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Nanoscale Scanning Thermal Microscopy (SThM) transport measurements from cryogenic to 

room temperature on two-dimensional (2D) structures with sub 30 nm resolution are reported. 

This novel cryogenic operation of SThM, extending the temperature range of the sample down 

to 150 K, yields a clear insight into the nanothermal properties of the 2D nanostructures and 

supports the model of ballistic transport contribution at the edge of the detached areas of 

exfoliated graphene which leads to a size-dependent thermal resistance of the detached material. 

The thermal resistance of graphene on SiO2 is increased by one order of magnitude by the 

addition of a top layer of MoS2, over the temperature range of 150 െ 300 K , providing 

pathways for increasing the efficiency of thermoelectric applications using van der Waals 

(vdW) materials. Density functional theory calculations demonstrate that this increase 

originates from the phonon transport filtering in the weak vdW coupling between the layers and 

the vibrational mismatch between MoS2 and graphene layers.  
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1. Introduction 

The unique thermal and electronic properties of two-dimensional (2D) materials originate from 

their atomic scale thickness and uniformity and variety of materials involved, are opening new 

paradigms for successful miniaturization of electronic devices. In particular, 2D materials are 

potential alternatives for heat management utilizing active layers in such devices.[1] For 

example, 2D materials with high in-plane thermal conductivity such as graphene, which is also 

highly electrically conductive, or hexagonal boron nitride (hBN), which is electrically 

insulating, have been proposed for heat management applications,[2] whereas MoS2 has been 

used as an active channel on electronic devices due to its comparable bandgap to silicon.[3] 2D 

materials can also be excellent thermal insulators for cross-plane thermal transport, with WSe2 

known to possess one of the lowest thermal conductivity for a continuous solid-state material.[4] 

Furthermore, vertical[5], lateral[6] or composite[7] heterostructures of 2D materials are shown to 

be potential candidates for electronic applications.  These unique properties open new 

possibilities for the development of high-performance thermoelectric and phase change 

memory structures. 

For thermoelectric applications, 2D materials are also highly attractive due to their high 

Seebeck coefficient values. For example, the Seebeck coefficient of graphene has been reported 

to be between 10 െ 180 𝜇V K⁄ [8] while that of MoS2 can be orders of magnitude higher (3 ൈ

10ହ 𝜇V K⁄ ).[9] Nevertheless, their implementation in such devices needs clever use of thermal 

anisotropy of the in-plane[10]  and cross-plane[11] thermal conductivities. The efficiency of a 

thermoelectric device, which converts the waste heat to energy is determined by the 

dimensionless figure of merit 𝑍𝑇 ൌ 𝑆ଶ𝜎𝑇 𝑘⁄ ,  where 𝑆  is the Seebeck coefficient, 𝜎  is the 

electrical conductivity and 𝑘 ൌ 𝑘௣௛ ൅ 𝑘௘௟ is the thermal conductivity due to electrons (el) and 

phonons (ph). Therefore, a highly efficient thermoelectric device requires materials with high 

𝑆 and 𝜎 and low 𝑘 in the direction of the electron flow.  
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Recently, it has been proposed that stacking of 2D materials to create heterostructures 

is an efficient way of enhancing the efficiency of thermoelectric devices.[12] For graphene/MoS2 

stacks, high figure of merit values (up to 2.8) are predicted, due to the reduction of 𝑘 and heat 

transport through the sharp edges of MoS2 nanoribbons.[13] Additionally, the thermal 

conductivity of rippled graphene was predicted to notably drop compare to flat one[14] leading 

to more efficient thermoelectrics. It has also been predicted that reduced thermal conductivity 

can be achieved by engineering the thermal transport in graphene periodic phononic 

structures.[15] Furthermore, it has been reported that lateral confinement alone allows to change 

the Seebeck coefficient in 2D materials paving the way to the new generation of 

thermoelectrics.[16]  

To experimentally investigate heat transport in such 2D nanostructures, it is essential to 

develop techniques with both nanoscale lateral resolution and an ability to sensitively evaluate 

the nanoscale heat transport over an extended temperature range, which is essential for 

understanding the fundamental nature of such transport, as well as proving pathways for 

addressing practical solutions. Whereas currently used techniques such as Raman spectroscopy 

or lithographically fabricated devices allow for such measurements, their lateral resolution is 

either limited to the micrometre scale (for Raman)[17] or is restricted to a single point of the 

device.[18] The only technique that allows interactive mapping of thermal transport across all 

structure with nanoscale resolution is Scanning Thermal Microscopy (SThM), which combines 

the superior nanoscale lateral resolution of the Atomic Force Microscope (AFM) and sensitivity 

to nanoscale heat flow by incorporating a resistive heater and temperature sensor close to the 

tip of an AFM probe.[19] SThM has been employed in several studies for the thermal 

characterization of 2D materials in ambient, vacuum or liquid environment,[20] although all 

measurements reported up to date have been performed at near-ambient sample temperature. In 

cryogenic temperatures it has only been employed for the measurements of temperature 

fields[21]. 
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Here we present, for the first time, high vacuum SThM thermal transport measurements 

on graphene/MoS2 2D heterostructures with sub-30 nm resolution at temperatures varying 

from 150 െ 300 K.  We demonstrate that the effective thermal conductivity of graphene at the 

nanoscale can be decreased significantly over all the temperature range to a variable degree up 

to one order of magnitude, by adding a top layer of MoS2. Furthermore, the increased thermal 

resolution at cryogenic temperatures enabled direct indication of the contribution of ballistic 

transport at the edge of the detached “2D materials bubble” areas[22] of exfoliated graphene 

leading to a size-dependent thermal resistance of detached 2D material. 

 

2. Results and Discussion 

2.1 Cryo-SThM principles/demonstration: 

We modified a specialized High Vacuum SThM[20a] with the sample holder connected through 

a copper braid to a liquid nitrogen (LN2) Dewar (see Figure 1a) allowing us to change the 

sample temperature ( 𝑇ௌ ) between room temperature ( 300 K ) down to 150 K . We use 

commercially available (Anasys Instruments, AN-300) doped silicon probes (DSi), which have 

a geometry similar to the standard micromachined Si AFM probes. The probe temperature can 

be controlled with an integrated heater at the end of the cantilever, which also acts as a 

temperature sensor. When the tip is in contact with a sample, the temperature of the heater 

which is monitored changes depending on the heat transfer between the tip and the sample.   

To quantify the SThM response and to present thermal images in units of thermal 

resistance, we record approach- and retract-curves of the SThM signal at each sample 

temperature immediately after every image (see Figure 1b). To achieve this, the thermal probe 

is slowly brought towards the sample resulting in a sharp drop of the SThM signal on tip-sample 

mechanical contact, as the heater temperature changes in response to the heat flowing into the 

sample. This sharp drop is followed by a further gradual decrease, as a better degree of contact 

is established[23] (blue curve, Figure 1b). The linearities of relationships between the 
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temperature gradients and the heat transport, as well as heater electrical resistance and its 

temperature, allow us to link the SThM signal difference for the probe in- and out-of-contact to 

the thermal resistance of the tip-sample contact through the following expression[24] (see 

Supporting Information note 1 for a relevant derivation): 

 
௏೙೎ି௏೎

௏೙೎
ൌ ଵ

ோ೛ାோ೉
ቀ𝑅௣ ൅ ்ಾି்ೄ

ொ೓
ቁ,         (1) 

where 𝑉௡௖ is the SThM signal when the probe is out-of-contact and 𝑉௖, the signal in contact with 

the sample, 𝑄௛ is the heat generated in the probe heater, 𝑅௑ is the heater-sample thermal contact 

resistance and 𝑅௣ the probe thermal resistance. Importantly, Equation 1 shows that in contrast 

with typical ambient SThM measurements, where 𝑇ெ ൌ 𝑇ௌ, in the cryo-SThM, the temperature 

difference 𝑇ெ െ 𝑇ௌ between the microscope and the sample needs to be taken into account to 

correctly interpret the measurements. A typical example in the inset of Figure 1b, shows the 

relative signal “jump” 
௏೙೎ି௏೎

௏೙೎
 for SiO2 on Si substrate at room temperature (RT) and low 

temperature (LT) changes three-fold, thereby requiring use of the relationships reflected by the 

Equation 1. 

As 𝑇ெ and 𝑇ௌ are monitored during the experiment and 𝑄௛ and 𝑅௣ are known through 

the probe calibration, we can calculate 𝑅௑ from Equation (1). Given that 𝑉௡௖ does not depend 

on the position of the probe, then by replacing 𝑉௖ with equivalent SThM signal that is obtained 

during tip-sample contact at a close to zero contact force, we can quantify the nanoscale SThM 

map in terms of 𝑅௑. In order to interpret the heat transfer mechanisms monitored during our 

experiments, it is helpful to present 𝑅௑ as three different resistances in series:[25] 

𝑅௑ ൌ 𝑅௧௜௣ ൅ 𝑅௜௡௧ ൅ 𝑅௦௣௥,         (2) 

where 𝑅௧௜௣ is the constriction resistance of the sharp conical tip, 𝑅௜௡௧ is the interfacial resistance 

between the tip apex and the sample surface and 𝑅௦௣௥ is the spreading resistance of the sample. 

We discuss the contribution of these three components and their temperature dependence below. 



  

6 
 

We note that although we can express our measurements in terms of 𝑅௑, one should be aware 

that the absolute values always depend on the tip-sample contact radius. Therefore, the ability 

to compare absolute measurements requires the assumption that the tip-sample contact radius 

is the same. This assumption is typically valid when the same probe is used on materials with 

similar elastic moduli, and the surface does not have sharp corrugations. It is in particular valid 

in the case of 2D materials with vertical corrugations on the order of few nm, and lateral 

dimensions of ca. 100 nm as shown elsewhere.[20a] With the tip and the sample being at very 

dissimilar temperatures, a natural question arises – whether the temperature of the sample 

temperature immediately under the tip-surface contact is significantly different from the bulk 

𝑇ௌ. Essentially, as shown elsewhere,[26] for the typical DSi probe and most solid state materials 

except low thermal conductivity polymers, the thermal resistance of the narrow nanoscale sharp 

Si tip is the dominating part of the 𝑅௑ resulting in the sample surface remaining at the cryogenic 

temperature providing a basis for the cryo-SThM. At the same time, this local heating, which 

is dependent on the thermal resistance of the sample, requires correction in the measurement 

that we provide in the next section. 

