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Abstract—This work investigates the image privacy problem
in the context of social networking under the threat of reverse
image search. We introduce a new concept called recessive
social networking. Unlike conventional privacy-preserving social
networking, in our setting, the aim is to deceive machine
learning algorithms that used in reverse image search, while
still enabling unaffected ubiquitous social networking among
humans. We, for the first time, ultilize adversarial example
technique as a defensive mechanism to protect image privacy
against content-based image search algorithms in the context of
social networking. Finally, rigorous evaluations are conducted to
demonstrate the effectiveness, transferability, and robustness of
the proposed countermeasure.

Index Terms—Adversarial examples, image retrieval, privacy-
preserving

I. INTRODUCTION

Thanks to the advanced computational capacity of image
devices (such as smartphones, and digital cameras), the world
has witnessed a tremendous growth in quantity, availability,
and importance of images. More and more people like to share
images about their life on social media (FaceBook, Instagram,
and WeChat). However, these personal images contain massive
information about users, such as locations, relationships, and
details about activities [1]. In other words, when people are
sharing their photos in online social network (OSN), they are
exposing their private information at the same time.

Very recently, a U.S security company Trustwave released
an open source social media reverse image search tool called
‘Social Mapper’ [2]. This tool automatically searches popular
social media sites and returns a report about the presence
of the tracking target by using only the name and photos.
Identically, this tool was designed to help penetration testers
and red teamer to expand the targets lists. But this potentially-
devious tool can also be used by some malicious parties, which
draws people’s attentions to public social media privacy issue.
Among those potential malicious conducts, phishing (even
catfishing) is the most worried one. With this tool, adversary
can much more easily trick social media users than using the
traditional mails to induce users to click and open it. We here
ask the following challenging question:

Is it possible to clip the power of Reverse Image
Search while still enjoying unaffected ubiquitous
social networking?

We very much expect an affirmative answer because from a
societal perspective, this issue is fast becoming a fundamental
threat to human rights. This work approaches the above
problem from the image privacy aspect. Moreover, we need
to emphasize that the aforementioned privacy leakage problem
can not be effectively solved by most of the privacy-preserving
social networking mechanisms, mainly due to different settings
of adversary model. Traditional privacy preserving techniques
such as modifying the local pixel [3] and cryptography-based
mechanism [4] more or less influence the visibility of photos,
which all disobey the initial purpose of social networking to
some extent.

To address the aforementioned privacy preserving issues in
OSN, we, for the very first time, proposed a new concept of
‘Recessive Social Networking’. The idea of recessive social
networking comes from genetics, recessive allele is always
marked by a dominant allele, only by teaming up with another
recessive gene, can one recessive allele show up. By recessive
social networking, we mean the social media users should have
the right to enjoy the fun of social networking, they can still
post the videos, and images online to share their life publicly.
At the same time, we pay more attentions to the their own
privacy, the posted contents can not be tracked or extracted
by malicious parties using reverse image search technologies.
In other words, these social activities happen in our recessive
social networking are invisible to machine rather than humans.
With regard to the scope of this work, our goal is to prevent
images from being tracked and analyzed by reserve image
retrieval techniques without significantly decreasing human-
level visual quality.

When dealing with an adversary who has the power of
deep leaning techniques, we would like to adopt adversarial
examples [5] as the potential candidate solution to this prob-
lem, while still ensuring the fun of social networking. Iden-
tically, adversarial examples are instances by adding invisible
and intentional perturbations into the original images while
minimising human perceptional difference, which cause the
targeted deep learning systems make wrong decisions. This
feature makes adversarial examples ideal in the setting of
our proposed recessive social networking. In the literature,
adversarial examples have been used to attack many deep
learning based tasks, including semantic segmentation [6], ob-
ject detection [7], reinforcement learning [8], and Speech-to-



Text systems [9]. Our work is the first one adopting adversarial
examples to attack the reverse image search techniques.

