 557 reefs). We estimated sampling effort as the

total number of sampled points during each reef survey. Line-intercept transects were estimated with sampling points every 5 cm, since most studies only estimate the length of corals greater than 3 or 5 cm (T. McClanahan, A. Baird pers. comm). On average, the number of sampling points was 300.0 ± 750.0 (median \pm SD), and effort ranged from 30 to 5,138 sampling points. Method and sampling effort were included as fixed effects in the models to control for their effects.

The absolute percent cover of hard corals was evaluated to the taxonomic level of genus or species for each transect. Surveys that identified corals only to broader morphological or life form groups did not meet the criteria for this study. The majority of surveys recorded coral taxa to genus (1,506 reefs out of 2,584, or 58.2%), and the remainder recorded some or all taxa to species level; a small proportion of unidentified corals (0.30% of all surveyed coral cover) were excluded from further analyses. We estimated the total hard coral cover on each transect, and classified each coral taxa to a life history type⁹; some species of *Pocillopora*, *Cyphastrea* and Leptastrea were reclassified by expert coral taxonomists and ecologists⁵⁴. A representative list of species and their life history types are provided in Supplementary Table 2, and original trait information is available from the Coral Traits Database (https://coraltraits.org/)⁵⁵. Four genera included species with more than one life history classification (Hydnophora, Montipora, *Pocillopora*, *Porites*), and we distributed coral cover proportional to the number of species within each life history, which was estimated separately for each faunal province based on available species lists⁵¹. In total, we were able to classify 97.2% of surveyed coral cover to a life history. We then summed coral cover within each of the four life histories on each reef. Climate, social and environmental drivers. To evaluate the relative influence of climate, social and environmental drivers on total hard coral cover and coral assemblages, we identified a suite

and environmental drivers on total hard coral cover and coral assemblages, we identified a suite of covariates at reef, site and country scales (Supplementary Table 3). These covariates included: the frequency and intensity of thermal stress since 1982, local human population growth, market and population gravity (a function of human population size and accessibility to reefs), local management, nearby agricultural use, a country's Human Development Index, primary productivity, depth, reef habitat, wave exposure, cyclone history, and habitat connectivity. A full description of covariates, data sources and rationale can be found in the Supplementary Methods.

Analysis of drivers. We first assessed multicollinearity among the different covariates by evaluating variance inflation factors (Supplementary Table 7) and Pearson correlation coefficients between pairwise combinations of covariates (Supplementary Figure 4). This led to the exclusion of four covariates: (i) local population size, (ii) national GDP per capita, (iii) national voice and accountability, and (iv) years since extreme cyclone activity. A final set of 16 covariates was included in statistical models, whereby all pairwise correlations were less than 0.7 and all variance inflation factors were less than 2.5 indicating that multicollinearity was not a serious concern (Supplementary Table 7, Supplementary Figure 4).

To quantify the influence of multi-scale social, human and environmental factors on hard coral assemblages, we modelled the total percent cover of hard corals and the percent cover of each life history as separate responses. We fit mixed-effects Bayesian models of coral cover with hierarchical random effects, where reef was nested within site, and site nested within country; we also included a random effect of coral faunal province to account for regional biogeographic patterns⁵¹. For each response variable, we converted percent coral cover into a proportion response and fit linear models using a Beta regression, which is useful for continuous response data between 0 and 1⁵⁶. We incorporated weakly informative normal priors on the global intercept (mean = 0, standard deviation = 10) and slope parameters (mean = 0, standard deviation = 2), and a Student t prior on the Beta dispersion parameter (degrees of freedom = 3, mean = 0, scale = 25). We fit our models with 5,000 iterations across four chains, and discarded the first 1,000 iterations of each chain as a warm-up, leaving a posterior sample of 16,000 for each response. We ensured chain convergence by visual inspection (Supplementary Figure 5), and confirmed that Rhat (the potential scale reduction factor) was less than 1.05 and the minimum effective sample size (n_{eff}) was greater than 1000 for all parameters⁵⁷. We also conducted posterior predictive checks and estimated Bayesian R^2 values for each model to examine goodness of fit⁵⁸. All models were fit with $Stan^{59}$ and $brms^{60}$; analyses were conducted in R^{61} .

We applied the same modelling approach to the percent cover of four dominant coral genera: *Acropora*, *Porites*, *Montipora*, and *Pocillopora*, in order to provide a comparison between life history and taxonomic responses.