Figure 1c and d shows a typical example of a high-resolution topography and 𝑅௑ cryo-

SThM images of a few atomic layers exfoliated graphene on 280 nm SiO2/ Si  substrate. Both 

images were acquired simultaneously. Exfoliated graphene forms detached areas in the shape 

of ripples and bubbles[27] as can be seen in the topography image. It is interesting that the 𝑅௑ of 

graphene bubbles can be higher or lower than the one of attached areas, depending on their 

surface area (see Supporting Information note 9 for further details). Moreover, a ring of 𝑅௑ 

appears around the perimeter of each bubble, that is likely related to ballistic contribution to the 

heat transport in the suspended graphene areas as previously observed in suspended graphene 

systems.[20a, 28] At the same time, 𝑅௑  of a center of a “bubble” area has two components 

connected in series that have opposite dependences on the “bubble” size. The in-plane sheet 
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resistance that will increase logarithmically with the “bubble” effective diameter[29] and the 

peripheral resistance inversely proportional to the perimeter of the “bubble” and therefore 

decreasing with the increase of the bubble size. With the stronger dependence of the inverse 

power law of peripheral resistance dominating the behaviour, the central area of sufficiently 

large bubbles show lower thermal resistance as seen in the Figure 1d. At RT, the above findings 

are barely visible. The difference in resolution has two possible origins: the relative change of 

graphene thermal transport between attached and detached areas and increase of the phonon 

mean free path (𝜆) at LT, or an increase of the thermal resistance of the DSi tip, which causes 

the graphene’s thermal conductivity to lie in the sensitive probe regime.[26]  

2.2 Graphene/MoS2 heterostructure: 

To investigate thermal transport at interfaces and in 2D materials, a single layer graphene/MoS2 

heterostructure on a SiO2/Si substrate was imaged using SThM at various sample temperatures 

ranging from 150 to 300 K . We have chosen graphene/MoS2 heterostructure due to its 

promising predicted thermoelectric properties and low 𝑘 SiO2  on Si substrate to avoid ballistic 

heat transport phenomena related to the substrate. An example of a 𝑅௑  image of the 

heterostructure at 𝑇ௌ ൌ 220K is shown in Figure 2a. The sample has areas of bare SiO2/Si 

(SOS), graphene on SiO2 (GS), MoS2 on SiO2 (MS) and MoS2 on top of GS (MGS). The 

contrast in the 𝑅௑ image demonstrates the following trend from low to high thermal resistance 

areas: 𝑅௑ሺୋୗሻ ൏ 𝑅௑ሺௌைௌሻ ൏ 𝑅௑ሺெீௌሻ ൏ 𝑅௑ሺெௌሻ . Interestingly, MoS2 increases the thermal 

resistance of the underlying graphene. 

Before analysing the temperature response of the various areas, an interesting result can 

already be demonstrated. As expected, the high heat conductance of graphene lowers the 𝑅௑ 

compared to the SOS substrate. Interestingly, MoS2 whose thermal conductivity on SiO2 has 

been reported to be around 55 WmିଵKିଵ,[11a, 17] increases the 𝑅௑ of SiO2. One would expect 

from the MoS2 to lower the 𝑅௑ compare to SiO2 as in the case of graphene. This is because in 
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addition to the layer thermal conductivity, the interfacial thermal resistance plays a role in the 

thermal transport.[20b] Looking at values reported in the literature for the interfacial resistance 

between MoS2 or graphene and SiO2, we understand the crucial impact of interfaces on 

nanoscale thermal transport. The interface MoS2/SiO2 has values reported between 4 ൈ 10ି଼ 

to 2.27 ൈ 10ି଺ mଶKWିଵ  [11a, 30] orders of magnitude higher than graphene/SiO2 interface 

resistance with values from 5.6 ൈ 10ିଽ  to 2 ൈ 10ି଼mଶKWିଵ [18a, 31]. In the following, we 

develop a model involving both thermal conductivity and interfacial thermal resistance, 

therefore including both in-plane and cross-plane transport to provide a more precise picture. 

The average 𝑅௑ of the different areas was extracted from the corresponding images and 

are plotted in Figure 2d. All areas including SOS have a similar decreasing trend with increasing 

temperature. Also the absolute differences of 𝑅௑ሺீெௌሻ and 𝑅௑ሺெௌሻ  with 𝑅௑ሺୋୗሻ  increase with 

decreasing temperature. In other words, areas with MoS2 increase their 𝑅௑ at lower temperature 

at a higher rate than areas without MoS2. Therefore, the thermal contrast between the two areas 

increases, while lowering the temperature. An anomalous point for 𝑅௑  is observed at 𝑇ௌ ൌ

190 K  for all areas, which we believe originates from the heat transit thermal phenomena in 

the silicon tip (see Supporting Information note 2 and 6 for thermal transport in the DSi tip).  

Let us first comment on the 𝑅௑ measured on the SOS. The SiO2 thickness grown on Si 

wafer is larger than the tip diameter, which we estimated to be at maximum 60 nm  (see 

Supporting Information note 5). Therefore, the contribution of the underlying Si in the 

measured 𝑅௑  will be marginal. According to our calculations, the measured 𝑅௑  will be 

approximately 95% of the bulk SiO2 (see Supporting Information note 3). As the SiO2 thermal 

conductivity 𝑘 is relatively low[32] and its 𝜆 is small[33] compared to the size of the contact, we 

can model the system by assuming bulk diffusive heat transfer within the oxide. Taking into 

account all the above, SiO2 provides a reliable test-bed and can serve as a reliable reference 

sample for the cryo-SThM measurements. 
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The spreading resistance 𝑅௦௣௥ in a bulk system is inversely proportional to 𝑘 (𝑅௦௣௥ ൌ

1 2𝑘𝑑଴⁄ ). We can thus plot according to Eq.2, 𝑅௑ௌ௜ைଶሺ𝑇ሻ ൌ 𝑅௧௜௣ ൅ 𝑅௜௡௧ ൅ 1 2𝑘ௌ௜ைଶሺ𝑇ሻ𝑑଴⁄  

using temperature dependent thermal conductivity values[32] and 𝑅௧௜௣ ൅ 𝑅௜௡௧  as a fitting 

parameter. Comparison between experimental data and this model is presented in Figure 2c and 

shows that the thermal resistance variation with temperature measured in the experiment is well 

reproduced. This highlights and demonstrates the ability of cryo-SThM to measure 

quantitatively meaningful quantities from RT to LT. 

From the above model, 𝑅௧௜௣ ൅ 𝑅௜௡௧  increases from 1.1  to 1.5 ൈ 10଻ KWିଵ  with 

decreasing temperature (see Supporting Information, Figure SI2). Such values are higher than 

simple models for conical tip, giving a temperature dependent 𝑅௧௜௣  varying 0.7 െ 1 ൈ

10଻ KWିଵ and RT literature values of Si/SiO2 𝑅௜௡௧.[34] This difference is not surprising, since 

effects of multi-asperity tip-surface contact, polymer residues due to the exfoliation process and 

native SiO2 on the tip would significantly increase 𝑅௧௜௣ ൅ 𝑅௜௡௧ . We performed similar 

measurements on Si which, in contrast to SiO2, has high 𝑘 and long 𝜆, giving contradictory 

results in comparison to measurements on bulk samples reported in the literature.[35] We believe 

that this behaviour originates from the ballistic heat transport contribution to the different 

components forming 𝑅௑  (see Supporting Information note 6). This also proves that the DSi 

probe is more sensitive to the sample thermal properties of low 𝑘 materials, while for high 𝑘 

materials the 𝑅௜௡௧ and geometrical characteristics of the tip-sample contact play an increased 

role, especially at lower temperatures.  

As mentioned above, here we provide approximate corrections for the local heating of 

the sample due to the excess heat of the tip, which is transferred from the probe, through the 

2D structures to the SiO2.  The relative SThM signal output “jump” on the contact with the 

sample is expected to be the same regardless of the probe excess temperature. Although, if the 

sample is locally heated by the tip, the thermal transport properties of the tip-sample contact 
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will change resulting in a different SThM response. Indeed, 𝑅௑ vs 𝑇ௌ curves for probe heater 

temperature 𝑇௛ଵ ൌ 350 K are shifted downwards with respect to the ones for 𝑇௛ଶ ൌ 450 K (see 

Figure 2c). The tip-sample contact temperature (𝑇ௌି௖௢௡௧) should be used in Eq.1 instead of 𝑇ௌ 

in the form of 𝑇ௌି௖௢௡௧ ൌ 𝛼𝑇ௌ ൅ ሺ1 െ 𝛼ሻ𝑇௛ with 𝛼 being the local heating factor. For the case 

of SOS and for 𝑎 ൌ 0.65 the two curves match as shown in inset of Figure 2b.  By applying the 

same correction for the different 2D structures on SiO2, 0.73, 0.88, 0.88 were found for GS, 

MS and MGS areas, respectively (see Supporting Information Figure SI9). This indicates that 

apart from the cross-plane heat transport from the hot tip to the SiO2 substrate, SThM also 

probes the in-plane transport in the 2D material, which depends on their 𝑘  (see schematic 

representation Figure 2b). 

