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Abstract
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formed of the prospects of the project, and the project requires both an

observable and unobservable input. We characterize the optimal con-

tracts, and explore the trade-offs between high and low-powered incen-

tive schemes. We discuss the implications for push and pull programs

used to encourage R&D activity, but our results are relevant in other
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1 Introduction

To what extent should incentives be tied to performance? This question is

relevant in many areas, including labor markets – where it relates to the debate

on salaries vs. piece rates (see, e.g. Lazear, 1986, 2000) – and innovation

incentives, where it pertains to the efficacy of “push” and “pull” programs

(see, e.g., Kremer, 2002). Push programs, such as research grants or R&D

tax credits, subsidize inputs; payments are not contingent on results. Pull

programs, such as inducement prizes, or patent buyouts, tie rewards to output.

Adverse selection (AS) and moral hazard (MH) are inherent challenges in

incentive provision. Given these problems, Kremer raises the concerns that

push programs may finance projects unlikely to succeed, and provide weak

incentives for unobservable inputs. Indeed, the MH literature stresses the im-

portance of performance-pay; in the canonical model,1 compensation must be

tied to output to provide an incentive for effort. Yet low-powered incentives in

which compensation is weakly, or not at all tied to performance, are commonly

used. In this paper, we explore trade-offs between high and low-powered in-

centives in a model with AS and MH. We show that performance-pay may not

be optimal for all types, but is always optimal for the highest types.

We consider a principal-agent model wherein a risk-neutral funder (he; the

principal) motivates a risk-neutral researcher (she; the agent) to undertake an

R&D project. The outcome depends on the researcher’s private type, and two

essential and complementary inputs – “investment” and “effort”. Investment is

contractible; effort is not.2 If she succeeds, the researcher profits by marketing

the technology, but this incentive is insufficient from the funder’s perspective.

To motivate greater R&D activity, the funder specifies a transfer independent

of performance – a “grant” – and a payment for success – a “prize”.

Our results reveal that the virtues of performance-pay depend on the rela-

tive strengths of AS and MH. In our model, a prize creates a strong incentive

for effort, but generates costly rent for the researcher due to AS. A grant

1See, e.g., Grossman and Hart (1983) or Bolton and Dewatripont (2005) (Ch. 4).
2We use the terms “observable”, “contractible”, and “verifiable” interchangeably.
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effectively limits rent, but creates only an indirect incentive for effort (by mo-

tivating investment). The virtue of the prize depends on the balance of these

trade-offs. In some circumstances, the optimal prize is zero for a range of

types. For high enough types, however, the prize is always strictly positive;

moreover, when MH is more severe, the prize is strictly positive for all types.

We contribute to the contracting literature under AS/MH. In many models,

output is the only verifiable signal available to the principal.3 This renders

performance-pay indispensable, as output-independent rewards will not affect

marginal incentives. While it may be infeasible to monitor research effort,

some inputs, such as large-scale capital investments, may be easier to verify.

If so, then investment can be encouraged with rewards tied only to these

expenditures. But a researcher’s effort may be more productive when she has

better equipment with which to work. Then, as long as there is some benefit

to success, greater investment increases the marginal returns to effort. A

similar intuition obtains in multitasking models (e.g. Hölmstrom and Milgrom,

1991; Meng and Tian, 2013). Given multiple complementary tasks, a stronger

incentive on one task induces greater effort on others.

We also contribute to the literature on innovation incentives under MH,

which has largely focused on pull programs;4 few studies have examined the

interactions between push and pull programs taking MH into account. Maurer

and Scotchmer (2003) argue that repeated interaction between grantees and

grantors resolves the MH problem. Our insights complement their’s, as they

are relevant in a static setting. Fu et al. (2012) show that grants may facil-

itate greater competition in a contest between researchers with asymmetric

capital endowments. We abstract from competition to focus on the role of

information.

3Studies close to this analysis include Lewis and Sappington (2000a,b) and Ollier and
Thomas (2013). There are notable exceptions, which will be discussed.

4For instance, there is a large literature on optimal patent design; e.g., Gilbert and
Shapiro (1990) Klemperer (1990), O’donoghue et al. (1998), Cornelli and Schankerman
(1999), and Hopenhayn and Mitchell (2001). See Hall (2007) for a survey. And a literature
on alternatives to intellectual property such as prizes or contracts; e.g., Wright (1983),
Kremer (1998), Shavell and Van Ypersele (2001), Hopenhayn et al. (2006), Weyl and Tirole
(2012), and Che et al. (2015). See Maurer and Scotchmer (2003) for an overview.
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Many studies have explored trade-offs between high and low-powered in-

centives. Due to the “effort-substitution problem” Hölmstrom and Milgrom

show the potential for “fixed-wage” contracts.5 This fixed wage is indepen-

dent of any signal received by the principal, while the grant in our model de-

pends on investment, but is independent of performance. Baker (1992) shows

that performance-pay may be muted if performance is weakly correlated with

verifiable measures. Low-powered incentives may also arise as a means of

risk-sharing (see, e.g., Prendergast, 1999); we abstract from risk-sharing as all

parties are risk-neutral in our model. Allowing costly monitoring of effort,

Prendergast (2002) shows that performance-pay may be more beneficial if the

principal is uncertain of the “correct” action an agent should take.6

Also related, Zhao (2008) and Chen (2010, 2012) allow for partially ob-

servable actions, but abstract from AS. In a class of models following Laffont

and Tirole (1986), the agent devotes unobservable effort directed at cost re-

duction, then chooses an observable output. But these models tend to involve

“false moral hazard”, which arises when there is a deterministic relationship

between type, unobservable effort, and a contractible signal (see Laffont and

Martimort, 2009, Ch.7). Meng and Tian (2013) study a multitasking model

with AS and MH, and explain why the agent may be led to specialize on

certain tasks. Finally, our framework relates closely to Laffont (1995), Lewis

and Sappington (2000b) and Ollier and Thomas (2013). Differentiating our

model is the presence of partially observable complementary actions, and the

researcher’s profit motivation, which both play a critical role in our model.

5The effort-substitution problem arises in multitasking models when efforts are substi-
tutes. As a result, a stronger incentive on one task reduces effort on the other task.

6There is also a distinct literature that examines the question of whether it is optimal to
monitor input or output if it is too costly to observe both (see, Maskin and Riley, 1985).

4



2 The Model

The Primitives

A researcher undertakes an R&D project whose outcome – success or failure –

depends on her type, θ; investment, x ∈ R+; and effort, y ∈ [0, 1]. Investment

is contractible; effort is not. Success is verifiable at no cost. θ is a random

variable with CDF, F , (smooth) PDF, f , and support Θ = [θ, θ] ⊂ (0, 1]. The

researcher knows the true θ; the funder knows only its distribution. For each

θ ∈ Θ, assume f(θ) > 0, and h′(θ) < 0, where h(θ) = 1−F (θ)
f(θ)

is the inverse

hazard rate.

Given x, y, and θ, the probability of success is θyρ(x). The function,

ρ : R+ → [0, 1], is twice continuously with ρ(0) = 0, ρ′ > 0 and ρ′′ < 0. Notice

that investment and effort are both essential for success, and are complements.

If the researcher chooses (x, y), she incurs a cost C(x, y) = x+ψ(y). For ease of

exposition, we let ψ(y) = c
α
yα, where α > 1, but our main results may be gen-

eralized (see Section 3.4). If she succeeds, the researcher earns π > 0, and the

funder captures W > 0, otherwise both receive nothing. π may reflect the re-

searcher’s monetary profit in the product market or some intrinsic motivation.

We will refer to π as the researcher’s profit. W could be interpreted as the con-

sumer surplus associated with the technology. Absent intervention, the payoff

to a type-θ researcher who chooses (x, y), is Π(x, y, θ) = θyρ(x)π − C(x, y).

