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Abstract—The downlink communications are vulnerable to
intelligent unmanned aerial vehicle (UAV) jamming attack which
can learn the optimal attack strategy in complex communication
environments. In this paper, we propose an anti-intelligent UAV
jamming strategy, in which the mobile users can learn the
optimal defense strategy to prevent the jamming. Specifically,
the UAV jammer acts as a leader and the ground users act as
followers. The problem is formulated as a stackelberg dynamic
game, which includes the leader sub-game and the followers
sub-game. As the UAV jammer is only aware of the incomplete
channel state information (CSI) of the ground users, we model
the leader sub-game as a partially observable Markov decision
process (POMDP). The optimal jamming trajectory is obtained
via deep recurrent Q-networks (DRQN) in the three-dimension
space. For the followers sub-game, we use the Markov decision
process (MDP) to model it. Then the optimal communication
trajectory can be learned via deep Q-networks (DQN) in the
two-dimension space. We prove the existence of the stackelberg
equilibrium. The simulations show that the proposed strategy
outperforms the benchmark strategies.

Index Terms—Intelligent UAV jamming, game theory, MDP,
deep Q-networks.

I. INTRODUCTION

With the demand of high-speed data transmission in wireless
communications, various communication technologies have
been explored to improve the network capacity. Compared to
the conventional technologies, the UAV can provide strong
line-of-sight (LoS) links and small path-loss exponents over
the air-to-ground communications, which has natural advan-
tages in boosting the network capacity [1]–[3].

UAVs can be exploited as malicious components when
considering the communication security issues [3]–[5]. Due to
the strong LoS links and small path-loss exponents, the UAV
jamming attack can significantly block the data transmission
and degrade communication quality of service (QoS), which
is more serious than the ground jamming. Therefore, anti-
UAV jamming problem in wireless communication is worth
investigating. Recently, some meaningful work has been de-
voted to addressing the malicious UAV jamming problem [6]–
[8]. For example, a zero-sum pursuit-evasion game has been
formulated to compute optimal strategies to evade the aerial
jammer [6]. A smart UAV attacker, who can specify the attack
type, such as jamming, eavesdropping and spoofing, has been
considered in [7].

However, the above anti-UAV jamming work are based
on some ideal assumptions, i.e., the perfect observations.
More recent work has considered imperfect observation in
anti-ground jamming but few in anti-UAV jamming [8], [9].
For example, with considering the incomplete information
constraint and the co-channel mutual interference, the com-
petition between UAVs and jammers have been investigated
[8]. Likewise, the impact of observation error of a smart
jammer has been evaluated in [9]. As aforementioned, only [8]
has considered imperfect observations in anti-UAV jamming
problem. Meanwhile, most of the considered UAV jammers
are unintelligent [7], [8], [10]. Limited work has considered
intelligent UAV jamming, which can easily learn the jamming
strategy in complex communication environments, even with
the incomplete observation, i.e., incomplete channel state
information (CSI). Therefore, investigating the anti-intelligent
UAV jamming problem becomes more challenging.

Motivated by the above practical considerations, in this
paper, we consider the scenario that both the UAV jammer
and the users are intelligent agents. On the one hand, the UAV
jammer learns the optimal attack strategy. On the other hand,
the ground users learn the optimal defense strategy. To the
best of our knowledge, “How do ground users defend against
intelligent UAV jamming using machine learning?” is still an
open problem. Some specific contributions of our work are
summarized as follows

• For the first attampt, we consider the scenario that both
the UAV jammer and the ground users are intelligent
agents, in which an UAV jammer can block the data
transmission of the ground users and the ground users
can defend against this jamming to the greatest extent.

• We propose an anti-intelligent UAV jamming strategy.
Specifically, the problem is formulated as a stackelberg
dynamic game. The incomplete CSI is considered in the
game and the optimal trajectories are learned.

• Some important remarks and insights are obtained from
theory and simulations.

The rest of the paper is organized as follows. In Section
II, we provide the system model and problem formulation.
In Section III, we analyze the proposed game and prove the
existence of stackelberg equilibrium. Simulations are presented
in Section IV and summaries are given in Section V.