Strategic portfolios. We developed three management strategies (*protect*, *recover*, or *transform*) based on the potential thermal stress experienced during the 2014-2017 bleaching event, and a

reef's previous observed ecological condition. To evaluate potential thermal stress, we estimated the maximum annual Degree Heating Weeks (DHW) between 2014 and 2017 from NOAA's CoralTemp dataset (Coral Reef Watch version 3.1; see Drivers section). Ecologically significant bleaching and mortality can occur at different thresholds of thermal stress, likely between 2 and 4 DHW³⁹, and this range of thresholds also represents the lowest quintile of DHW exposure for the 2,584 reefs during the 2014-2017 global bleaching event (20th quintile = 3.2 DHW). Considerations of different DHW thresholds were highly correlated and identified similar 'no-regrets' locations of limited thermal stress exposure between 2014 and 2017 (Supplementary Figure 3).

For ecological condition, we assessed whether each reef had the potential for a net positive carbonate budget prior to the 2014-2017 bleaching event based on a reference point of 10% cover of competitive and stress tolerant corals. We assumed that this threshold represents a potential tipping point (i.e. unstable equilibrium, or boundary point) for reef growth and carbonate production, whereby 10% hard coral cover is a key threshold above which reefs are more likely to maintain a positive carbonate budget and therefore net reef growth 27,40,41. Additionally, 10% coral cover is suggested to be a threshold for reef fish communities and standing stocks of biomass^{62–64}, and associated with some thresholds to undesirable algaldominated states at low levels of herbivore grazing and coral recruitment⁶⁵. As a sensitivity analysis for the 10% coral cover threshold, we considered how 8% and 12% coral cover thresholds would affect the distribution of conservation strategies across the 2,584 reefs (Supplementary Table 5). This sensitivity analysis also helps account for the uncertainty in how two-dimensional planar estimates of percent cover recorded during monitoring may affect threedimensional processes on coral reefs, like carbonate production⁵⁰. Ultimately, applying thresholds of recent extreme heat and reef led to the proposed framework of three management strategies: protect, recover and transform, which we mapped across the Indo-Pacific based on the surveyed locations in our dataset.

We also investigated how combinations of key drivers differentiated reefs below or above 10% cover of competitive and stress-tolerant corals. Using the Bayesian hierarchical models for competitive and stress-tolerant corals, we predicted coral cover across a range of observed values for five key covariates: population gravity, market gravity, years since maximum DHW, primary

productivity, and cyclone exposure. For each covariate combination, we kept all other parameters at their median values for continuous predictors, or their reference value for categorical predictors (habitat: reef slope; method: PIT); we then summed the median predicted cover of competitive and stress-tolerant corals from 10,000 posterior samples for an estimate of combined cover. We repeated this approach with each level of management: fished, restricted management, and no-take management. Data availability All R code is available on https://github.com/esdarling/IndoPacific-corals. To access primary data, interested parties can contact data contributors. Contact information and the geographies covered by each data contributor is provided in Supplementary Table 8. Acknowledgements All data contributors would like to thank their monitoring partners and funders; see Supplementary Acknowledgements. We thank A. Baird, E. Buthung, P. Chabanet, Y. Chancerelle, D. Harvell, A. Heyward, P. Jokiel, R. Komeno, R. Lawton, S. Maxin, M. Pratchett, B. Randriamanantsoa, C. Rodney, E. Rudi, C. Russo, S. Tasidjawa, B. Vargas-Angel, I. Williams, B. Willis, and J. Zavatra for data collection. We thank S. Anderson, K. Fisher, and H. Beyer for assistance with analysis and data extraction. Major funding for this work was provided by a David H. Smith Conservation Research Fellowship from the Cedar Tree Foundation, a Banting Postdoctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada, and the John D. and Catherine T. MacArthur Foundation through grants to the Wildlife Conservation Society. The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the author(s) and do not necessarily reflect the views of NOAA or the Department of Commerce. **Author contributions** E.S.D. envisioned and led the project, performed all analyses, secured funding for, and wrote the manuscript. T.M., J.M., G.G., N.A.J.G., F. J.-H., J.E.C., C.M., C.H., M.-J. F., and M.K. contributed to the conceptual ideas, design, analysis, design and writing. All other authors contributed data, edited and approved the manuscript.