We focus on settings where π is “small”, relative to W . This is quite natural

in the context of R&D as the social value of an innovation often exceeds the

value to the innovator (see, e.g., Hall et al., 2009). For simplicity, assume for

all y ∈ [0, 1] and θ ∈ Θ,

∂Π(x, y, θ)

∂x
|x=0 = θyρ′(0)π − 1 < 0, (1)

which implies Π(·, y, θ) is strictly decreasing and maxx≥0,y∈[0,1] Π(x, y, θ) = 0.7

7If maxx≥0,y∈[0,1] Π(x, y, θ) > 0 then the researcher’s outside option is type-dependent,
which could give rise to the phenomenon of “countervailing incentives” (see, e.g., Lewis and
Sappington, 1989). In our model, so long as the funder induces the researcher to invest
more than she would otherwise, this issue does not arise (see Rietzke and Chen, 2016).
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Feasible Contracts and the Funder’s Problem

The funder designs contracts to motivate R&D activity. A contract specifies

a transfer independent of performance, g ∈ R, a prize for success, v ∈ R+,

and an investment, x ∈ R+. We interpret g > 0 as a grant, and g < 0 as

an entry fee. Following Innes (1990) and Poblete and Spulber (2012), the

funder is subject to a “free-disposal” constraint, requiring v ≥ 0.8 Without

loss of generality, the researcher is eligible for any rewards only if she chooses

the agreed-upon, x′. If she deviates from x′ and chooses x 6= x′, her payoff

is Π(x, y, θ) ≤ maxx≥0,y∈[0,1] Π(x, y, θ) = 0. So, as long as her payoff is non-

negative when she chooses x′, it is never optimal to deviate.

By the Revelation principle, it suffices to consider direct mechanisms. The

funder commits to a menu, {v(θ), g(θ), x(θ)}θ∈Θ, where v : Θ→ R+ is a prize

schedule, g : Θ→ R is a grant/fee schedule, and x : Θ→ R+ is an investment

schedule. Note that, where it does not cause confusion, we will liberally abuse

notation sometimes let v ∈ R+, g ∈ R, and x ∈ R+ denote particular prize,

grant, and investment amounts. The researcher observes the menu, and if

she participates, reports her type, θ̂, forming the contract, {v(θ̂), g(θ̂), x(θ̂)}.
The researcher then chooses her inputs, the project’s outcome is realized, and

transfers are made accordingly. If the researcher does not participate, both

parties earn zero. We restrict attention to continuous, piecewise-differentiable

prize, grant/fee, and investment schedules, but it will be shown (in the proof

of Proposition 4) that this is without loss of generality.

Given (v, g, x), the researcher’s effort, y∗(x, v, θ), solves maxy∈[0,1]{θyρ(x)(v+

π) − C(x, y) + g}. At an interior solution, y∗(·) is unique-valued and given

by, y∗(x, v, θ) =
(
θ
c
ρ(x)(v + π)

)β
. Let β = 1

α−1
; note that the elasticity of

the researcher’s effort with respect to v + π is constant, and equal to β:
∂y∗

∂(v+π)
v+π
y∗

= β. The payoff to a type-θ who reports θ̂ is,

u(θ̂|θ) = θy∗(x(θ̂), v(θ̂), θ)ρ(x(θ̂))(v(θ̂) + π)− C(x(θ̂), y∗(x(θ̂), v(θ̂), θ)) + g(θ̂).

8This constraint ensures that a successful researcher cannot benefit by shrouding her
success from the funder. This may be possible if a researcher who claims failure cannot be
disproved by the funder.
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Let S(x, y, θ) = θyρ(x)(W + π) − C(x, y) denote total surplus and, abusing

notation, let u(θ) ≡ u(θ|θ) and y∗(θ) ≡ y∗(x(θ), v(θ), θ). Under truthful re-

porting, the funder’s payoff is,

φ =

∫ θ

θ

(
θy∗(θ)ρ(x(θ)) [W − v(θ)]−g(θ)

)
f(θ)dθ =

∫ θ

θ

[
S(x(θ), y∗(θ), θ)−u(θ)

]
f(θ)dθ.

The second expression follows from the first by replacing g(θ) by u(θ) at each

θ. The funder’s payoff can be interpreted as expected consumer surplus, less

the expected cost of funding, or expected total surplus, less the researcher’s

expected rent.9

Individual rationality (IR) requires u(·) ≥ 0; incentive compatibility (IC)

requires for all θ, θ̂ ∈ Θ, u(θ) ≥ u(θ̂|θ). As we have restricted attention to

piece-wise differentiable mechanisms, by standard techniques, IC is satisfied if

and only if at all points of differentiability:10

u′(θ) =
∂u(θ̂|θ)
∂θ

|θ̂=θ = y∗(θ)ρ(x(θ))(v(θ) + π), (IC-F)

and

d

dθ
ρ(x(θ))(v(θ) + π) ≥ 0. (IC-S)

Since (IC-F) implies u′ ≥ 0, IR is satisfied for all types so long as u(θ) ≥
0; since φ is strictly decreasing in u, this constraint binds in equilibrium.

Using (IC-F) and setting u(θ) = 0:
∫ θ
θ
u(θ)f(θ)dθ =

∫ θ
θ
y∗(θ)ρ(x(θ))(v(θ) +

π)h(θ)f(θ)dθ. Let I(x, y, v, θ) = h(θ)yρ(x)(v + π) denote the researcher’s

virtual information rent. The funder’s problem may then be expressed,

9Our results extend to an environment where the principal also values the researcher’s
profit, but there is a social cost to raising funds, as in Laffont and Tirole (1986).

10See, e.g. Laffont and Tirole (1993) pp. 64 and 121.
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max
x,v

∫ θ

θ

{S(x(θ), y∗(θ), θ)− I(x(θ), y∗(θ), v(θ), θ)} f(θ)dθ

s.t. x(·) ≥ 0, (IC-S), and v(·) ≥ 0. [P]

Let J(x, v, θ) denote the integrand above. For each θ, we assume maxx,v≥0 J(x, v, θ) >

0, which holds if W is sufficiently large,11 and implies maxx,y≥0 S(x, y, θ) > 0.

Also assume for some x̂ > 0, x > [<]x̂ implies ρ′′(x)ρ(x) + βρ′2(x) < [>]0,

which ensures J is strictly concave in x for x > x̂ at the optimal v (for exam-

ple, if ρ(x) = 1 − exp(−x) and β = 1 then x̂ = log(1 + β)). Finally, we will

assume throughout that the parameters are such that y∗(·) < 1 at the solution

to [P] (this holds if, for instance, c > W + π).

3 Results

Before characterizing the optimal contracts with AS and MH, we study three

benchmarks: complete information, pure MH, and pure AS. We use upper-

case letters (X, V , G, etc.) to denote optimal solutions. In the environments

with MH, we let Y (θ) ≡ y∗(X(θ), V (θ), θ).

3.1 First-Best: Complete Information

With complete information, the funder observes the true θ, as well as x and

y. The funder’s problem can be written maxx,y,u≥0 {S(x, y, θ) − u}. Our first

result characterizes the solution to this problem. We let XFB(θ) and YFB(θ)

denote the first-best investment and effort levels (respectively).

Proposition 1. With complete information, the optimal means of funding is

any combination of V (θ) ≥ 0 and G(θ) satisfying, θρ(XFB(θ))(V (θ) + π) −
C(XFB(θ), YFB(θ)) + G(θ) = 0. XFB(θ) and YFB(θ) are unique and satisfy,

11Relaxing this assumption may yield an interval of low types who invest nothing (and
receive no rewards from the funder), but will not change the qualitative conclusions of our
analysis for the range of types investing a positive amount.
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θYFB(θ)ρ′(XFB(θ))(W + π) = 1 and YFB(θ) = (θρ(XFB(θ))(W + π))β. Fi-

nally, X ′FB(θ) > 0 and Y ′FB(θ) > 0.

Proposition 1 shows that with complete information, the optimal means of

funding may take the form of a pure prize (V (θ) > 0 and G(θ) = 0), a pure

grant (V (θ) = 0 and G(θ) = 0) or some combination of the two. Indeed, with

complete information and risk-neutrality, a grant of value, g > 0 is equivalent

to a prize, v, with expected value θyρ(x)v = g. Finally, note that the first-best

investment/effort levels are increasing in θ.

