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25 SUMMARY

26  Sub-Saharan Africa is projected to see a 55% increase in food demand by 2035, where 

27 cassava (Manihot esculenta) is the most planted crop and a major calorie source. Cassava 

28 yield has not increased significantly for 13 years. Improvement of genetic yield potential, 

29 the basis of the first Green Revolution, can be increased by improving photosynthetic 

30 efficiency. First, the factors limiting photosynthesis and genetic variability in these within 

31 extant germplasm must be understood.

32   We analyzed biochemical and diffusive limitations to leaf photosynthetic CO2 uptake 

33 under steady-state and fluctuating light in thirteen farm-preferred and high-yielding 

34 African cultivars. We developed a cassava leaf metabolic model to quantify the value of 

35 overcoming limitations at different points in photosynthesis.

36  At steady-state, in vivo Rubisco activity and mesophyll conductance accounted for 84% of 

37 the limitation whereas under non-steady-state conditions stomatal conductance was the 

38 major limitation contributing to 13% and 5% for losses in CO2 uptake and water use 

39 efficiency, respectively. Triose phosphate utilization, while sufficient to support observed 

40 rates, would not allow improvements of CO2 uptake of more than 33%.

41  The variation of carbon assimilation among cultivars were three times greater under non-

42 steady-state compared to steady-state, pinpointing important overlooked targets for 

43 improvement in photosynthesis in cassava. 

44

45 Keywords: cassava breeding, food security, genetic engineering, Manihot esculenta, 

46 photosynthetic induction, Rubisco, Sub-Saharan Africa, yield potential.

47
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48 INTRODUCTION

49 Rising global population coupled with increased urbanization is predicted to increase food 

50 demand by 60% until 2050. Demand increase will be greatest in Sub-Saharan Africa where 

51 population is expected to double by 2050 (van Ittersum et al., 2016; United Nations, 2017). In this 

52 region, where cassava (Manihot esculenta Crantz) is the most planted crop (FAOSTAT, 2019a), 

53 food demand is projected to rise by 55% within just 15 years (World Bank, 2017).  For a variety 

54 of cultural and pragmatic reasons, cassava is also the preferred staple food source for the small-

55 holder farmers who constitute the bulk of the population. Dependence on cassava in Africa is 

56 underlined by the fact that it accounts for  a higher proportion of food consumption per person than 

57 any staple in any part of the world (i.e., 0.4 kilograms per person/day) (Henry et al., 2004). This 

58 makes cassava virtually irreplaceable in the fight against hunger in this key and most vulnerable 

59 region of the world (Nassar & Ortiz, 2010). Its importance as a cash crop has also increased with 

60 wider-spread usage by industry (Kleih et al., 2013; Uchechykwu-Agua et al., 2015). For small-

61 farmers holders, increased yields mean that when family needs are exceeded, the surpluses can be 

62 sold to provide other household needs. However, cassava yield in Sub-Saharan Africa did not 

63 increase over the last 13 years (De Souza et al., 2017; FAOSTAT, 2019b). Moreover, the genetic 

64 progress achieved in breeding programs for increased yield has slowed significantly in recent years 

65 (Ceballos et al., 2016). In Africa, the focus has necessarily been on disease and pest resistance 

66 (Alene et al., 2018). However, increasing yield also depends on increasing genetic yield potential, 

67 i.e. the yield that can be achieved in the absence of pests, disease, water and nutrient limitations.  

68 Increased yield potential can be achieved by improving photosynthetic efficiency (Long et 

69 al., 2006). Comparing the photosynthetic rates between landraces and improved lines, there is no 

70 evidence that photosynthesis in cassava has been improved through breeding (De Souza et al., 

71 2017; De Souza & Long, 2018). Indeed, the conversion efficiency in cassava, which reflects its 
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72 photosynthetic rates, is just one-seventh of the theoretical value for C3 plants (De Souza et al., 

73 2017). The validation that increased photosynthetic efficiency can improve yield potential in 

74 cassava has been shown by Free Air CO2 Enrichment experiments (FACE). Under open-air field 

75 CO2 concentration elevation, leaf photosynthesis was increased by 30%, resulting in a doubling in 

76 cassava yield (Rosenthal et al., 2012). This shows that, if photosynthetic efficiency can be 

77 genetically improved in cassava, yield potential will also be substantially increased. 

78 Genetic improvements depend on the understanding of the pre-existing diversity for a 

79 particular desired trait within an avaiable germplasm. For bioengineering strategies, it is also key 

80 to understand the limitations of the desirable trait to design suitable approaches to overcome 

81 identified limitations. In cassava, it is remarkable that the genetic variability in photosynthesis is 

82 little known while limitations have not been analyzed  (Ceballos et al., 2004). Although the 

83 diversity in steady-state photosynthesis of South American cassava cultivars has been evaluated 

84 (El-Sharkawy, 2006; El-Sharkawy, 2016), very little is known about African germplasm (De 

85 Souza et al., 2017; De Souza & Long, 2018).

86 Under steady-state conditions, in vivo biochemical and diffusive limitations to leaf 

87 photosynthesis may be deduced from the response of net leaf CO2 uptake under saturating light 

88 (Asat) to intracellular CO2 concentrations (ci) (Long & Bernacchi, 2003). These limitations are the 

89 apparent maximum in vivo Rubisco activity (Vcmax), maximum electron transport rate (Jmax) and 

90 the maximum rate of triose phosphate utilization (VTPU). Mesophyll conductance to CO2 diffusion 

91 (gm) is obtained by combining the A/ci curves with modulated chlorophyll fluorescence (Harley et 

92 al., 1992). In a previous study, photosynthesis under steady-state in four African cassava cultivars 

93 was found to be limited by Vcmax, which suggested that Rubisco activity and/or gm were restricting 

94 CO2 uptake (De Souza & Long, 2018). While these results provided an indication that there was 

95 genotypic variation, they did not account for the full range of quantitative limitations of 

Page 4 of 46

Manuscript submitted to New Phytologist for review



For Peer Review

96 photosynthesis and indicated the need for evaluation of a larger number of farmer-preferred 

97 cultivars to provide a more realistic assessment of the photosynthetic limitations under steady-state 

98 conditions.

99 Improvement of photosynthetic efficiency has focused almost entirely on steady-state and 

100 light-saturating conditions. However, in field crop canopies including that of cassava, lighting is 

101 almost never at steady-state due to continuous fluctuations in light (Pearcy, 1990). While there is 

102 limited information on steady-state photosynthesis and its limitations in cassava, there is none to 

103 our knowledge on photosynthetic limitations under fluctuating light conditions. Critically, when a 

104 leaf transitions from shade to full sunlight, there is a delay of minutes in achieving its maximum 

105 photosynthetic rates. This delay can be caused either by the rate of  activation of Rubisco  (Mott 

106 & Woodrow, 2000; Soleh et al., 2016) or the rate of stomatal opening (Allen & Pearcy, 2000; 

107 McAusland et al., 2016). Depending on how slow this transition is, it adversely affects daily 

108 photosynthetic carbon gain resulting in lower biomass production. In wheat, for instance, the slow 

109 photosynthetic adjustment from shade to sun was calculated to result in a 21% loss of net canopy 

110 CO2 assimilation and productivity (Taylor & Long, 2017). Considering the converse situation, 

111 when a leaf transitions from light to shade, photosynthesis declines immediately while stomatal 

112 responses are much slower, lowering  by ~ 20% the intrinsic efficiency of water use (Lawson & 

113 Blatt, 2014). On such transitions, it also takes many minutes for photosynthesis to acclimate to the 

114 lower light conditions, and over the course of a growing season this can cost 20 – 40% of potential 

115 productivity (Zhu et al., 2004; Kromdijk et al., 2016). In cassava, there is no information on how 

116 photosynthesis and stomatal conductance respond to fluctuations in light, nor what limits the speed 

117 of adjustment and, in turn, efficiency. This information would be crucial for developing strategies 

118 to improve carbon gain and water use efficiency in this species. 
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119 In addition to the physiological measurements, mechanistic models of photosynthetic 

120 metabolism provide a means to test hypothesis related to different in vivo dynamic behaviors, and 

121 provide a broader guide to assess quantitatively the value of varying traits affecting photosynthetic 

122 efficiency (Zhu et al., 2007; Zhu et al., 2013). Previous model predictions have determined 

123 potential routes for improvements in photosynthesis (Zhu et al., 2004; Long et al., 2006) that were 

124 later successfully translated to yield increases (Lefebvre et al., 2005; Kromdijk et al., 2016; South 

125 et al., 2019). This approach is used here, integrating physiological and biochemical measurements 

126 to then predict modifications that could improve photosynthetic efficiency, and by how much.

