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Abstract—In this paper, we investigate the energy-efficient
multi-user mobile-edge computing offloading problem in massive
MIMO enabled HetNets, where the CPU-cycle frequency of mo-
bile devices, uplink power control, computational task offloading
ratio and uplink transmission duration are jointly optimized. The
problem is formulated as minimizing the energy consumption
of all mobile devices while satisfying the maximum latency
requirement. Specifically, to address this non-convex problem,
a low-complexity algorithm is proposed relied on alternating
optimization, where we address the joint computational task
offloading ratio and uplink transmission duration optimization
problem and the uplink power control problem iteratively. Be-
sides, the effectiveness and convergence of the proposed iterative
algorithm are analytically studied. Numerical results demonstrate
that our proposed algorithm consumes less energy compared to
local computing and full uploading schemes, and the application
of massive MIMO in HetNets helps to reduce energy consumption
of mobile devices.
Index Terms—Computation offloading, energy efficiency, Het-

Nets, massive MIMO, mobile edge computing.

I. INTRODUCTION

With the striking growth of mobile computation-intensive

applications, such as online gaming, limited battery energy

and finite computation capacities become new challenges for

mobile devices in the fifth generation (5G) networks. Mobile

edge computing (MEC) is one promising solution which can

offload intensive computation to nearby servers at the edge of

cellular networks for remote execution [1], [2]. Meanwhile, as

mobile data traffic demand is explosively increasing, massive

multiple input multiple output (MIMO) and dense hetero-

geneous networks (HetNets) are introduced in 5G networks

to enhance the system spectral efficiency (SE) and energy

efficiency (EE) [3]–[6].

The studies about MEC systems have emerged recently [7]–

[12]. In [7] and [8], the authors study joint radio and

computational resource allocation for a single mobile user,

where they formulate the problem as minimizing the mobile

user’s energy consumption and the task execution latency.

Similarly, the work in [9] investigates the energy consumption

minimization problem in multi-user MEC systems based on

both time-division and orthogonal frequency-division multiple

access. Besides, the authors in [10] provide insights on the

tradeoff between power and delay in MEC systems, where an

online computation offloading algorithm is designed relied on

Lyapunov optimization. Nevertheless, the proposed algorithms

in [9] and [10] are limited to interference-free scenarios.

The work in [11] studies the mobile-edge computation

offloading problem in HetNets, and a centralized scheme is

proposed to minimize the total energy consumption. A similar

system is considered in [12], while a distributed scheme is

designed to lower the system overhead in the field of energy

and monetary cost. However, in [11] and [12], the MEC server

is only located at the macro base station (MBS) and massive

MIMO is not taken into account for uplink transmission. As

shown in the recent studies [13]–[15], the combination of

massive MIMO and HetNets can boost the system EE and SE.

Nevertheless, as far as we know, the performances of MEC in

massive MIMO enabled HetNets have not been evaluated in

the existing literature, where the inter-cell interference should

be taken into account.

Motivated by the above observations, this paper studies the

energy-efficient multi-user computation offloading problem in

massive MIMO enabled HetNets where each BS is equipped

with an MEC server. To be specific, the main contributions of

this paper are summarized in the following.

• Different from the existing researches [7]–[12], we con-

sider the problem of minimizing the energy consump-

tion of all mobile devices under the maximum latency

requirement in massive MIMO enabled HetNets, which

is the first time to jointly optimize the CPU clock speed

of mobile devices, uplink power control, computational

task offloading ratio and uplink transmission duration.

• In Propositions 1-2, we prove the effectiveness and con-

vergence of the proposed algorithm theoretically. Simu-

lation results also confirm that the proposed algorithm

converges fast and significantly outperforms both local

computing and full uploading schemes. Besides, it is

shown that the combination of massive MIMO and Het-

Nets in MEC benefits mobile energy savings.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multi-user MEC system with one MBS equipped

with massive MIMO, I − 1 single-antenna small cell BSs

(SBS), and N single-antenna users in a set C = {1, 2, · · · , N}.

Let i ∈ I = {1, 2, · · · , I} denote the i-th BS, where the

MBS corresponds to i = 1, and the cases of i > 1 represent

SBSs. Each BS is equipped with one MEC server to carry



out computational tasks offloaded from its associated users.