3.2 Pure Moral Hazard

With pure MH, y is unobservable by the funder, but he observes θ and x. Given

θ, the funder’s problem may be expressed, maxx,v,u≥0 {S(x, y∗(x, v, θ), θ)−u}.
The next result characterizes the optimal scheme with pure MH.

Proposition 2. With pure MH, the optimal means of funding is a prize,

V (θ) = W and an entry fee G(θ) < 0. Moreover, X(θ) = XFB(θ), Y (θ) =

YFB(θ), and G(θ) = −S(XFB(θ), YFB(θ), θ).

With pure MH, the optimal funding scheme takes the form of a “franchise

contract” in which the agent is made a full residual claimant, and the funder

extracts the researcher’s rent through an entry fee.

Although the researcher’s effort, y∗(x, v, θ) =
(
θ
c
ρ(x)(v + π)

)β
, is com-

pletely independent of g, it is important to emphasize that a positive grant

can induce greater effort. Note that y∗ is strictly increasing in both x and v.

As investment is observable, the funder may condition the grant on this vari-

able and elicit greater investment. Greater investment increases the marginal

returns to effort and increases effort. A prize also induces greater investment

(and thus operates along this indirect channel), but it also operates along a

direct channel, since it is only received in the event of success.
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3.3 Pure Adverse Selection

With pure AS, both x and y are observable by the funder, but θ is observed

only by the researcher. The funder’s problem is given by [P] (see Section 2),

except the funder also chooses y, since effort is contractible. Our next result

characterizes the optimal funding scheme under pure AS.

Proposition 3. With pure AS, the optimal means of funding is a pure grant

for all types. Moreover, (i) C(X(θ), Y (θ)) > G(θ), d
dθ

[C(X(θ), Y (θ))−G(θ)] >

0; and (ii) X(θ) ≤ XFB(θ), Y (θ) ≤ YFB(θ), with equality only at θ.

Proposition 3 shows that a pure-grant is optimal for all types in the model

with pure AS. To understand why the optimal prize is zero, consider two

types – a high type and low type. If the high type imitates the low type, the

high type is more likely to succeed and receive the prize than the low type

would be; therefore, the expected value of a prize offered to the low type is

greater for a higher type. To prevent under-reporting, the high type must be

compensated through an information rent. The grant, on the other hand, is

received independently of outcome, so its value is the same for both types.

Thus, for a given investment/effort schedule, prizes are a more expensive and

inferior means of funding with pure AS.

The optimal investment/effort schedules are distorted below the first-best

and balance the trade-off between rent extraction and efficiency. Although

this efficiency/rent extraction trade-off is standard in AS models,12 we note

the role played by π and free-disposal in our model. If we relax free-disposal,

then the funder appropriates all of the researcher’s rent by setting v(·) = −π
and g(·) = C(x(·)), y(·)) (see Lewis and Sappington, 2000b). But under free-

disposal, the researcher must capture at least π in the event of success, which

leaves an inappropriable rent. To prevent low types from overstating their

ability, the optimal grant does not fully reimburse costs (C(X, Y ) > G), and

higher types must internalize a greater cost ( d
dθ

[C(X, Y )−G] > 0).

12See, e.g., Maskin and Riley (1984)

10



3.4 Mixed Case: Adverse Selection and Moral Hazard

We now study the case of AS and MH. For a given θ, and a fixed y, we let

XFB|y(θ) denote the investment that maximizes total surplus: XFB|y(θ) =

arg maxx≥0 S(x, y, θ). XFB|y(θ) is the unique solution to θyρ′(XFB|y(θ))(W +

π) = 1. We call XFB|y the first-best investment, given effort; we write

XFB|Y (θ) when y = Y (θ). The next result describes properties of the optimal

funding scheme in the model with AS and MH. Before stating the result, define

θv as follows:

θv = max{θ, θ|βθW = h(θ)π(1 + β)}.

Note that since βθW > h(θ)π(1 + β) = 0, θv < θ.

Proposition 4. In the model with AS and MH,

(i) If θv > θ, then for θ ∈ [θ, θv], V (θ) = 0, G(θ) > 0, G′(θ) > 0; moreover,

X(θ) ≤ XFB|Y (θ), with equality only at θv.

(ii) For θ ∈ (θv, θ], V (θ) > 0, V ′(θ) > 0, and X(θ) = XFB|Y (θ). Moreover,

there exists θg < θ such that θ > θg implies G(θ) < 0 and G′(θ) < 0.13

(iii) For θ ∈ [θ, θ], X ′(θ) > 0, Y ′(θ) > 0, X(θ) > G(θ), and X ′(θ) > G′(θ).

Moreover, X(θ) ≤ XFB(θ) and Y (θ) ≤ YFB(θ), with equality only at θ.

Proposition 4 shows that the optimal prize may be zero for a range of low

types, but is always strictly positive for high enough types. When the prize

is zero, effort is incentivized indirectly through the grant; higher types receive

large grants, but internalize a greater investment cost (i.e. d
dθ

[X(θ)−G(θ)] >

0). When the prize is positive, higher types receive larger prizes. The following

corollary provides a necessary and sufficient condition under which the interval

of types receiving pure-grant funding is non-empty.

Corollary 1. The interval of types that receive pure grant funding is non-

empty (i.e., θv > θ) if and only if βθW < h(θ)π(1 + β).

13if θv = θ, then Property (ii) holds for all θ ∈ [θ, θ]
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In order to incentivize higher levels of effort, the funder must either en-

courage greater investment or use a prize. Either way, greater information

rent is generated for the researcher. All else equal, when the funder is more

concerned about limiting information rent due to AS, he induces lower levels

of effort. For reasons explained below, pure grant funding is more likely to be

optimal when the funder wishes to induce lower levels of effort.

To elucidate the trade-offs in the model with AS/MH, let us consider an

auxiliary problem. Suppose the funder wants to induce effort, y ∈ (0, 1),

at some θ. The funder’s instantaneous payoff at θ when y∗(x, v, θ) = y is,

J = [S(x, y, θ)− I(x, y, v, θ)] f(θ). The funder chooses (x, v) to maximize J ,

subject to y∗(x, v, θ) = y. In this problem, the optimal (x, v) depends on two

considerations: First, is the relative effectiveness of x and v to elicit effort,

while limiting I. Second, is the impact of x and v on S.

For simplicity, set β = c = 1. To understand the first consideration, note

that the combinations of (x, v) that induce y satisfy, y∗(x, v, θ) = θρ(x)(v +

π) = y, or ρ(x)(v + π) = y
θ
. Then I(x, y, v, θ) = h(θ)y

2

θ
, which is independent

from (x, v). Thus, any (x, v) that induces y yields the same virtual infor-

mation cost, I. However, note that investment contributes directly to total

surplus, while the prize does not. In particular, S(·, y, θ) is strictly increasing

[decreasing] for x < [>]XFB|y, while S is independent from v.

Jointly, these two considerations imply that it is optimal for the funder

to induce a maximum investment of x = XFB|y, and provide any residual

incentive necessary for effort through the prize.14 If y∗(x̃, 0, θ) = y for some

x̃ ≤ XFB|y, then the funder sets x = x̃ and v = 0; in this case investment/effort

are incentivized through the grant. If y∗(XFB|y, 0, θ) < y, the funder sets

x = XFB|y, and specifies v > 0 to satisfy y∗(XFB|y, v, θ) = y. When y is

14Multiplicative separability between x, y, and θ simplifies the first consideration. For
more general technologies, x and v may differ in terms of their ability to raise effort while
limiting I, and the optimal (x, v) will depend on the interplay between the two considerations
in a more intricate way. In particular, the stronger is the complementarity between x and
y, the cheaper it will be (in terms of limiting I) to induce effort through x. In general, the
nature of the interactions between the considerations can be quite complex and may vary
over the distribution of types. The primary technical complication is determining if and
when (IC-S) binds.
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chosen optimally this scheme is precisely what is described in Proposition 4.

A similar argument holds for any effort-cost function, ψ.