127 Here we quantified limitations to photosynthesis in thirteen African farm-preferred and 

128 high yielding cassava cultivars under steady-state and fluctuating light conditions, aiming to 

129 determine the potential for improving cassava photosynthetic efficiency. A metabolic model of 

130 photosynthesis in cassava was developed using the measurements to explore the underlying traits 

131 that could give the largest improvements in photosynthetic and water-use efficiencies, with a focus 

132 on non-steady-state conditions.

133

134 METHODS

135 Plant material and growth conditions

136 Thirteen farm-preferred cassava (Manihot esculenta Crantz) cultivars from Africa were 

137 chosen for this study, including five landraces (MBundumali, TME3, TME419, TME7, and 

138 TME693) and eight improved lines (TMS01/1412, TMS30001, TMS30572, TMS96/1632, 

139 TMS97/2205, TMS98/0002, TMS98/0505, and TMS98/0581). Measurements were taken in two 

140 independent experiments (from May 23 to July 01 2017 and from May 01 to June 15 2018) in a 

141 controlled environmental greenhouse at the University of Illinois at Urbana-Champaign. This was 

142 except for cultivars TMS97/2205 and TMS98/0505 that were evaluated only in 2017. For both 
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143 experiments, all cultivars were propagated in vitro and transferred to the greenhouse as previously 

144 described in De Souza and Long (2018). Air temperature inside the greenhouse was 28°C ± 4°C, 

145 and relative air humidity was 61% ± 16%. In each experiment, three to four biological replicates 

146 of each cultivar were measured in a completely randomized experimental design. Pots were 

147 distributed with 25 cm spacing and their positions in the greenhouse re-randomized every 4-5 days 

148 to circumvent confounding cultivar with any environmental variation within the greenhouse. 

149 Plants were watered to pot capacity every 2-3 days allowing the soil surface to dry between the 

150 watering.

151

152 Gas exchange and assessment of photosynthetic limitations under steady-state

153 Leaf CO2 assimilation of the central foliole of the youngest fully expanded leaf was 

154 measured on 40 days-old plants with a portable gas exchange systems integrated with a leaf cuvette 

155 including a modulated chlorophyll fluorometer and light source (LI-6400XT and LI-6400-40; LI-

156 COR, Lincoln, NE, USA). For the response of leaf net CO2 uptake to intracellular CO2 

157 concentration (A/ci curves),  the leaf was acclimated to a light intensity of 1500 µmol m-2s-1 (ca. 

158 90% red and 10% blue light) and a CO2 concentration of 400 µmol mol-1 inside the cuvette. After 

159 steady-states for both A and stomatal conductance (gs) were obtained, the chamber inlet [CO2] was 

160 varied according to the following sequence: 400, 270, 150, 100, 75, 50, 400, 400, 600, 800, 1100, 

161 1300 and 1500 µmol mol-1. The gas exchange measurements were recorded simultaneously with 

162 chlorophyll fluorescence as a 10s average after the conditions inside the cuvette were stable at 

163 each [CO2]. The block temperature was set to 28°C, vapor pressure deficit (VPD) inside the cuvette 

164 was maintained at 1.5 ± 0.3 kPa and the flow at 300 µmol s-1.

165 The apparent maxima of Rubisco carboxylation rate (Vcmax), regeneration of ribulose-1,5-

166 biphosphate expressed as electron transport rate (Jmax), and triose phosphate utilization (VTPU) were 
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167 calculated from the A/ci curves using the equations from von Caemmerer (2000). Before fitting the 

168 curves, values for each individual curve were corrected for diffusive leaks between the cuvette and 

169 external environment (Bernacchi et al., 2001). Calculated values were adjusted to 25°C, following 

170 the equations for temperature response as described by Bernacchi et al. (2001) and McMurtrie and 

171 Wang (1993). Stomatal conductance and operating ci were obtained from the data points collected 

172 at 400 µmol mol-1 of CO2. The intrinsic water use efficiency (iWUE) was calculated by dividing 

173 A by gs at this same CO2 concentration.  

174 Mesophyll conductance (gm) and partial pressure of CO2 inside the chloroplast (cc) were 

175 calculated for ambient CO2 concentration (ca. 400 µmol mol-1) according to the variable J method 

176 (Harley et al., 1992). The CO2 compensation point (Γ*) and respiration (Rd) values necessary for 

177 gm calculation were estimated for each replicate according to Moualeu-Ngangue et al. (2017). Vcmax 

178 and Jmax, based on chloroplast [CO2] derived from measured gm were obtained by using a nonlinear 

179 analysis with the Marquart method (Moualeu-Ngangue et al., 2017).

180 To determine photosynthetic limitations under steady-state, the stomatal, mesophyll, and 

181 biochemical relative limitations were calculated following Grassi and Magnani (2005). Values for 

182 Rubisco Michaelis constants for CO2 (Kc) and for O2 (Ko) in these calculations were from 

183 Bernacchi et al. (2001).

184

185 Gas exchange and quantification of diffusional and biochemical limitations under fluctuating 

186 light conditions

187 To evaluate the response of gas exchange in cassava under fluctuating light, two 

188 measurements were performed: (a) photosynthetic response to the transition from deep shade to 

189 high light (i.e. induction curves), and (b) photosynthetic response to the transition from high to 

190 low to high light (i.e. relaxation curves followed by induction curves). The measurements were 
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191 performed on 35-40 days-old plants using the same equipment described above for the steady-state 

192 measurements. 

193 For the induction curves, plants were maintained in the dark overnight. Before the 

194 measurements, the central foliole of the youngest fully expanded leaf was acclimated to the 

195 conditions of the LI-6400 cuvette for 20 min, still in the dark. CO2 concentration inside the cuvette 

196 was 400 µmol mol-1, air temperature 28°C ± 2°C, and VPD 1.5 ± 0.3 kPa. After 20 min, leaves 

197 were pre-illuminated with 50 µmol m-2s-1 (deep shade) of photosynthetic photon flux density 

198 (PPFD) for 5 min to induce photosynthesis. Then, the light was increased to PPFD of 1500 µmol 

199 m-2s-1 for 30 min, simulating a shade-sun transition. Gas exchange parameters were recorded every 

200 10s. For each induction curve, the time to reach 50% of maximum photosynthesis (T50A), the time 

201 to reach 90% of maximum photosynthesis (T90A), the cumulative CO2 fixation in the first 5 min 

202 after photosynthetic induction (CCF), and the time to reach 50% of maximum stomatal 

203 conductance (T50gs) were calculated. The maximum light-saturated leaf CO2 uptake and maximum 

204 stomatal conductance in the induction curves were considered to be that obtained after 30 min 

205 under high light. The stomatal conductance at the beginning of induction (gsT0) was the last value 

206 obtained before increasing the light to 1500 µmol m-2s-1 PPFD. To investigate the impact of the 

207 rate at which the stomata opened on the induction of photosynthesis, a similar induction curve was 

208 performed, using a low CO2 concentration of 100 ppm inside the chamber during the deep shade 

209 period to maintain stomatal opening (Taylor & Long, 2017). 

