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Abstract

In this paper, we develop a computationally efficient discrete approx-
imation to log-Gaussian Cox process (LGCP) models for the analysis of
spatially aggregated disease count data. Our approach overcomes an in-
herent limitation of spatial models based on Markov structures, namely
that each such model is tied to a specific partition of the study area,
and allows for spatially continuous prediction. We compare the predictive
performance of our modelling approach with LGCP through a simulation
study and an application to primary biliary cirrhosis incidence data in
Newcastle-Upon-Tyne, UK. Our results suggest that when disease risk is
assumed to be a spatially continuous process, the proposed approxima-
tion to LGCP provides reliable estimates of disease risk both on spatially
continuous and aggregated scales. The proposed methodology is imple-
mented in the open-source R package SDALGCP.

Keywords: disease mapping; geostatistics; log-Gaussian Cox process;
Monte Carlo maximum likelihood.

1 Introduction

In this paper our concern is to make inference on a spatially continuous disease
risk surface using aggregated counts of reported disease cases, say yi, over regions
Ri forming a partition of a geographical area of interest A. In this context,
information on risk factors and on the population at risk may also be available,
possibly at different spatial scales. We shall denote these by d(x) and m(x),
respectively, when available on a spatially continuous scale, and by di and mi

when they are spatially aggregated.
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Existing methods from small area estimation (SAE) only allow spatial pre-
diction at the aggregated level of the regions Ri and are usually based on a
Gaussian Markov random field (GMRF) structure (Besag, 1974; Rue and Held,
2005). Typically, non-zero elements of the precision matrix of a GMRF are re-
stricted to contiguous pairs of theRi. Hence, the formulation and interpretation
of a GMRF is tied to the specific partition of A, which will usually have been
drawn up for administrative, historical, or other reasons unrelated to the disease
aetiology. The use of such models also becomes impractical when the spatial
units Ri change over time. Wall (2004) points out that the use of GMRFs is
especially problematic when dealing with irregular geometries, which can induce
counter-intuitive forms for the correlation structure between variables associated
with the Ri.

The geostatistical paradigm, unlike SAE, treats disease risk as a spatially
continuous phenomenon irrespective of the data-format. Diggle et al. (2013)
argue that the analysis of spatially aggregated counts can be regarded as a
special case of the class of geostatistical problems and propose to model the
yi as an aggregated realisation of a Log-Gaussian Cox process (LGCP). Unlike
GMRFs, LGCPs allow for prediction of disease risk at any spatial scale, while
avoiding the ecological fallacy (Wakefield and Shaddick, 2006). However, fitting
of LGCP models using the aggregated counts yi is computationally demanding
due to the iterative imputation of the unobserved locations for each reported
case within a region Ri (Li et al., 2012).

In this paper, our objective is to develop a computationally efficient approx-
imation to LGCPs in order to predict disease risk at any desired spatial scale.
We argue that this provides a more realistic alternative to GMRF models when
LGCPs are not computationally feasible, and can also be used as an exploratory
tool in order to inform more complex modelling apporaches based on LGCPs.

In Section 2 of the paper, we review existing methods for modelling spatially
aggregated disease counts. In Section 3, we develop a computationally efficient
spatially discrete approximation to LGCP models. In Section 4 we carry out a
simulation study to investigate the predictive performance of the proposed ap-
proximation and compare this with an exact fitting algorithm for LGCP models.
In Section 5 we show an application of the method to a data-set on primary
biliary cirrhosis (PBC) incidence in Newcastle, UK. Section 6 is a concluding
discussion on the advantages and limitations of the proposed approach.

The method has been implemented in the open-source R package SDALGCP

(Johnson et al., 2018), available from the Comprehensive R Network Archive.
The R code for reproducing the results of Section 5 is available as supplementary
material.
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2 Existing methods for modelling spatially ag-
gregated disease counts data

2.1 Gaussian Markov random field models

Let Yi denote the reported disease count in region Ri. Conditionally on a
zero-mean Gaussian process S = (S1, . . . , Sn), assume that the Yi are mutually
independent Poisson random variables with expectations

λi = mi exp{d>i β + Si}, i = 1, . . . , n (1)

where β is a vector of regression coefficients. Spatially discrete models are
then developed by specifying the precision matrix for the Gaussian process S.
Here, we focus on the two most commonly used formulations for S, namely
the conditional autorgressive (CAR) and intrinsic conditional autoregressive
(ICAR) models.