The optimal level of effort induced by the funder will depend on the trade-

off between efficiency and rent extraction. Note that, in the auxiliary problem

above, the information rent captured by the researcher is positively related

to the effort level, y. All else equal, when AS is more severe, the funder is

more concerned about limiting the researcher’s rent, and induces a lower level

of effort. For lower levels of effort, pure grant funding is more likely to be

optimal. When MH is more of a concern, larger prizes are used to encourage

greater effort. θv can be interpreted as capturing the relative severity of AS

and MH. Specifically, when AS is more severe relative to MH, θv is greater.

Proposition 5 in Section 4 formalizes this intuition.

Proposition 4 also shows that the prize is strictly positive and increasing

for θ ∈ (θv, θ]. Moreover, for θ high enough, the scheme resembles a franchise

contract that emerged under pure MH (see Section 3.2). To understand these

features, first note that the marginal benefit of effort (to the funder) is strictly

increasing in θ. Larger prizes are therefore more attractive for higher types,

as they can elicit greater effort. Second, as discussed in Section 3.3, a prize

offered to some type, θ′, generates rent for all higher types. But for θ′ close

to θ, the funder is less concerned about limiting the rent of a higher type

(since the researcher is very unlikely to be of such a type), and the issue of

limiting rent due to AS (which tilts against prizes) vanishes, while the MH

problem (which tilts in favor or prizes) does not. Still, the following example

demonstrates that θv can be arbitrarily close to θ.

Example 1. Let θ ∼ U
[

2
3
, 1
]
, ρ(x) = 1 − exp(−x), c = 5, π = 1, W = 4.

Then for any α > 8 (β < 1
7
), X(θ) > 0 and θv = απ

W+απ
= α

4+α
. Furthermore,

θv → θ = 1 as α→∞ (β → 0).

Example 1 shows that the interval of types that receive a prize can be

arbitrarily small. Intuitively, when α → ∞ (β → 0), y∗(·) becomes less

sensitive to the prize. Reducing the prize has little impact on effort, and AS

becomes the dominant information problem. We also note that if, due to a
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limitation on the researcher’s time/energy, the upper-bound on effort binds

for some θ̃ < θv (that is, Y (θ̃) =
(
θ̃
c
ρ(X(θ̃))π

)β
= 1), then for θ > θ̃, MH

imposes a non-binding constraint on the funder, and pure grant funding will

be optimal for all types.15

In the next section, we explore more completely the circumstances under

which performance-pay is or is not utilized, but before proceeding, we first

mention the role of free-disposal and then comment on the particular functional

form of ψ we have studied. If θv = θ, the free-disposal constraint never binds

and has no impact on our results. If θv > θ and we relax the free-disposal

constraint, then it can be shown that for θ < θv, G(θ) > 0, X(θ) = XFB|Y (θ),

and −π < V (θ) = θβW−h(θ)π(1+β)
θβ+h(θ)(1+β)

< 0. This scheme could be interpreted as

one in which the funder purchases an equity stake in the researcher’s project.

The functional form of ψ we have studied implies a constant elasticity of

effort with respect to the reward for success; however, the qualitative features

of our main results hold for more general technologies. Consider any ψ with

ψ′(0) = ψ(0) = 0, and ψ′′(y) > 0 for y > 0. It can be shown that the

elasticity, ε, of the researcher’s effort with respect to v + π depends only on

z = θρ(x)(v + π). The qualitative nature of Proposition 4 (and Corollary 1)

hold so long as ε′(z) ≥ 0 for all z. This condition is analogous to condition

(12b) in Ollier and Thomas, and is sufficient to rule out a binding (IC-S)

constraint.

4 Further Analysis and Discussion

4.1 Further Analysis: Comparative Statics

Comparative Statics

Our next result explores how θv depends on the parameters of the model. First,

it will be useful to introduce a parameter that captures the severity of the AS

problem. To this effect, let us parameterize the distribution of θ by t ∈ R
15In Rietzke and Chen (2016), we illustrate a similar result in a binary-effort model.
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such that, at each θ ∈ [θ, θ), ∂h(θ;t)
∂t

> 0. Greater t reflects a more severe AS

problem in the following sense: Recall that higher types capture rent through

their ability to mimic lower types. Fix θ′ < θ, and consider the event that

θ > θ′, conditional on θ being in some neighborhood of θ′. When this event is

more likely, the greater is the expected rent relinquished in this neighborhood

(for a given (x, v)), and can we say the AS problem is more severe. This is

precisely what is captured by t: a higher t increases the likelihood of this event

at each θ′ ∈ [θ, θ).

Proposition 5. Suppose θv > θ. Then θv is strictly decreasing in β and W ,

and is strictly increasing in π and t.

Proposition 5 reveals that pure grant funding is used for a wider range of

types when: (1) the funder’s value for the project is modest (i.e., W is not

“too large”); (2) the researcher associates a higher value to the project (i.e.,

π is large); (3) the researcher’s effort is less sensitive to the reward for success

(i.e., β is small); and (4) the AS problem is more severe (i.e., t is large).

Point (1) holds since effort is less valuable to the funder when W is small,

rendering prizes less attractive. Points (2)-(3) speak to the severity of the MH

problem: When π is large, the researcher has a stronger natural incentive to

exert effort. When β is small, the researcher’s effort is less sensitive to the prize;

therefore, even a large reduction in the prize results in a modest reduction in

effort. Point (4) holds since AS raises the expected cost of performance-pay;

the greater is this problem, the less attractive prizes become.

The complementarity between investment/effort is also important for the

usefulness of the grant in our model. As a point of comparison, in multitasking

models when efforts are substitutes, the principal reduces incentives on more-

easily observed tasks to avoid crowding-out effort on less-easily observed tasks.

By a similar logic, if investment/effort were substitutes in our model then

greater investment reduces effort, rendering the grant an ineffective means of

eliciting effort.

We now explore how the prize depends on the parameters of the model.
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Proposition 6. For θ > θv, V (θ) is strictly increasing in β and W , and is

strictly decreasing in π and t.

Proposition 6 shows that larger prizes are utilized under antithetical cir-

cumstances to those described in Proposition 5. The intuitions follow as the

counterpoint to those results. Specifically, larger prizes are used when (i) W is

large, (ii) the MH problem is more severe (π is small or β is large), or (iii) the

AS problem is less severe (t is small). When W is large, the researcher’s effort

is more valuable to the funder, which makes prizes more attractive. When MH

is more severe larger prizes are more attractive due to their ability to encour-

age greater effort. When AS is less severe, the information rent cost associated

with higher levels of effort is lower. Higher levels of effort are therefore more

attractive, and larger prizes are utilized.

4.2 Discussion

Grace and Kyle (2009) note that there is limited evidence on how push and pull

incentives work together. Our results describe precisely how these incentives

can work together to help resolve AS and MH problems. Our results suggest

that hybrid incentive schemes, which combine push and pull elements, are

particularly effective in dealing with these information problems. Our findings

call for stronger push incentives when AS is more of a concern, and stronger

pull incentives when MH is more of a concern. Finally, our results call for the

use of matching grants, in which the grantee shares in the cost of the project,

to prevent researchers from overstating the prospects of a project. In this

section, we discuss the empirical relevance of our theoretical predictions, and

discuss several interesting extensions/avenues for future research.

Pharmaceutical Innovation

A prominent example of push/pull incentives working synergistically in prac-

tice is the U.S. Orphan Drug Act. This policy includes both R&D tax credits

(push) as well as priority review vouchers (pull), which lengthen the effective

patent life of a new drug. Lichtenberg and Waldfogel (2003) present evidence
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that this policy was effective in spurring the development of orphan drugs.

Still, there remains considerable debate among policy-makers and researchers

regarding the optimal balance of push and pull incentives (see, e.g., Kremer

and Glennerster, 2004). Renwick et al. (2016) note an imbalance in the struc-

ture of incentives currently available. The bulk of funding is in the form of

push incentives and targets the early stages of drug discovery. Pull programs,

to the extent that they are used, primarily target later development and com-

mercialization stages.