210 The variation in induction rates of three cultivars with contrasting responses were further 

211 evaluated with induction curves at five CO2 concentrations (75, 150, 270, 400 and 600 µmol mol-1 

212 of CO2). From these curves, Vcmax and stomatal limitation under non-steady-state conditions were 

213 calculated using the equations described by Soleh et al. (2016).
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214 Acclimation of photosynthesis to shade, on a sun-shade transition, was characterized after 

215 a steady-state rate of leaf CO2 uptake was obtained at 1500 µmol m-2s-1 PPFD (~ 40 minutes). 

216 Once in steady-state, the light was decreased to 10% of the initial value (i.e., 150 µmol m-2s-1 

217 PPFD), and plants were kept under this light intensity for 40 minutes. Then, the light was increased 

218 to 1500 µmol m-2s-1 PPFD again, for an additional 40 minutes. Gas exchange was recorded every 

219 10s. Rate constants were calculated for the increase in gs on transfer to 1500 µmol m-2s-1 PPFD 

220 (ki), and again for the decrease in gs on return to 150 µmol m-2s-1 PPFD (kd). Measured time series 

221 for stomatal conductance changes were fit to the following equation: 

222 gs = (gmax – g0)e-kt + g0

223 where: gmax is the maximum stomata conductance, g0 is the minimum stomata conductance, t is 

224 time, and k (ki or kd ) is the value calculated by the curve fitting function (fit) in MATLAB (The 

225 Mathworks, Inc®).

226

227 Rubisco and Rubisco activase contents, Rubisco activity, total soluble protein and 

228 chlorophyll assays

229 Leaf samples of 4 cm2 were collected, snap frozen and stored at -80°C until analysis. 

230 Samples were homogenized using an ice-cold mortar and pestle in 0.6 mL of extraction buffer (50 

231 mM Bicine-NaOH pH 8.2, 20 mM MgCl2, 1 mM EDTA, 2 mM benzamidine, 5 mM ε-

232 aminocaproic acid, 50 mM 2-mercaptoethanol, 10 mM dithiothreitol, 1% (v/v) protease inhibitor 

233 cocktail (Sigma-Aldrich, Mo, USA), and 1 mM phenylmethylsulphonyl fluoride). After rapid (45 

234 – 60 s) grinding, samples were clarified via centrifugation at 4°C, 14700×g for 1 min. The 

235 supernatant was used immediately to determine the initial and total activity of Rubisco via 

236 incorporation of 14CO2 into acid-stable products at 25°C (Parry et al., 1997; Carmo-Silva et al., 

237 2017). This involved a reaction mixture containing 100 mM Bicine-NaOH pH 8.2, 20 mM MgCl2, 
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238 10 mM NaH14CO2 (9.25 kBq µmol-1), 2 mM KH2PO4, and 0.6 mM RuBP. Assays of initial activity 

239 were started by the addition of 25 µL supernatant to the complete assay mixture, whilst total 

240 activity assays were started by addition of RuBP to the mixture 3 min after adding 25 µL of the 

241 supernatant, to allow full carbamylation of Rubisco in the presence of CO2 and Mg+2 prior to the 

242 assay. All reactions were quenched after 30s by adding 100 µL of 10 M formic acid. Assay 

243 mixtures were dried at 90°C and 0.4 mL de-ionized water added to re-dissolve the residue. Acid-

244 stable 14C was determined by scintillation counting (Packard Tri-Carb, PerkinElmer, UK) with the 

245 addition of 3.6 mL of scintillation cocktail (Gold Star Quanta, Meridian Biotechnologies, UK). 

246 The incubation time for total activity was tested to ensure accurate determination of total activity 

247 (Sharwood et al., 2016), and three minutes was found to be sufficient. Rubisco activation state was 

248 calculated as the ratio of initial to total activity. 100 µL of the same supernatant was incubated at 

249 RT for 30 min with 100 µL of buffer containing 100 mM Bicine-NaOH pH 8.2, 20 mM MgCl2, 

250 20 mM NaHCO3, 1.2 mM (37 kBq/µmol) [14C]CABP (carboxyarabintol-1,5-bisphosphate), and 

251 Rubisco content determined via [14C]CABP binding (Sharwood et al., 2016).

252 Total soluble protein (TSP) was determined via Bradford assay (Bradford, 1976). 

253 Chlorophyll determination followed the method described by Wintermans and de Mots (1965). 20 

254 µL of the homogenate was rapidly taken in duplicate prior to centrifugation and added to 480 µL 

255 ethanol, inverted to mix, and kept in the dark until all extractions were complete (Carmo-Silva et 

256 al., 2017). Chlorophyll content was determined by measuring absorbance using a microplate reader 

257 (SPECTROstar Nano, BMG LabTech, UK). 

258 To determine relative Rubisco activase content, an aliquot of the supernatant resulting from 

259 Rubisco analysis was mixed 1:1 with SDS-Page loading buffer (62.5 mM Tris-HCl, pH 6.8, 2% 

260 (w/v) SDS, 25% (v/v) glycerol, 0.01% bromophenol blue), mixed by pipetting and heated at 95°C 

261 for 4 min. Proteins were separated via SDS-Page (12% TGX gels, Bio-Rad, UK), and transferred 
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262 to a nitrocellulose membrane using a dry blotting system (iBlot2, ThermoFisher Scientific, UK) 

263 (Perdomo et al., 2018). Rubisco activase was detected using an antibody with broad specificity for 

264 both isoforms of the protein in higher plants (Feller et al., 1998), and a secondary fluoro-tagged 

265 antibody (IRDye800CW, LI-COR Biosciences, Lincoln NE, USA). Images were taken and protein 

266 amounts quantified using a fluorescence imaging and analysis system (Odyssey FC, LI-COR 

267 Biosciences, Lincoln NE, USA). Due to uncertainty regarding the exact binding affinity of this 

268 antibody to cassava Rubisco activase, after densitometry of all samples, signal intensities were 

269 compared relative to the mean signal intensity of the entire dataset to provide relative 

270 quantification of the panel of cultivars.

271

272 Cassava photosynthesis model and photosynthetic simulations

273 To estimate the influence of stomata and Rubisco response on dynamic photosynthesis rate, 

274 a cassava photosynthesis metabolic model was developed. The model was constructed based on 

275 the C3 photosynthesis model (Zhu et al., 2007), a simplified light reaction model, a Rubisco 

276 activase model (Mate et al., 1996; Zhu et al., 2013), and a dynamic stomatal conductance model 

277 (Vialet-Chabrand et al., 2017). The model was implemented in MATLAB. The full description of 

278 the model is in Supplemental Notes S1. 

279 The model was parameterized using Vcmax, Jmax, ki, kd, Ball-Berry slope and intercept from 

280 measured photosynthetic and stomata parameters of cassava (Supplemental Table S4). The 

281 measured Vcmax was used as the maximum Rubisco activity in the metabolic model. A, transpiration 

282 (T), ci, and gs were estimated under a fluctuating light cycle. The predicted water use efficiency 

283 (WUE) was calculated dividing A by T.