The sample local heating arises from poor heat conduction in the sample. As heat flows 

through the material, it builds-up and creates a local temperature rise. The latter is linked to the 

sample ability to dissipate heat. This dissipation ability can be described by the sample heat 

conductance often confused with sample conductivity, as described by Wu et al.[36] We link the 

higher sample heating observed on the SOS and on the GS compared to the ones on MS and 

MGS by the different thermal coupling between the 2D materials and the substrate. The 

graphene/SiO2 interface thermal resistivity is lower than MoS2/SiO2. Thus when the probe 

contacts the graphene, SiO2 has the larger contribution to the 𝑅௑ compared to when the probe 

is in contact with the MoS2. With graphene, more heat is exchanged with the substrate, which 

therefore heats up locally. On the contrary, less heat flows from the MoS2 to the SiO2 and the 

temperature rise of the substrate is therefore smaller. 

As mentioned above, 𝑅௑ of the different areas of the sample is linked to the substrate 

thermal properties. To obtain a better insight into the thermal transport properties of the 2D 

structures, we use a diffusive transport model for 𝑅௦௣௥ of a layer on substrate[37] which already 

has been shown to be applicable for graphene on SiO2.
[20b, 29, 38] This model transforms the 
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directional-dependent thermal conductivities of the layer to an effective isotropic thermal 

conductivity of the layer with thickness larger than the real thickness of the material (See 

Methods and Supporting Information note 4). By combining these with the Eq. 2, we obtain the 

effective isotropic thermal conductivities (𝑘௘௙௙ ) for particular sample temperatures of the 

different 2D structures plotted in Figure 3a.  

The effective thermal conductivity of graphene (𝑘௘௙௙ሺீሻ) increases with temperature in 

the range of 150 െ  300 K, in good agreement with previous studies.[18a, 18c, 39] Depending on 

the sample temperature, the effective thermal conductivity of graphene is suppressed by 6-12 

times, by the addition of the top layer of MoS2.  On the other hand, MoS2 has a much lower 

effective thermal conductivity (𝑘௘௙௙ሺெሻ) than graphene with similar behavior for the whole 

temperature range of the experiment. We believe that non-monotonic dependence of the 𝑘௘௙௙ 

for MoS2 and graphene/MoS2 heterostructure on 𝑇ௌ at low temperature is related to the heat 

transit thermal phenomena in the silicon tip. The absolute effective thermal conductivity 

difference 𝛥𝑘௘௙௙ ൌ 𝑘௘௙௙ሺீሻ െ 𝑘௘௙௙ሺீெሻ , and 𝛥𝑘௘௙௙ ൌ 𝑘௘௙௙ሺீெሻ െ 𝑘௘௙௙ሺெሻ   decreases for the 

lower temperature regime, which explains the higher thermal image resolution between the 

corresponding areas at lower temperatures.  

Using the same diffusive model we calculate the graphene/MoS2 boundary thermal 

resistivity (𝑟௜௡௧ሺீெሻ), which to the best of our knowledge has not been experimentally reported 

to date, despite its strong impact on applications of 2D materials. The calculated 𝑟௜௡௧ሺீெሻ (see 

Figure 3c) increases with decreasing temperature. Values observed with molecular dynamics 

(MD) simulations show a similar trend, but with notably higher values.[40] Our values lie in 

between the values observed for  Graphene/hBN and MoS2/hBN [41] vdW heterostructures and 

higher than ones reported for graphene on diffrerent substrates[42].  Furthermore, 𝑟௜௡௧ሺீெሻ is 

lower than the SiO2 /MoS2 interface thermal resistivity of ref. [30a], indicating that MoS2 is better 

attached on graphene than on SiO2, which is also supported by our Ultrasonic Force Microscopy 



  

12 
 

(UFM) nanomechanical characterisation  of the these heterostructures (see Supporting 

Information note 7). 

Before proceeding further, we comment on the limitations of the above diffusive model, 

which as previously reported,[20b] can overestimate or underestimate the calculated 𝑅௦௣௥, due to 

the nanoscale tip-sample contact size. More specifically, the reported thermal conductivities 

and interface thermal resistivities that we use are values for microscopic samples, whereas at 

the nanoscale, size effects are important and expected to add uncertainties in the calculated 

values. Furthermore, in all calculations, we use the temperature of the sample measured 

macroscopically during the experiment. In reality for lower conductivity samples, as we saw 

for the case of SiO2, the local sample temperature under the tip could be somewhat higher than 

the macroscopic one. This assumption is expected to add uncertainties to the calculated 

quantities. For example, we obtain 𝑅௧௜௣ from measurements on the SiO2 area and we will use 

this value for the calculation of 𝑘௘௙௙  of the 2D materials areas for each temperature, thus 

assuming that all local temperatures are the same for all areas. Since different regions have 

different thermal conductances, the local heating caused by the tip will be different. However, 

as shown above, the local heating effect is highest mostly on the SiO2. Uncertainties for the 

other regions are notably smaller and are included in the estimation of 𝑅௧௜௣ as an upper bound 

(see methods).  

To obtain better insight into the suppression of the thermal conductance of GS with the 

addition of a top layer of MoS2, we used density functional theory (DFT) to find the ground 

state geometry of graphene and MoS2 unit cells, in agreement with the calculated lattice 

constants in the literature.[13] In the case of graphene/MoS2 heterostructures, we find a 1% lattice 

mismatch. We use the harmonic approximation[43] to calculate forces on each atom in order to 

obtain a dynamical matrix and combine it with the Gollum Green’s function method to calculate 

the transmission coefficient 𝑇௣௛ሺħ𝜔ሻ of phonons with energy ħ𝜔 traversing from the tip to the 
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substrate.[43] The thermal conductance due to phonons is then obtained from 𝑇௣௛ሺħ𝜔ሻ  using a 

Landauer-like formula (see methods). 

Figure 4a shows the cross-plane phonon transmission coefficient through 

graphene/MoS2 vdW heterostructures (yellow line) and for Bernal stacked bilayer graphene 

(blue line) for comparison. Clearly, the amplitude of 𝑇௣௛is much higher in graphene/graphene 

compared to graphene/MoS2. In addition, due to the lower Debye frequency in MoS2, all modes 

with energies higher than ~ 70 meV are filtered. These leads to a significantly lower thermal 

conductance in graphene/MoS2 heterostructures by ~3 orders of magnitude at RT (Figure 4b), 

in agreement with our measurements (Figure 3a). This is attributed to a large mismatch between 

the masses of Mo, S and C atoms in graphene/MoS2, compared with the all carbon structure in 

bilayer graphene. 

Due to a weak phonon coupling between top and bottom graphene layers, the 

transmission coefficient and consequently the thermal conductance is reduced by a factor of ca. 

5 for bilayer graphene (blue curve in Figure 4 c,d) compared to in-plane monolayer graphene 

(green curve in Figure 4 c,d). Similarly, 𝑇௣௛ and 𝜅௣௛ is reduced from in-plane monolayer MoS2 

(red curve in Figure 4 c,d) to bilayer MoS2 (purple curve in Figure 4 c,d). However, a highest 

suppression of heat transport (approx. 3 orders of magnitude) is obtained in graphene/MoS2 

(Figure 4 a,b). This demonstrates that the mismatch between the masses of atoms in 

graphene/MoS2 has a larger contribution ( ൐ 80% ) to the overall thermal conductance 

suppression compared to phonon transport filtering in the vdW distance between the layers. 

Finally, we compare the experimental effective thermal conductivities with the 

calculated ones and literature experimental values. Starting from graphene and MoS2, we find 

that their effective thermal conductivity ratio 𝑘௘௙௙ሺீሻ 𝑘௘௙௙ሺெሻ⁄  observed in the experiment is 

about 10 in a good agreement with the calculations. These ratios are comparable with available 

literature values for supported graphene and MoS2 at RT, since there are no reported 
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experimental values for a single layer of supported MoS2 at LT. More specifically, 𝑘 for SiO2 

supported MoS2 has been reported between 50 െ  60 WmିଵKିଵ  [11a, 17]  and for graphene 

around 600 WmିଵKିଵ  [18a, 18c] which indeed gives similar ratios. The reduction of thermal 

conductance of graphene with the addition of a MoS2 layer observed in the theory is much 

higher than the experiment. Furthermore, in contrast to the experimental result, the theoretical 

calculations predict a higher thermal conductance of MoS2 compared to that of the 

graphene/MoS2 heterostructure. This counter-intuitive behavior is associated with the heat 

dissipation through in-plane graphene, which acts as an extra heat transfer channel compared 

to the MoS2 itself. This is also supported by the fact that the heterostructure heats locally less 

than the MoS2 as demonstrated above. This behaviour is similar to the one observed for 

increased thermal conductance with the number of graphene layers on SiO2.[20a, 20b, 44] 

 

3. Conclusions 

In conclusion, an expansion of the nanoscale thermal transport measurements in the SThM 

to the cryogenic temperatures of the sample was reported. The increased thermal resolution of 

SThM at temperatures as low as 150K provides a better insight into the thermal transport 

mechanisms of 2D materials in the nanoscale. Furthermore, we demonstrated that through high 

thermal and lateral resolution imaging at cryogenic temperatures, we are able to directly observe 

the contribution of ballistic transport at the edge of the detached areas of exfoliated graphene, 

which leads to a size dependent thermal conductance. We measured for the first time the thermal 

conductance of 2D structures including graphene, MoS2 and a graphene/MoS2 heterostructure, 

with sub-30nm resolution at various sample temperatures ranging from 150 െ 300K . In 

addition, we extracted the interface thermal resistivity between graphene and MoS2. We 

demonstrate that the addition of a MoS2 layer on top of graphene reduces the thermal 

conductance by one order of magnitude. This suppression originates from phonon transport 

filtering due to the weak vdW coupling between the layers and the vibrational mismatch 
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between MoS2 and graphene layers; our results demonstrate that the latter has the larger effect. 