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

- **Competing interests** The authors declare no competing interests.
- 584
- 585 References
- 586
- 1. Norström, A. V. et al. Guiding coral reef futures in the Anthropocene. Front. Ecol. Environ.
- **14**, 490–498 (2016).
- 589 2. Williams, G. J. et al. Coral reef ecology in the Anthropocene. Funct. Ecol. 33, 1014–1022
- 590 (2019).
- 3. Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat.
- 592 *Clim. Change* **3**, 165–170 (2013).
- 4. Hughes, T. P. *et al.* Global warming transforms coral reef assemblages. *Nature* **556**, 492–496
- 594 (2018).
- 595 5. Perry, C. T. *et al.* Loss of coral reef growth capacity to track future increases in sea level.
- 596 *Nature* **558**, 396–400 (2018).
- 6. Guest, J. R. et al. A framework for identifying and characterising coral reef "oases" against a
- 598 backdrop of degradation. *J. Appl. Ecol.* **55**, 2865–2875 (2018).
- 599 7. Denis, V., Ribas-Deulofeu, L., Sturaro, N., Kuo, C.-Y. & Chen, C. A. A functional approach
- to the structural complexity of coral assemblages based on colony morphological features.
- 601 Sci. Rep. 7, (2017).
- 8. González-Barrios, F. J. & Álvarez-Filip, L. A framework for measuring coral species-
- specific contribution to reef functioning in the Caribbean. *Ecol. Indic.* **95**, 877–886 (2018).
- 9. Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating
- life-history strategies of reef corals from species traits. *Ecol. Lett.* **15**, 1378–1386 (2012).
- 10. Perry, C. T. & Alvarez-Filip, L. Changing geo-ecological functions of coral reefs in the
- 607 Anthropocene. Funct. Ecol. **33**, 976–988 (2019).

- 11. Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom
- and bust of keystone structure on coral reefs. Coral Reefs (2019). doi:10.1007/s00338-019-
- 610 01818-4
- 611 12. Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish
- assemblages. *Coral Reefs* **36**, 561–575 (2017).
- 13. Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven
- 614 regime shifts. *Nat. Ecol. Evol.* **3**, 183–190 (2019).
- 615 14. Alvarez-Filip, L., Carricart-Ganivet, J. P., Horta-Puga, G. & Iglesias-Prieto, R. Shifts in
- 616 coral-assemblage composition do not ensure persistence of reef functionality. Sci. Rep. 3,
- 617 3486 (2013).
- 618 15. Darling, E. S., McClanahan, T. R. & Côté, I. M. Life histories predict coral community
- disassembly under multiple stressors. *Glob. Change Biol.* **19**, 1930–1940 (2013).
- 620 16. Graham, N. A. J., Chong-Seng, K. M., Huchery, C., Januchowski-Hartley, F. A. & Nash, K.
- L. Coral reef community composition in the context of disturbance history on the Great
- 622 Barrier Reef, Australia. *PLoS ONE* **9**, e101204 (2014).
- 17. Sommer, B., Harrison, P. L., Beger, M. & Pandolfi, J. M. Trait-mediated environmental
- filtering drives assembly at biogeographic transition zones. *Ecology* **95**, 1000–1009 (2014).
- 625 18. Kayal, M. et al. Predicting coral community recovery using multi-species population
- dynamics models. *Ecol. Lett.* **21**, 1790–1799 (2018).
- 627 19. Cinner, J. E. *et al.* Bright spots among the world's coral reefs. *Nature* **535**, 416–419 (2016).
- 628 20. Kittinger, J. N., Finkbeiner, E. M., Glazier, E. W. & Crowder, L. B. Human dimensions of
- 629 coral reef social-ecological systems. *Ecol. Soc.* **17**, 17 (2012).

- 630 21. Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an
- isolated coral reef system following severe disturbance. *Science* **340**, 69–71 (2013).
- 632 22. Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting
- climate-driven regime shifts versus rebound potential in coral reefs. *Nature* **518**, 94–97
- 634 (2015).
- 635 23. Green, D. H., Edmunds, P. J. & Carpenter, R. C. Increasing relative abundance of Porites
- astreoides on Caribbean reefs mediated by an overall decline in coral cover. *Mar. Ecol. Prog.*
- 637 *Ser.* **359**, 1–10 (2008).
- 638 24. Montaggioni, L. F. History of Indo-Pacific coral reef systems since the last glaciation:
- Development patterns and controlling factors. *Earth-Sci. Rev.* **71**, 1–75 (2005).
- 640 25. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the
- 641 Anthropocene. *Science* **359**, 80–83 (2018).
- 642 26. Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J. & Baum, J. K. Global patterns
- and impacts of El Niño events on coral reefs: A meta-analysis. *PLOS ONE* **13**, e0190957
- 644 (2018).
- 27. Januchowski-Hartley, F. A., Graham, N. A. J., Wilson, S. K., Jennings, S. & Perry, C. T.
- Drivers and predictions of coral reef carbonate budget trajectories. *Proc. R. Soc. B Biol. Sci.*
- **284**, 20162533 (2017).
- 28. McManus, J. W., Reyes, B. R. & Nañola, C. L. Effects of some destructive fishing methods
- on coral cover and potential rates of recovery. *Environ. Manage.* **21**, 69–78 (1997).
- 650 29. Pollock, F. J. et al. Sediment and turbidity associated with offshore dredging increase coral
- disease prevalence on nearby reefs. *PLoS ONE* **9**, e102498 (2014).