Let i ∼ j be a shorthand notation for “Ri and Rj are neighbours”. A CAR
model then assumes that

Si|S−i ∼ N

ρc∑
j∼i

cijSj , τ
2
i

 , (2)

where S−i = {Sj : j 6= i}, ρc is the spatial dependence parameter and cij are
known quantities such that cij 6= 0 if and only if j ∼ i and j 6= i. It follows from
Brook’s Lemma (Brood, 1964) and the Hammersley-Clifford Theorem (Besag,
1974) that the joint distribution of S is a multivariate zero-mean Gaussian
distribution with covariance matrix

(I − ρcC)−1D̃, (3)

where D̃ = {τ21 , . . . , τ2n}, while the specification of C is generally tied to the
specific arrangement of the partition of the region of interest. The most common
approach is to set cij = 1 if j ∼ i and 0 otherwise. The matrix in (3) is then
a valid covariance matrix if ξ−1max < ρc < ξ−1min (Cressie, 1993, pg. 472), where
ξmin and ξmax are the minimum and maximum eigenvalues of C, respectively.
Scaling of the matrix C so as to obtain a weighted average of the Sj in (2) also
implies that −1 < ρc < 1.

The ICAR model is a special case of the CAR model when ρc = 1 in (2).
Although this leads to an improper distribution for S because of the singularity
of its covariance matrix, the associated conditional distribution of S given Y is
proper.

2.2 Log-Gaussian Cox process models

A spatial point process is a stochastic mechanism that generates a countable set
of events xi ∈ R2. The class of inhomogeneous Poisson processes with intensity
λ(x) is defined by the following postulates.
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1. The number of events, N(A), in any planar region A ⊂ R2 follows a
Poisson distribution with mean

∫
A λ(x)dx.

2. Conditionally on N(A), each event in A is an independent random sample
from a distribution on A with probability density function proportional
to λ(x).

A Cox process (Cox, 1955) is defined by a non-negtive-valued stochastic pro-
cess Λ(x) such that, conditional on a realisation of Λ(x), the process is an inho-
mogenous Poisson process with intensity Λ(x). If we assume that log{Λ(x)} =
S(x) is a Gaussian process, we obtain the log-Gaussian Cox process (LGCP);
for more details on the theoretical properties of LGCPs, see Møller et al. (1998).

Diggle et al. (2013) develop a modelling framework for aggregated disease
count data using LGCPs. They assume that, conditionally on S(x), the Yi are
mutually independent Poisson variables with means∫

Ri

m(x) exp{d(x)>β + S(x)} dx, (4)

where d(x) is a vector of covariates at location x with associated regression coef-
ficients β. Unlike the spatially discrete models described in the previous section,
an LGCP is not tied to any particualr partition of the area of interest and there-
fore provides a route to a solution to the problem of combining information at
multiple spatial scales. However, this is offset by a substantial increase in the
computational burden arising from the need to impute the unobserved locations
for each of the reported cases within each of the Ri, i = 1, . . . , n (Li et al., 2012).
In the next section, we circumvent this issue by proposing a spatially discrete
approximation to S(x) which allows to model the counts yi as the realisation a
Poisson log-linear mixed model.

3 A spatially discrete approximation to Log-Gaussian
Cox processes

Let wi(x) be a positive function with domain Ri, such that
∫
Ri
wi(x) dx = 1.