Besides, assume that the total frequency band is shared by all

BSs. Each user can be only associated with one BS, which is

determined prior to the resource allocation.

A. Uplink Data Rate Expression
Let pTn denote the transmit power of user n, and gin

represents the channel power gain between the i-th BS and the

n-th user. With the adoption of the maximum-ratio combing

detector, the lower bound of the achievable uplink data rate

for users associated with the MBS is expressed as [16]

rin = log2

⎛
⎜⎝1 +

(M − 1) pTngin∑
m �=n,m∈C

pTmgim + σ2
n

⎞
⎟⎠ , i = 1, (1)

where M denotes the number of antennas equipped at the

MBS, and σ2
n means the noise power experienced by user n.

On the other hand, assume that users associated with the

same SBS share the same time-frequency resource equally,

and thus their uplink data rates can be calculated by

rin =
1

Ni
log2

⎛
⎜⎝1 +

pTngin∑
m/∈Ci

pTmgim + σ2
n

⎞
⎟⎠ , i > 1, (2)

where Ci indicates the set of users associated with the i-th BS,

and Ni is the cardinal number of Ci.
Then, let x = [xin] denote the user association matrix,

where xin = 1 if user n is linked to the i-th BS, and

xin = 0, otherwise. Thus, the uplink data rate of the n-th

user is obtained as

Rn =
∑
i∈I

xinrin. (3)

B. Partial Computing Offloading
Assume that an bits are required to be computed for user

n in one time slot T . In this paper, we consider flexible data

partition task model, and let sn denote the ratio of offloaded

data bits to the total input bits, i.e., (1− sn) an for local

computing, and snan for edge computing.

For local computing, the power consumption for user n can

be modelled as [2]

pLn = λf3
n, (4)

where fn is the CPU-cycle frequency of user n and can be

adjusted via dynamic voltage and frequency scaling (DVFS)

technique [1]. Thus, the time for local computing of user n is

calculated as

tLn =
ε (1− sn) an

fn
, (5)

where ε (ε > 0) denotes the number of cycles needed per

input data bit. Note that the parameter values an and ε are

determined by the types of applications and estimated via task

profilers [17]. Consequently, the energy consumption for local

computing is given by

EL
n = pLnt

L
n = λε (1− sn) anf

2
n. (6)

As for edge computing, users first offload tasks to their

associated BSs. After collecting input bits from users, MEC

servers at BSs execute offloaded tasks. Define T ul as the spe-

cific duration for uplink data transmission, and the execution

time for MEC servers is bounded by T − T ul. Note that the

time for users to download computed results is considered to

be negligible in this paper, as the results are usually of small

size and BSs are with high transmit power. Thus, the energy

consumption of user n for uplink transmission is expressed as

ET
n = pTnT

ul. (7)

C. Problem Formulation
To minimize the energy consumption of N users while

ensuring their tasks successfully executed in one time slot T ,

the energy-efficient multi-user computation offloading problem

is formulated as

min
s,pT,f ,Tul

∑
n∈C

(
EL

n + ET
n

)
(8a)

s.t. C1 : 0 ≤ sn ≤ 1, ∀n, (8b)

C2 : 0 ≤ pTn ≤ pTmax, ∀n, (8c)

C3 : 0 ≤ fn ≤ fmax, ∀n, (8d)

C4 : 0 ≤ T ul ≤ T, (8e)

C5 : ε (1− sn) an/fn ≤ T, ∀n, (8f)

C6 : snan −RnT
ul ≤ 0, ∀n, (8g)

C7 :
∑
n∈Ci

εsnan − fBS
i

(
T − T ul

)
≤ 0, ∀i, (8h)

where pTmax and fmax are the maximum transmit power and

frequency for each user, respectively, and fBS
i denotes the

CPU-cycle frequency of the MEC server at BS i.