- 652 30. Dixson, D. L., Abrego, D. & Hay, M. E. Chemically mediated behavior of recruiting corals
- and fishes: A tipping point that may limit reef recovery. *Science* **345**, 892–897 (2014).
- 654 31. Costa, O. S., Leão, Z. M. A. N., Nimmo, M. & Attrill, M. J. Nutrification impacts on coral
- reefs from northern Bahia, Brazil. in *Island, Ocean and Deep-Sea Biology* (eds. Jones, M. B.,
- 656 Azevedo, J. M. N., Neto, A. I., Costa, A. C. & Martins, A. M. F.) 307–315 (Springer
- 657 Netherlands, 2000). doi:10.1007/978-94-017-1982-7_28
- 658 32. Cinner, J. How behavioral science can help conservation. *Science* **362**, 889–890 (2018).
- 659 33. Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the
- parrotfish paradigm: why don't marine protected areas improve reef resilience? *Annu. Rev.*
- 661 *Mar. Sci.* **11**, 307–334 (2019).
- 34. Strain, E. M. A. et al. A global assessment of the direct and indirect benefits of marine
- protected areas for coral reef conservation. *Divers. Distrib.* **25**, 9–20 (2019).
- 35. Madin, J. S. & Connolly, S. R. Ecological consequences of major hydrodynamic
- disturbances on coral reefs. *Nature* **444**, 477–480 (2006).
- 36. Robinson, J. P. W. et al. Environmental conditions and herbivore biomass determine coral
- reef benthic community composition: implications for quantitative baselines. *Coral Reefs* **37**,
- 668 1157–1168 (2018).
- 37. Edmunds, P. et al. Why more comparative approaches are required in time-series analyses of
- 670 coral reef ecosystems. *Mar. Ecol. Prog. Ser.* **608**, 297–306 (2019).
- 38. Zawada, K. J. A., Madin, J. S., Baird, A. H., Bridge, T. C. L. & Dornelas, M. Morphological
- traits can track coral reef responses to the Anthropocene. Funct. Ecol. 33, 962–975 (2019).
- 673 39. Skirving, W. J. et al. The relentless march of mass coral bleaching: a global perspective of
- 674 changing heat stress. *Coral Reefs* (2019). doi:10.1007/s00338-019-01799-4

- 40. Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef
- 676 growth. *Nat. Commun.* **4**, 1402 (2013).
- 41. Perry, C. T. et al. Remote coral reefs can sustain high growth potential and may match future
- 678 sea-level trends. *Sci. Rep.* **5**, 18289 (2016).
- 42. Harvey, B. J., Nash, K. L., Blanchard, J. L. & Edwards, D. P. Ecosystem-based management
- of coral reefs under climate change. *Ecol. Evol.* (2018). doi:10.1002/ece3.4146
- 43. Beyer, H. L. *et al.* Risk-sensitive planning for conserving coral reefs under rapid climate
- change. Conserv. Lett. e12587 (2018). doi:10.1111/conl.12587
- 683 44. Hughes, T. P. *et al.* Coral reefs in the Anthropocene. *Nature* **546**, 82–90 (2017).
- 45. van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the
- 685 Paris Agreement. Sci. Rep. **6**, 39666 (2016).
- 46. Fox, H. E. et al. Rebuilding coral reefs: success (and failure) 16 years after low-cost, low-
- 687 tech restoration. *Restor. Ecol.* rec.12935 (2019). doi:10.1111/rec.12935
- 688 47. Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal
- 689 communities. *Nat. Clim. Change* **8**, 117–123 (2018).
- 690 48. Sen, A. The ends and means of sustainability. J. Hum. Dev. Capab. 14, 6–20 (2013).
- 691 49. Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term
- 692 'function' in ecology: a coral reef perspective. *Funct. Ecol.* **33**, 948–961 (2019).
- 693 50. Goatley, C. H. R. & Bellwood, D. R. The roles of dimensionality, canopies and complexity
- in ecosystem monitoring. *PLoS ONE* **6**, e27307 (2011).
- 51. Keith, S. A., Baird, A. H., Hughes, T. P., Madin, J. S. & Connolly, S. R. Faunal breaks and
- species composition of Indo-Pacific corals: the role of plate tectonics, environment and
- 697 habitat distribution. *Proc. R. Soc. B Biol. Sci.* **280**, 20130818 (2013).