284

285
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286 Statistical analysis

287 Differences between cultivars were tested by analysis of variance (ANOVA) or non-

288 parametric methods (JMP®Pro, version 12.0.1; SAS Institute INC, Cary, NC, USA). For all 

289 measured variables, the normality was tested using the Shapiro-Wilk’s test and the 

290 homoscedasticity using Brown-Forsythe’s and Levene’s tests. When the data met the criteria for 

291 normality and homoscedasticity assumptions, one-way ANOVA followed by a pairwise 

292 comparison (t-test) was applied. When those criteria were violated, Wilcoxon’s non-parametric 

293 comparison was used. The threshold for statistical significance was P≤0.05. The data were 

294 analyzed using a completely randomized block design, split over two years. The extent of 

295 correlation between steady-state variables were evaluated using Pearson’s correlation using the 

296 data of all cultivars.

297

298 RESULTS

299 Cassava photosynthetic limitations under steady-state

300 Light-saturated net leaf CO2 uptake (Asat) in cassava cultivars ranged from 20.3 to 24.8 

301 µmol m-2s-1, a total variation of 20% between cultivars (Table 1). A similar 20-24% range of 

302 variation was also observed for Vcmax and Jmax calculated from the response of Asat to ci, and Vcmax 

303 calculated from cc (Vcmax,Cc) (Table 1). Because estimation of cc cannot be calculated by the 

304 variable J method when there is triose phosphate limitation due to the decrease in electron transport 

305 rate (Harley et al., 1992), values of Jmax,Cc could not be calculated for cassava plants in this 

306 experiment. However, under high ci the effect of gm on Asat is small (Harley et al., 1992). The 

307 operating ci for all cultivars were below the transition in the A/ci response from Rubisco limitation 

308 to electron transport limitation (Fig.1), indicating that all cassava cultivars are Rubisco limited at 

309 current atmospheric [CO2]. Stomatal conductance (gs) varied from 0.25 to 0.34 mol H2O m-2s-1 
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310 leading to a 26.5% of variation in intrinsic water use efficiency (iWUE) among cultivars (Table 1). 

311 TMS97/2205 cultivar showed the highest iWUE whereas TMS96/1632 and TMS01/1412 had the 

312 lowest iWUE values out of the cultivars surveyed (Table 1). 

313 Corroborating the data presented above, the calculation of relative photosynthetic 

314 limitation by the method of Grassi and Magnani (2005) showed that, despite no significant 

315 differences among cultivars (Supplemental Fig.S1), at current atmospheric [CO2] in vivo Rubisco 

316 activity accounted for about 43% of the total limitation across all cultivars, while stomatal 

317 conductance accounted for 16% (Fig.2). Mesophyll conductance (gm) did not vary significantly 

318 among cultivars (Supplemental Fig.S2). However, it did account for a similar proportion (i.e. 41%) 

319 of the total limitation to photosynthesis across cultivars in cassava (Fig.2). Additionally, gm wa 

320 positively correlated to Asat (r=0.27, P=0.042; Supplemental Table S2). 

321 For most cultivars, A did not increase significantly when measured at ci higher than 700 

322 µmol m-2s-1 (Fig.1). Except for TMS98/0505 and TMS97/2205 that increased photosynthesis by 

323 7.7% and 5.1%, respectively, from ci of ~800 µmol m-2s-1 to ci of ~1250 µmol m-2s-1, all other 

324 cultivars showed, on average, only 2.6% increase in photosynthesis under ci higher than 700 µmol 

325 m-2s-1. The lack of increase in photosynthesis with an increase in ci suggests that a TPU limitation 

326 is present in the majority of cassava cultivars evaluated in this study. This is further supported by 

327 the observed concomitant reduction in JPSII (6 – 16%) with increasing ci (Fig.1). There was a 

328 significant 15% variation in VTPU, which ranged from 9.9 to 11.65 µmol m-2s-1 (Table 1). On 

329 average, VTPU for cassava was 10.8 µmol m-2s-1, suggesting a TPU utilization 44% above the 

330 average Asat.

331 Rubisco content, Rubisco initial, total and specific activity, and Rubisco activation state 

332 varied significantly among cultivars (Supplemental Table S1). The variation of Rubisco content, 

333 and initial and total activity was positively correlated to Asat  (r=0.46, P=0.001; r=0.36, P=0.012; 
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334 and r=0.36, P=0.011, respectively; Supplemental Table S2). Rubisco content also correlated with 

335 Vcmax (r=0.37, P=0.009). Total Rubisco activase and fractions of α and β Rubisco activase isoforms 

336 did not vary significantly (Supplemental Table S1). Chlorophyll a (Chla), b (Chlb), total and the 

337 ratio of Chla/Chlb showed significant differences among cultivars (Supplemental Table S3). From 

338 these, Chla/Chlb ratio presented a significant correlation with Asat (r=0.30, P=0.029; Supplemental 

339 Table S2). Variation in total soluble protein content (TSP) and in the ratio of TSP to chlorophyll 

340 (TSP/Chl) content between cultivars (Supplemental Table S3) did not correlate with variation in 

341 Asat (Supplemental Table S2).

342

343 Dynamic photosynthesis and its limitations in cassava 

344 Induction of photosynthesis on transfer from deep shade (50 µmol m-2s-1 PPFD) to high 

345 light (1500 µmol m-2s-1 PPFD) was at significantly different rates across the cassava cultivars 

346 (P<0.0001; Fig.3a). TMS98/0505 showed the fastest induction, reaching 50% and 90% of the 

347 steady-state Asat after 3 and 11 minutes, respectively. TME693 had the slowest induction rates with 

348 more than 10 and 21 minutes to reach, respectively, 50% and 90% of steady-state Asat (Fig.3a, 

349 Table 2). These differences in photosynthetic induction rates translated to a variation of 65% in 

350 the cumulative carbon fixation (CCF) (Table 2), which correspond closely to stomatal opening, as 

351 represented by gs (Fig.3b, Table 2). Both stomatal conductance at the beginning of the induction 

352 (gsT0) and time to reach 50% of the final steady-state gs (T50gs) had a significant correlation with 

353 CCF (r=-0.60, P<0.0001 and r =0.52, P<0.0001). Despite the differences in induction rates, after 

354 30 minutes the photosynthetic rates of all cultivars reached similar values to those obtained at 

355 steady-state (Supplemental Fig.S3, Table 1). During photosynthesis induction, iWUE also varied 

356 among cultivars (Fig.3d). During the first 5 minutes of induction, iWUE in TME7 was 2-fold 

357 higher than in TMS 98/0505.
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358 The role of gs on the speed of photosynthetic induction was investigated on the three 

359 selected cultivars by keeping the stomata open in low light, by reducing the chamber [CO2] around 

360 to 100 µmol mol-1 during the low light phase.  Here, induction in high light was far more rapid and 

361 did not differ between cultivars (Fig.4c). Differences in the speed of induction were therefore due 

362 to differences in the speed of stomatal opening.

363 Biochemical and stomatal limitations during induction in cassava were further estimated 

364 by measuring photosynthetic induction in different CO2 concentrations. With these data, A/ci 

365 curves were fit for different time points during the inductions (Supplemental Fig.S4), and Vcmax 

366 and stomatal limitation were calculated (Fig.5). The initial phase of the A/ci curves increased with 

367 induction for the three cultivars, and no significant differences were observed (Supplemental 

368 Fig.S4). This was reflected in a non-significant difference in Vcmax calculated for this phase across 

369 these cultivars (Fig.5a), suggesting that Rubisco activity is not responsible for the differences 

370 observed during the induction. Nevertheless, the operating ci in all three cultivars is in the Rubisco-

371 limited part of the A/ci curve throughout the induction (Supplemental Fig.S4), indicating that the 

372 induction response in cassava cultivars is overall Rubisco limited. Stomatal limitation during 

373 induction is higher in TME693 than in TMS98/0505 (Fig.5b), especially during the first 5 minutes 

374 (Fig.5c) where there is a 20% difference (P=0.034) between the two cultivars. Corroborating this, 

375 the ci during the first 5 minutes of induction under ambient [CO2] is 15.5% lower than the ci under 

376 steady-state (Fig.3c). The stomatal limitation in TME693 decreases after approximately 15 

377 minutes of induction and, after this period, it is similar to the stomatal limitation of the other two 

378 cultivars (Fig.5b). 