The study of thermal transport phenomena with sub-30nm resolution in wide temperature range 

offers the possibility of understanding heat transport phenomena in 2D-nanostructures as we 

mention in the conclusions, and lead to a better engineering and implementation of such 

materials at devices.  

 

 

4. Experimental Section 

SThM: We use commercially available (Anasys Instruments, AN-300) doped silicon probes 

(DSi), which have a geometry similar to the standard micromachined Si AFM probes except 

that the cantilever is formed by two highly doped, and hence, highly electrically conductive, 

legs. The probe heater that also serves as a temperature sensor is formed by a moderately doped 

area at the end of the cantilever with a probing sharp tip placed immediately under the heater. 

With the DC or AC voltage applied to the probe, the heater can be heated to the desired 

temperature  (𝑇௛) usually few tens of K above the temperature of the microscope, with the latter 

defining the temperature of the cantilever base (𝑇ெ). The probe forms one leg of a balanced 

Wheatstone bridge operating at 91 𝑘Hz, with the bridge output amplified via a low noise 

instrumental amplifier, producing the raw SThM signal used for the thermal images and heat 

transport measurements. This signal is proportional to the probe electrical resistance, and hence 

is a measure of the heater temperature, with sensitivity down to 5 ൈ  10ିଷ K. The calibration 

of the SThM signal and its electrical resistance versus temperature is described elsewhere.[26] 

When the tip is in contact with a sample, the temperature of the heater changes depending on 

the heat transfer between the tip and the surface.  

 

Cryo-SThM measurements: All experiments were performed in high vacuum (5 ൈ 10ି଼ െ 1 ൈ

10ି଺Torr). By adding LN2 in the external Dewar, the copper braid, the sample holder and, 
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subsequently, the sample attached to the sample holder with a low temperature compatible 

adhesive began to cool down. As the braid and sample holder temperatures decrease, they act 

as cryo-pump and any residual moisture or contamination will condensate on cold surfaces. To 

avoid this effect on the sample, it is kept at elevated temperature of about 300 K for 1 hour by 

the dedicated heater, while the braid is cooling down. During the whole experiment, the sample 

and the microscope temperatures 𝑇ௌ ,𝑇ெ are monitored. The lowest temperature that the sample 

reaches in such setup is typically 150 K. This temperature can be increased up to the room 

temperature (300 K) and controlled through integrated resistive heaters on the sample holder. 

For each temperature we record a thermal image approach and retract curves of SThM signal. 

 

Graphene-MoS2 heterostructure Fabrication: The graphene-MoS2 heterostructure was 

fabricated by a pick-and-place method that allows to pick-up an atomically-thin flake from a 

substrate with the subsequent transfer on another substrate.[45] Graphene and MoS2 were 

exfoliated by standard scotch tape method on a SiO2 (280 nm on Si wafer) substrate and the 

atomically-thin flakes were identified by optical microscopy. The MoS2 monolayer was then 

picked-up and transferred on top of the graphene flake, ensuring a clean interface between the 

two materials (see Supporting Information note 7 for more information). In addition, few 

graphene flakes were exfoliated on a second SiO2 substrate. 

 

Diffusive model for spreading resistance: The spreading resistance of a heat source of diameter 

𝑑଴ on a layer with effective thickness 𝑡௘௙௙ on a substrate is given by: 

𝑅௦௣௥ ൌ ଵ

గ௞೐೑೑ௗబ ଶ⁄
׬ ൥

ଵା௄௘௫௣൬ିଶ఍
௧೐೑೑

ௗబ ଶ⁄൘ ൰

ଵି௄௘௫௣൬ିଶ఍
௧೐೑೑

ௗబ ଶ⁄൘ ൰
൩ 𝐽ଵሺ𝜁ሻ sin 𝜁 ௗ఍

఍మ

ஶ
଴ ,                                                      (3) 

Where  𝐽ଵሺ𝜁ሻ is the Bessel function,  𝛫 ൌ ൫1 െ 𝑘௦௨௕ 𝑘௘௙௙⁄ ൯ ൫1 ൅ 𝑘௦௨௕ 𝑘௘௙௙⁄ ൯ൗ  with 𝑘௦௨௕ being 

the thermal conductivity of the substrate  and 𝑘௘௙௙ the effective thermal conductivity of the 2D 
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material of effective thickness 𝑡௘௙௙ ൌ 𝑛𝑡 ൅ 𝑟௜௡௧𝑘௘௙௙  with 𝑡  being the thickness of the 2D 

material, 𝑛 the number of layers,  and 𝑟௜௡௧ the thermal interface resistivity between the substrate 

and the 2D material.  

The 𝑅௦௣௥  is substituted to Eq. 2 of the main text and we get the 𝑘௘௙௙  of graphene 

(𝑘௘௙௙ሺீሻ), MoS2 (𝑘௘௙௙ሺெሻ) and GM heterostructure (𝑘௘௙௙ሺீெሻ). As 𝑘௦௨௕we use the temperature 

dependent thermal conductivity of SiO2 (𝑘ௌ௜ைଶ).[32]  𝑅௜௡௧  between the DSi tip covered with 

native SiO2 and the 2D material can be defined as 𝑅௜௡௧ሺௌଶ஽ሻ ൌ 𝑟௜௡௧ሺௌଶ஽ሻ ሺ𝜋 𝑑଴
ଶ 4⁄ ሻ⁄ [20d, 25] with 

𝑟௜௡௧ሺௌଶ஽ሻ  being the thermal contact resistivity of SiO2/graphene ( 𝑟௜௡௧ሺீௌሻ ) and SiO2/MoS2 

(𝑟௜௡௧ሺெௌሻ) from ref [30a].  For the graphene and MoS2 single layers we directly apply this model 

while for the graphene/MoS2 heterostructure, we assume an isotropic layer consisting of 

graphene and MoS2 with 𝑡௘௙௙ ൌ 𝑡ெ ൅ 𝑡ீ ൅ 𝑟௜௡௧ሺீௌሻ𝑘௘௙௙ሺீெሻ  and 𝑘௘௙௙ ൌ 𝑘௘௙௙ሺீெሻ . We 

estimate an upper bound of 𝑅௧௜௣ from the thermal contact resistance measured on the SiO2 (𝑅௑ௌ), 

by using Eq. 2  with  𝑅௦௣௥ calculated from Eq.3 for an isotropic SiO2 layer on Si with 𝑘௘௙௙ 

being the thermal conductivity of bulk SiO2, 𝑡௘௙௙ ൌ 280nm and by setting 𝑅௜௡௧ between the 

SiO2 sample and SiO2 covered DS tip to zero (𝑅௜௡௧ሺௌ௧௜௣ሻ ൌ 0).  

For the calculation of the graphene/MoS2 interface thermal resistivity the 

graphene/MoS2 heterostructure is modeled as a MoS2 isotropic layer on top of SiO2 with an 

effective thickness 𝑡ሺ௘௙௙ିீெሻ ൌ 𝑡ெ ൅  𝑟௜௡௧ሺ௘௙௙ିீெሻ𝑘௘௙௙ሺெሻ where 𝑟௜௡௧ሺ௘௙௙ିீெሻ is the effective 

thermal resistivity of the MoS2 and SiO2. It includes 𝑘௘௙௙ሺெሻ and the interfaces resistance of 

graphene/SiO2 and graphene/MoS2, in the form 𝑟௜௡௧ሺ௘௙௙ିெீሻ ൌ
௧೐೑೑ሺಸሻ

௞೐೑೑ሺீሻ
൅ 𝑟௜௡௧ሺீெሻ. As 𝑘௘௙௙ሺெሻ 

and 𝑘௘௙௙ሺீሻ we use the values obtained for MoS2 and graphene single layers respectively. All 

temperature depended values from literature are according to the macroscopic sample 

temperature. 
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Computational Methods - Geometry optimization: The geometry of each structure was relaxed 

to the force tolerance of 10 meV/Å using the SIESTA[46]  implementation of density functional 

theory (DFT), with a double-ζ polarized basis set (DZP) and the Generalized Gradient 

Approximation (GGA) functional with Perdew-Burke-Ernzerhof (PBE) parameterization. A 

real-space grid was defined with an equivalent energy cut-off of 250 Ry.  

 

Computational Methods - Thermal transport: Following the method described in [43, 47] a set of 

xyz coordinates were generated by displacing each atom from the relaxed xyz geometry in the 

positive and negative x, y and z directions with 𝛿𝑞′ ൌ 0.01Å. The forces 𝐹௜
௤ ൌ ሺ𝐹௜

௫, 𝐹௜
௬, 𝐹௜

௭ሻ in 

three directions 𝑞௜ ൌ ሺ𝑥௜, 𝑦௜, 𝑧௜ሻ on each atom were then calculated and used to construct the 

dynamical matrix 𝐷௜௝ ൌ 𝐾௜௝
௤௤ᇱ/𝑀௜௝  where the mass matrix 𝑀 ൌ ඥ𝑀௜𝑀௝  and 𝐾௜௝

௤௤ᇱ ൌ

ൣ𝐹௜
௤൫𝛿𝑞௝

ᇱ ൯ െ 𝐹௝
௤൫െ𝛿𝑞௝

ᇱ ൯൧/2𝛿𝑞௝
ᇱ  for 𝑖 ് 𝑗 obtained from finite differences. To satisfy momentum 

conservation, 𝐾  for 𝑖 ൌ 𝑗 (diagonal terms) is calculated from 𝐾௜௜ ൌ െ ∑ 𝐾௜௝௜ஷ௝ . The phonon 

transmission Tሺ𝜔ሻ  then can be calculated from the relation Tሺ𝜔ሻ ൌ

𝑇𝑟𝑎𝑐𝑒ሺΓ௅ ሺ𝜔ሻ𝐺ோ ሺ𝜔ሻΓோ ሺ𝜔ሻ𝐺ோறሺ𝜔ሻሻ  where Γ௅,ோሺ𝜔ሻ ൌ 𝑖ሺ∑௅,ோሺ𝜔ሻ െ ∑௅,ோ
ற ሺ𝜔ሻሻ  describes the 

level broadening due to the coupling to the left L and right R electrodes, ∑௅,ோሺ𝜔ሻ are the 

retarded self-frequencies associated with this coupling and 𝐺ோ ൌ ሺ𝜔ଶ𝐼 െ D െ ∑௅ െ ∑ோ ሻିଵ is 

the retarded Green’s function, where D and I are the dynamical and the unit matrices, 

respectively. The phonon thermal conductance 𝜅௣௛  at temperature 𝑇 is then calculated from 

𝜅௣௛ሺ𝑇ሻ ൌ ଵ

ଶగ
׬ ℏ𝜔Tሺ𝜔ሻ డ௙ಳಶሺఠ,்ሻ

డ்
𝑑𝜔

ஶ
଴  where 𝑓஻ாሺ𝜔, 𝑇ሻ ൌ ሺ𝑒ℏఠ/௞ಳ் െ 1ሻିଵ  is Bose–Einstein 

distribution function and ℏ  is reduced Planck’s constant and 𝑘஻ ൌ 8.6 ൈ 10ିହ 𝑒𝑉/𝐾  is 

Boltzmann’s constant.  
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Supporting Information is available from the Wiley Online Library or from the author. 
 