In problem (8), C1 gives the range of computational task

offloading ratio sn; C2 and C3 represent that the maximum

transmit power and CPU-cycle frequency of user n are pTmax

and fmax, respectively; C4 means that the time for uplink

transmission T ul should be not more than the time slot T ;

C5 indicates that the delay for local computing is bounded by

T ; C6 and C7 represent that the uplink data transmission and

edge computing should be finished in the duration T ul and

T − T ul, respectively.

III. JOINT RADIO AND COMPUTATIONAL RESOURCE

OPTIMIZATION

A. Optimal CPU Frequency and Problem Decomposition
Observing problem (8), it can be found that the objective

function monotonously increases with fn, ∀n. Besides, from

constraint C5, we have fn ≥ ε(1−sn)an

T . Thus, the optimal

CPU-cycle frequency of user n can be obtained as

f∗
n =

ε (1− sn) an
T

, (9)

on the condition that
ε(1−sn)an

T ≤ fmax.

Since a function can be always minimized by first min-

imizing it over some of the variables and then over the



remaining ones [18], by substituting (9) into (8), problem (8)

is equivalently transformed into

min
s,pT,Tul

Υ
(
s,pT, T ul

)
=

∑
n∈C

(
λε3(1−sn)

3a3
n

T 2 + pTnT
ul
)

s.t. C1,C2,C4,C6,C7,
C8 : ε (1− sn) an − fmaxT ≤ 0.

(10)

Nevertheless, the transformed problem (10) is still non-convex,

and finding its optimum is rather challenging. Hence, we

divide it into two sub-problems, and solve them alteratively.

By fixing the transmit power vector p
T, the joint compu-

tational task offloading ratio and uplink transmission duration

optimization problem can be obtained as

min
s,Tul

Υ
(
s, T ul

)
=

∑
n∈C

(
λε3(1−sn)

3a3
n

T 2 + pTnT
ul
)

s.t. C1,C4,C6− C8,
(11)

which is convex and can be solved by standard algorithms,

such as interior-point method with polynomial computational

complexity required [18].

Conversely, fixing the computational task offloading ratio

vector s and the uplink transmission duration T ul, the uplink

power control problem can be expressed as

min
pT

Φ
(
p
T
)
=

∑
n∈C

pTnT
ul,

s.t. C2,C6.
(12)

B. Power Control Based on Sequential Optimization

Unfortunately, problem (12) is non-convex due to the exis-

tence of inter-cell interference shown in the user rate function

Rn. Alternatively, Rn can be re-expressed as

Rn

(
p
T
)
=

∑
i∈I

xin

(
ain

(
p
T
)
− bin

(
p
T
))
, (13)

where ain
(
p
T
)

and bin
(
p
T
)

are defined as

ain
(
p
T
)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
log2

(
(M − 1) pTngin+

∑
m �=n

pTmgim+σ2
n

)
, i = 1,

1
Ni

log2

(
pTngin+

∑
m/∈Ci

pTmgim + σ2
n

)
, i > 1,

(14a)

bin
(
p
T
)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log2

( ∑
m �=n

pTmgim + σ2
n

)
, i = 1,

1
Ni

log2

( ∑
m/∈Ci

pTmgim + σ2
n

)
, i > 1,

(14b)

respectively.

It can be found from (13) and (14) that the rate function

Rn

(
p
T
)

is the difference of two concave functions. To address

this power control problem with polynomial complexity, we

adopt sequential optimization [19], which helps to obtain a

series of improved solutions. To be specific, with an initial

point pT,(0), the rate function Rn

(
p
T
)

is close to

R̂(t)
n

(
p
T
)
=

∑
i∈I

xin

(
ain

(
p
T
)
− b̂

(t)
in

(
p
T
))

(15)

Algorithm 1 The power control algorithm based on sequential

optimization

1. Initialize t = 0, χ = 1, and a feasible point pT,(0).

2. while χ > 0.01, do
3. t = t+ 1;

4. Calculate b̂
(t)
in

(
p
T
)

according to (16), ∀i, n;

5. Update constraint C6′;

6. Solve (17) and obtain its global optimum p
T,(t);

7. Calculate χ = max
n

∣∣∣pT,(t)
n −pT,(t−1)

n

p
T,(t−1)
n

∣∣∣;
8. end while

at the t-th iteration where b̂
(t)
in

(
p
T
)

is the first-order approxi-

mation of bin
(
p
T
)
, i.e.,

b̂
(t)
in

(
p
T
)
= bin

(
p
T,(t−1)