379 On transfer from high-light to shade, A decreases instantaneously but gs required more than 

380 20 minutes to reach steady-state in all cassava cultivars (Supplemental Fig.S5). Consistent with 

381 the differences in induction described above, TME693 showed low values of both rate constant 
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382 for gs increase (ki) and for gs decrease (kd) (Supplemental Table S4), indicating that slow opening 

383 corresponded to slow closing. By contrast, TMS01/1412, that has similar rates of photosynthesis 

384 induction to TMS98/0505 (Table 2, Supplemental Fig.S3), showed the highest ki and a high kd 

385 (Supplemental Fig.S4). However, correspondence of kd with ki was not apparent across all 

386 cultivars. 

387

388 Model simulations

389 Values of Vcmax, Jmax, ki, kd and Ball-Berry parameters (Supplemental Table S4) were used 

390 to simulate carbon assimilation and stomatal response in two contrasting cultivars, TME693 and 

391 TMS01/1412 (Fig.6). These simulations were done considering the dynamic changes in Rubisco 

392 activation (DyRac) and dynamic stomatal conductance response (DyGs). The incorporation of 

393 these two variables improved the model performance adjudged by an improved match to the 

394 measured induction curves (Supplemental Fig.S6). The model showed that accelerating stomatal 

395 response three times would increase average A 11% for TME693 and 7% for TMS01/1412, during 

396 the first 10 min of induction (Fig.6, Supplemental Table S5). After 10 min of induction, and during 

397 low and high light phases, there is no significant impact (i.e., <3%) of acceleration of stomatal 

398 response on A. However, acceleration in stomatal response decreases ~15% WUE in TME693 over 

399 the first 30 min of photosynthesis induction. For TMS01/1412, this reduction is ~ 12% during the 

400 first 20 min of induction. There is also a decrease in WUE by 8% during the first 20 min of high 

401 light for both cultivars. However, WUE increases by 20% in TME693 and by 13% in TMS01/1412 

402 during the first 20-30 min of low light, by accelerating the speed of decline in gs (Fig.6, 

403 Supplemental Table S5).

404 The model was also used to simulate A and WUE in a cycle of low and high light, 

405 simulating the fluctuation of light that occurs in lower layers of the canopy. This was applied to 
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406 all cultivars with and without the incorporation of dynamic stomata response in the simulations 

407 (Supplemental Fig.S7). The results showed that with the light fluctuation, there was an average of 

408 13% loss of carbon assimilation and 5% of WUE resulted from the lags in stomatal response. 

409 Accelerating stomata opening and closure speed in three times, can offset 6% this carbon loss, and 

410 2% of WUE (Supplemental Fig.S7b).

411

412 DISCUSSION

413 Overcoming photosynthetic limitations to improve photosynthetic efficiency at the leaf-

414 level has resulted in some large demonstrated increases in field crop productivity and water use 

415 efficiency (Kromdijk et al., 2016; Glowacka et al., 2018; Simkin et al., 2019; South et al., 2019). 

416 The past focus has been overwhelmingly on light-saturated steady-state photosynthesis. However, 

417 in field crop canopies, half of carbon gain is under conditions where photosynthesis is light-limited 

418 and most leaves are rarely in steady-state light (Zhu et al., 2004; Taylor & Long, 2017; Papanatsiou 

419 et al., 2019). While steady-state measurements are valuable for quantification of biochemical 

420 limitations in vivo (Long & Bernacchi, 2003), dynamic measurements provide insight into the 

421 more frequent field condition, particularly in crops canopies, of how leaves respond to fluctuating 

422 light (Way & Pearcy, 2012). Indeed, variation between cassava cultivars in carbon assimilation 

423 under non steady-state conditions was three times that of steady-state (Tables 1 and 2), identifying 

424 important new traits for selection in improving cassava photosynthetic efficiency and yield 

425 potential.    

426

427 Biochemical and mesophyll limitations play a major role in photosynthesis under steady-

428 state
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429 Similar to other C3 crops (Xiong et al., 2018), biochemical limitation at steady-state was  

430 43% of the total photosynthetic limitation in cassava (Fig.2). In vivo Rubisco activity, not 

431 regeneration of RuBP, accounted for this biochemical limitation under the current atmospheric 

432 CO2 concentration, since operating ci for all cultivars was below the transition from Rubisco to 

433 electron transport limitation (Fig.1). On average, Rubisco content in cassava was 1.6 g m-2 (Table 

434 S1). This is lower to 3 g m-2 for wheat and 2.6 g m-2 for rice, under similar conditions of good 

435 nutrition (Theobald et al., 1998; Masumoto et al., 2005). Although the CO2 specificity of Rubisco 

436 in cassava is slightly higher (Sc/o at 25°C= 105.4 ± 1.8) than in both rice and wheat (Sc/o at 25°C= 

437 101 ± 2 and 100 ± 1.1, respectively), its carboxylation efficiency of Rubisco (kcat
c/kc

air) is 

438 approximately 30% lower (Orr et al., 2016). Lower content and efficiency would explain the lower 

439 Vcmax in cassava (Table 1) compared to elite cultivars of soybean, wheat and rice (Masumoto et al., 

440 2005; Driever et al., 2014; Koester et al., 2014). This difference between cassava and these other 

441 C3 crops suggest that strategies proposed to improve Rubisco efficiency and quantity would have 

442 particular value with this crop (Parry et al., 2007; Whitney et al., 2011; Carmo-Silva et al., 2015). 

443 The 20% between cultivar variation in Vcmax found here, while less than the 35% and 55% observed 

444 in rice and soybean, respectively (Gu et al., 2012; Koester et al., 2014), would still provide a basis 

445 for breeding a significant improvement in photosynthetic efficiency.  

446 The limitation to steady-state photosynthesis imposed by mesophyll conductance 

447 approached that imposed by assimilation within the chloroplast (ca. 41%, Fig.2). This is more than 

448 double the limitation imposed by stomata (Fig.2). Increasing gm is an attractive target for breeding 

449 or bioengineering, since it can increase photosynthesis without increasing transpiration (Flexas et 

450 al., 2008; Zhu et al., 2010). An extensive survey of South American cultivars showed that 

451 differences in photosynthesis, biomass and yield were closely associated with variation in gm (El-

452 Sharkawy & Cock, 1990; El-Sharkawy et al., 1990; El-Sharkawy et al., 2008). This is consistent 
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453 with the correlation between gm and Asat found here for African cultivars (Table S2). However, 

454 there is no evidence that gm has been increased with breeding, with no significant difference 

455 between gm in landraces and improved lines (F = 0.02; P=0.889) suggesting that efforts to increase 

456 gm in cassava might lead to a significant improvement in photosynthetic rate in this crop.

457 Simulations have shown that increasing either Vcmax or gm could compensate for up to a 

458 40% decrease in stomatal conductance to water vapor (gsw) (Flexas et al., 2016). This would allow 

459 a cultivar to maintain the same Asat while using 40% less water, i.e. a 40% increase in iWUE. 