Moreover, as shown in the literature [10]–[12], adversarial
examples have great transferability in the sense that adversarial
images generated against one image processing system may
also be effective against the other systems in black-box setting.
In addition, to date, adversarial examples are robust such that
no effective defense approach has been proposed yet [13]–[15].
Our contributions. We highlight the major contributions of
this work as follows.

• We introduce a new concept called Recessive Social
Networking. The main intuition is to deceive and hide
social networking activities to Reverse Image Search
systems without affecting normal communication among
users.

• We propose an adversarial perturbation based counter-
measure. To our best knowledge, this is the first time that
adversarial examples are used as a defensive mechanism
to protect image privacy against reverse image search al-
gorithms in the context of social networking. In addition,
we propose a new adversarial perturbation generation
algorithm, which outperforms the well known adversarial
example generation algorithm called iterative gradient
sign method (iFGSM) [16] in some circumstances.
Note that since our algorithm injects adversarial per-
turbation during the feature representation phase before
hash mapping, it can also be used against any other fea-
ture extracting deep-learning tasks, such as classification,
semantic segmentation, object detection, and generative
models.

• We conduct rigorous experiments in white-box and black-
box setting to evaluate the effectiveness, transferability,
and robustness of our proposed countermeasure. The
system is tested against three mainstream image search-
ing algorithms, DSH [17], DBH [18], and DPSH [19]
on two public datasets, including CIFAR-10 [20], and
Google-Landmarks Dataset [21]. The benchmark result
shows that recessive images produced by our system can
effectively decrease mean average precision (mAP) of
DSH and DBH from 0.638 and 0.84 to 0.178 and 0.047,
respectively.
We also demonstrate the transferability of our result by
testing against the DBH and DPSH image retrieval algo-
rithms with the recessive images generated for attacking
DSH system. The result shows that they can effectively
reduce the mAP of approximately 0.405. Furthermore, we
show the robustness of our proposed approach by testing
its effectiveness against two popular input transforma-
tion countermeasures: JPEG compression and Bit-depth
reduction [22]. It turns out that the Bit-depth reduction
method has negligible effect on our approach in terms of
mAP, while the JPEG compression method completely
fails by making the corresponding mAP even worse.

Organization. The rest of this paper is organized as follows:
Sec. II provides the design goal and system overview of

Fig. 1. System overview of proposed recessive social networking.

proposed recessive social networking solution. We then give
construction details in Sec. III. In Sec. IV, we demonstrate the
effectiveness, transferability, and robustness evaluation results.
Sec. V breifly covers the related work. Finally, the conclusion
and future work are provided in Sec. VI.

II. DESIGN GOAL AND SYSTEM OVERVIEW

This section presents our proposed recessive social net-
working system, specific system overview is shown in Fig.1.
In our setting, adversary adopts deep learning based image
retrieval technologies to retrieve the images of users in OSN,
based on a query image of victim. Normally, in the nature of
social networking, victims will upload their images and spread
in social networking websites, which provides the possibility
and connivence for the adversary to find out huge amount of
images about the victims.

In our proposed recessive social networking, before up-
loading images in OSN, victims will pass the images to
our proposed adversarial perturbation generation algorithm to
generate recessive images. This recessive mechanism can be
considered as a middleware between users and OSN.

To be specific, in the local environment, adversarial pertur-
bations will be injected into the original images by iteration.
Once the generated recessive images can bypass our predefined
content based image retrieval algorithms and cause retrieval
mistakes, these recessive images will be transmitted in OSN.
When an adversary plans to retrieve our users’s images, they
will fail and find nothing related to victims.