)
+
∑
n∈C

(
pTn − p

T,(t−1)
n

)
∂bin(pT)

∂pT
n

∣∣∣∣
pT=pT,(t−1)

.
(16)

Since R̂n

(
p
T
)

is concave, the uplink power control solution

of problem (12) can be found by solving the following convex

optimization problem

min
pT

Φ̃
(
p
T
)
=

∑
n∈C

pTnT
ul,

s.t. C2,C6′ : snan − R̂
(t)
n

(
p
T
)
T ul ≤ 0, ∀n.

(17)

To tighten constraint C6′, R̂
(t)
n

(
p
T
)

should be updated

iteratively, and problem (17) is updated correspondingly and

solved until convergence. Specific steps are listed in Algo-
rithm 1, whose convergence and optimality are demonstrated

as follows.

Proposition 1: The objective function Φ
(
p
T
)

of problem

(12) is decreased with the increasing iteration times of Algo-

rithm 1, and the point of convergence satisfies the Karush-

Kuhn-Tucher (KKT) conditions of problem (12).

Proof: Suppose that p
T,(t) is the obtained solution of

Algorithm 1 at the t-th iteration, and it can be obtained that

Φ
(
p
T,(t−1)

)
(μ)
= Φ̃

(
p
T,(t−1)

)(ν)

≥ Φ̃
(
p
T,(t)

)
(ω)
=Φ

(
p
T,(t)

)
.

(18)

Specifically, the equation (μ) is straightforward since problem

(12) and (17) are equal at pT,(t−1). The inequality (ν) holds

because p
T,(t) is the optimal solution of problem (17). Since

p
T,(t) satisfies constraint C6′ and C6′ is stricter than C6,

p
T,(t) must satisfy C6, which validates the last equality (ω).

Therefore, Φ (p) is reduced with the increasing iteration times.

Since the constraint set of problem (12) is compact and

Φ (p) is lower-bounded, Algorithm 1 is guaranteed to con-

verge. Suppose that p
T∗ is the convergent point. Thus, pT∗

must satisfy the KKT conditions of problem (12), since

problem (12) and problem (17) have the same objective and

derivative values at pT∗. �

C. Alternating Optimization Algorithm
With the above results, the alternating optimization algo-

rithm for joint radio and computational resource optimization



Algorithm 2 Alternating optimization algorithm for joint radio

and computational resource optimization

1. Initialize k=0, δs=δT =1, and a feasible point pT,(0).

2. while max {δs, δT } > 0.01, do
3. k = k + 1;

4. Solve problem (11), and obtain
(
s
(k), T ul,(k)

)
via

interior-point method;

5. Calculate p
T,(k) via Algorithm 1 with p

T,(k−1) and(
s
(k), T ul,(k)

)
;

6. Calculate δs = max
n

∣∣∣ s(k)
n −s(k−1)

n

s
(k−1)
n

∣∣∣;
7. Calculate δT =

∣∣∣Tul,(k)−Tul,(k−1)

Tul,(k−1)

∣∣∣;
8. end while

TABLE I
SIMULATION PARAMETERS

Parameters Typical value Parameters Typical value
Cell radius 500 m M 100

N 32 Input bits 7× 10
5

T 0.3s λ 10
−26

ε 40 fmax 800 MHz

fBS

i , i = 1 16 GHz fBS

i , i > 1 8 GHz

pTmax 23 dBm Noise power -174 dBm/Hz

is organized in Algorithm 2, whose convergence and effec-
tiveness are further testified.

Proposition 2: Algorithm 2 monotonically decreases the

objective function Υ
(
s,pT, T ul

)
of problem (10) at each

iteration, and eventually converges within finite iterations.