460 Although manipulations in gm have been found to affect gs negatively in some other species (Hanba 

461 et al., 2004; Flexas et al., 2006), these two parameters were not significantly correlated in cassava 

462 (r=0.14, P= 0.280; Table S2). A similar lack of correlation was also found across cultivars of 

463 wheat, supporting the contention that improved gm may be selected without impacting gs (Jahan et 

464 al., 2014; Barbour et al., 2016). In cassava this would not only increase in Asat under optimal 

465 conditions, but increase its resilience to the frequent and increasing droughts affecting the major 

466 growing regions of Sub-Saharan Africa (Tadele, 2018).

467

468 Low capacity of triose phosphate utilization (TPU) may limit photosynthetic improvements

469 While Rubisco and mesophyll conductance are the major limitations found in cassava 

470 under the current rates of photosynthesis, TPU limitation, which reflects the plant’s ability to 

471 convert triose phosphates into sucrose and starch (Sharkey, 1985), can represent a major hurdle 

472 for improving photosynthesis in this crop. Eleven of the thirteen cassava cultivars evaluated 

473 showed TPU limitation, at an Asat only slightly higher than the Asat measured at the current ambient 

474 [CO2].  This was evident as a lack of any increase in Asat when ci exceeded 700 µmol m-2s-1 and a 

475 decline in JPSII (Fig.1)(Sharkey, 1985; Long & Bernacchi, 2003). The average VTPU across the 

476 cassava cultivars was 10.8 µmol m-2s-1 and only sufficient to support a maximum Asat of 32 µmol 
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477 m-2s-1. Therefore, that maximum improvement in photosynthesis that could be bred or 

478 bioengineered could not exceed 33% without simultaneous improvement of VTPU.  VTPU here were 

479 similar to those found in a more limited subset of African cassava cultivars (De Souza & Long, 

480 2018), and 25.5% to 42% lower than in rice, wheat and rye (Wullschleger, 1993; Jaikumar et al., 

481 2013). Low rates of VTPU can be associated with reduced sink strength for growth or storage, or 

482 with insufficient capacity to synthesize sucrose and starch in the leaf (Long & Bernacchi, 2003; 

483 Sharkey et al., 2007). Cassava produces large tuberous roots. Thus, it is not expected that a reduced 

484 sink strength would cause its low VTPU. However, tuberous roots start to develop only after 2-3 

485 months of planting (De Souza et al., 2017), and our measurements were performed prior to that, 

486 which would indicate a limitation during the plant’s establishment phase (De Souza & Long, 

487 2018). Nevertheless, failure to utilize fully photosynthetic potential, even before storage roots form 

488 will be at the cost of canopy and root expansion during the critical establishment phase of the crop.  

489 Suggested strategies that involve upregulation of AGPase in roots, and ADPglucose 

490 pyrophosporylase and pyrophosphatase in leaves to enhance sucrose and starch synthesis (Ihemere 

491 et al., 2006; Jonik et al., 2012; Yang et al., 2016; Sonnewald & Fernie, 2018) may increase VTPU 

492 in cassava, and allow greater bioengineered or bred increases in photosynthesis. 

493

494 Slow stomatal conductance limits carbon fixation during light fluctuations

495 After the transition from deep shade or low light to high light, cassava takes approximately 

496 20 minutes to reach photosynthetic rates comparable to steady-state (Fig.3a, Fig.S3, Fig.S5). 

497 Cumulative carbon fixation (CCF) over first five minutes varied 286%, from 122 for TME693  to 

498 349 µmol CO2 for TMS98/0505  (Table 2). What limits CCF in cassava?  In tobacco, rice, soybean 

499 and wheat, Rubisco activation is the major limitation to induction (Hammond et al., 1998; Yamori 

500 et al., 2012; Soleh et al., 2016; Taylor & Long, 2017), but in cassava, it is the rate of stomatal 
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501 opening (Fig.3). While the Vcmax during the induction was similar between the contrasting cultivars, 

502 stomatal limitation in the first 5 minutes varied substantially (Fig.5). When stomata limitation was 

503 removed by artificially lowering the chamber [CO2] during shade, differences between cultivars 

504 in the speed of induction were eliminated (Fig.4). 

505 The rate constant for gs increase (ki) varied 47% between cultivars with an average value 

506 of 9.8 minutes (Table S4). By definition, the higher the ki the slower is the rise in gs. The measured. 

507 ki for cassava were similar to those reported for  tomato, wheat and common beans, but were eleven 

508 times higher than in rice, and three times higher than in maize (McAusland et al., 2016). Slow 

509 stomatal opening during induction can significantly affect the CO2 uptake and have a cumulative 

510 effect over the growing season, lowering yields (Reynolds et al., 1994; Fisher et al., 1998; Lawson 

511 & Blatt, 2014). Therefore, cultivars with an increased ki, or any genetic manipulation that would 

512 allow acceleration of opening would benefit photosynthesis in cassava. Our simulations showed 

513 that with a three times acceleration of ki, it is possible to increase photosynthetic carbon gain by 

514 7%-11% during the first 10 minutes after induction from deep shade (Table S5). The large, almost 

515 3-fold, differences found between cultivars during induction (Table 2) could, therefore, be 

516 exploited to improve cassava yield. Compared to the just 20% variation in steady-state 

517 photosynthesis (Table 1), this emphasizes non steady-state photosynthesis as an overlooked trait 

518 for improving cassava productivity. 

519 Accelerating stomatal opening can cause a pronounced decrease in WUE. This is because 

520 the rate of transpiration through the stomata is higher than the rate of CO2 assimilation due to the 

521 intrinsic differences in water and CO2 concentration gradients between the intracellular spaces and 

522 the external atmosphere (Lawson & Blatt, 2014). To counterbalance the decrease of WUE when ki 

523 is accelerated (Fig.6; Table S5), it is also necessary accelerate the rate of stomatal closing. Thus, 

524 when photosynthesis decreases due to a reduction in PPFD, stomata can close faster limiting the 
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525 water losses by transpiration, and therefore improving WUE. For the majority of cassava cultivars, 

526 the rate constant for gs decrease (kd) were lower than its ki (Table S4), indicating that cassava 

527 stomata are faster to close than open. Yet, the average value of kd in cassava is higher than for 

528 many other crops such as rice, maize, common beans, oat, tomato, sorghum, and wheat 

529 (McAusland et al., 2016). Our modeling showed that a three-fold increase in ki and kd would 

530 increase WUE by 16%-20% during the transition from high to low light depending on the genotype 

531 (Fig.6; Table S5). Considering a cycle of fluctuations in light similar to that observed in lower 

532 layers of the canopy, this increase in ki and kd would increase daily carbon assimilation 6% without 

533 significant changes in water use efficiency (Fig.S7). Importantly, 6% would be the minimum gain 

534 in productivity, since prior to canopy closure this would have a positive feedback by creating more 

535 leaf and, in turn, more canopy carbon gain. Thus, over the cassava full growth cycle of 10 to 12 

536 months (Lebot, 2009), a substantially higher gain in carbon would be expected while maintaining 

537 the current WUE.