The early stage of drug discovery involves searching for and selecting com-

pounds that may be effective in treating a particular condition. It is a highly

scientific endeavor and requires highly specialized knowledge. Later stages

of development/commercialization involve clinical testing and marketing ex-

penses (Sloan and Hsieh, 2007, Ch. 3). Generally speaking, the development

phase, while consuming a significant fraction of total R&D costs, requires

less specialized knowledge, particularly in the case of well-understood condi-

tions. As Cockburn and Henderson (2001) write: “For example, the design

of clinical trials in the case of a compound designed to treat a relatively well

understood condition such as hypertension is relatively straightforward...”. To

the extent that drug discovery entails more specialized knowledge than drug

development, the observed pattern of funding is consistent with our theoreti-

cal predictions.16 Of course, other factors beyond the scope of our model may

also influence contractual forms. For example, drug discovery is more likely to

involve non-profit research institutions (including university researchers) and

small bio-technology firms, while drug development is typically undertaken by

large for-profit pharmaceutical firms. As such, capital constraints may present

more of a barrier at the early discovery phase (later in this section we provide

a more detailed discussion of capital constraints).

16Note that our model does not incorporate a multi-stage R&D process. However, one
can interpret the pharmaceutical example as consisting of two distinct R&D projects – one
involving the search for a viable compound, and the second involving safety and efficacy
testing, each entailing a unique information environment.
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Federal Procurement

U.S. government agencies, such as NASA and the Department of Defense

(DOD), are often interested in procuring innovative technologies; our model

can readily be interpreted in this context. In this environment, a pure-grant

corresponds to a cost or cost-sharing contract;17 a pure-prize corresponds to a

firm fixed-price contract. Between these two extremes are a number of hybrid

schemes such as cost-plus-fixed-fee completion contracts, which cover costs and

award a fee, conditional on a final product being delivered.

As the Federal Acquisition Regulation (FAR) stipulates, contracting offi-

cers are encouraged to consider project complexity when designing contracts.

It seems reasonable that in more technical, complex environments, contrac-

tors hold specialized knowledge and AS would be a first-order concern. All

else equal, our results would therefore predict that cost-reimbursement con-

tracts are more likely to emerge in more complex environments. Empirical

evidence provided by Girth and Lopez (2018) is consistent with this predic-

tion. The authors analyze government procurement contracts from 2000-2014

in three areas of varying complexity: housekeeping (least complex), construc-

tion (moderately complex), and space R&D (most complex). While about

95% of housekeeping contracts and 98% of construction contracts fell into the

category of fixed price, only about 57% of the R&D contracts fell into this cate-

gory. Almost 28% of R&D contracts fell into the cost-reimbursement category,

while less than 1% of the housekeeping and construction contracts were of this

type. Anecdotal evidence also suggests that push funding is more prominent in

more complex environments. In guidance to DOD contracting officers, Grady

(2016) writes: “For example, in a situation where great technical uncertainty

exists, there is also great likelihood of cost uncertainty. These factors dictate

the selection of a cost-reimbursement type of contract.”.

But it is worth noting that more complex environments may also involve

greater risk for contractors, and the design of contracts may be influenced

by risk-sharing considerations. Disentangling whether it is risk-sharing or AS

17As Grady (2016) writes: “...the best efforts language in cost-type contracts allows for
contractors to receive payment even if a final deliverable is not achieved.”
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that is driving contractual forms in this environment is an interesting question

for future research.18

Cost-Sharing and Matching Grants

Once concern with push incentives is that they may pay for research unlikely to

succeed. To deal with this issue, when the pure grant emerges in our model,

higher types receive larger grants but must internalize a greater investment

cost; this ensures that low types are unwilling to accept large grants.19

Cost-sharing programs are commonly used in practice. For instance, as

part of its Horizon 2020 program, the European Commission awards grants

to small and medium sized business that cover 70% of firms’ costs.20 As this

program covers a fixed percentage of firm costs, firms seeking larger grants

will necessarily internalize a greater cost. In the U.S., The Energy Policy Act

of 2005 requires Department of Energy contractors to bear at least 20% of

project costs for most R&D contracts, and at least 50% for demonstration

projects (i.e., those projects closer to market). The Advanced Technology

Program (ATP), which ran from 1991 - 2005, provided matching grants to in-

dustry for early-stage R&D. Small firms were required to cover their indirect

and overhead costs, while large firms were required to cost-share at least 60%

of total project costs (National Research Council, 2001). An assessment of the

ATP by the National Research Council suggests that the cost-sharing served

as a means of screening. The report states, “Because the development of new

technologies is inherently risky, regular assessment is vital to ensure contin-

ued technical viability, with cost-sharing requirements acting as an effective

safeguard.” (National Research Council, 2001).

Link and Ruhm (2009) provide empirical evidence that is consistent with

18See, also, Bajari and Tadelis (2001), for an alternative theory linking project complexity
to contractual forms, in a setting without AS.

19Maurer and Scotchmer (2003) point out that a matching grant can be an effective
screening device with AS; our result also takes MH into account. Cost sharing has been
advocated in other contexts for dealing with AS and MH (see, e.g., Laffont and Tirole,
1986).

20http://ec.europa.eu/programmes/horizon2020/en/h2020-section/

sme-instrument
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the use of matching grants as an effective screening tool. The authors ana-

lyze phase II grants made by the National Institute of Health’s (NIH) Small

Business Innovation Research (SBIR) award program between 1992 - 2001.

Although the SBIR program does not require cost-sharing, roughly 50% of

grant recipients contribute additional internal funding to the project. The

study finds that grantees, who contribute their own resources to the project,

are significantly more likely to bring their innovation to market. The authors

conclude that “...our results suggest that if the NIH is interested in managing

its SBIR program so as to increase the probability of commercialization, it

might wish to consider conditioning receipt of a Phase II award on university

involvement and own and/or internal business funding”.

Although cost-sharing has been used by a number of U.S. federal agen-

cies, it has sparked some controversy. At the National Science Foundation

(NSF), for example, concern was raised that cost-sharing, combined with the

competitive grant-awarding process, skewed funding to researchers with more

access to capital, but less-valuable projects. A National Science Board review

of cost-sharing policies at NSF noted that, “...cost sharing can foster unequal

competitiveness among grantee institutions based on their ability and will-

ingness to contribute cost sharing resources to NSF-sponsored projects.” (Na-

tional Science Board, 2009). As a result, the NSF no longer permits voluntary

committed cost-sharing, and places firm restrictions on the use of mandatory

cost-sharing.

Capital Constraints

Some push programs provide upfront funding, which may be necessary if a re-

searcher is capital-constrained. Yet as Scotchmer (2004, Ch. 8) points out, an

appropriately designed pull program should be capable of attracting financing.

Indeed, this is precisely the logic behind the “Pay for Success” model run by

the U.S. Department of Labor.21 Moreover, some push programs (e.g., R&D

tax credits), do not provide funding upfront. It is therefore useful to explain

why push incentives might emerge naturally under MH, rather than out of

21https://www.doleta.gov/workforce_innovation/success.cfm
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necessity due to a capital constraint. Nevertheless, our results are relevant for

understanding a related issue. Consider a researcher who has a strong incen-

tive to devote her time/energy to a project (i.e. π is large and/or β is small),

but is unwilling to raise the necessary capital (In our model, the unwillingness

of the researcher to raise capital is captured by (1).). While a pull program

could be used to encourage investment, in our model, pure-grant funding may

be optimal for a wider range of types.

Still, it is worth commenting on how a capital constraint affects our results.

In our model, the willingness of a higher type to internalize a greater invest-

ment cost acts as a credible signal of their ability. But, in an extreme case

where the researcher has no access to capital, the grant must fully reimburse

investment. Higher types then lose the ability to credibly signal their type,

(IC-S) inevitably binds, and bunching may arise. To see why (IC-S) must

bind, recall that (IC-S) requires that the product, z(·) = ρ(x(·))(v(·) + π) is

non-decreasing. If z(·) were strictly increasing over some interval of types,

then a researcher of any type in this interval would maximize her payoff by

reporting the highest type, since she would not have to bear any of the cost

of her investment, but would reap the benefit of a large prize/probability of

success. Therefore, (IC-S) must bind and z(·) must be constant. If v(·) = 0

over some interval, then z′(·) = 0 implies x′(·) = 0 and bunching will arise.22

5 Conclusion

We have characterized the optimal contracts in a setting with AS/MH and

partially observable actions. In contrast to typical findings in MH models, we

showed that performance-pay may not be optimal for all types, but is always

utilized for the highest types. Our results are useful for understanding the

basic trade-offs caused by AS/MH between push and pull programs used to

encourage R&D activity, but our results are relevant in other contexts, e.g.,

worker compensation.