II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the downlink communications between a base
station and ground users under the threat of a UAV jammer.
We assume that the location of the base station is fixed
with height HB, while the users and the UAV jammer are
mobile in each time slot at constant velocities. Considering
the resource-limited devices, all of them are equipped with
single antenna and communicate with the base station by
adopting frequency division multiple access (FDMA). The
total bandwidth is B Hz and we consider the worst case
that the UAV adopts a full band barrage jamming. The UAV
jammer and the users are considered as intelligent agents, who
can learn the optimal strategies to maximize their long-term
cumulative rewards, i.e., signal-to-interference-plus-noise ratio
(SINR) [11], respectively. Denote J as the UAV jammer, B as
the base station and i ∈ {1, · · · , U} as user i. The locations of
base station B, an arbitrary user i and the UAV jammer J are
denoted as (0, 0,HB), (xi, yi, 0), and (xJ , yJ , zJ ). Denote
the mapping of UAV jammer action space as

AJ = {(0, 0, 0), (0, 0, 1), (0, 0,−1), (−1, 0, 0), (1, 0, 0),

(0, 1, 0), (0,−1, 0)},

which represents stay, up, down, left, right, forward, backword.
Denote the mapping of user action space as

Ai = {(0, 0, 0), (−1, 0, 0), (1, 0, 0), (0, 1, 0), (0,−1, 0)},

which represents stay, left, right, forward, backword.
The channel coefficient from base station to the i-th user

is denoted as hBi =
√
d−η
Bi h̃Bi, where dBi represents the

distance between base station B and user i, η is the path
loss exponent and h̃Bi is the small-scale fading, which follows
zero-mean complex Gaussian distribution with unit variance.
Meanwhile, the channel between the UAV jammer and the
user i is modeled as an air-to-ground channel model which
contains strong LoS, reflected nonline-of-sight (NLoS), and
small-scale fading. In general, the probability of having small-
scale fading is extremely lower than LoS and NLoS, hence,
the small-scale fading is neglected [12]. The path loss between
the UAV jammer and user i is denoted as [12]

PL(J , i) =

{
βLoS|dJ i|−α, for LoS link,
βNLoS|dJ i|−α, for NLoS link, (1)

where dJ i =
√
(xi − xJ )2 + (yi − yJ )2 + z2J is the distance

between the UAV jammer J and the user i, α is the path-loss
exponent for the air-to-ground channel, and βLoS and βNLoS
are additional attenuation factors for LoS link and NLoS link,
respectively. The probability of LoS connection, PLoS, depends
on the elevation angle θi between user i and UAV, the commu-
nication environment, the surrounding buildings density, and
height of the UAV jammer, which can be represented as

PLoS =
1

1 + Φexp(−Ψ[θi − Φ])
. (2)

Particularly, Φ and Ψ are S-curve parameters, which depend
on communication environment, θi = 180

π arcsin( zJ
dJ i

) and the
probability of NLoS is PNLoS = 1− PLoS. The expectation of
the jamming power received at user i is given by [12]

IJ i = pJPLoSβLoS|dJ i|−α + pJPNLoSβNLoS|dJ i|−α, (3)

where pJ is the power budget of the UAV jammer. Then, the
received SINR at the ground user i can be denoted as

γi =
pBd

−η
Bi |h̃Bi|2

IJ i + σ2
, (4)

where pB is the power budget of the base station and σ2 is
the noise variance.

B. Problem Formulation

We quantize the channel hBi into a finite state space
S = {h1

Bi, · · · , hK
Bi}, and model it as a Markov chain with

finite states [13]. In practice, due to the mobility of the UAV
jammer, the wireless channel environment is dynamic and
unknown. Therefore, the UAV jammer can only obtain the
partially observable information which is the location of the
users with respect to the distances to the base station, dBi =√
x2
i + y2i +H2

B, i ∈ {1, · · · , U}. Meanwhile, the information
observed by the users is the jamming power received from
the UAV1. Considering the hierarchical interactions among
UAV jammer and the users, we utilize a stackelberg dynamic
game G⟨{J , i}, {dJ , di}, {rJ , ri}⟩ to formulate the anti-UAV
jamming problem, namely, anti-jamming elude game. In the
formulated game, we model the foresighted UAV jammer J
as a leader and the myopic users i ∈ {1, · · · , U} as followers.
The UAV jammer first chooses the action aJ ∈ AJ to
determine the flying direction, then each user chooses the
action ai ∈ Ai to determine the moving direction. We assume
that the location of the user i is (xi, yi, 0) in the previous
time slot and (x′

i, y
′
i, 0) in the current time slot with action

ai, i.e., (x′
i, y

′
i, 0) = (xi, yi, 0) + ai. The location of the

UAV jammer J is (xJ , yJ , zJ ) in the previous time slot
and (x′

J , y′J , z′J ) in the current time slot with action aJ ,
i.e., (x′

J , y′J , z′J ) = (xJ , yJ , zJ ) + aJ . The strategies of the
UAV jammer and the users refer to jamming trajectory and
communication trajectories, respectively.