538
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549

550

551 SUPPORTING INFORMATION

552

553 Fig. S1 Relative biochemical, mesophyll and stomatal limitations under steady state in cassava 

554 cultivars

555 Fig. S2 Mesophyll conductance in cassava cultivars

556 Fig. S3 Changes in carbon assimilation during photosynthesis induction 

557 Fig. S4 Dynamic A/ci curves

558 Fig. S5 Changes in leaf carbon assimilation, stomatal conductance, and intrinsic water efficiency 

559 during light fluctuation

560 Fig. S6 Simulated carbon assimilation rate, transpiration rate, intercellular CO2 concentration, and 

561 stomata conductance 

562 Fig. S7 Light input used in the model simulations and its results

563 Table S1 Rubisco content, initial and total activity, Rubisco activation state, Rubisco specific 

564 activity, total Rubisco activase, fraction of α and β isoforms of Rubisco activase 

565 Table S2 Matrix with values obtained from Pearson’s correlation and its p-values

566 Table S3 Chlorophyll contents, total soluble protein content, fraction of total soluble protein 

567 present as Rubisco, and ratio of total soluble protein to chlorophyll content 

568 Table S4 Input parameters of cassava model

569 Table S5 The effect of accelerating three times the stomata response speed on carbon assimilation 

570 rate and water use efficiency

571 Notes S1 Cassava model description

572
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573

574

575 LEGENDS TO FIGURES AND TABLES

576

577 Figure 1. Response of light-saturated leaf carbon assimilation (A, µmol CO2 m-2s-1) and of electron 

578 transport rate (JPSII) to intracellular CO2 concentration (ci) in cassava cultivars. Symbols represent 

579 mean ± SE. n = 8, except for TMS98/0505 and TMS97/2205 where n=4. Larger symbols indicate 

580 the operating point, which is at ci achieved when the [CO2] concentration around the leaf is 400 

581 µmol mol-1

582

583 Figure 2. Relative biochemical, mesophyll and stomatal limitations under steady state in cassava. 

584 The total limitation is equal to 100%. Bars represent mean ± SE of all cultivars. Different letters 

585 represent statistically significant differences (P<0.05) between different limitations. 

586

587 Figure 3. Changes in leaf carbon assimilation (A, µmol CO2 m-2s-1) (a), stomatal conductance (gs, 

588 mol H2O m-2s-1) (b), internal CO2 concentration (ci, µmol CO2 m-2s-1) (c), and intrinsic water use 

589 efficiency (iWUE, µmol CO2 mol H2O-1) (d) in cassava cultivars during photosynthesis induction. 

590 Relative values were calculated as the percentage of the value obtained after 30 minutes under 

591 high light. During low light and high light phase, the light was 50 µmol m-2s-1 and 1500 µmol m-

592 2s-1 PPFD, respectively. Colored lines indicate cultivars with contrasting responses (TME693 and 

593 TMS98/0505) and the cultivar TME7. Data represent mean. n = 6 except for genotypes 

594 TMS98/0505 and TMS97/2205 where n = 3. 

595
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596 Figure 4. Leaf carbon assimilation (A, µmol CO2 m-2s-1) during induction with CO2 concentration 

597 during low light phase set at 400 ppm (a) or 100 ppm (b). During the high light phase of the 

598 induction, CO2 concentration was maintained at 400 ppm in both measurements. Comparison 

599 among cultivars related to time to reach 50% of light-saturated leaf carbon assimilation (T50A, min), 

600 time to reach 90% of light-saturated leaf carbon assimilation (T90A, min), cumulative CO2 

601 concentration in the first 5 min after photosynthesis induction (CCF), and stomatal conductance at 

602 the beginning of photosynthesis induction (gsT0, mol H2O m-2s-1) in both CO2 concentrations during 

603 low light phase (c). Values represent mean ± SE. n=6 for TME693 and TME7; n=3 for 

604 TMS98/0505. Different letters represent statistically significant differences (P<0.05) among the 

605 cultivars. 

606

607 Figure 5.  Maximum carboxylation rate by Rubisco (Vcmax, µmol m-2s-1) (a) and stomatal limitation 

608 during photosynthesis induction (b,c) in three cassava cultivars. Data represent mean ± SE. n=3-

609 4.

610

611 Figure 6. Model simulated carbon assimilation rate (A), transpiration rate (T), intercellular CO2 

612 concentration (ci) and stomata conductance (gs) of cultivars TME693 and TMS01/1412. Light in 

613 PPFD input is: 0 μmol m-2 s-1 in the first 30 min, 50 μmol m-2 s-1 from 30 min to 35 min, 1500μmol 

614 m-2 s-1 from 35 min to 75 min; 150μmol m-2 s-1 from 75 min to 115 min; and 1500 μmol m-2 s-1 

615 from 115 min to 155 min. Name of the cultivars followed by ki*3 or ki*3 kd*3 represents the 

616 simulation considering the acceleration by three time of the stomata opening and stomata opening 

617 and closure, respectively.

618
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619 Table 1. Light-saturated leaf carbon assimilation (Asat, µmol CO2 m-2s-1), apparent maximum 

620 carboxylation rate by Rubisco (Vcmax, µmol m-2s-1), maximum carboxylation rate by Rubisco 

621 estimated based on partial pressure of CO2 inside the chloroplast (Vcmax, Cc, µmol m-2s-1), 

622 regeneration of ribulose-1,5-bisphosphate represented by electron transport rate (Jmax, µmol m-2s-

623 1), triose phosphate utilization (VTPU, µmol m-2s-1), stomatal conductance (gs, mol H2O m-2s-1), 

624 intrinsic water use efficiency (iWUE, µmol CO2 mol H2O-1) and intracellular CO2 concentration at 

625 400 µmol mol-1 (operating ci, µmol CO2 m-2s-1) in cassava cultivars. Values represent mean ± SE. 

626 n = 8. Different letters represent statistically significant differences (P<0.05) among the cultivars. 

627

628 Table 2. Time to reach 50% of light-saturated leaf carbon assimilation (T50A, min), time to reach 

629 90% of light-saturated leaf carbon assimilation (T90A, min), cumulative CO2 fixation in the first 5 

630 min after photosynthesis induction (CCF, µmol CO2), stomatal conductance at the beginning of 

631 photosynthesis induction (gsT0, mol H2O m-2s-1), and time to reach 50% of maximum stomatal 

632 conductance (T50gs, min) in cassava cultivars. Values represent mean ± SE. n = 6 except for 

633 cultivars TMS98/0505 and TMS97/2205 where n = 3. Different letters represent statistically 

634 significant differences (P<0.05) among the cultivars. 
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Figure 1. Response of light-saturated leaf carbon assimilation (A, 

µmol CO2 m-2s-1) and of electron transport rate (JPSII) to 

intracellular CO2 concentration (ci) in cassava cultivars. Symbols 

represent mean ± SE. n = 8, except for TMS98/0505 and 

TMS97/2205 where n=4. Larger symbols indicate the operating 

point, which is at ci achieved when the [CO2] concentration around 

the leaf is 400 µmol mol-1. 
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Figure 2. Relative biochemical, mesophyll and stomatal limitations under steady state in cassava. 

The total limitation is equal to 100%. Bars represent mean ± SE of all cultivars. Different letters 

represent statistically significant differences (P<0.05) between different limitations.  
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Figure 3. Changes in leaf carbon assimilation (A, µmol CO2 m-2s-1) (a), stomatal conductance (gs, 

mol H2O m-2s-1) (b), internal CO2 concentration (ci, µmol CO2 m-2s-1) (c), and intrinsic water use 

efficiency (iWUE, µmol CO2 mol H2O-1) (d) in cassava cultivars during photosynthesis induction. 