22The issue is analogous to the wealth constraint in Lewis and Sappington (2000b).
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Appendix

For clarity, we omit the arguments of functions when there is no ambiguity.

Proof of Proposition 1

The funder’s payoff is strictly decreasing in u, so optimality dictates u = 0.

The first-best investment/effort levels solve, maxx,y≥0 S(x, y, θ). By assump-

tion, maxx,y≥0 S(x, y, θ) > 0 and YFB < 1, so the optimal investment/effort

levels are interior and must satisfy the following first-order conditions:

Sx(XFB, YFB, θ) = θYFBρ
′(XFB)(W + π) = 1 (2)

and,

Sy(XFB, YFB, θ) = θρ(XFB)(W + π) = cY α−1
FB (3)

Equation (3) implies YFB =
(
θ
c
ρ(XFB)(W + π)

)β
, where β = 1

α−1
. Com-

bining equations (2) and (3) yields,

θβ+1

cβ
ρ(XFB)βρ′(XFB)(W + π)β+1 = 1. (4)

We now show thatXFB and YFB are unique. First, as YFB =
(
θ
c
ρ(XFB)(W + π)

)β
,

if XFB is unique then YFB is also unique. The second-order necessary con-

dition requires ρ′′(XFB)ρ(XFB) + ρ′(XFB)2 ≤ 0; equivalently, XFB ≥ x̂. As,

ρ(·)βρ′(·) is strictly decreasing for x > x̂, there is a unique solution to (4)

satisfying XFB ≥ x̂. Thus, XFB and YFB are unique.

Next, we show that X ′FB(θ) > 0 and Y ′FB(θ) > 0. To do so, we will apply

the Implicit Function Theorem to (4) and show that X ′FB > 0; it is then

straightforward to confirm that Y ′FB > 0. Differentiating the LHS of (4) with

respect to θ and simplifying yields,

X ′FB = − (1 + β)ρ(XFB)ρ′(XFB)

ρ′′(XFB)ρ(XFB) + βρ′(XFB)2
. (5)

The numerator on the right-hand side of (5) is strictly positive by assump-
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tion. The denominator is strictly negative so long as XFB > x̂; we will now

show that this is the case. As the second-order necessary condition requires

XFB ≥ x̂, it suffices to show that XFB 6= x̂.

Consider sequentially optimizing S first over y then x. For a given x, the

optimal choice of y, ỹ(x), satisfies the first-order condition Sy(x, ỹ(x), θ) =

0, yielding ỹ(x) =
(
θ
c
ρ(x)(W + π)

)β
. The first-best investment level can

then be found by solving maxx≥0 S̃(x, θ), where S̃(x, θ) ≡ S(x, ỹ(x), θ) =
1

1+β
θ1+β

cβ
ρ(x)1+β(W+π)−x. The necessary first-order condition is S̃x(XFB, θ) =

θ1+β

cβ
ρ(XFB)βρ′(XFB)(W + π)1+β − 1 = 0.

We proceed by contradiction. Contrary to the claim, suppose XFB = x̂.

Then S̃x(x̂, θ) = 0. Now see that S̃xx(x, θ) = θ1+β

cβ
(W+π)1+βρ(x)β−1 [ρ(x)ρ′′(x) + βρ′(x)2] >

0 for x < x̂. We have now shown that S̃x(x̂, θ) = 0 and for all x < x̂,

S̃xx(x, θ) > 0. This means that for all x < x̂, S̃x(x, θ) < 0. But since

S̃(0, θ) = 0, for any x ≤ x̂ it must be that S̃(x, θ) < 0. In particular,

S̃(x̂, θ) < 0 = S̃(0, θ), which contradicts the hypothesis that XFB = x̂. There-

fore, it must be that XFB > x̂, as claimed.

Proof of Proposition 2

The funding scheme outlined in the Proposition gives the funder the first-best

payoff of maxx,y≥0 S(x, y, θ); therefore, this is an optimal scheme. To see that

it is the unique optimal funding scheme, note that when the researcher invests

XFB, then, y∗(XFB, v, θ) = YFB if and only if v = W . It follows that any

v 6= W leads to strictly lower total surplus, and the funder’s payoff is strictly

less than maxx,y≥0 S(x, y, θ).

Proof of Proposition 3

We first ignore (IC-S); we then verify it is non-binding at the solution to the

relaxed problem. As the funder’s payoff is strictly decreasing in v, the optimal

prize is zero. Setting V = 0, the point-wise first-order conditions are,

θY ρ′(X)(W + π)− 1− hY ρ′(X)π = 0, (6)
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and

Y =

(
θ

c
ρ(X)[W + π − hπ]

)β
. (7)

Similar arguments to those in the proof of Proposition 1 reveal that X and

Y are unique, and X > x̂. Now, fix θ < θ; we show X(θ) < XFB(θ) and

Y (θ) < YFB(θ). Combining (6) and (7):

ρ(X)βρ′(X)
[θ(W + π)− hπ]β+1

cβ
= 1. (8)

As h(θ) > 0 for θ < θ, (4) and (8) imply ρ(X)βρ′(X) > ρ(XFB)βρ′(XFB).

But since ρβρ′ is strictly decreasing for x > x̂, it follows that X < XFB. Using

(7), it is then straightforward to see that Y (θ) < YFB(θ). Finally, as h(θ) = 0,

(6) and (7) imply X(θ) = XFB(θ) and Y (θ) = YFB(θ).

Next, we show that (IC-S) is satisfied. When V = 0, (IC-S) is satisfied if

X ′ ≥ 0. Applying the Implicit Function Theorem to (8):

ρ(X)β−1
[
βρ′2 + ρ′′(X)ρ(X)

]
(θ(W + π)− hπ)β+1 X ′

+ ρ(X)βρ′(X)(β + 1) [θ(W + π)− hπ]β [W + π − h′π] = 0.

As X > x̂, the term in square brackets on the first line above is strictly

negative; moreover, the expression on the second line is strictly positive. It

follows that X ′ > 0. It is then straightforward to confirm Y ′ > 0. This

establishes part (ii).

We now establish part (i). (IR), V = 0 and expression (1) jointly imply

G > 0. Next, U(θ) = V (θ) = 0 means, X(θ)+ψ(Y (θ))−G(θ) = θρ(X(θ))π >

0. Hence, X(θ) + ψ(Y (θ)) > G(θ). Then, using the definition of U(θ), (IC-F)

can be written:

X ′ + ψ′(Y )Y ′ −G′ = θπ [Y ρ′(X)X ′ + Y ′ρ(X)] > 0. (9)

We have shown X(θ)+ψ(Y (θ)) > G(θ) and X ′+ψ′(Y )Y ′ > G′, which means,
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X + ψ(Y ) > G. Finally, we show G′ > 0. Fix θ; (1) and (6) imply θW > hπ.

Re-writing (7), θρ(X)π − ψ′(Y ) = −ρ(X)(θW − hπ) < 0, and re-writing

(9), X ′ [θY ρ′(X)π − 1] + Y ′ [θρ(X)π − ψ′(Y )] + G′ = 0. Since X ′, Y ′ > 0,

Assumption (1) and θρ(X)π − ψ′(Y ) < 0 imply G′ > 0.

Proof of Proposition 4

We will first relax the problem [P] by ignoring (IC-S); we will then show that

it is satisfied at the solution to the relaxed problem.