The reward of the user i can be given as

ri[T (aJ ),L (ai)] =
pBd

−η
Bi |h̃Bi|2

IJ i + σ2
− CUdi, (5)

where T (aJ ) = (x′
J , y′J , z′J ) denotes the current trajectory

of the jammer with action aJ , L (ai) = (x′
i, y

′
i, 0) denotes the

current trajectory of the user i with action ai, CU is the unit
energy cost of the user, i.e., mobility cost per unit distance.
The distance between the UAV jammer J and user i is dJ i =√
(x′

J − x′
i)

2 + (y′J − y′i)
2 + z′2J , the distance from the base

1This assumption is reasonable since the jamming is continuous and the
users can estimate it in each inter frame gap.



station to the user i is dBi =
√
x′2

i + y′2i +H2
B and the mov-

ing distance per time slot is di =
√

(x′
i − xi)2 + (y′i − yi)2.

The UAV jammer’s reward can be given by

rJ [T (aJ ),L (ai)] =

U∑
i=1

IJ i

pBd
−η
Bi |h̃Bi|2 + σ2

− CJ dJ , (6)

where CJ is the unit energy cost of the UAV jammer,
i.e., flying and jamming cost per unit distance, and dJ =√
(x′

J − xJ )2 + (y′J − yJ )2 + (z′J − zJ )2 is the flying dis-
tance per time slot. The formulated problem is to maximize
each user’s reward in (5) to find the optimal communication
trajectory, within the constraint of the optimal jamming tra-
jectory of the UAV obtained via maximize reward in (6).

III. DQN BASED ANTI-JAMMING ELUDE GAME

A. The Optimal Jamming Trajectory

We quantize the flying space into L states, then the loca-
tion state space of the UAV jammer J can be denoted as
SJ = {(xJ ,1, yJ ,1, zJ ,1), · · · , (xJ ,L, yJ ,L, zJ ,L)}. Again,
we quantize the motion space into M states, which is denoted
as Si = {(xi,1, yi,1, 0), · · · , (xi,M , yi,M , 0}, i ∈ {1, · · · , U}.
To simplify the case, we model a virtual user V as a target
user, which is a virtual point related to the ground users. The
location of the virtual user can be decided by

(xV , yV , 0) =

(∑U
i=1 wixi∑U
i=1 wi

,

∑U
i=1 wiyi∑U
i=1 wi

, 0

)
, (7)

where wi = Bi

B is the location weight of user i. Then, we
denote the motion space of the virtual user as SV .

Remark. Since the communication fairness among users, the
base station will allocate more bandwidth to the user far away
from it. Thus, the value of weights wi is proportion to the
bandwidth allocated to the user i. To simplify analysis, we
assume that the bandwidth is assigned the same for each user.
Thus, the location weight of the user i is wi =

1
U .

The UAV jammer’s reward in (6) can be transformed to

rJ [T (aJ ),L (aV )] =
IJV

pBd
−η
BV |h̃BV |2 + σ2

− CJ dJ , (8)

where dBV =
√

x′2
V + y′2V +H2

B. Then the optimization
problem for the UAV jammer J is formulated as choosing
action aJ to maximize reward (8) under the constraint of unit
moving distance per time slot, which can be given by

max
aJ

rJ [T (aJ ),L (aV )]

s.t. |aJ | = 1. (9)

However, the complete CSI of the virtual user is not
known to the UAV jammer. Considering the dynamic channel
environment, we model this process as a partially observable
Markov decision process (POMDP) [14]. Define a POMDP as
a 6-tuple ⟨S,AJ , P, rJ , O,Ω⟩, where

• S is the state space;

• AJ is the action space;
• P (·|s, aJ ) is the transition probability of the next state,

conditioned on action aJ being choosing in state s ∈ S;
• rJ [s,T (aJ )] is the reward obtained when action aJ is

taken in state s, and the symbol rJ [s,T (aJ )] is omitted
to rJ ,s if no confusion occurs;

• O is the observation space, which is equal to the motion
space SV ;

• Ω(·|s, aJ ) is the probability of the possible observation,
conditioned on action aJ being taken to reach state s.