III. OUR CONSTRUCTION

In this section, we provide construction details of our
proposed recessive system. This system takes a pre-defined
content-based image searching algorithm in white-box setting.
The original image is feed as an input to our proposed
adversarial perturbation generation algorithm as depicted in
Fig. 2. This algorithm then adds adversarial perturbation to
the original image, with the aim to minimize the mAP of
results processed by target content-based image searching
algorithm. We emphasize that although the recessive image
is generated with respect to a specific content-based image
searching algorithm, as will be shown in Sec. IV later, it can



Input:
• X %Input image
• `X % Input image label
• f ∈ RC % Image retrieval results
• T = {t1, t2, . . . , tn} %Retrieval set
• M %Maximal iteration

Output:
• X ′ %Adversarial image

Algorithm:
• Initialize: X0 ← X, r ← 0,m← 0, T0 ← T ;
• Randomly select `′X 6= `X ;
• For m ∈ {0, . . . ,M}:

– Tm = {tn|f(Xm, r) = `′X};
– rm = 5f`′X (Xm)−5f`X (Xm);
– r′m = λ rm

‖rm‖22
;

– Xm+1 = Xm + r′m;

Adversarial Perturbation Generation Algorithm

Fig. 2. Adversarial Perturbation Generation Algorithm

also effectively attack other content-based image searching
algorithms due to the transferability property of adversarial
examples.

Denote X ∈ R as the original image. The task of a content-
based image searching algorithm is to return a collection of
similar images T = {t1, t2, . . . , tn} with the same labels as
the input image, denote `X ∈ RC , where C is the number
of classes. We use f(X, ti) ∈ RC , i ∈ [n] to denote the
feature representation process in a specific image retrieval
task. Let k, n ∈ N be two system parameters. An embedding
hash mapping function hash : R 7→ {−1, 1}k×n is learned to
preserve the relative similarity ranking order for the images,
as

hash(Xi) =
(
hash1(Xi), . . . , hashC(Xi)

)
where the i-th column bi ∈ {−1, 1}k denote the binary codes
for the i-th sample xi, by the hash function hash(·).

To get the recessive image, we aim at disturbing the feature
extracting phase, by injecting the perturbation δ in the image
X under the constraint that minimising δ and maximising the
error of the target content-based image searching algorithm
caused by δ +X . Since the goal of the proposed adversarial
perturbation generation algorithm is to deceive the machine
learning model in terms of the image retrieval results, we are
not interested in a specific targeted adversarial label; namely,
for any input X , we construct a sample X ′ that is similar to X
such that f(X, tn) 6= f(X ′, tn). In this respect, we definite an
adversarial label `′X ∈ RC \{`X}, which is randomly selected
form the remaining incorrect labels. After binarization, the
original hash codes are changed to

hash(X ′i) =
(
hash1(X

′
i), . . . , hashC(X

′
i)
)
.

At the end, the retrieval similar images turn to be T ′ =
{t′1, t′2, . . . , t′n}.

Under this setting, the loss function of the proposed ad-
versarial perturbation generation algorithm can be formulated
as:

Loss(X, T , `X) = f(X, ti)− f(X ′, ti), i ∈ [n]

this loss function is optimized to make the generated recessive
image be incorrectly predicted as a wrong label. Furthermore,
we optimize the generating phase with a gradient descent
algorithm iteratively. In the m-th iteration, we indicate the
generated recessive image as Xm, and compute the gradient
difference of Xm on the original correct label `X and the
adversarial example label `′X by

5f`′X (Xm)−5f`X (Xm) .

In order to find the closest hyperplane of the boundary of the
complement of the convex polyhedron, we then normalize the
original gradient difference rm by r′m = λ rm

‖rm‖22
to the closest

projection of xm on faces of the complement of the convex
polyhedron and reduce the computational overhead, where λ
is a fixed hyper-parameter. At the end, we add r′m into Xm

and carry on to the next iteration.

Fig. 3. Our experimental results.