- 698 52. Hijmans, Robert J., Phillips, S. & Elith, J. dismo: Species Distribution Modeling. R package
- version 1.1-4. (2017). Available at: https://CRAN.R-project.org/package=dismo.
- 53. Burke, L. M., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited. (World
- Resources Institute, 2011).
- 702 54. Zinke, J. et al. Gradients of disturbance and environmental conditions shape coral
- community structure for south-eastern Indian Ocean reefs. *Divers. Distrib.* **24**, 605–620
- 704 (2018).
- 705 55. Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral
- species from the global oceans. Sci. Data 3, 160017 (2016).
- 56. Ferrari, S. & Cribari-Neto, F. Beta regression for modelling rates and proportions. *J. Appl.*
- 708 Stat. **31**, 799–815 (2004).
- 57. Gelman, A. et al. Bayesian Data Analysis. (Chapman and Hall/CRC, 2013).
- 58. Gelman, A., Goodrich, B., Gabry, J. & Ali, I. R-squared for Bayesian regression models.
- 711 (2017). Available at:
- 712 http://www.stat.columbia.edu/~gelman/research/unpublished/bayes_R2.pdf.
- 59. Stan Development Team. Stan Modeling Language Users Guide and Reference Manual,
- 714 *Version 2.18.0.* (2018).
- 715 60. Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat.
- 716 *Softw.* **80**, 1–28 (2017).
- 717 61. R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for
- 718 Statistical Computing, Vienna, Austria., 2018).

- 719 62. Lamy, T., Galzin, R., Kulbicki, M., Lison de Loma, T. & Claudet, J. Three decades of
- recurrent declines and recoveries in corals belie ongoing change in fish assemblages. *Coral*
- 721 *Reefs* **35**, 293–302 (2016).
- 722 63. Beldade, R., Mills, S. C., Claudet, J. & Côté, I. M. More coral, more fish? Contrasting
- snapshots from a remote Pacific atoll. *PeerJ* **3**, e745 (2015).
- 724 64. Harborne, A. R. et al. Modelling and mapping regional-scale patterns of fishing impact and
- fish stocks to support coral-reef management in Micronesia. *Divers. Distrib.* **24**, 1729–1743
- 726 (2018).

- 727 65. Mumby, P. J. Embracing a world of subtlety and nuance on coral reefs. *Coral Reefs* **36**,
- 728 1003–1011 (2017).