According to the observation o, the probability of being in
state s is defined by the belief b, which can be updated by

b′(s′) =
1

Θ

[
Ω(o′|s′, aJ )

∑
s∈S

P (s′|s, aJ )b(s)

]
, (10)

where Θ =
∑

s′∈S Ω(o′|s′, aJ )
∑

s∈S P (s′|s, aJ )b(s) is the
normalization function of the belief and the belief is initialized
at b0 = P0, i.e., P0 = 0.1. Define the action selection policy
as π : b → aJ . Then solving the POMDP is to find the
optimal action selection policy π∗ : b∗ → a∗J , yields the
maximum expected reward for each belief. This maximum
expected reward can be obtained by the Bellman equation

V ∗
b = max

aJ∈AJ

[
rJ ,b + γ

∑
o∈O

Ω(o|b, aJ )V ∗
b′

]
, (11)

where rJ ,b =
∑

s∈S rJ ,sb(s) represents the expected reward
over the belief distribution, and γ is the discount factor.

For any partially observable with known state transition
probability P (·|s, aJ ), the problem can be reformulated as a
belief-MDP, which uses belief space M as a new state space
instead of the original state space S [15]. The near-optimal
solution to the belief-MDP can be solved by Q-learning [16].
However, in practice, the belief space is large and the state
transition probability is unknown, the Q-learning is impossible
to store and update the Q-value function. Therefore, we use
the model-free approach to learn the strategy, which directly
exploits the sequence of ℓ historical observation-action pairs,
Ot = {ot−ℓ, at−ℓ

J , · · · , ot−1, at−1
J } to learn the optimal attack

strategy [14]. The deep recurrent Q-networks (DRQN) that
combines Q-learning with a recurrent convolutional neural
network (CNN), is developed. The framework is shown in Fig
1. In each Q-network, the neural network consists of two con-
volutional layers, one long short-term memory (LSTM) layer,
and one fully connected (FC) layer. The first convolutional
layer convolves F1 filters of n1 × n1 with stride 1, and the
second convolutional layer convolves F2 filters of n2 × n2

with stride 1. The LSTM layer consists of C1 rectifier unites
and FC layer includes |AJ | rectifier unites.

Solving the formulated POMDP problem via the developed
DRQN, the Q-values are parameterized by Q(ϕ, aJ ; θ), where
θ is the weight parameter set of the Q-network. In time slot
t, sequence Ot can be preprocessed to an n0 × n0 matrix
ϕt, then input this matrix to the recurrent CNN to calculate
Q(ϕt, aJ ; θ). Once θ is learned, the Q-values are determined.
Then, the UAV jammer’s experience etJ (ϕt, atJ , rtJ , ϕt+1) is
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Fig. 1. The developed DRQN framework.

stored in the replay memory DJ = {e1J , · · · , etJ }. When
training the DRQN, mini-batches of experience egJ , 1 ≤ g ≤ t
from the pool of the reply memory is randomly chosen to
update the weight parameter set θ via a stochastic gradient
descent (SGD). The weight parameter set θ is updated by

L(θ) = Eϕ,a,r,ϕ′
[(
rJ ,ϕ + γmax

a′
J

Q(ϕ′, a′J ; θ−)

−Q(ϕ, aJ ; θ)
)2]

, (12)

where the symbol θ− is only updated with θ every N steps
from the same Q-network. The gradient of loss function with
respect to the weight parameter set θ is obtained by

∇θL(θ) = Eϕ,a,r,ϕ′
[(
rJ ,ϕ + γmax

a′
J

Q(ϕ′, a′J ; θ−)

−Q(ϕ, aJ ; θ)
)
∇θQ(ϕ, aJ ; θ)

]
. (13)

To balance the exploration and exploitation, we utilize the ϵ-
greedy policy πJ to select the action with greedy probability
P (aJ = a∗J ) = 1 − ϵ, where ϵ ∈ (0, 1) is a small positive
value, i.e., ϵ = 0.01. Then, the optimal jamming trajectory can
be denoted by

T ∗(aJ ) = (xJ 0, yJ 0, zJ 0) + a0J
∗
+ a1J

∗
+ · · ·+ atJ

∗
, (14)

where (xJ 0, yJ 0, zJ 0) is the initial location of the UAV
jammer.