Acknowledgements 
C.E., J.S. and O.K. contributed equally to the paper. Authors acknowledge helpful scientific 
support and discussion of B. Robinson, S. Gomez, A. Robson and V. Tsepelin. O.K., C.E. and 
J.S. acknowledge the support of the EU grant QUANTIHEAT (project # 604668). H.S. and S.S. 
acknowledge the Leverhulme Trust (Leverhulme Early Career Fellowships no. ECF-2017-186 
and ECF-2018-375) for funding. This work was supported by EPSRC grants EP/K023373/1, 
EP/G015570/1, EP/P027156/1, EP/M013243/1, EP/N03337X/1, EP/N017188/1 and the 
ECH2020 FET Open project 767187 “QuIET” and the EU project Bac-to-Fuel. M. M. 
acknowledges support of Lancaster University FST grant and A.J.M.-M. acknowledges 
financial support from the European Commission (Marie Sklodowska-Curie Individual 
Fellowships, grant ID 791536). T. M. and AJM.-M. acknowledge financial support by the 
European Union (grant agreement No. 785219 Graphene Flagship).  
 

Received: ((will be filled in by the editorial staff)) 
Revised: ((will be filled in by the editorial staff)) 

Published online: ((will be filled in by the editorial staff)) 
 

References 

 



  

20 
 

 

Figure 1. (a) Schematic representation of the high vacuum cryo-SThM with probe tip in contact 

with the sample. The sample holder is connected with a copper braid to a LN2 Dewar. 𝑇ௌ, 𝑇ெ 

and 𝑇௛ are the sample, probe base and heater temperatures, respectively. (b) Approach (blue) 

and retract (red) curves for thermal response acquired on 280nm SiO2 on Si sample (𝑇௛ ൌ

350K, 𝑇ௌ ൌ 155K). Inset: The relative signal “jump” 
௱௏

௏
ൌ ௏೙೎ି௏೎

௏೙೎
 for SiO2 on Si substrate at 

two different sample temperatures. (c-e) Topography (c) and thermal resistance (d) images of 

few layers graphene on SiO2 simultaneously acquired at 𝑇ௌ ൌ 210K. A zoom of the thermal 

resistance image is shown (e) as well. 
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Figure 2. (a) 𝑅௑ image acquired at 𝑇ௌ ൌ  220 K with the different areas of interest. Note that 

this image is taken with a probe of different contact radius than the one in Figure 1d and e (b) 

Schematic representation of the heat transport from the tip to the substrate through the 2D 

structures. (c)  𝑅௑ of DSi tip in contact with SOS sample at various sample temperatures with 

the tip heater temperature at 350K (red) and 450K (blue) (dashed line is the fitted curve). Inset: 

𝑅௑ versus tip-sample contact temperature after applying the correction to temperature due to 

local heating by the tip. (d) 𝑅௑ of the different areas as extracted from the images for sample 

temperature range of 150 െ 300K. 

 

 

Figure 3. (a) Effective thermal conductivity 𝑘௘௙௙ as calculated from the diffusive model (see 

Methods) for the different areas of the image as a function of sample temperature. (b) 

graphene/MoS2 Interface thermal resistivity. 
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Figure 4. (a,b) Thermal transport through cross-plane graphene and graphene/MoS2 

heterostructures. (a) Transmission coefficient for phonons with energies ħω passing through 

graphene/graphene and graphene/MoS2 VdW junctions. (b) Phonon thermal conductance of 

graphene/graphene and graphene/MoS2. (c,d) In-plane and cross-plane thermal transport 

through graphene, MoS2, graphene/graphene, MoS2/ MoS2 (c) Transmission coefficient for 

phonons with energies ħω and (d) Phonon thermal conductance. 
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Nanothermal properties of 2D nanostructures with sub-30nm resolution from 150K to 
room temperature are probed by Scanning Thermal Microscopy. By engineering the thermal 
conductance, either with the use of thermal anisotropy of the in-plane and cross-plane thermal 
conductivities or through ballistic transport phenomena we can notably decrease the thermal 
conductance which is expected to lead to more efficient thermoelectric devices. 
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1. Thermal resistance model for cryogenic measurements 

 

When the probe is out-of-contact with the sample, the power applied to the heater gives rise 

to an excess temperature,𝛥𝑇, with respect the probe base temperature, 𝑇ெ, that relates to the 

SThM output voltage by a calibration factor 𝑏, 𝛥𝑇 ൌ 𝑏𝑉.  In vacuum, the only heat transfer 

channel is through the probe and cantilever themselves and 𝑅௣ is their thermal resistance.  

When the probe is brought into contact with a sample, a new heat transfer channel is opened 

going from the heater to the sample heat sink with thermal resistance given by 𝑅௫.  

The heat generated in the probe heater, 𝑄௛,  for the just in- and out-of-contact case is given by  

𝑄௛ ൌ ሺ𝑇௛
௡௖ െ 𝑇ெሻ 𝑅௣⁄ ,  (S1) 

𝑄௛ ൌ ሺ𝑇௛
௖ െ 𝑇ெሻ 𝑅௣⁄ ൅ ሺ𝑇௛

௖ െ 𝑇ௌሻ 𝑅௑⁄ ,           (S2) 



respectively. Where 𝑇௛
௖ and 𝑇௛

௡௖are the temperatures of the heater for the in- and out-of-contact 

case respectively, and 𝑇ௌ is the sample temperature. For both in- and out-of-contact cases, we 

are not measuring absolute temperatures but only excess temperatures with respect to the 

temperature at which the bridge balance was realized which is the same as 𝑇ெ. Therefore, 

 𝛥𝑇௖,௡௖ ൌ  𝑇௛
௖,௡௖ െ 𝑇ெ ൌ 𝑏𝑉௖,௡௖.   (S3) 

By bringing the probe in and out of contact while its temperature is recorded and using eq. S1, 

S2 and S3, we obtain the normalized temperature change between out and in contact: 

௱ ೙்೎ି௱ ೎்

௱ ೙்೎
ൌ ௏೙೎ି௏೎

௏೙೎
ൌ ೓்

೙೎ି ೓்
೎

೓்
೎,೙೎ି்ಾ

ൌ ଵ

ோ೛ାோ೉
ቀ𝑅௣ ൅ ்ಾି்ೄ

ொ೓
ቁ.  (S4) 

 

2. Heat transport in the doped Si (DSi) SThM probe tip 
 

2.1 Temperature distribution along the tip 
 

For the modelling of the temperature distribution in the doped silicon conical tip, we assume: 

a truncated conical tip of known apex radius, 𝑟଴, half-angle and length 𝑙௧, diffusive transport in 

the whole tip, Power 𝑄 flowing uniformly through the tip. The heat equation can be written in 

the case of 1D heat conduction as :  

𝑄 ൌ  െ𝑘𝐴ሺ𝑙ሻ ௗ்

ௗ௟
,  (S5) 

where 𝑄 is the rate of heat conduction, 𝑘 is the thermal conductivity of the material and 𝐴ሺ𝑙ሻ 

is the section of the cone of the at the position 𝑙 (see Figure S1a). 

From trigonometry, we have tan 𝛼 ൌ ௥బ

௟బ
ൌ ௥

௟ା௟బ
 and thus  𝐴ሺ𝑙ሻ ൌ 𝜋𝑟ଶ. 

In order to get the temperature distribution in the tip, we integrate the heat equation 

׬ 𝑑𝑇
்ሺ௟ሻ

்ୀ బ்
ൌ ׬ െ ொ

గ௞ሺ ሺ௟೟ି௟ሻ ୲ୟ୬ ఈା௥బሻమ 𝑑𝑙
௟

௟ୀ଴ .  (S6) 

This gives  

𝑇ሺ𝑙ሻ ൌ  𝑇଴ െ ொሺ௟ି௟೟ሻ

ሺ௟೟ ୲ୟ୬ ఈା௥బሻ గ௞ሺ ௟ ୲ୟ୬ ఈା௥బሻ
 ,  (S7) 

 



with 𝑇଴ being the temperature at the heater side. 

By defining 𝑄 from the heat flowing from the heater to the sample through the whole tip: 

𝑄 ൌ  
ሺ்೓ି்ೄሻ௥బగ௞ሺ ௟ ୲ୟ୬ ఈା௥బሻ

௟೟
,  (S8) 

we can plot the temperature distribution within the conical silicon tip (see sup FigureS1) for 

two sample temperatures. 

 

 

Figure S1. (a) Schematic representation of the tip. (b) Temperature distribution from the tip 

apex of the conical tip for 2 different sample temperatures. 