Using the same notation as in Section 2.2, we approximate the conditional log-
intensity of an LGCP as piecewise constant by taking its weighted average over
Ri to give

log{Λ(x)} ≈
∫
Ri

wi(x)
[
d(x)>β∗ + S∗(x)

]
dx

=

∫
Ri

wi(x) d(x)>β∗ dx+

∫
Ri

wi(x) S∗(x) dx

= d>i β
∗ + S∗i , x ∈ Ri, (5)

where β∗ is a vector of regression coefficients for the aggregate explanatory vari-
ables di and S∗(x) is a Gaussian process. The rationale for using the weighting
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function wi(x) is to account for the potential non-homogeneous distribution of
disease cases within a region Ri. For example, a larger number of cases may
concentrate in more densely populated areas, thus a natural choice for wi(x)
would be to set this equal to m(x)/mi with mi =

∫
Ri
m(x)dx, if m(x) is avail-

able. If m(x) is instead unavailable, a pragmatic approach would be to set
wi(x) = 1/|Ri|.

Following from (5), we obtain the following approximation for the conditional
mean of the counts Yi

λi =

∫
Ri

m(x)Λ(x) dx ≈
∫
Ri

m(x) exp
{
d>i β

∗ + S∗i
}
dx

= mi exp{d>i β∗ + S∗i }
= mi exp{ηi}
= µi. (6)

The joint distribution of S∗ = (S∗1 , . . . , S
∗
n) is multivariate Gaussian with

zero mean and covariance function

Cov{S∗i , S∗j } = σ2

∫
Ri

∫
Rj

wi(x)wj(x
′) ρ(‖x− x′‖;φ) dx dx′, (7)

where ‖ · ‖ is the Euclidean distance and ρ(·;φ) is the isotropic and stationary
covariance function of S∗(x) indexed by the parameter φ. Hence, the resulting
model (6) falls under the class of generalized linear mixed models. Also, note
that the variance of S∗i depends on the size and shape of Ri, with larger regions
leading to smaller variances.

We now provide further details on the computation of the covariance function
in (7). Among the class of isotropic and stationary covariance functions for
S∗(x) in (6), one of the most commonly used is the Matérn covariance function
(Stein, 2012), which has expression

Cov{S∗(x), S∗(x′)} =
σ2

2κ−1Γ(κ)

(
u

φ

)κ
Kκ
(
u

φ

)
, (8)

where u = ‖x− x′‖ is the Euclidean distance between any two locations x and
x′, σ2 is the variance, φ is a scale parameter that regulates the rate at which the
spatial correlation decays for increasing distance u, κ is the shape parameter
that determines the differentiability of the process S and Kκ(·) is the modified
Bessel function of the second kind of order κ > 0. Estimating κ reliably requires
a large amount of densely sampled data, which in this context is not available.
As a pragmatic apporach, we then set κ = 0.5 which reduces (8) to

Cov{S∗(x), S∗(x′)} = σ2 exp{−u/φ}

corresponding to a mean-square continuous process.
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We approximate (7) as a discrete sum over Li and Lj randomly chosen points
in Ri and Rj to give∫

Ri

∫
Rj

wi(x)wj(x
′) ρ(‖x− x′‖;φ) dx dx′ ≈∑Li

k=1

∑Lj

k′=1 wi(xk)wj(xk′) ρ(‖xk − xk′‖;φ)∑Li

k=1

∑Lj

k′=1 wi(xk)wj(xk′)
, (9)

To attain a good spatial coverage of Ri and Rj , we propose to draw each of the
xk and xk′ in the above equation using a class of inhibition processes (Diggle,
2013, pp. 110-116) which combines simple sequential inhibition with rejection
sampling. More specifically, we proceed through the following steps.

1. Compute wmax = maxx∈Ri
wi(x).

2. Generate xprop overRi from a homogeneous Poisson process with intensity
wmax.

3. Compute p(xprop) = wi(xprop)/wmax.

4. Generate a sample u from the uniform distribution on (0, 1).

5. If k = 1, set x1 = xprop if u ≤ p(xprop); for k > 1 and given {xj : j =
1, . . . , k − 1}, set xk = xprop if u ≤ p(xprop) and xprop falls at the inter-
section of Ri and {x ∈ Ri : ‖x − xj‖ > δ(1 − w(xj)/wmax)}. Otherwise,
reject xprop.