Proof: Considering the k-th iteration of Algorithm 2, and

we have
Υ
(
s
(k−1),pT,(k−1), T ul,(k−1)

)
(ϑ)

≥ Υ
(
s
(k),pT,(k−1), T ul,(k)

)
(ς)

≥ Υ
(
s
(k),pT,(k), T ul,(k)

)
,

(19)

where the inequality (ϑ) holds because problem (11) is

convex and
(
s
(k), T ul,(k)

)
is its global optimal solution; the

inequality (ς) is proved to be valid in Proposition 1. There-

fore, Υ
(
s,pT, T ul

)
is reduced at each iteration. Besides, as

Υ
(
s,pT, T ul

)
is lower-bounded, Algorithm 2 must converge

in finite iterations for a given threshold. �

As derived before, the power control solution can be found

by solving a series of convex optimization problems with

polynomial complexity. Besides, the subproblem for joint

optimization of computational task offloading ratio and uplink

transmission duration itself is a convex problem, which can

be optimally solved with polynomial complexity required.

Furthermore, as verified by Fig. 1, Algorithm 2 converges fast.

In summary, the proposed alternating optimization algorithm

only needs polynomial computational complexity.

IV. SIMULATION RESULTS

In the simulation, a two-tier cell is considered with one

MBS equipped with massive MIMO, three SBSs, and uni-
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Fig. 1. The convergence procedure of Algorithm 2.
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Fig. 2. Energy consumption vs. input data bits for different algorithms.

formly distributed users. The large-scale channel fading be-

tween BSs and users is composed of the pathloss (dB)

128.1 + 37.6log10d (km), and the shadow fading with standard

derivation 8 dB. The rest parameters and their default values

are given in Table I.

Since the proposed algorithm is a two-stage iterative al-

gorithm, we first show the convergence performance of Al-

gorithm 2 in Fig. 1. As shown in all the four curves,

Υ
(
s,pT, T ul

)
decreases consistently and converges within

only several iterations, which is in accordance with Proposition

1. Besides, it can be found that the number of users slightly

influences the speed of convergence.

Then, the effectiveness of ‘Proposed algorithm’ is validated

via simulation results shown in Figs. 2-3, in comparison with

two benchmark schemes: ‘Local computing’ which means that

all users execute their whole computation tasks locally; ‘Full

uploading’ which indicates that the whole tasks of users are

offloaded to their corresponding BSs and executed remotely.

It can be observed from Figs. 2-3 that all the three curves

follow the same tendency, where the energy consumption
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Fig. 3. Energy consumption vs. time slot duration for different algorithms.

of mobile devices increases with the input data bits but

deceases with the time slot duration. It is worth noticing that

our proposed algorithm significantly outperforms both ‘Local

computing’ and ‘Full uploading’ schemes in two figures. When

the number of input bits is small or the time slot is long

enough, since ‘Local computing’ consumes much less energy

than ‘Full uploading’, our proposed algorithm makes most of

input bits executed locally, whose performance is therefore

close to ‘Local computing’ as shown in Figs. 2-3. With the

increase of input bits or the decrease of the time slot duration,

the energy consumption of both basic schemes goes up rapidly.

Under this circumstance, our proposed algorithm can flexibly

adjust the ratio of uploading bits to avoid wasting energy

on uplink transmission with bad channel or local computing

with too high CPU frequency, which consequently saves more

mobile energy.

Finally, Fig. 4 presents the impact of the antenna number

M on the total energy consumption. We can find in Fig. 4 that

larger number of active antennas corresponds to lower energy

consumption, since increasing the antenna number equipped at

the MBS helps to reduce the transmit power of users connected

with the MBS. This indicates that the employment of massive

MIMO helps lower the energy consumption of mobile devices.

V. CONCLUSION

In this paper, we have studied energy-efficient multi-user

computation offloading problem in massive MIMO enabled

HetNets, and proposed a low-complexity alternating optimiza-

tion algorithm for the joint optimization of the CPU-cycle

frequency of mobile devices, uplink power, computational task

offloading ratio and uplink transmission duration. Through

theoretical analysis, we have found that the proposed iterative

algorithm converges within limited numbers of iterations.

Numerical results verified the effectiveness of our algorithms

as compared to local computing and full uploading schemes.

Besides, it is shown that adopting massive MIMO in HetNets

benefits mobile energy savings.
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Fig. 4. Energy consumption vs. input data bits with different numbers of
antennas.
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