IV. EVALUATION

In this section, we will demonstrate the soundness of
the proposed adversarial perturbation based scheme includ-
ing effectiveness, transferability, and robustnessvia extensive
experiments. We start with introducing the image retrieval
approaches applied in our experiment and the datasets, then
present our experiments results with performance evalua-
tion of adversarial examples generating (white-box attack),
transferability across networks with different architectures but
trained for the same task and robustness against two popular
countermeasures (JPEG compression and Bit-depth reduction).

A. Setup

To evaluate the soundness of the proposed adversarial per-
turbation based scheme, we choose three mainstream content-
based image searching algorithms, DSH [17], DBH [18], and
DPSH [19]. DSH aims at devising a CNN architecture that
takes pairs of images (similar/dissimilar) as training inputs
and approximates the output of each image to discrete values,



(a) mAP with different bits (b) mAP with different top k (c) Precision within Hamming dist.
Fig. 4. Comparison of retrieval performance of DSH on CIFAR-10.

(a) mAP with different bits (b) mAP with different top k (c) Precision within Hamming dist.
Fig. 5. Comparison of retrieval performance of DBH on Google-Landmarks Dataset.

with an elaborately designed loss function to maximize the
discriminability of the output space in a supervisory learning
way. DBH employs a latent-attribute layer in deep CNN to
learn domain specific image representations and hash functions
with data labels in a point-wised manner, which suits for large-
scale datasets. DPSH performs simultaneous feature learning
and hash-code learning for applications with pairwise labels.
It learns better hash codes with the components that feedback
each other, comparing with other methods without end-to-end
architecture.

We test our adversarial perturbation generation algorithm
on two public datasets, CIFAR-10 [20] and Google-Landmarks
Dataset [21]. CIFAR-10 dataset is a nature RGB image dataset
with 10 different categories, each category has 6, 000 images.
This dataset is divided into a training set with 50, 000 images
and a testing set with 10, 000 images. Google-Landmarks
Dataset is the largest dataset for image retrieval, containing
1, 060, 709 images from 12, 894 landmarks and 111, 036 ad-
ditional query images captured around the world. The imple-
mentation is tested on a computer with Intel Core i5-7500
CPU, one GTX 1080Ti GPU, and 32GB RAM.

After the discovery of adversarial examples in neural net-
work [5], adversarial examples have been found in many ar-
chitectures and tasks. To simplify the discussion, we compare
our algorithm with iFGSM proposed in [16]. iFGSM is an
upgraded version of FGSM, which adopts a finer iterative
optimization strategy for L∞ distance metric, this strategy
makes iFGSM produce very closed adversarial examples.

Recall that the aim of content-based image retrieval is to

produce as accurate as possible feature representation and hash
codes, in which similar image after hashing should also be
closed in Hamming space. Therefore, we adopt two widely
used evaluation metrics to quantify the influence of the gener-
ated adversarial examples, including mean Average Precision
(mAP) and Mean Precision within Hamming distance less than
or equals to 2 with respect to different numbers of top k
returned samples (200, 400, 600, 800, 1000) and the different
bits of the hash code length (12, 24, 36, 48). In addition, during
the experiments, similarity labels are defined by semantic-level
labels; in other words, we consider that images from the same
category are semantically similar, and vice versa.

B. Benchmarks

We first validate the effectiveness of the recessive images
produced by the proposed adversarial perturbation generation
algorithm. In this part, we apply white-box attack on DSH and
DBH. As shown in Fig. 3, the recessive images generated by
our proposed algorithm are almost the same as the original
ones, which means in our recessive social networking, users
can enjoy privacy preserving social life without sacrificing the
image quality. We also calculate the average time to generate
one recessive image, due to the iteration, it takes 4.28 seconds
to produce one untargeted adversarial example to attack the
contant-based image searching algorithms.