Figure captions

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

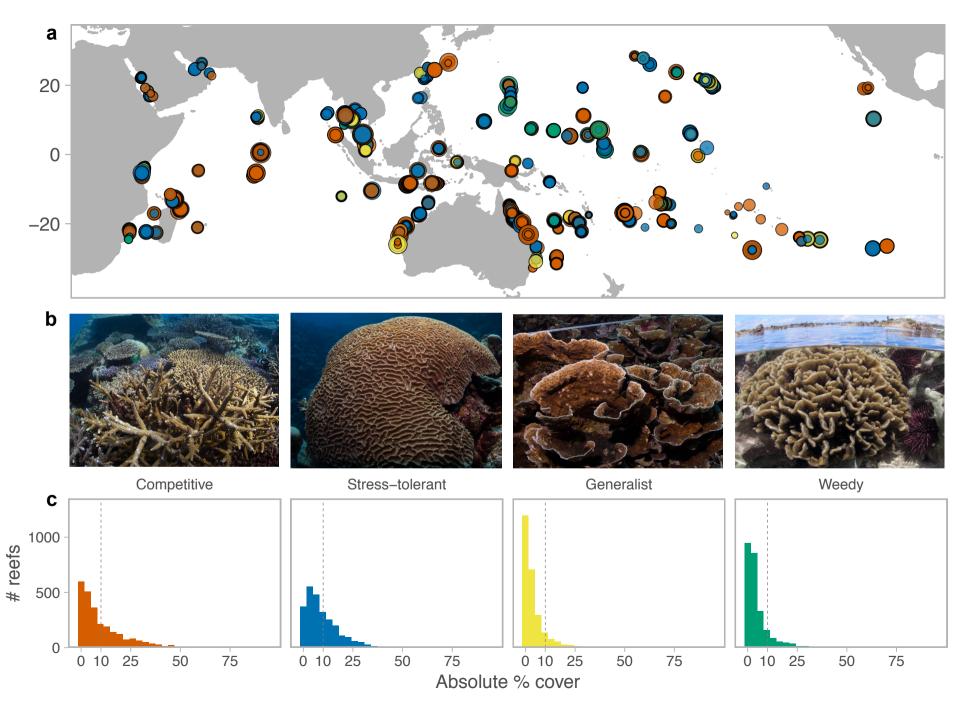
758

759

Figure 1. Indo-Pacific patterns of reef coral assemblages. (a) Percent cover of four coral life histories from 2,584 reef surveys in 44 nations and territories; colour indicates life history and circle size indicates percent cover. Circles are semi-transparent; locations with many surveyed reefs are darker than locations with fewer surveyed reefs. (b) Example of life histories with a representative genus, from left to right: fast-growing competitive (Acropora); slow-growing and long-lived massive stress-tolerant (*Platygyra*); sub-dominant generalists (*Echinopora*); fastgrowing brooding weedy taxa (Pavona). (c) Distribution of abundance (percent cover) for each life history; dotted line identifies 10% cover, a potential threshold for net-positive carbonate production. Maps are shown separately for each life history in Supplementary Figure 1. Figure 2. Relationship between climate, social, environment and methodology variables with total coral cover and life history type. Standardized effect sizes are Bayesian posterior median values with 95% Bayesian credible intervals (CI; thin black lines) and 80% credible intervals (coloured thicker lines); filled points indicate the 80% CI does not overlap with zero and grey circles indicate an overlap with zero and a less credible trend. DHW indicates Degree Heating Weeks; HDI is Human Development Index. For the effects of population gravity on stresstolerant and weedy corals which can appear to intersect zero, there was a 96.0% (15,362 out of 16,000 posterior samples) and 98.0% (15,670 out of 16,000) probability, respectively, of a negative effect; for market gravity and competitive corals, there was a 90.2% (14,424 out of 16,000 posteriors) probability of a negative effect. Models of four dominant coral genera are shown in Supplementary Figure 2. **Figure 3.** Strategic management portfolio of *protect*, *recover*, and *transform* for Indo-Pacific coral reefs. The 2,584 reefs varied in their ecological condition (assessed at the combined cover

449 reefs (out of 2,584, or 17.4%) that were associated with limited exposure to recent

bleaching-level thermal stress (<4 DHW) and maintained coral cover above 10%. A recover


of stress tolerant and competitive corals) and exposure to maximum annual DHW during the