6. Repeat 2 to 5, until k = Li.

To identify a suitable value for Li (the total number of generated points
within Ri), a possible solution is to use the packing density for a sequential
inhibitory point process given by

γ =
Liπδ

2

4|Ri|
, (10)

where δ is the minimum permissible distance between points. The maximum
possible value for γ is obtained by close-packed discs whose centres form an
equilateral triangular lattice with sides of length δ = π/

√
12. Through a sim-

ulation study, Tanemura (1979) suggested to set γ = 0.55 in order to achieve
good spatial coverage in a relatively small number of iterations. Once γ and δ
are fixed, we can then obtain Li through equation (10).

An alternative solution is to leave choose γ as a function of φ using the
following adaptive algorithm.

1. For a given φ, initialize a batch size k and a relative tolerance ε;

2. Locate k quadrature points with packing intensity γ(k) = kπδ2/4|Ri|,
evaluate the integral in (9) and denote its value as Iold;
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3. Add k points using a packing intensity γ(k)/2, re-evaluate the integral
and denote its value as Inew;

4. If Inew = Iold, stop the algorithm. Otherwise, set Inew = Iold, add k
points with γ(k)/3 and repeat until |Iold − Inew| < ε|Inew|.

Since φ is almost always unknown, the additional computational burden from
the adaptive algorithm can be remarkable. When fitting the model in (6) (see
next section for more details), our recommendation is to use the non-adaptive
algorithm first, in order to locate the likely value of φ, and then to run a final
estimation using the adaptive algorithm.

3.1 Monte Carlo maximum likelihood

We carry out parameter estimation for the model in (6) using the Monte Carlo
maximum likelihood (MCML) method (Christensen, 2012).

Let f(·) be a shorthand notation for “the density function of ·”. Let y> =
(y1, . . . , yn) and linear predictor η> = (η1, . . . , ηn); it then follows that condi-
tionally on S∗ = (S∗1 , . . . , S

∗
n)>, the joint distribution of Y is

f(y|η) =

n∏
i=1

f(yi|ηi),

where
f(yi|ηi) ∝ exp{yi logµi − µi}.

Let ψ = (β, σ2, φ) denote the vector of the model parameters, then the likelihood
function for ψ is obtained by integrating out S∗, i.e.

L(ψ) =

∫
Rn

f(y|η) f(η;ψ) dη. (11)

In (11) f(η;ψ) is a multivariate Gaussian distribution function with mean Dβ,
where D denote a matrix of explanatory variables, and covariance matrix Σ,
whose (i, j)-th entry is given by (7). To reduce the computational burden ac-
crued from the numerical approximation (9), we restrict the maximization of
(11) to a finite set of predefined values for φ and, for each of these, pre-compute
the covariance matrix Σ together with its inverse, determinant and Cholesky
decomposition.

Since the high-dimensional integral in (11) cannot be solved analytically, we
use Monte Carlo methods for the approximation of the likelihood. Let ψ0 denote
our best guess of ψ. We re-write (11) as

L(ψ) ∝ Eη|y

[
f(η;ψ)

f(η;ψ0)

]
, (12)

where the expectation E is taken with respect to the conditional distribution of
η given y with parameters vector ψ0. We provide the proof of this in Appendix
A of the supplementary material.
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To generate N samples, say η(j), from the conditional distribution of η given
y, we use a Monte Carlo Markov chain (MCMC) algorithm implemented in the
Laplace.sampling.MCML function in the PrevMap package (Giorgi and Diggle,
2017). This function uses a Metropolis-adjusted Langevin MCMC algorithm to

update the standardised vector of random effects, η̃ = Σ̂−
1
2 (η− η̂), where η̂ and

Σ̂ are the mode and the inverse of the negative Hessian of f(η;ψ0) at η̂. We
can then approximate the likelihood function in (12) as

L(ψ) ≈ LN (ψ) =
1

N

N∑
j=1

f(η(j);ψ)

f(η(j);ψ0)
. (13)

As N → ∞, in the above equation, LN (ψ) converges to L(ψ) (Geyer and
Thompson, 1992; Geyer, 1994, 1996).