The relaxed problem amounts to pointwise maximization of J , (where J is

the integrand of the problem [P]) subject to, x ≥ 0 and v ≥ 0. Plugging in

y∗ =
(
θ
c
ρ(x)(v + π)

)β
into J , we obtain

J(x, v, θ) =

(
θ

c

)β
(v + π)βρ(x)1+β

[
θ(W + π)− (v + π)

(
θ

β

1 + β
+ h

)]
− x.

By assumption, the optimal investment level is interior (X > 0); therefore,

the associated first-order conditions/complementary slackness conditions are:

Jx = (1+β)

(
θ

c

)β
(V+π)βρ(X)βρ′(X)

[
θ(W + π)− (V + π)

(
θ

β

1 + β
+ h

)]
= 1,

(10)

Jv =

(
θ

c

)β
ρ(X)1+β(V + π)β−1

[
θβ(W + π)− (V + π)

(
θβ + h(1 + β)

)]
≤ 0, and

(11)

V Jv = 0; V ≥ 0.

We divide the remainder of the proof into four parts. In part I, we prove

part (i) of the proposition. In part II, we show that for θ > θv, V > 0, V ′ > 0

and X = XFB|Y . In part III we show that for all θ, X ′ > 0, Y ′ > 0, X ≤ XFB,

and Y ≤ YFB (with equality only at θ). Note that once we show X ′ > 0 and,

when V > 0, V ′ > 0, we will have shown that d
dθ
ρ(X(θ))(V (θ) +π) > 0, which
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ensures that the solution to the relaxed problem satisfies (IC-S). In part IV,

we show that for all θ, G′ < X ′ and G < X; we also show G,G′ < 0 for θ

sufficiently close to θ.

Part I: For θ ∈ [θ, θv]: V = 0, G,G′ > 0 and X ≤ XFB|Y

In this section, we prove part (i) of the proposition. We assume θv > θ,

which means θvβW − h(θv)(1 + β)π = 0. We first show V = 0 and G > 0

on [θ, θv]. Let k(θ) ≡ θβW − h(θ)(1 + β)π > 0, and note that k(θv) = 0

and k′(θ) = βW − h′(θ)(1 + β)π > 0. Now fix θ ∈ [θ, θv]. (11), together

with the complementary slackness conditions, imply that V > 0 if and only if

k > 0. But since k(θv) = 0 and k′ > 0, this means k ≤ 0 and hence, V = 0.

Then, as IR requires u(θ) = θρ(X)Y π −X − ψ(Y ) + G ≥ 0, and (1) implies

θρ(X)Y π −X − ψ(Y ) < 0, we must have G > 0.

Next, we show G′ > 0 on [θ, θv]. (IC-F) together with IR (u(θ) = 0) imply

that, at the optimal (X, V ), u(θ) =
∫ θ
θ
ρ(X(t))Y (t)(V (t) + π). By definition

of u,

G(θ) =

∫ θ

θ

ρ(X(t))Y (t)(V (t) + π)dt+X(θ)+ψ(Y (θ))−θρ(X(θ))Y (θ)(V (θ)+π).

(12)

Noting that V = 0 for θ ≤ θv, G
′(θ) = [1− θρ′(X)π]X ′. By (1), G′ > 0 if

X ′ > 0. We will show that X ′ > 0 in part III.

Finally, we show X < XFB|Y for θ < θv and X(θv) = XFB|Y (θv). Fix

θ ∈ [θ, θv). XFB|Y satisfies Sx(XFB|Y , Y, θ) = θY ρ′(XFB|Y )(W+π)−1 = 0. By

strict concavity of ρ, X < XFB|Y if Sx(X, Y, θ) > 0. Using (10) and plugging

in V = 0 and Y =
(
θ
c
ρ(X)π

)β
, we obtain Jx(X, 0, θ) = θY ρ′(X)(W + π) −

1 + Y ρ′(X)k(θ) = 0; equivalently, Jx(X, 0, θ) = Sx(X, Y, θ) + Y ρ′(X)k(θ) = 0.

k(θ) < 0 for θ < θv, implies Sx(X, Y, θ) > 0; thus X < XFB|Y . But k(θv) = 0

implies Sx(X(θv), Y (θv), θv) = 0; so X(θv) = XFB|Y (θv).
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Part II: For θ ∈ (θv, θ]: V, V
′ > 0 and X = XFB|Y

We first show V, V ′ > 0 on θ ∈ (θv, θ]; we then show X = XFB|Y . In part I

we showed V > 0 if and only if k = θβW − h(θ)(1 + β)π > 0. By definition,

k(θv) ≥ 0; since k′ > 0, k > 0 for θ > θv, and hence, V > 0 for θ > θv.

When V > 0, (11), together with the complementary slackness conditions,

imply V = θβW−h(1+β)π
θβ+h(1+β)

. It follows that V ′ = β(1+β)(W+π)(h(θ)−h′(θ))
θβ+h(θ)(1+β)

> 0, where

the inequality holds since h′ < 0. Plugging Y =
(
θ
c
ρ(X)(V + π)

)β
and V =

θβW−h(1+β)π
θβ+h(1+β)

into (10) yields Jx = θY ρ′(X)(W+π)−1 = 0; hence, X = XFB|Y .

Part III: For all θ ∈ [θ, θ], X ′ > 0, Y ′ > 0, X ≤ XFB, and Y ≤ YFB

We first show X ′ > 0 for all θ. To do so, we will apply the Implicit Function

Theorem. For each θ, X satisfies Jx(X, V, θ) = 0. Since Jx and V are dif-

ferentiable, then so long as Jxx(X, V, θ) 6= 0, the Implicit Function Theorem

implies X is differentiable and X ′ = −Jxv(X,V,θ)V ′+Jxθ(X,V,θ)
Jxx(X,V,θ)

. We will now show

that Jxx(X, V, θ) < 0 for all θ. For an arbitrary x, see that,

Jxx(x, V, θ) =(
θ

c

)β
(V + π)β(1 + β)ρ(x)β−1

[
ρ(x)ρ′′(x) + βρ′(x)2

] [
θ(W + π)− (V + π)

(
θ

β

1 + β
+ h

)]
.

(10) implies that
[
θ(W + π)− (V + π)

(
θ β

1+β
+ h
)]

> 0, and so Jxx(x, V, θ) ≤
(<)0 if and only if ρ(x)ρ′′(x) + βρ′(x)2 ≤ (<)0; equivalently, X ≥ (>)x̂. We

claim that X > x̂. To establish the claim, first note that at each θ, a second-

order necessary condition is, Jxx(X, V, θ) ≤ 0; equivalently, as seen above,

X ≥ x̂. To establish the claim, it therefore suffices to show X 6= x̂. We

proceed by contradiction; suppose, at some θ, X = x̂. Then, Jx(x̂, V, θ) = 0.

But for x < x̂, Jxx(x, V, θ) > 0, which means Jx(x, 0, θ) < 0 for all x < x̂.

Since J(0, V, θ) = 0, this means J(x, V, θ) < 0 for any x ≤ x̂. In particular,

J(x̂, V, θ) < 0 = J(0, V, θ), which contradicts the optimality of x̂. Therefore,

X > x̂ and hence Jxx(X, V, θ) < 0.
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Since Jxx(X, V, θ) < 0, X ′ > 0 if Jxv(X, V, θ)V
′+Jxθ(X, V, θ) > 0. We first

show Jxv(X, V, θ)V
′ = 0 for all θ. We then show Jxθ(X, V, θ) > 0. See that,

Jxv(X, V, θ) = (1 + β)

(
θ

c

)β
(V + π)β−1ρ(X)βρ′(X)

[
βθ(W + π)− (V + π) (θβ + (1 + β)h)

]
.

As shown in part II, when V > 0, V = θβW−hπ(1+β)
θβ+(1+β)h

; plugging this into

the expression above yields Jxv(X, V, θ) = 0. If θv > θ, then plugging θv and

V (θv) = 0 into the expression above yields, Jxv(X(θv), V (θv), θv) = 0. Thus,

for θ ≥ θv, Jxv(X, V, θ) = 0. Then since V ′ = 0 for θ ∈ [θ, θv), Jxv(X, V, θ)V
′ =

0 for all θ ∈ [θ, θ]. Next, we show Jxθ(X, V, θ) > 0. See that,

Jxθ(X, V, θ) = β(1 + β)
θβ−1

cβ
(V + π)βρ(X)βρ′(X)

[
θ(W + π)− (V + π)

(
θ

β

1 + β
+ h

)]
+ (1 + β)

(
θ

c

)β
(V + π)βρ(X)βρ′(X)

[
W + π − (V + π)

β

1 + β
− (V + π)h′

]
.