 

2.2 Thermal resistance of the DSi tip at variable sample temperatures 

 

We calculate the thermal resistance of the tip (𝑅௧௜௣) with the model derived by:[1] 

 𝑅௧௜௣ ൌ ଷ

଼

ଵ

୲ୟ୬ഇ
మ

𝑅௦,  (S9) 

where 𝑅௦ ൌ ଵ

௞

ସఒ

ଷగ

ଵ
ௗబ

ଶൗ
 . This model describes the tip as a cone of half-angle 𝜃 and apex 

diameter 𝑑଴ ൌ 60 nm.  We used temperature dependent values of silicon phonon mean free 

path. 



 

 

Figure S2. (a,b) Spreading resistance of SiO2 calculated by 𝑅௦௣௥ିௌ௜ைଶ ൌ 1 2𝑘𝑑଴⁄  (black). 

𝑅௧௜௣ ൅ 𝑅௜௡௧ obtained by fitting the experimental data to 𝑅௫ௌ௜ைଶሺ𝑇ሻ ൌ 𝑅௧௜௣ ൅ 𝑅௜௡௧ ൅ 𝑅௦௣௥ିௌ௜ைଶ 

(red). Thermal resistance of the tip as obtained from a ballistic thermal resistance by the model 

derived by [1]. All the above were calculated for the macroscopic temperature (a) measured 

during the experiment and the tip-sample contact temperature (b).  

 

2.3 Thermal radiation estimation 

 

An upper bound of the thermal radiation between the sample and the probe can be estimated 

by the Stefan-Boltzmann low of black body radiation given by 𝑃 ൌ 𝜎𝐴𝑇ସ, where 𝜎 is the 

Stefan-Boltzmann constant, 𝐴 is the radiating area and 𝑇 the temperature. By considering the 

surface of the probe (~1000 𝜇mଶ) and the maximum excess temperature (~450K) of the probe 

used in this experiment, the radiative power is found to be in the order of 10ିଵହ𝑊. On the 

other hand the power of the probe heater is of the order of 10ିଷ𝑊 and the power injected to 

the sample by the end of the tip is 1% of the heater power (see section SI1). Thus thermal 

radiation will be approximate 9 orders of magnitude lower that the heat flux from the tip apex 

to sample and can be neglected.   



3. Sample Temperature control  

 

During the whole experiment, the sample and the microscope temperatures 𝑇ௌ ,𝑇ெ are 

monitored by platinum resistance temperature detectors. The sample holder has integrated 

resistive heaters and is connected with a copper braid to a Liquid Nitrogen Dewar. Thus the 

temperature of the sample is determined by the thermal resistance of the copper braid which is 

connected to the liquid Nitrogen heat sink and the power dissipated by the heater. Once 

changing the power to the heater the system needs some time to reach equilibrium and stabilize 

the sample temperature. 

 

4. Thermal imaging speed and thermal drift  

 

The time per pixel of a thermal image should be larger than the thermal time constant of 

graphene and the response time of the probe. The characteristic times of the heat flow between 

the hot tip and the graphene sample is given by the thermal time constant of graphene sheet 

which is in the order of 0.1nS[2] with the the response time of the probe of 1ms .[3] ]. The time 

per pixel of the thermal images acquired in this study was 8-10ms making static heat transfer 

equations fully appropriate.” 

The sample temperature is possible to drift during thermal image recording and add 

uncertainties to our measurements. To avoid that we record approach- and retract-curves of the 

SThM signal at each sample temperature immediately after every image and we compare them 

with ones recorded prior the image and only if they are the same we use the data. 

 

 

 

 



5. Error analysis   

 

To extract the mean thermal resistance of an area, we calculate the mean thermal resistance 

value of the area out of the thermal resistance image. Furthermore, we calculate the Root mean 

squared error of the area (𝜎 ൌ ටଵ

ே
∑ ሺ𝑅௫

௜ െ 𝑅ത௫
ே
௡ୀଵ )) which is giving the error of the thermal 

resistance value. 

 

6. Thermal resistance of 280nm SiO2 layer on Si  
 

Thermal resistance of the SiO2 layer (𝑅௟௔௬௘௥) was calculated assuming isotropic layer of SiO2 

on Si with diffusive transport model for thermal spreading resistance of a layer on substrate [4] 

and 𝑅௕௨௟௞ from 𝑅௦௣௥ ൌ 1 2𝑘ௌ𝑑଴⁄  for bulk sample, using temperature dependant thermal 

conductivity values for Si [5] and SiO2 [6]. As the tip diameter (𝑑଴) increases the contribution of 

the Si on the measured resistance increases, thus the measured resistance decreases. For 𝑑଴ ൌ

60nm the SiO2 layer thermal resistance measured is 95% of the bulk thermal resistance. The 

ratio of SiO2 layer to SiO2 bulk thermal resistance is similar for different sample temperatures 

(see Figure S3). 

 



 
 

Figure S3. Ratio of Spreading resistance for 280nm SiO2 layer on Si wafer with bulk SiO2, 

versus tip diameter for different sample temperatures. 

 

7. Anisotropy of the thermal transport in the layered system 

The spreading resistance of a heat source of diameter 𝑑଴ on a layer with effective thickness 

𝑡௘௙௙ on a substrate is given by: 

𝑅௦௣௥ ൌ ଵ

గ௞೐೑೑ௗబ ଶ⁄
׬ ൥

ଵା௄௘௫௣൬ିଶ఍
௧೐೑೑

ௗబ ଶ⁄൘ ൰

ଵି௄௘௫௣൬ିଶ఍
௧೐೑೑

ௗబ ଶ⁄൘ ൰
൩ 𝐽ଵሺ𝜁ሻ sin 𝜁 ௗ఍

఍మ

ஶ
଴ ,                                                                  (S10) 

Where  𝐽ଵሺ𝜁ሻ is the Bessel function,  𝛫 ൌ ൫1 െ 𝑘௦௨௕ 𝑘௘௙௙⁄ ൯ ൫1 ൅ 𝑘௦௨௕ 𝑘௘௙௙⁄ ൯ൗ  with 𝑘௦௨௕ being 

the thermal conductivity of the substrate  and 𝑘௘௙௙ the effective thermal conductivity of the 2D 

material of effective thickness 𝑡௘௙௙ ൌ 𝑛𝑡 ൅ 𝑟௜௡௧𝑘௘௙௙ with 𝑡 being the thickness of the 2D 

material, 𝑛  the  number  of  layers,   and 𝑟௜௡௧ the thermal interface resistivity between the 

substrate and the 2D material.  

An orthotropic system with directional-dependent thermal conductivities can be transformed 

to effective isotropic thermal conductivitiy by setting: 𝑘௘௙௙ ൌ ඥ𝑘௖ሺ𝑛ሻ ൈ 𝑘௜ሺ𝑛ሻ and 𝑘௖,𝑘௜ being 

the cross-plane and in-plane thermal conductivity of the 2D material respectively, 𝑡௘௙௙ ൌ

𝑛𝑡ඥ𝑘௜ሺ𝑛ሻ 𝑘௖ሺ𝑛ሻ⁄ ൅ 𝑟௜௡௧𝑘௘௙௙ with 𝑡 being the thickness of the 2D material and 𝑟௜௡௧ the thermal 



interface resistivity between the substrate and the 2D material [7]. For a single layer of a 2D 

material 𝑘௖ is not defined and therefore we assume isotropic layer of 𝑘௘௙௙ ൌ 𝑘௖ ൌ 𝑘௜. 

 

8. Lateral Resolution of the thermal images in SThM 
 

We estimate the thermal lateral resolution from thermal resistance profiles with two signal 

levels corresponding to Graphene and Graphene/MoS2. As a resolution criterion, we use the 

10-90% of the lateral distance of this change.  We find lateral resolution varying from 23 െ

30nm. Thus the tip radius is between 46 and 60nm (see Figure S4).  

 

Figure S4. Thermal resistance profiles (left) obtained from the thermal image (right). With 

dotted lines is the 10 െ 90% (55, 60, 46 nm for profile 1, 2 and 3 respectively) of the lateral 

distance where thermal resistance changes between Graphene and Graphene/MoS2 signal level.  

  



9. Thermal Resistance Measurements on Si and thermal transport in the DSi  
 

We use a standard Si wafer and measure thermal contact resistance (𝑅௑) at temperatures 

varying from 150 െ 300K (see Figure S5a). 𝑅௑ of Si shows a sharp increase with temperature 

up to 180K followed by a shoulder up to 220K and then decreases up to room temperature 

(RT). In contrast to SiO2 (see main text), the measurements with 2 different probe temperatures 

(𝑇௛ ൌ 350K and 𝑇௛ ൌ 450K  for red and blue curve respectively) coincide, indicating that the 

hot tip doesn’t locally heat the sample as for SiO2.  

 

Figure S5. (a) 𝑅௑ of DSi tip in contact with Si at various sample temperatures with the tip 

heater temperature at 350K (red) and 450K (blue). (b) Theoretical  𝑅௑ calculated from 

Equation S11 for 𝜆௕௨௟௞ (red) and 𝜆௘௙௙ (black). (c) SThM response in high vacuum on etched 

Si with time exposed to air which is related with increased native oxide thickness.   

 



By using the thermal contact resistance relation 𝑅௑ௌ௜ሺ𝑇ሻ ൌ 𝑅௧௜௣ ൅ 𝑅௜௡௧ ൅ 1 2𝑘ௌ௜ሺ𝑇ሻ𝑑଴⁄  (see 

main text), with temperature dependent thermal conductivity values [5]  and using 𝑅௧௜௣ ൅ 𝑅௜௡௧ 

as a fitting parameter we are not able to reproduce the experimental trends. Si has a high 𝑘 and 

long 𝜆 comparable with the dimensions of the tip-sample contact and both increases while 

lowering the temperature between 150 െ 300K. Due to the comparable size of 𝜆  and tip-

sample contact ballistic heat transport phenomena should be taken in to account. To understand 

the origin of the observed trends we examine qualitatively the different contributions in the 𝑅௑ 

coming from 𝑅௜௡௧, 𝑅௦௣௥ and 𝑅௧௜௣. 