Finally, we maximize (13) using a constrained quasi-Newton optimization
algorithm, implemented in the nlminb function in the R software environment,
by providing analytical expressions for the first and second derivatives of (13)

with respect to ψ. If ψ̂N denote the resulting MCML estimate, we then set
ψ0 = ψ̂N and repeat the previous steps until convergence.

3.2 Continuous spatial prediction

We now consider the problem of carrying out spatial prediction of S∗(x) at a
pre-defined location x within the study area A. Using the same notation as in
the previous section, we first note that

f(S∗(x)|y) =

∫
Rn

f(η, S∗(x)|y) dη

=

∫
Rn

f(η|y)f(S∗(x)|η, y) dη

=

∫
Rn

f(η|y)f(S∗(x)|η) dη. (14)

Hence, we sample from f(S∗(x)|y) using the following two-step procedure: (1)
draw samples η(j), for j = 1, . . . , N from f(η|y) using the MCMC algorithm
described in the previous section; (2) for each η(j), for j = 1, . . . , N simulate from

f(S∗(x)|η(j)), a Gaussian distribution with mean µ∗(x) = c(x)>Σ−1(η(j)−Dβ)

and variance v2(x) = σ2 − c(x)>Σ−1c(x), where c(x)> = (c1(x), . . . , cn(x)),
ci(x) = σ2

∫
Ri
w(x)ρ(‖x− x′‖) dx′, and we use (9) to approximate the integral.

The resulting samples from f(η|y) can then be used to compute non-linear
properties of S∗(x) and to summarise these using, for example, predictive means
and standard errors.

4 Simulation Study

We now conduct a simulation study to assess the predictive performance of the
proposed approximation in (3) when the underlying process is an LGCP model.
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We simulate B = 1, 000 data-set of counts using the administrative bound-
aries of the lower layer super output areas (LSOAs) in Newcastle-Upon-Tyne,
UK, as in the application of Section 5. We specify the offsets m(x) using popu-
lation density estimates from the OpenPopGrid database (Murdock et al., 2015)
and simulate the locations of the events using an inhomogeneous Poisson pro-
cess with intensity m(x) exp{S(x)}. We define three scenarios by setting the
standard deviation of the Gaussian random field S(x) to σ = 0.706 and let φ
(whose unit of measure is kilometres) vary over the set {100, 800, 1500}. The
value of the standard deviation corresponds to the posterior mean obtained from
the fitted LGCP in the application to primary biliary cirrhosis data described in
the next section. Finally, for each of the 1, 000 simulated data-sets of aggregated
counts at LSOA level, we fit the following models.

• LGCP. We use a Bayesian data augmentation technique implemented in
the lgcp package (Taylor et al., 2015). We overlay a computational grid
at a spacing of of 300 × 300 metres onto the area of interest and fit the
model in (4). We run 3,100,000 iterations of the MCMC algorithm with
a burn-in of 100,000 samples and then retain every 300-th sample.

• Spatially discrete approximation (SDA) to LGCP. We fit the approxima-
tion in (3) using a population weighted average (SDA I, with wi(x) =
m(x)/mi) and simple average (SDA II, with wi(x) = 1/|Ri|) of the log-
intensity. For both, we use the MCML method described in Section 3.1
and run 110,000 iterations of the MCMC algorithm with a burn-in of
10,000 samples and then retain every 10-th sample.

We summarise the results from the simulation study through the bias, root-
mean-square-error (RMSE) and the 95% coverage probability (CP) for the
incidence at LSOA level, λi, and for the spatially continuous relative risk,

exp{S(x)}. Let λ
(j)
i denote the true simulated incidence for Ri at the j-th

simulation; hence

BIAS =
1

nB

n∑
i=1

B∑
j=1

(λ̂
(j)
i − λ

(j)
i ),

RMSE =

√√√√ 1

nB

n∑
i=1

B∑
j=1

(λ̂
(j)
i − λ

(j)
i )2,

CP =
1

nB

n∑
i=1

B∑
j=1

I(λ
(j)
i ∈ CI

(j)
0.95),

where λ̂
(j)
i is the mean of the predictive distribution for λ

(j)
i and I(λ

(j)
i ∈ CI

(j)
0.95)