Fig. 4 and Fig. 5 show the experimental results of the
two content-based image retrieval algorithms, comparing with
different top k values and different bits of hash code, the
disparity between the original mAP and the mAP of the
recessive images indicates the defense advantages against



TABLE I
TRANSFERABILITY IN DBH ON CIFAR-10

Top K returned samples 12bits 24bits 32bits 48bits
Top 200 0.761 → 0.316 0.829 → 0.379 0.836 → 0.429 0.842 → 0.429
Top 400 0.763 → 0.314 0.829 → 0.376 0.837 → 0.429 0.840 → 0.425
Top 600 0.766 → 0.314 0.830 → 0.376 0.837 → 0.430 0.840 → 0.423
Top 800 0.766 → 0.314 0.830 → 0.375 0.838 → 0.431 0.840 → 0.423
Top 1000 0.766 → 0.313 0.831 → 0.375 0.839 → 0.431 0.840 → 0.422

TABLE II
TRANSFERABILITY IN DPSH ON CIFAR-10

Top K returned samples 12bits 24bits 32bits 48bits
Top 200 0.745 → 0.438 0.770 → 0.446 0.765 → 0.461 0.780 → 0.229
Top 400 0.750 → 0.437 0.781 → 0.446 0.766 → 0.460 0.781 → 0.225
Top 600 0.750 → 0.437 0.771 → 0.445 0.770 → 0.458 0.782 → 0.221
Top 800 0.751 → 0.434 0.772 → 0.442 0.774 → 0.458 0.783 → 0.225
Top 1000 0.751 → 0.436 0.772 → 0.442 0.776 → 0.457 0.783 → 0.219

image retrieval. For instance, in terms of DSH, the mAP drops
from 0.639 to 0.178, with Top 600 retrieval under 24 bits
length hash. Similarly, in terms of DBH, the mAP drops from
0.840 to 0.047, with the Top 1000 retrieval under 48 bits length
hash.

In both cases, the recessive images generated by our al-
gorithm have significant impact on the target image retrieval
systems. To verify the effectiveness of our algorithm in cate-
gory diversity, we test the DBH with google-landmarks dataset
shown in Fig.6 with 70.02% drop of average percentage of
mAP impact on the target image retrieval systems.

To show the advantage of the proposed adversarial per-
turbation generation, we compare the reconstruction L1 loss
of the generated recessive images and original images by
our approach and iFGSM [16], the comparison results are
indicated in Fig. 7 by different top k values. According to the
results, in the case of the same mAP value, the reconstruction
loss of iFGSM is much larger than ours, when the mAP value
goes down to nearly zero, the two approaches tend to be
approximately consistent.

Fig.8 shows the robustness of the proposed algorithm, we
perform two kinds of input transformation defensive mecha-
nisms: (i) JPEG compression and (ii) Bit-depth reduction on
DBH and DSH. The result shows that Bit-depth reduction
method has negligible effect on our approach in terms of
mAP, while the JPEG compression method completely fails
by making the corresponding mAP even worse. Taking DSH
image retrieval algorithm as an example, with the Top 1000
under 24 bits of hash length, the original mAP is 0.639.
However, our proposed iamge perturbation algorithm causes
the mAP felling into 0.178. While after JPEG compression,
it goes even worse to 0.108, but Bit-depth reduction method
leads to a slightly increase to 0.182. The experimental results
on validating transferability are shown in Table I and Table
II, we construct the recessive images by DSH, and test the
impact of those images to DBH and DPSH, which are different
architectures training for the same task on CIFAR-10. The
values in the two tables stand for the changes from the original

mAP to the mAP with recessive images with regard to different
top k values and hash code lengths. These results show
that our proposed image perturbation algorithm can generate
heterogeneous perturbations, which significantly increase the
transferability when dealing with other unknown structures
and/or properties content-based image searching systems.

V. RELATED WORK

While enjoying the fun of online social networking applica-
tions, huge amount of users are stricken with various security
and privacy exposures problems due to contents sharing. In
general, there are two kinds of mainstream solutions to address
privacy issues in online social networking, image contents
modification and image privacy preference setting.