We first investigate the effect of the increased 𝜆 in the sample and the tip at low temperatures. 

The total thermal resistance of the silicon tip - Si surface contact, at perfect contact, in the 

diffusion-ballistic regime can be described with a good approximation by [8]: 

𝑅௫௖ ൌ ଵ

ଶ௞ௗబ
ଶൗ

ቀ1 ൅ ଼

ଷగ
𝐾௡ቁ,  (S11) 

Where 𝐾௡ ൌ ఒ
ௗబ

ଶൗ
 is the Knudsen number, 𝑑଴ is the diameter of the contact area, 𝑘 the thermal 

conductivity of the material. We apply this model for Si-Si contact with diameter of 𝑑଴ ൌ

60𝑛𝑚  and for temperature dependent values of 𝜆 [9] and 𝑘 [5] ) for bulk silicon. We find that 

𝑅௑ decreases with increased temperature due to the decrease of the 𝜆 (see red curve Figure S5 

b). This trend describes well our experimental results for the temperature range of 200 െ 300𝐾 

but not for lower temperatures.  

A second factor which could affect the 𝜆  and therefore 𝑅௑, is the geometry of the tip-sample 

contact and more specifically the geometry of the DSi tip. Due to the comparable size of 𝜆 and 

tip dimensions, the impinging phonons from inside the tip to the apex will have a limited 𝜆 due 

to the scattering at the boundaries, and 𝜆 is not expected to change significantly with the 

temperature as in the case of bulk Si. In addition, the temperature at a distance of the order of 

100 െ 200nm from the tip apex in to the tip will not vary significantly from the probe heater 



temperature since more than 90% of the temperature drops in distance on the order of three 

times the apex diameter [1]. 

 It has been shown that for the calculation of the in plane 𝑘 of silicon thin films [10] an 

effective mean free path, 𝜆௘௙௙, should be used and described by: 

𝜆௘௙௙ ൌ 𝜆௕௨௟௞ ቂ1 െ ଷሺଵି௣ሻ

ଶఋ
׬ ቀ ଵ

௧య െ ଵ

௧ఱቁ ൈ ଵିୣ୶୮ሺିఋ௧ሻ

ଵି௣ୣ୶୮ሺିఋ௧ሻ
𝑑𝑡

ஶ
ଵ ቃ,   (S12)    

where 𝛿 ൌ ሺ4 3⁄ ሻ 𝑙 𝜆௕௨௟௞⁄  with 𝑙 the thickness of the Si film, and the specularity parameter 𝑝, 

𝜆௕௨௟௞ the  𝜆 for bulk silicon. Even though the geometrical characteristics of the tip should be 

taken into account, calculating 𝜆௘௙௙ for the in-plane direction of a silicon thin film is a good 

approximation for a lower bound estimation. We use temperature dependent 𝜆௕௨௟௞ values for 

the temperature of the Si tip 200nm away from the apex using as 𝑙 ൌ 𝑑଴ and 𝑝 ൌ 0 for a totally 

diffuse boundary condition. We used 𝑘 values of bulk Si at the temperature 100nm from the 

tip apex which will be the mean 𝑘 near the end of Si tip (see section 2). Then by substituting 

𝜆௘௙௙ in Equation S11 we get a more similar to the experimental trend but at lower absolute 

values (see black curve in Figure S5b). This discrepancy could be attributed to several factors 

not taken into account, such as the native SiO2 layer on the Si sample and the Si tip and the 

interface thermal resistance between the tip and the sample. The SiO2 layer could play a simple 

interface role but also could act as an extra filter on the phonon propagation, increasing or 

reducing the phonon modes associated with a given mean free path. Our experiment on a silicon 

sample etched by hydrofluoric acid, showed a significant decrease (30-40%) of the SThM 

thermal response for increasing oxide thickness (see Figure S5c). The experiment was 

performed as follows: etched wafer was transferred in the High Vacuum SThM system and the 

SThM response was measured. After we repeated the following procedure for 3 times: After 

breaking the vacuum and exposing the sample to ambient air for a certain period of time, 

therefore increasing native oxide thickness, we pump the system to High Vacuum  and measure 

the SThM response.   



10. Graphene/MoS2 Heterostructure 
 

10.1. Fabrication 
 

The Graphene-MoS2 sample was fabricated by mechanical cleavage from bulk graphite and 

MoS2 (SPI supplies). A chip of bulk material is placed on an adhesive tape, which is used to 

exfoliate the material by peeling it off several times. Then the adhesive tape is brought into 

contact with a SiO2 (280 nm) substrate thermally grown on highly doped Si and peeled-off 

slowly, leaving several flakes of different thicknesses randomly distributed on the substrate. 

The atomically-thin flakes are identified by optical microscopy and a pick-and-place method 

is used to pick-up the MoS2 monolayer, by means of a polypropylene carbonate (PPC) - 

polydimethylsiloxane (PDMS) stamp, and transferred on top of the graphene flake afterwards 

with a homemade transfer setup. The PPC residues remaining on the heterostructure surface 

are then removed by introducing the sample in a chloroform bath. 

Graphene and MoS2 are separately exfoliated on SiO2 (280 nm) substrates thermally grown 

on highly doped Si. The monolayer flakes are identified by optical microscopy. Figure S6a 

shows an optical microscopy picture of a monolayer graphene flake (black dashed line) coupled 

to a thicker flake. Figure S6b shows an optical microscopy image of the isolated monolayer 

MoS2 flake (blue dashed line). The monolayer MoS2 flake is then picked-up by means of a PPC 

stamp and transferred on the graphene flake. An optical microscopy image of the 

heterostructure is shown in Figure S6c. 

 

 



Figure S.6 Exfoliation and transfer of graphene and MoS2. (a) Optical microscopy picture 

of the as-exfoliated monolayer graphene on a SiO2 substrate (black dashed line). The 

monolayer is coupled to a thicker flake. (b) Optical microscopy picture of the as-exfoliated 

monolayer MoS2 (blue dashed line) on a SiO2 substrate. (c) Optical microscopy picture of the 

van der Waals heterostructure resulting from transferring the monolayer MoS2 (blue dashed 

line) on the monolayer graphene (black dashed line). 

 

10.2. AFM Topography 
 

 

Figure S7. Topography image acquired at 220K  with the different areas of interest.  

The thicknesses of MoS2, graphene and graphene/MoS2 heterostructure were found to be 

0.7, 0.2 and 0.9 nm respectively. The SiO2 at the topography image appears to be higher than 

the Graphene/MoS2 heterostructure. This might be a result of different friction between the two 

areas which causes a different torsion of the cantilever and therefore a cross-talk between the 

readout AFM photodetector channels [11]. A second possible reason is some a polypropylene 

carbonate (PPC) residues remaining on the surface as a result of the exfoliation process. Such 

residues will act as an extra boundary resistance on the thermal contact resistance measured on 

the SiO2. We can estimate the extra boundary resistance using Equation3 of the main text and 

considering a PPC isotropic layer of 2nm with 𝑘 ൌ 0.16 W. mିଵKିଵ [12] on SiO2 substrate. We 



find 𝑅௦௣ି௉௉஼ ൌ 4.9 ൈ 10଺ KWିଵ, which is in the order of the spreading thermal resistance of  

300nm SiO2 on Si.  

10.3. Nanomechanical properties and morphology 

The nanomechanical study has been performed by Ultrasonic Force Microscopy (UFM), 

SPM method used to characterize stacked 2D materials and substructures buried under the 

layers. The UFM is a qualitative method in which the different contrast of the image shows 

diverse nanomechanical properties. Stiffer materials appear represented by brighter colours in 

the images [13]. The UFM image (see Figure S8) shows different contrast between the silicon 

substrate and the heterostructure. We observe the following trend from darker to brighter 

regions MoS2, Graphene,Graphene/MoS2 heterostructure and SiO2. The fact that MoS2 on top 

of graphene appears brighter than MoS2 and Graphene area indicate that MoS2 is better attached 

to graphene than on SiO2.  

 

Figure S8. (a,b) Topography (a) and UFM (b) images acquired simultaneously. The different 

areas are shown on the UFM image. 

  



11. Sample local heating by the tip 

 

Figure S9. Thermal Resistance measured with 2 different heater temperatures versus tip-

sample contact temperature as obtained by the correction (see main text) for SiO2 on Si, 

Graphene on SiO2, MoS2 on SiO2 and Graphene-MoS2 heterostructure on SiO2.  

 

12. SThM imaging of detached Graphene Areas 
 

Detached areas are formed at mechanically exfoliated graphene on different substrates in the 

form of ripples or bubbles[14]. These detached areas are of fundamental interest due to the 



different physical properties presenting in comparison to supported or suspended graphene 

sheets. The detached areas appear to be less or more thermally resistive than the attached 

graphene areas. Figure S10 a shows a 𝑅௑ image of for few layers graphene on SiO2 acquired 

at sample temperature, 𝑇௦௔௠௣௟௘ ൌ 210K. Attached and detached areas have different thermal 

contrast. Topography and 𝑅௑  profiles of some detached areas (see Figure S10b) show that the 

perimeter resistance is not associated with any topographical artefacts. 

 

 

Figure S10. a) Thermal resistance image of for few layers graphene on SiO2 acquired at 

𝑇௦௔௠௣௟௘ ൌ 220K. b) Topography and corresponding 𝑅௑  profiles of some detached areas. 