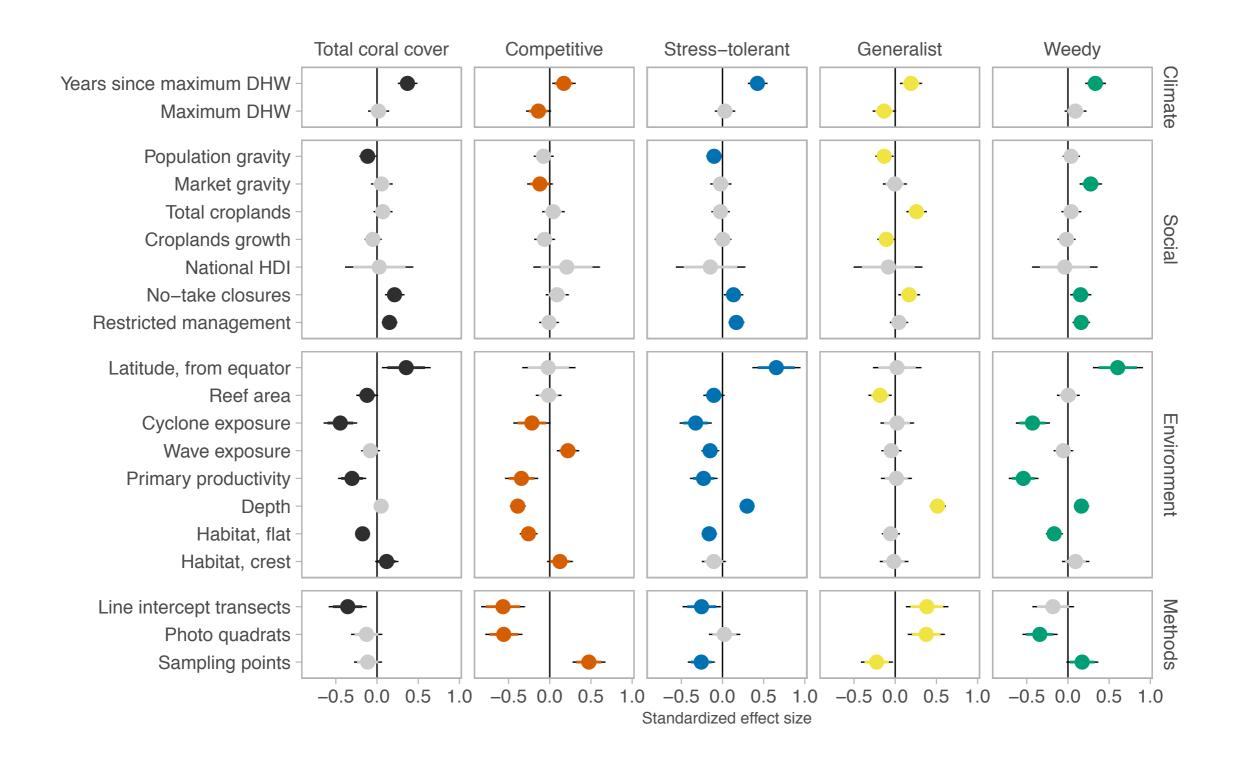
2014-2017 Third Global Coral Bleaching Event. A protect strategy (blue dots) is suggested for

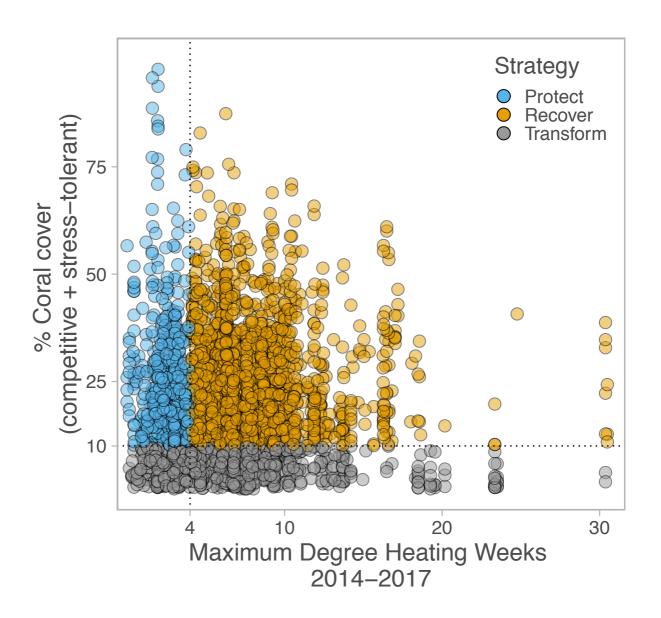
strategy could be prioritized for reefs that have recently maintained cover above 10% but were

exposed to severe potential bleaching stress in 2014-2017 (orange dots; n = 1407, or 54.5%). As coral cover falls below potential net-positive carbonate budgets (i.e., <10% hard coral cover), a transformation is needed for existing management or ultimately, the dependence of societies on reef-dependent livelihoods (grey dots; n = 728, or 28.2%). **Figure 4.** Three management strategies of a) *protect*, b) *recover*, and c) *transform* are distributed throughout the Indo-Pacific, suggesting there remain opportunities to sustain a network of functioning reefs, while supporting coral recovery or social transformations for the majority of reefs. Strategies are not restricted by geography and distributed across reefs in the Indo-Pacific region. **Figure 5.** Combinations of key social and environmental drivers that differentiate between reefs below (red) and above 10% cover of framework corals (yellow to blue gradient), based on model predictions (see Methods). Coral cover refers to the combined cover of competitive and stress-tolerant corals; gravity estimates are reported as log(values). Results are predicted separately for

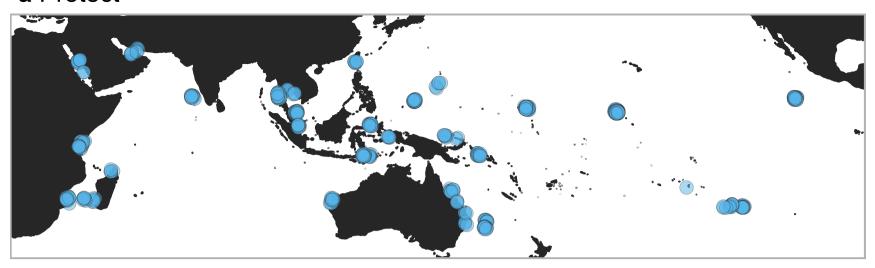
three management categories: fished, restricted, or no-take reserves.