B. The Optimal Communication Trajectory

In the follower sub-game, the optimal action a∗V based on
the observation of the UAV jammer. The optimal communica-
tion trajectory L ∗(aV ) can be formulated as

max
aV

rV [T (aJ ),L (aV )]

s.t. |aV | = 1. (15)

Theorem 1. The communication trajectory is decided by the
observation-action transition of the UAV jammer, and the ac-
tion transition probability P (aJ |a′J ) follows an independent
and identically distribution finite state Markov chain.

Proof: Please see Appendix A.

From the Theorem 1, optimizing defense strategy problem
can be modeled as solving a MDP problem, in which the
communication trajectory of the virtual user is determined by
the state SJ , i.e., s′J = sJ + a′J . The MDP can be denoted
as a 4-tuple ⟨SJ ,AV , rV , P (·|sJ , aV )⟩, where

• SJ is the state space,
• AV is the action space,
• rV [sJ ,L (aV )] is the reward obtained when action aV

is taken in state sJ , and the symbol rV [sJ ,L (aV )] is
omitted to rV,sJ if no confusion occurs.

• P (·|sJ , aV ) is the transition probability of the next state,
conditioned on action aV being chosen in state sJ ∈ SJ .

We have

P (st+1
J |stJ , aV ) = P (stJ + at+1

J |stJ , aV )

= P (a0J + · · ·+ at+1
J |a0J + · · ·+ atJ , aV )

= P (at+1
J |atJ , aV ). (16)

Then, we apply the Q-learning to derive the optimal commu-
nication trajectory L ∗(aV ) of the virtual user.

Considering the state space SJ is large, we develop the
DQN, which is shown in Fig. 2. The Q-value with parameter
ξ is estimated by the DQN, which is denoted by Q(sJ , aV ; ξ).
Specifically, in time slot t, the sequence of ℓ historical state-
action pairs St = {st−ℓ

J , at−ℓ
V , · · · , st−1

J , at−1
V } is preprocessed

to an n × n matrix φt as the input to the CNN. The
experience of the user etV (φ

t, atV , r
t
V , φ

t+1) is stored in the
replay memory DV = {e1V , · · · , etV }. The weight parameter
set ξ is updated via the loss function

L(ξ) = Eφ,a,r,φ′
[(
rV,φ + γmax

a′
V

Q(φ′, a′V ; ξ
−)

−Q(φ, aV ; ξ)
)2]

, (17)

where the symbol ξ− is updated from the same Q-network to
minimize the loss function in every N steps. The gradient of
(17) refers to the weight parameter set ξ is obtained by

∇ξL(ξ) = Eφ,a,r,φ′
[(
rV,φ + γmax

a′
V

Q(φ′, a′V ; ξ
−)

−Q(φ, aV ; ξ)
)
∇ξQ(φ, aV ; ξ)

]
. (18)

The optimal communication trajectory of virtual user L ∗(aV )
in time slot t is given by

L ∗(atV ) = (xV 0, yV 0, 0) + a0V
∗
+ a1V

∗
+ · · ·+ atV

∗
, (19)

where (xV 0, yV 0, 0) is the initial location of the virtual user.

C. Stackelberg Equilibrium

Definition 1. Given a two-player stackelberg game, where
player 1 as a leader wants to maximize a reward function
r1(a1, a2) and player 2 as a follower wants to maximize a
reward function r2(a1, a2) by choosing a1, a2 from action
space A1 and A2, respectively. Then, the pair (a∗1, a

∗
2) is

called a stackelberg equilibrium if for any a1 belonging to
A1 and a2 belonging to A2, satisfies

r1(a
∗
1, a2) ≥ r1(a1, a2)

r2(a
∗
1, a

∗
2) ≥ r2(a

∗
1, a2(a

∗
1)), (20)
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Fig. 2. The developed DQN framework.

where the reward r2(a
∗
1, a

∗
2) = maxa2

r2(a
∗
1, a2(a

∗
1)).

Remark. The stackelberg equilibrium with the UAV jammer as
leader is the optimal solution for it if the UAV jammer chooses
the action a∗J first, and if the goal of the virtual user is to
maximize rV , while that of the UAV jammer is to maximize rJ .
If the leader chooses any other action aJ , then the follower
will choose an non-optimal action ã∗V to maximize reward rV .
In this case, the reward of the UAV jammer will be less than
that when the stackelberg equilibrium is used.