Image contents modification limits the access to image
contents, this can be done by image encryption and pixel
substitution. Image encryption provides reversible ways to
protect the privacy by encrypting the pixels of the original
region of interest (RoI). Sun et al. [4] proposed a DCT-
domain image encryption/decryption framework for image-
sharing over Facebook. The authors in [23] proposed ASePPI
method to protect the privacy in the H.264/AVC stream against
de-anonymization attacks by encrypting RoI, this kind of
attack aims at targeting the restoration of the original image
and the re-identification of people in the video.

Pixel substitution is an irreversible way to protect image
privacy, which may harm the quality of images to anonymize
people, including blurring, pixelation, and other technologies.
Ilia et al. [24] studied serval image transformation techniques
to evade face detection on Facebook, they concluded that
many of these evasion techniques made the images worse to
humans, which went against the nature of social networking.
In their work, they changed the granularity of personal face
identity information from the photo level to the access control
user, when another user tries to access the photo, the system
determines which face the user does not have permission to
view and render the photo with the blurred photo.

To overcome the problem of losing image quality in obfus-
cating images, Orekondy et al. [3] proposed an automated way



(a) mAP with different bits (b) mAP with different top k

Fig. 6. Comparison of retrieval performance of DBH on Google-Landmarks Dataset.

(a) Reconstruction loss of top 200 (b) Reconstruction loss of top 400 (c) Reconstruction loss of top 600

(d) Reconstruction loss of top 800 (e) Reconstruction loss of top 1000
Fig. 7. Comparing the proposed algorithm with iFGSM.

to obfuscate only the pixels of RoI. Wang et al. [25] discussed
the human-hurting irreversible ways against automatic face
detection, including gaussian noise, lines through eyes, dark-
ening the image, and leopard spots, which all caused a large
distortion of the picture. Furthermore, they found that even
these privacy-preserving to some extend hurt human detection
performance, the Facebook detection couldn’t be avoided.

However, as shown in [26], the authors quantified the
privacy implications by analyzing how well people are re-
congnisable in the image. They stated that with few tagged
messages, the privacy protected social media under adversarial
conditions like gaussian blur, black fill-in and white fill-in, can
still be reconginized with higher accuracy than chance level
across different events, such as different day, clothes, poses
and point of view. In addition, McPherson et al. [27] adopted
artificial neural networks to recover hidden information from
images processed by three kinds of obfuscation approaches,

including mosaicing (pixelation), blurring and P3 [28]. They
found that with the modern image recognition method based
on deep learning, the faces, objects, and handwritten digits can
still be identified. It is worth mentioning that this can be done
even without the knowledge of specific relevant features of the
confusion image or the degree of association of the remaining
information with the hidden information in advance.

To be more deliberate about privacy-preserving media,
another two countermeasures were proposed by [29], [30].
As reported in [30], covering the face and drawing a specific
pattern on the face could effectively prevent the detection
of the face image. However, this kind of method would
hide face-to-face communication. To overcome the problem,
Yamada et al. [29] stated that wearing a device similar in
appearance to eyeglasses on the face could hide the face in the
captured images, by transmitting near-infrared signals picked
up by the camera image sensors beyond people’s sight. Yet
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Fig. 8. The robustness of the proposed algorithm.

theses two active approaches made the users more iconic than
the traditional image processing approaches, furthermore, the
initiative of the participants on the faces were needed for the
funny glasses or makeup.

Image privacy preference setting aims at privacy detection,
it provides users the opportunity to understand privacy level of
their images and decide to post it online or not. The authors in
[31] and [32] proposed mechanisms to automatically generate
privacy setting for uploaded images based on users’ social
features. Zhang et al. [33] designed a portrait privacy preserv-
ing approach based on a portrait graph matching scheme and
an encryption-free vector distance computation method. This
work provided automatical portrait erasing during photo taking

and sharing. To prevent users from publishing potentially
sensitive visual content, Zerr et al. [34] trained a SVM
classifier to detect and identify private images. The authors in
[35] and [36] explored deep visual features to improve image
privacy prediction accuracy. Zhang and Yan [37] designed
a mechanism to evaluate privacy of social images based on
differential privacy, in their work, they limited image privacy
to the scopes of face and car plate number detections.