Absolute % cover

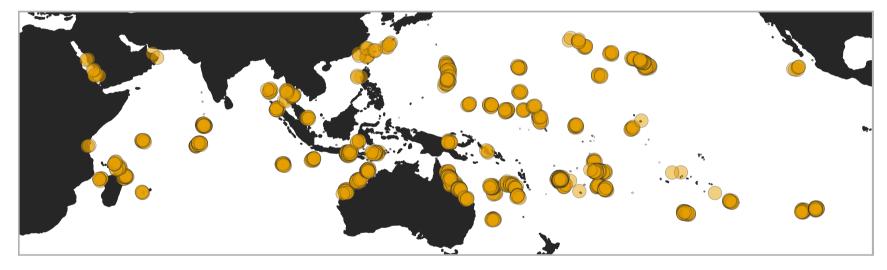

10 25 0

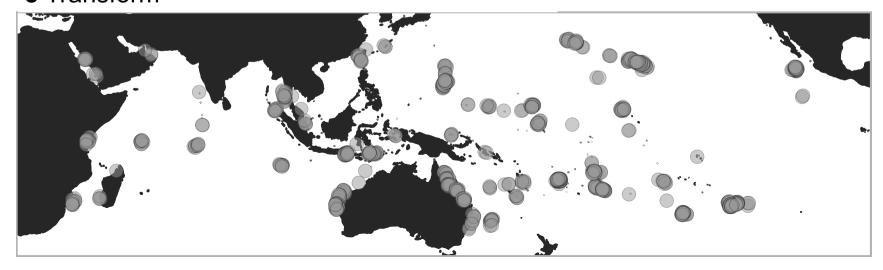

50

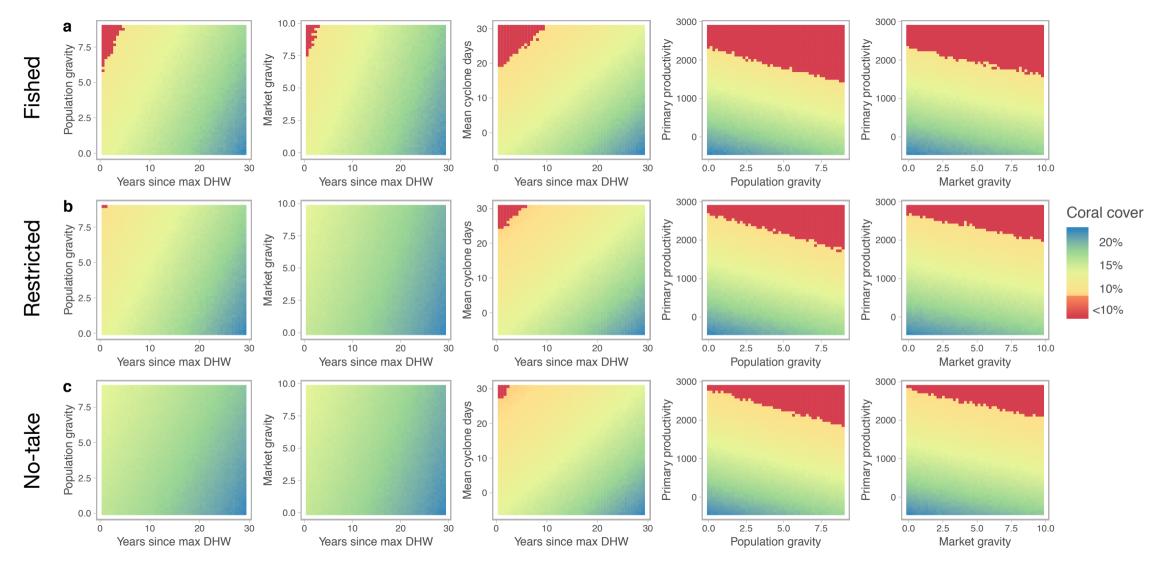
75


Dominant life history

- Competitive Stress-tolerant
- Generalist
- Weedy




a Protect



b Recover

c Transform