Theorem 2. In the proposed game with one UAV jammer J
and one virtual user V , the DQN based optimal trajectory
pairs [T ∗(aJ ),L ∗(aV )] is a stackelberg equilibrium.

Proof: Please see Appendix B.

Remark. The stackelberg equilibrium can be achieved with
probability one in each time slot, if the DQN is well trained or
via a full greedy strategy. However, to balance the exploration
and exploitation with respect to a large state-action space, the
stackelberg equilibrium is achieved with probability 1− ϵ. In
other word, it has a probability ϵ that the system cannot obtain
the optimal communication trajectory in DQN training.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the anti-
jamming elude game via simulations. In the simulations, the
transmit power of the base station is pb = 100 mW, the
jamming power of the UAV is pJ = 30 mW, the noise power
is σ2 = 1 mW, the unit energy cost of the UAV jammer is
Cj = 0.9 dB ≈ 1.23 mW and the unit mobile cost of the
virtual user is CU = 0.5 dB≈ 1.12 mW. From [12], we set the
path-loss exponents for air-to-ground channel α = 3, ground-
to-ground channel η = 2, and the additional attenuation factors
βLoS = 1 dB, βNLoS = 20 dB, respectively. The location of the
base station is (0, 0, 0) and the location of the virtual user is
calculated by (7). The virtual user can move in a square area
with size X × Y × 1, and the UAV jammer can move in a
cube area with size X × Y × Z, where X ∈ [−30 m, 30 m],
Y ∈ [−30 m, 30 m], and Z ∈ [0 m, 30 m]. To simplify

simulation, the CSI is set to be real number, which changes in
each time slot, and the size of state S is set to be 50. Likewise,
the size of state SJ is also set to be 50. The neural network
consists of 2 hidden layers with the discount factor γ = 0.95,
and greedy rate ϵ = 0.1.

The long-term cumulative reward of the UAV jammer in 300
time slots is presented in Fig. 3. Specifically, we leverage the
greedy strategy and random strategy as benchmark strategies
and compare them with the proposed DRQN based intelligent
attack strategy. We find that the jamming reward via DRQN
can converge to 21.2 dB after 200 time slots. The performance
of the proposed attack strategy is already superior to the greedy
strategy and random strategy after 25 time slots, for example,
the proposed attack strategy can achieve 75% higher reward
than greedy reward in the 200-th time slot. We can also find
that greedy strategy can achieve a better performance than
random strategy.

We present the long-term cumulative reward of the virtual
user in Fig. 4. The result suggest that the reward via DQN can
converge to 22.3 dB after 100 time slots. After 10 time slots,
the DQN based strategy is already get a higher reward than
the other two strategies. In summary, these two figures show
that both the UAV jammer and the virtual user can obtain the
highest long-term cumulative rewards via DRQN and DQN,
respectively. Thus, the stackelberg equilibrium exists.

Fig. 5 presents the optimal jamming trajectory and the
optimal communication trajectory in one episode. We observe
that the communication location of the virtual user starts at (-2
m, 1 m) and ends at (15 m, 18 m) and the jamming location
of the UAV starts at (0 m, 0 m, 10 m) and ends at (15 m,
15 m, 0 m). Intuitively, the UAV will always stay close to the
virtual user to maximize its reward, but it is not in practice.
The reason is that the CSI is dynamic changeable in each
time slot, the UAV jammer will consider the CSI transition
probability to maximize long-term cumulative reward rather
than considering the instantaneous CSI only.

V. CONCLUSIONS

In this paper, we have proposed the anti-intelligent UAV
jamming strategy via deep Q-networks. Specifically, we have
formulated the problem as a stackelberg dynamic game, in
which the UAV jammer acts as a leader and the users act as
followers. With the incomplete channel state information, we
have modeled the leader sub-game as a partially observable
Markov decision process and have developed the recurrent
convolutional neural network to learn the optimal jamming
trajectory in the three-dimension space. For the follower, we
have modeled the follower sub-game as a Markov decision
process. Then, the optimal communication trajectory has been
learned in the two-dimension space. Moreover, some remarks
and insights have been obtained from theory and simulations.