is an indicator function that takes value 1 if λ
(j)
i falls inside the 95% prediction

interval and 0 otherwise. Similarly, we compute the three indices for the relative
risk exp{S(x)} by averaging each of these over the regular grid at a spacing of
300 metres covering the whole of Newcastle-Upon-Tyne, UK.
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Table 1 reports the results for the prediction of λi, the incidence at LSOA
level. We observe that SDA I and II have a slightly lower bias and RMSE than
LGCP in all three scenarios, with SDA I having the best performance. The
coverage probability is close to the 95% nominal level for all three models.

The results for the spatially continuous relative risk, exp{S(x)}, are shown
in Table 2. LGCP has the lowest bias and RMSE followed by SDA I in all three
scenarios, with larger differences for φ = 800 and φ = 1500. Both SDA I and II
are more conservative than LGCP and provide prediction intervals with a larger
coverage than the nominal level, as the result of a large RMSE. We also observe
that the use of the population weighted average in SDA I leads to a tangible
reduction in RMSE and bias with respect to SDA II.

5 Application: mapping of primary biliary cir-
rhosis risk

We analyse incidence data on primary biliary cirrhosis (PBC) in Newcastle-
Upon-Tyne, UK, obtained from the original study carried out by Prince et al.
(2001); the data-set is freely available from the lgcp R package. The data consist
of geo-referenced cases of definite or probable PBC between 1987 and 1994. The
objective of this analysis is to quantify the difference in the predictive inferences
between the gold-standard LGCP model and the proposed spatially discrete
approximation (or SDA), on PBC incidence at LSOA level and the spatially
continuous relative risk surface. In the case of SDA, we fit the population
weighted (SDA I) and simple average (SDA II) versions described in the previous
section. For the sake of completeness, we also fit the Besag et al. (1991) model,
one of most commonly used approaches in small area estimation, with linear
predictor

log λi = d>i β
∗ + Si + Zi

where Si is a zero-mean intrinsically autoregressive process with variance σ2

and Zi is Gaussian noise with variance τ2. In all four models, we use the
following set of covariates, which are available as piecewise constant at LSOA
level: (1) proportion of males, (2) proportion of the population experiencing
income deprivation, (3) proportion of the population experiencing employment
deprivation, (4) deprivation due to poor education, (5) barriers to housing and
services index, (6) deprivation due to crime, (7) living environment deprivation.
Each of these variables is publicly available from the UK Government online
archives (webarchive.nationalarchives.gov.uk). The regression coefficients
are denoted by βi in the LGCP model and by β∗i in the BYM and SDA models,
for i = 0, 1, . . . , 7, with i = 0 corresponding to the intercept.

For the SDA models, we run 110,000 iterations of the MCMC algorithm with
a burn-in of 10,000 samples, and then retain every 10-th sample. We discretise
φ using 100 equally spaced values between 50 and 2000 meters. The resulting
10,000 samples show a good mixing of the chain and small autocorrelation at
lags smaller than 4 (Appendix B of the supplementary material).
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For the LGCP approach, we specify independent priors as follows: log σ ∼
N(log 1, 0.15), log φ ∼ N(log 500, 2) and (β0, . . . , β7) ∼MVN(0, 106I). We run
3,100,000 iterations of the MCMC algorithm with a burn-in of 100,000 samples
and retain every 300-th sample so as to obtain a set of 10,000 weakly depen-
dent samples. Trace plots and correlograms indicate convergence of the MCMC
algorithm for both the random effects and the model parameters (Appendix C
of the supplementary material).

Fitting of the BYM model is carried out by iterating the MCMC algorithm
1,100,000 times with a burn-in of 100,000 samples and retaining every 100-
th sample. The mixing diagnostic plots for the MCMC chain are shown in
Appendix D of the supplementary material.