In Figure S11a-d we show thermal resistance and topography images of bilayer graphene on 

SiO2 acquired simultaneously for the same area at  150 and 300K. We consider the detached 

areas which form bubbles as graphene disks with diameter 𝐷. In Figure S12a,b we plot the 𝑅௑ 

at 150K and 300K of the centre of each detached area of the bilayer graphene as function of 

its radius (𝐷 2⁄ ) as measured from the topographic images. 𝑅௑ at 150K decreases with radius 

and stabilizes for areas larger than 50 ൈ 10ଷnm while for 300K this trend is barely visible. 

 



 

Figure S 11. (a-d) Topography (a,c) and thermal contact resitance (𝑅௑) (b,d) images acquired 

simultaneously at  150𝐾 (a,b) and 300𝐾 (c,d) of bilayer graphene on SiO2. 

 

Figure S12. (a,b) 𝑅௫ of the center of each bubble with respect to the radius of the bubble at 

300K (a) and 150K (b). (c) Calculated 𝑘௚ of detached areas in form of bubbles  vs radius of 

the area at 150K (blue) and 300K (red). (d) Calculated 𝑘௚ for the detached areas at 150K using 

different values of effective thermal resistivity. 



 

We model the detached graphene areas as suspended graphene disks with diameter 𝐷 and 

use the model proposed by  [15]. They modelled the 𝑅௦௣௥ from the center of a graphene disk to 

the substrate as the sum of the thermal spreading resistance  from the center of the disk to the 

edge (𝑅௕௨௕) and that from the edge to the substrate (𝑅௘௦): 

𝑅௕ି௧௢௧ ൌ 𝑅௕௨௕ ൅ 𝑅௘௦ ൌ ௟௡ሺ஽ ଶ⁄ ሻି௟௡ሺௗబ ଶ⁄ ሻ

ଶగ௧௞೒
൅ ଵ

ଶగሺ஽ ଶ⁄ ሻ ට
௥೔೙೟

௧௞ೞ

௄బ൫௭ವ మ⁄ ൯

௄భ൫௭ವ మ⁄ ൯
,   (S13) 

where  𝑡 is the thickness, 𝑟௜௡௧ is the interface thermal resistivity between graphene and SiO2, 

𝑘௦ and 𝑘௚ is the thermal conductivity of supported and suspended graphene respectively and 

𝑧஽ ଶ⁄ ൌ ሺ𝐷 2⁄ ሻඥ1 𝑟௜௡௧𝑘௦𝑡⁄ .                  (S14) 

We should comment that this model does not describe precisely the detached areas in the 

form of bubbles of our sample. First they have random shapes which we approximate as disks 

and secondly between the detached graphene and the SiO2 substrate some gases might present 

which could affect the thermal transport. Nevertheless, it gives a better qualitative 

understanding of our experimental results.  

Combining Equation 2 of the main text and EquationS13, we can calculate 𝑘௚ for the 

different detached areas of graphene as a function of  𝐷 2⁄  (see Figure S12c). Considering that 

the interface resistance of the SiO2 covered DSi tip and the Graphene (𝑅௜௡௧ሺௌீሻ)  is the same in 

the attached and detached areas we can extract 𝑅௜௡௧ି௧௢௧ሺௌீሻ ൌ 𝑅௧௜௣ ൅ 𝑅௜௡௧ሺௌீሻ by combining 

Equation 2 and 3 of the main text for the tip being on top of the attached area and therefore, 

𝑅௜௡௧ି௧௢௧ሺௌீሻ ൌ 𝑅௫ െ 𝑅௦௣௥. We use literature values for  𝑘௚  [16] and 𝑘௖ሺ2ሻ [17] for 2-layers 

graphene. We find that 𝑘௚ increases linearly with 𝐷 2⁄  at both temperatures. 𝑘௚ is higher for 

higher temperatures in good agreement with previous studies for graphene [18]. The thermal 

conductivity of both attached and detached areas increases from 150K to 300K.  



Interestingly, 𝑘௚ of different detached areas are smaller than 𝑘௦ in both temperatures. This 

contradicts with previous results [15]. Possible reasons for that is the perimeter thermal 

resistance, 𝑅௣௘௥, of each detached area. 𝑅௣௘௥ is evident sometimes in the thermal resistance 

image (see Figure S10a), where the perimeter of the detached area appears as a brighter ring, 

indicating a more resistive region. The perimeter resistance of the bubble of interest as well as 

of the surrounding bubbles will act as additional interface resistances for the 𝑅௦௨௣. Therefore, 

an effective boundary thermal resistivity 𝑟௜௡௧ି௘௙௙, which includes the contribution of the 

thermal boundary resistivity of the perimeter of the bubble (𝑟௜௡௧ି௣) and of the surrounding 

detached areas (𝑟௜௡௧ି௦) as well as for the attached area (𝑟௜௡௧) in the form 𝑟௜௡௧ି௘௙௙ ൌ 𝑟௜௡௧ି௣ ൅

𝑟௜௡௧ି௦௣ ൅ 𝑟௜௡௧ should be used. By using arbitrary 𝑟௜௡௧ି௘௙௙ up to 2 orders of magnitude higher 

than values from ref. [19] we get  𝑘௚ ൐ 𝑘௦ for the bigger bubbles and for high 𝑟௜௡௧ି௘௙௙ (see 

Figure S12d).   

Further we comment on the different thermal contrast between attached and detached areas 

of graphene we get depending on the tip size. For larger radius tip, thus larger tip-sample 

contact area, the bubbles tend to have higher 𝑅௑ than the supported graphene and for smaller 

radius lower. The fact that we see this behavior even for the large bubbles (much larger than 

the contact area) make us exclude the possibility of contact area image artefacts.  When the tip 

is scanning through detached and attached areas the 𝑅௑ is given by Equation 2 of main text. 

𝑅௧௜௣ and 𝑅௜௡௧  are not expected to change from the attached to detached area of scanning. Thus, 

the contrast depends on the relative spreading resistance of the attached (𝑅௘௦) and detached 

(𝑅௕௨௕) areas given by eq.S11. Indeed, calculating the 𝑅௦௣௥ and 𝑅௦௣௥ିௗ௘௧ for different tip radius 

and different 𝑟௜௡௧ି௘௙௙ the relative change of 𝑅௕௨௕ to 𝑅௘௦ (ሺ𝑅௘௦ െ 𝑅௕௨௕ሻ 𝑅௘௦⁄ ) is changing sign 

from positive to negative while increasing the tip radius (see Figure S13). 



 

Figure S13. Relative change of attached and detached areas spreading resistance, 

ሺ𝑅௘௦ െ 𝑅௕௨௕ሻ 𝑅௘௦⁄ ), versus tip radius for calculated for different interface resistances.  

 

 

 

REFERENCES. 

[1]  B.  Gotsmann,  M.  A.  Lantz,  A.  Knoll,  U.  Dürig,  in  Nanotechnology,  DOI: 
10.1002/9783527628155.nanotech066, Wiley‐VCH Verlag GmbH & Co. KGaA 2010. 

[2]  E. Pop, V. Varshney, A. K. Roy, MRS Bull. 2012, 37, 1273. 
[3]  P. Tovee, M. Pumarol, D. Zeze, K. Kjoller, O. Kolosov, J. Appl. Phys. 2012, 112, 114317. 
[4]  M. M. Yovanovich, J. R. Culham, P. Teertstra, IEEE Transactions on Components, Packaging, 

and Manufacturing Technology: Part A 1998, 21, 168. 
[5]  C. J. Glassbrenner, G. A. Slack, Phys. Rev. 1964, 134, A1058. 
[6]  M. Anis‐ur‐Rehman, A. Maqsood, Int. J. Thermophys. 2003, 24, 867. 
[7]  a) Y. S. Muzychka, M. M. Yovanovich, J. R. Culham, J. Thermophys Heat Transfer 2004, 18, 45; 

b) F. Menges, H. Riel, A. Stemmer, C. Dimitrakopoulos, B. Gotsmann, Phys. Rev. Lett. 2013, 
111, 205901. 

[8]  R. Prasher, Nano Lett. 2005, 5, 2155. 
[9]  R. S. Prasher, P. E. Phelan, J. Appl. Phys. 2006, 100, 063538. 
[10]  C. Jeong, S. Datta, M. Lundstrom, J. Appl. Phys. 2012, 111, 093708. 
[11]  A. Hoffmann, T. Jungk, E. Soergel, Rev. Sci. Instrum. 2007, 78, 016101. 
[12]  M. Tuliszka, F. Jaroszyk, M. Portalski, Int. J. Thermophys. 1991, 12, 791. 
[13]  B. J. Robinson, C. E. Giusca, Y. T. Gonzalez, N. D. Kay, O. Kazakova, O. V. Kolosov, 2D Materials 

2015, 2. 
[14]  a) K. Yue, W. Gao, R. Huang, K. M. Liechti, J. Appl. Phys. 2012, 112; b) T. Georgiou, L. Britnell, 

P. Blake, R. V. Gorbachev, A. Gholinia, A. K. Geim, C. Casiraghi, K. S. Novoselov, Appl. Phys. 
Lett. 2011, 99. 

[15]  G. Hwang, O. Kwon, Nanoscale 2016, 8, 5280. 
[16]  M. M. Sadeghi, I. Jo, L. Shi, Proc Natl Acad Sci U S A 2013, 110, 16321. 
[17]  A. Alofi, G. P. Srivastava, Appl. Phys. Lett. 2014, 104. 



[18]  X. Xu, L. F. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. Thong, B. 
H. Hong, K. P. Loh, D. Donadio, B. Li, B. Ozyilmaz, Nat Commun 2014, 5, 3689. 

[19]  P. Yasaei, C. J. Foss, K. Karis, A. Behranginia, A. I. El‐Ghandour, A. Fathizadeh, J. Olivares, A. K. 
Majee,  C.  D.  Foster,  F.  Khalili‐Araghi,  Z.  Aksamija,  A.  Salehi‐Khojin,  Advanced  Materials 
Interfaces 2017, 4, 1700334. 

 

 

 

 


	AEM maintext EndNoteII
	AEM SI EndNoteII