APPENDIX A
PROOF OF THEOREM 1

The action transition probability of UAV jammer can be
divided into two cases based on ϵ-greedy policy πJ .
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Fig. 4. The rewards of the virtual user in DQN,
greedy and random strategies in 300 time slots.
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Fig. 5. The optimal trajectories via learning in one
episode, the UAV jammer vs. the virtual user.

Case 1: If the UAV jammer chooses the optimal action a′J
∗

in the next time slot, then

P (a′J
∗|aJ ) = P (o′, a′J

∗|o, aJ )

= P (a′J
∗
)P (o′|o, aJ )

= (1− ϵ)P (o′|o, aJ ), (21)

Case 2: If the UAV jammer chooses the non-optimal action
ã′J

∗
in the next time slot, then

P (ã′J
∗
|aJ ) = P (o′, ã′J

∗
|o, aJ )

= P (ã′J
∗
)P (o′|o, aJ )

= ϵP (o′|o, aJ ). (22)

As per (21) (22), we have the action transition probability
P (a′J |aJ ) = P (o′|o, aJ ). Given current action aJ , we note
that the next action a′J is independent of the previous action,
which has a Markov property. Then, the proof is completed.

APPENDIX B
PROOF OF THEOREM 2

As the leader, the UAV jammer first chooses the action atJ ∈
AJ to maximize its instantaneous reward in each time slot t.
For any a−J ∈ A−J , we have the following

rJ [T ∗(atJ ),L (at−1
V )] ≥ rJ [T (at−J ),L (at−1

V )],

where A−J is the action space except the action aJ . Then, as
the follower, the virtual user observes the action of the leader
and chooses the action atV ∈ AV to maximize its instantaneous
reward rV [T ∗(atJ ),L ∗(atV )]. For any a−V ∈ A−V , we have
the following

rV [T
∗(atJ ),L ∗(atV )] ≥ rV [T

∗(atJ ),L (at−V )],

where A−V is the action space except the action aV . For any
a−J ∈ A−J and a−V ∈ A−V , we can obtain

rJ [T ∗(atJ ),L ∗(atV )] ≥ rJ [T (at−J ),L (atV )]

rV [T ∗(atJ ),L ∗(atV )] ≥ rV [T (atJ ),L (at−V )]. (23)

Based on (20), the proof is completed.
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[6] S. Bhattacharya and T. Başar, “Game-theoretic analysis of an aerial
jamming attack on a UAV communication network,” in Proc. American
Ctrl Conf., Jun. 2010, pp. 818–823.

[7] L. Xiao, C. Xie, M. Min, and W. Zhuang, “User-centric view of
unmanned aerial vehicle transmission against smart attacks,” IEEE
Trans. Veh. Technol., vol. 67, no. 4, pp. 3420–3430, Apr. 2018.

[8] Y. Xu, G. Ren, J. Chen, Y. Luo, L. Jia, X. Liu, Y. Yang, and Y. Xu, “A
one-leader multi-follower bayesian-stackelberg game for anti-jamming
transmission in UAV communication networks,” IEEE Access, vol. 6,
pp. 21 697–21 709, Jun. 2018.

[9] L. Xiao, T. Chen, J. Liu, and H. Dai, “Anti-jamming transmission
stackelberg game with observation errors.” IEEE Commun. Lett., vol. 19,
no. 6, pp. 949–952, Jun. 2015.

[10] M. Min, L. Xiao, D. Xu, L. Huang, and M. Peng, “Learning-based
defense against malicious unmanned aerial vehicles,” in Proc. IEEE VTC
Spring, Jun. 2018, pp. 1–5.

[11] E. Altman, K. Avrachenkov, and A. Garnaev, “Jamming in wireless
networks under uncertainty,” Mobile Netw. Appl., vol. 16, no. 2, pp.
246–254, Apr. 2011.

[12] A. Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground
path loss for low altitude platforms in urban environments,” in Proc.
IEEE Globecom, Dec. 2014, pp. 2898–2904.

[13] H. S. Wang and N. Moayeri, “Finite-state markov channel a useful model
for radio communication channels,” IEEE Trans. Veh. Technol., vol. 44,
no. 1, pp. 163–171, Jan. 1995.

[14] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable MDPs,” CoRR, abs/1507.06527, vol. 7, no. 1, 2015.

[15] N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling, “Learning
finite-state controllers for partially observable environments,” in Proc.
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., 1999, pp. 427–436.

[16] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.