Tables 3 to 5 report the point and intervals estimates for the parameters of
each of the fitted models. The differences amongst the point estimates of the
regression coefficients from the four models are small except for deprivation due
to education, although this is not statistically significant at the conventional 5%
level in any of the four models.

Figure 1 shows a map of the estimates of PBC incidence at LSOA level from
the four models. Each of these gives a qualitatively similar spatial pattern as
also indicated by the scatter plots of Figure 2. The same holds for the standard
errors of PBC incidence (Figure 3).

Figure 4 shows the map of the estimated continuous relative risk surface
exp{S(x)} over a 300× 300 meters regular grid covering the whole of the study
area. Figures 5 and 6 indicate that the point estimates from the LGCP and SDA
models are strongly similar but the standard errors from the latter are larger.
This is consistent with our results from the simulation study of the previous
section.

6 Discussion

In this article we have developed a spatially discrete approximation (SDA) to
log-Gaussian Cox process (LGCP) models in order to carry out spatial predic-
tion of disease risk at any desired spatial scale using spatially aggregated disease
count data.

As variation in disease risk occurs in a spatial continuum irrespective of
the format in which the data are available, we consider the LGCP framework
to be a natural statistical paradigm for modelling aggregated disease count
data. However, when computational constraints make the fitting of an LGCP
infeasible, we argue that SDA provides a computationally efficient solution while
respecting the spatially continuous nature of disease risk. SDA also overcomes
some of the limitations inherent to other spatially discrete models, such as CAR
models. In addition to providing spatially continuous predictions, SDAs can also
deal with the issue of changing administrative boundaries over time and allow
incorporation of covariates available at any spatial scale.

Kelsall and Wakefield (2002) developed a similar approach to the proposed
SDA for modelling count data available at areal level. Specifically, by assuming
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an intercept-only model, they approximate (4) using a multivariate log-Gaussian
distribution with mean

E[λi] = exp{β0 + σ2/2}

and covariance

Cov{λi, λj} = exp{β0 + σ2/2} ×[∫
Ri

∫
Rj

wi(x)wj(x
′) exp{σ2ρ(‖x− x′‖;φ)} dx dx′ − 1

]
.

Kelsall and Wakefield (2002) then advocate the use of the log-Gaussian approx-
imation as a Bayesian prior for spatial smoothing but no reference is made to
the LGCP framework. In this paper, instead, our objective was to develop a
computationally efficient approximation to the LGCP model which, in Bayesian
terms, is our chosen prior for modelling disease risk.

In fitting SDA models, most of the computational burden is due to the
approximation of the integral in (7), which defines the area-level correlation
between the spatial random effects. In our example, the SDA model is about
5 to 15 times faster to fit than the LGCP model, depending on the number of
values used to discretise the scale of the spatial correlation φ.

We conclude that SDA is a reliable approximation to LGCP for carrying
out predictions at areal-level, both in terms of point predictions and in the
quantification of uncertainty. It also provides spatially continuous predictions in
disease risk that are comparable to those from LGCP, but with larger standard
errors and more conservative predictions intervals.

Finally, extension to the spatio-temporal case of the method discussed in
this paper is possible and is work in progress. For example, let us consider
counts yit for the region Ri over the time interval (t, t + 1). Let S(x, t) be a
spatio-temporal Gaussian process with covariance function

cov{S(x, t), S(x′, t′)} = σ2 exp{−|t− t′|/ψ} exp{−‖x− x′‖/φ}.

By modelling the yit as realisations of a spatio-temporal log-Gaussian Cox
process with conditional intensity Λ(x, t) = exp{α + S(x, t)}, we can then
approximate this with a spatio-temporally discrete Gaussian process S∗t =
(S∗1t, . . . , S

∗
nt), such that

S∗t = ϕS∗t−1 +Wt, 0 < ϕ < 1,

where the temporal innovation Wt is modelled as a multivariate Gaussian distri-
bution with covariance matrix given by (7). Preliminary results suggest that the
reduction in computing time with respect to a spatio-temporal LGCP model is
substantially larger than that observed for the purely spatial scenario presented
in this paper.
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four fitted models in Section 5.
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the lower layer super output areas (LSOA) of Newcastle-Upon-Tyne for each
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smoothed histograms of the standard errors from each model.
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Table 1: Average bias, root-mean-square-error (RMSE) and the 95% coverage
probability (CP) for the LSOA incidence, λi, from the simulation study of Sec-
tion 4.