The term in square brackets in the first line is strictly positive by (10). The

term in square brackets on the second line is strictly positive since h′ < 0, and

V = max
{

0, θβW−h(1+β)π
θβ+h(1+β)

}
≤ W , which means W+π−(V +π) β

1+β
> 0. Hence,

Jxθ(X, V, θ) > 0. This establishes that X ′ > 0. As Y =
(
θ
c
ρ(X)(V + π)

)β
,

since X ′ > 0 and V ′ ≥ 0, clearly Y ′ > 0. Additionally, note that X ′ > 0 and

V ′ ≥ 0 imply that the solution to the relaxed problem satisfies (IC-S).

We will now show that X(θ) ≤ XFB(θ) and Y (θ) ≤ YFB(θ), with equality

only at θ. Fix θ < θ. Since ρβρ′ is strictly decreasing for all x > x̂ and since

X > x̂ (as shown previously in this part) and XFB > x̂ (as shown in the proof

of Proposition 1), X < XFB if and only if ρ(X)βρ′(X) > ρ(XFB)βρ′(XFB).

Using equations (4) and (10), it holds that ρ(X)βρ′(X) > ρ(XFB)βρ′(XFB) if

and only if, Γ(V ) > 0, where
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Γ(v) =
θ1+β

cβ
(W+π)1+β−(1+β)

(
θ

c

)β
(v+π)β

[
θ(W + π)− (v + π)

(
θ

β

1 + β
+ h

)]
.

First, suppose V > 0. Plugging V = θβW−h(1+β)π
θβ+h(1+β)

into Γ,

Γ(V ) =
θ1+β

cβ
(W + π)1+β

−(1 + β)

(
θ

c

)β [
θβ(W + π)

θβ + h(1 + β)

]β [
θ(W + π)−

(
θβ(W + π)

θβ + h(1 + β)

)(
θβ + h(1 + β)

1 + β

)]
=
θ1+β

cβ
(W + π)1+β − θ1+β

cβ

[
θβ

θβ + h(1 + β)

]β
(W + π)1+β

>
θ1+β

cβ
(W + π)1+β − θ1+β

cβ
(W + π)1+β = 0.

The strict inequality holds since
[

θβ
θβ+h(1+β)

]β
< 1 for θ < θ. Thus, for any

θ ∈ (θv, θ), X(θ) < XFB(θ). Next, we show X < XFB when V = 0. Suppose

θv > θ and fix θ ∈ [θ, θv].

Γ(V ) =
θ1+β

cβ
(W + π)1+β − (1 + β)

(
θ

c

)β
πβ
[
θ(W + π)− π

(
θ

β

1 + β
+ h

)]
=
θ1+β

cβ
(W + π)1+β −

(
θ

c

)β
πβ [θ(W + π) + θβW − hπ(1 + β)]

≥ θ1+β

cβ
(W + π)1+β − θ1+β

cβ
πβ(W + π) > 0

The weak inequality holds since θβW−hπ(1+β) ≤ 0 for θ ∈ [θ, θv]. The strict

inequality holds since πβ(W + π) < (W + π)1+β. We have now shown that

X < XFB for all θ < θ. To see that X(θ) = XFB(θ), note that V (θ) = W and

h(θ) = 0; plugging these into (10), X(θ) satisfies, θ
1+β

cβ
ρ(X(θ))βρ′(X(θ))(W +

π)1+β = 1. From (4), it follows that X(θ) = XFB(θ).

Finally, we show Y ≤ YFB, with equality only at θ. For θ < θ, X < XFB
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and V < W ; thus, YFB =
(
θ
c
ρ(XFB)(W + π)

)β
>
(
θ
c
ρ(X)(V + π)

)β
= Y . But

since X(θ) = XFB(θ) and V (θ) = W , Y (θ) = YFB(θ).

Part IV: X ′ > G′, X > G, and G,G′ < 0 for θ ∈ [θg, θ], where θg < θ

We first show X ′ > G′ and X > G. By (12), G′ = [1− θY ρ′(X)(V + π)]X ′ −
θρ(X)Y V ′, which means G′ − X ′ = −θY ρ′(X)(V + π)X ′ − θρ(X)Y V ′ < 0;

the inequality holds since X ′ > 0 and V ′ ≥ 0. Thus, G′ < X ′. Now note

that, G(θ)−X(θ) = ψ(Y (θ))− θY (θ)ρ(X(θ))(V (θ) + π). Plugging in Y (θ) =(
θ
c
ρ(X(θ))(V (θ) + π)

)β
: G(θ)−X(θ) = − 1

1+β

(
θ
c
ρ(X(θ))(V (θ) + π)

)1+β

< 0.

G(θ) < X(θ) and G′ < X ′ imply G < X for all θ.

We now show G < 0 for θ sufficiently close to θ. To do so, we will

show G(θ) < 0. Plugging X(θ) = XFB(θ), Y (θ) = YFB(θ), and V (θ) = W

into (12) yields, G(θ) =
∫ θ
θ
ρ(X(t))Y (t)(V (t) + π)dt − S∗(θ), where S∗(θ) =

S(XFB(θ), YFB(θ), θ). For θ < θ, X(θ) < XFB(θ), Y (θ) < YFB(θ), and V (θ) <

W , which means G(θ) <
∫ θ
θ
ρ(XFB(t))YFB(t)(W + π)dt−S∗(θ). By the Enve-

lope Theorem, S∗
′
(θ) = ρ(XFB(θ))YFB(θ)(W+π), and hence, S∗(θ) = S∗(θ)+∫ θ

θ
ρ(XFB(t))YFB(t)(W + π)dt. Therefore, G(θ) <

∫ θ
θ
ρ(XFB(t))YFB(t)(W + π)dt−

S∗(θ) = S∗(θ) − S∗(θ) − S∗(θ) = −S∗(θ) < 0. Since G(θ) < 0, by continuity,

there exists some θg1 < θ, such that θ > θg1 implies G(θ) < 0.

Finally, we show G′(θ) < 0 for θ sufficiently high. As shown previously in

this section, G′(θ) = [1− θY (θ)ρ′(X(θ))(V (θ) + π)]X ′(θ)−θY (θ)ρ(X(θ))V ′(θ).

Note that 1− θY (θ)ρ′(X(θ))(V (θ) +π) = 1− θYFB(θ)ρ′(XFB(θ))(W +π) = 0.

Since X ′ is finite, and 1 − θY (θ)ρ′(X(θ))(V (θ) + π) is continuous, the term,

X ′(θ)[1−θY (θ)ρ′(X(θ))(V (θ)+π)], will be arbitrarily close to zero for θ suffi-

ciently close to θ. Moreover, for any θ ∈ (θv, θ], the term, θY (θ)ρ(X(θ))V ′(θ),

is strictly positive, and bounded away from zero. Therefore, there must exist

some θg2 < θ such that θ > θg2 implies G′(θ) < 0. Letting θg = max{θg1, θg2},
for θ > θg, G(θ) < 0 and G′(θ) < 0.
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Proof of Proposition 5

Fix θ < θ and let L(θ; t) = θ
h(θ;t)

. Note that ∂L
∂θ

> 0 and ∂L
∂t

< 0. By

definition, L(θv; t) = (1+β)π
βW

. Applying the Implicit Function Theorem, it is

straightforward to establish the properties of θv given in the Proposition.

Proof of Proposition 6

By Proposition 4, when V (θ) > 0, V (θ) = βθW−h(θ;t)π(1+β)
θβ+h(θ;t)(1+β)

. Differentiating

V (θ) with respect to β, W , π, and t the comparative statics given in the

Proposition follow.
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