Yet, our work is very different from the aforementioned
works. Most of these approaches only consider about the
privacy leakage problems, but offer no guarantee in the sce-
nario where users still need to enjoy content sharing in OSN.
As shown in [38], the privacy-enhancing technologies should
provide a trade-off between the privacy and a good viewing
experience. In our work, we proposed to adopt adversarial
examples as the potential solution. With adopting a small
adversarial perturbation, neural networks can be deceived but
human can’t figure out the difference. In addition to using ad-
versarial examples to attack Deep Learning algorithms, many
scholars begin to explore how to use this kind of perturbation
as a defense strategy. For example, in the work of Osadchy et
al. [39], they introduced a secure CAPTCHA scheme based
on adversarial noise that deceived Deep Learning tools.

VI. CONCLUSION

In this work, we proposed a new concept: recessive social
networking, where the recessive images can bypass reverse
image search by deceiving the corresponding machine learning
process. Meanwhile, those recessive images are indistinguish-
able from the original ones from human eyes; therefore,
they preserve all the normal social networking functionalities
among humans. We initiated the study of such a new primitive
and proposed an adversarial perturbation based scheme. This
is the first time that adversarial examples are used as a
defensive mechanism to protect image privacy against content-
based image searching algorithms in the context of social
networking. Furthermore, we also demonstrated the effective-
ness, transferability, and robustness of the proposed scheme
via extensive experiments. Finally, we emphasize that this
work provide important insights to privacy preserving social
networking, and it opens a door for constructing a new class
of efficient and privacy social networking schemes to help
users enjoy contents sharing. Nevertheless, this line of work
is far from being completed. In the future, we are looking for
more robust and universally effective adversarial perturbation
generation algorithms.
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[10] Florian Tramèr, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and
Patrick D. McDaniel. The space of transferable adversarial examples.
CoRR, abs/1704.03453, 2017.

[11] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, AsiaCCS 2017,
Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages 506–519,
2017.

[12] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh
Jha, Z. Berkay Celik, and Ananthram Swami. Practical black-box
attacks against deep learning systems using adversarial examples. CoRR,
abs/1602.02697, 2016.

[13] Ion Stoica, Dawn Song, Raluca Ada Popa, David A. Patterson,
Michael W. Mahoney, Randy H. Katz, Anthony D. Joseph, Michael I.
Jordan, Joseph M. Hellerstein, Joseph E. Gonzalez, Ken Goldberg, Ali
Ghodsi, David Culler, and Pieter Abbeel. A berkeley view of systems
challenges for AI. CoRR, abs/1712.05855, 2017.

[14] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and
Dawn Song. Spatially transformed adversarial examples. CoRR,
abs/1801.02612, 2018.

[15] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn
Song. Adversarial example defense: Ensembles of weak defenses are not
strong. In 11th USENIX Workshop on Offensive Technologies, WOOT
2017, Vancouver, BC, Canada, August 14-15, 2017., 2017.

[16] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
examples in the physical world. CoRR, abs/1607.02533, 2016.

[17] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep
supervised hashing for fast image retrieval. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 2064–2072, 2016.

[18] Kevin Lin, Huei-Fang Yang, Jen-Hao Hsiao, and Chu-Song Chen. Deep
learning of binary hash codes for fast image retrieval. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops, Boston, MA, USA, June 7-12, 2015, pages 27–35,
2015.

[19] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature learning based
deep supervised hashing with pairwise labels. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 1711–1717,
2016.

[20] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. 2009.

[21] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung
Han. Large-scale image retrieval with attentive deep local features. In
IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pages 3476–3485, 2017.

[22] Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens van der
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