φ = 100 φ = 800 φ = 1500
SDA I SDA II LGCP SDA I SDA II LGCP SDA I SDA II LGCP

Bias -0.006 -0.007 -0.009 -0.002 -0.003 -0.004 -0.008 -0.008 -0.011
RMSE 0.020 0.021 0.022 0.003 0.004 0.006 0.027 0.029 0.030
95%CP 0.960 0.962 0.948 0.962 0.963 0.952 0.963 0.967 0.945
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Table 2: Average bias, root-mean-square-error (RMSE) and the 95% coverage
probability (CP) for the spatially continuous relative risk, exp{S(x)}, from the
simulation study of Section 4.

φ = 100 φ = 825 φ = 1500
SDA I SDA II LGCP SDA I SDA II LGCP SDA I SDA II LGCP

Bias -0.575 -0.582 -0.566 0.842 0.965 -0.108 0.299 0.316 0.227
RMSE 2.590 2.800 0.045 0.439 0.531 0.005 2.070 2.260 0.002
95%CP 0.988 0.990 0.940 0.979 0.983 0.948 0.975 0.982 0.942
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Table 3: Point estimates and 95% confidence intervals (CI) for the model pa-
rameters of the spatially discrete approximation to log-Gaussian Cox processes
based weighted population average (SDA I) and simple average (SDA II) of the
log-intensity.

SDA I SDA II
Parameter Estimate 95% CI Estimate 95% CI
σ 1.054 (0.995, 1.109) 1.061 (1.003, 1.116)
φ 878.947 - 626.316 -
β∗0 -6.267 (-7.196, -5.337) -5.171 (-6.152, -4.190)
β∗1 -3.474 (-5.329, -1.619) -5.887 (-7.888, -3.886)
β∗2 -2.377 (-3.284, -1.469) -2.377 (-3.284, -1.469)
β∗3 4.634 (3.355, 5.913) 6.510 (5.129, 7.891)
β∗4 0.003 (-0.001, 0.007) -0.002 (-0.007, 0.002)
β∗5 -0.024 (-0.031, -0.017) -0.016 (-0.022, -0.009)
β∗6 -0.040 (-0.123, 0.042) 0.026 (-0.063, 0.114)
β∗7 0.006 (0.001, 0.010) 0.001 (-0.004, 0.007)
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Table 4: Point estimates and 95% credible intervals (CRI) for the model pa-
rameters of the Besag-York-Mollié model.

Parameter Estimate 95% CRI
τ2 0.094 (0.017, 0.366)
ν2 0.017 (0.003, 0.123)
β∗0 -4.858 (-7.461, -2.203)
β∗1 -6.153 (-11.806, -0.679)
β∗2 -2.951 (-5.701, -0.254)
β∗3 6.830 (3.106, 10.624)
β∗4 0.001 (-0.011, 0.012)
β∗5 -0.021 (-0.038, -0.003)
β∗6 -0.068 (-0.283, 0.154)
β∗7 0.004 (-0.010, 0.017)
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Table 5: Posterior median and 95% credible intervals (CRI) for the model pa-
rameters of the log-Gaussian Cox process model.

Parameter Posterior median 95% CRI
σ 0.706 (0.484, 0.963)
φ 986.668 (359.716, 2329.131)
β0 -14.499 (-18.624, -10.279)
β1 -9.573 (-18.587, -0.676)
β2 -1.956 (-6.445, 2.451)
β3 5.710 (-0.422, 11.849)
β4 -0.001 (-0.020, 0.018)
β5 -0.031 (-0.058, -0.006)
β6 -0.118 (-0.434, 0.206)
β7 0.013 (-0.009, 0.034)
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