Relative values were calculated as the percentage of the value obtained after 30 minutes under 

high light. During low light and high light phase, the light was 50 µmol m-2s-1 and 1500 µmol m-2s-

1 PPFD, respectively. Colored lines indicate cultivars with contrasting responses (TME693 and 

TMS98/0505) and the cultivar TME7. Data represent mean. n = 6 except for genotypes 

TMS98/0505 and TMS97/2205 where n = 3.  
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Figure 4. Leaf carbon assimilation (A, µmol CO2 m-2s-1) during induction with CO2 concentration 

during low light phase set at 400 ppm (a) or 100 ppm (b). During the high light phase of the 

induction, CO2 concentration was maintained at 400 ppm in both measurements. Comparison 

among cultivars related to time to reach 50% of light-saturated leaf carbon assimilation (T50A, min), 

time to reach 90% of light-saturated leaf carbon assimilation (T90A, min), cumulative CO2 

concentration in the first 5 min after photosynthesis induction (CCF, µmol CO2), and stomatal 

conductance at the beginning of photosynthesis induction (gsT0, mol H2O m-2s-1) in both CO2 

concentrations during low light phase (c). Values represent mean ± SE. n=6 for TME693 and 

TME7; n=3 for TMS98/0505. Different letters represent statistically significant differences 

(P<0.05) among the cultivars.  

 

 

 

 

 

 

[CO2] during low light  Cultivar T50A T90A CCF       gsT0 

400ppm 
TME693 10.6 ± 1.39a 21.18 ± 1.13a 121.52 ± 27.25c 0.005 ± 0.004c 
TME7 6.42 ± 0.53b 17.02 ± 1.64a 200.84 ± 35.45b 0.019 ± 0.003b 
TMS98/0505 3.1 ± 0.23c 11.57 ± 0.69b 348.92 ± 16.08a 0.047 ± 0.003a 

100pm 
TME693 0.82 ± 0.19a 10.62 ± 3.3a 332.24 ± 58.65a 0.118 ± 0.029a 
TME7 2.12 ± 0.62a 15.47 ± 1.8a 344.73 ± 14.48a 0.134 ± 0.016a 
TMS98/0505 1.22 ± 0.44a 17.13 ± 3.02a 380.92 ± 49a 0.162 ± 0.023a 
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Figure 5.  Maximum carboxylation rate by Rubisco (Vcmax, µmol m-2s-1) (a) and stomatal limitation 

during photosynthesis induction (b,c) in three cassava cultivars. Data represent mean ± SE. n=3-

4.
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Figure 6. Model simulated carbon assimilation rate (A), transpiration rate (T), intercellular CO2 

concentration (ci) and stomata conductance (gs) of cultivars TME693 and TMS01/1412. Light in 

PPFD input is: 0 μmol m-2 s-1 in the first 30 min, 50 μmol m-2 s-1 from 30 min to 35 min, 1500μmol 

m-2 s-1 from 35 min to 75 min; 150μmol m-2 s-1 from 75 min to 115 min; and 1500 μmol m-2 s-1 from 

115 min to 155 min. Name of the cultivars followed by ki*3 or ki*3 kd*3 represents the simulation 

considering the acceleration by three time of the stomata opening and stomata opening and 

closure, respectively.
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Table 1. Light-saturated leaf carbon assimilation (Asat, µmol CO2 m-2s-1), apparent maximum carboxylation rate by Rubisco (Vcmax, µmol m-2s-1), 

maximum carboxylation rate by Rubisco estimated based on partial pressure of CO2 inside the chloroplast (Vcmax, Cc, µmol m-2s-1), regeneration of 

ribulose-1,5-bisphosphate represented by electron transport rate (Jmax, µmol m-2s-1), triose phosphate utilization (VTPU, µmol m-2s-1), stomatal 

conductance (gs, mol H2O m-2s-1), intrinsic water use efficiency (iWUE, µmol CO2 mol H2O-1) and intracellular CO2 concentration at 400 µmol mol-1 

(operating ci, µmol CO2 m-2s-1) in cassava cultivars. Values represent mean ± SE. n = 8. Different letters represent statistically significant differences 

(P<0.05) among the cultivars.  

 

 Cultivar Asat Vcmax Vcmax,Cc Jmax VTPU gs iWUE operating ci 

Mbundumali 20.32 ± 1.05b 100.12 ± 3.96b 124.81 ± 12.47ab 169.41 ± 6.01a 11.03 ± 0.43ab 0.28 ± 0.02abc 81.63 ± 5.84ab 244.1 ± 9.45ab 
TME3 21.49 ± 1.78abcd 101.83 ± 10.75ab 156.73 ± 8.51a 165.39 ± 14.52ab 10.85 ± 0.89ab 0.34 ± 0.02a 71.66 ± 7.15ab 257.43 ± 11.08ab 
TME419 22.17 ± 1.36abcd 118.18 ± 6.90a 128.28 ± 5.98b 183.86 ± 14.78a 11.65 ± 0.81ab 0.27 ± 0.02bc 83.07 ± 4.48ab 241.21 ± 7.69ab 
TME693 23.22 ± 1.27abcd 110.29 ± 7.42ab 133.19 ± 13.71ab 171.3 ± 11.08ab 11.43 ± 0.7ab 0.33 ± 0.02abc 75.41 ± 4.01ab 252.96 ± 6.77ab 
TME7 24.61 ± 1.60ac 104.82 ± 2.72ab 140.44 ± 8.79b 163.45 ± 7.47ab 10.9 ± 0.36a 0.34 ± 0.03abc 74.22 ± 4.88ab 254.91 ± 7.70ab 
TMS01/1412 24.81 ± 1.22a 113.48 ± 3.83a 135.62 ± 6.05ab 175.88 ± 11.59a 11.46 ± 0.68a 0.32 ± 0.01a 73.35 ± 4.85b 255.77 ± 7.73ab 
TMS30001 22.95 ± 1.27abcd 117.16 ± 6.87a 136.24 ± 7.21ab 169.67 ± 5.73a 11.13 ± 0.26a 0.28 ± 0.02c 86.57 ± 4.52ab 235.19 ± 7.33b 
TMS30572 20.81 ± 0.95bd 95.24 ± 4.83ab 120.63 ± 9.86b 154.5 ± 10.56ab 9.97 ± 0.50ab 0.32 ± 0.04abc 72.92 ± 6.13ab 258.15 ± 9.35ab 
TMS96/1632 24.21 ± 1.23ac 102.65 ± 6.75ab 141.65 ± 9.45ab 163.24 ± 14.20ab 10.83 ± 0.70b 0.33 ± 0.01a 71.49 ± 3.38b 258.63 ± 5.12a 
TMS97/2205 22.12 ± 0.37b 100.33 ± 2.70ab 122.47 ± 10.8b 157.68 ± 7.50ab 10.77 ± 0.51ab 0.25 ± 0.02c 93.48 ± 6.91a 226.83 ± 10.84b 
TMS98/0002 21.92 ± 1.26abcd 96.28 ± 2.23b 119.68 ± 8.7b 149.36 ± 10.15ab 10.5 ± 0.69ab 0.29 ± 0.03abc 78.96 ± 8.99ab 249.02 ± 13.49ab 
TMS98/0505 21.49 ± 0.62bc 97.06 ± 11.21ab 132.68 ± 9.55ab 161.15 ± 13.25ab 10.45 ± 0.70ab 0.3 ± 0.01abc 78.7 ± 1.32ab 250.41 ± 2.23ab 
TMS98/0581 23.11 ± 1.12abcd 99.33 ± 4.36ab 138.67 ± 7.6ab 148.69 ± 4.63b 9.88 ± 0.24b 0.31 ± 0.02abc 73.47 ± 5.31ab 257.31 ± 8.53ab 
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Table 2. Time to reach 50% of light-saturated leaf carbon assimilation (T50A, min), time to reach 

90% of light-saturated leaf carbon assimilation (T90A, min), cumulative CO2 fixation in the first 5 

min after photosynthesis induction (CCF, µmol CO2), stomatal conductance at the beginning of 

photosynthesis induction (gsT0, mol H2O m-2s-1), and time to reach 50% of maximum stomatal 

conductance (T50gs, min) in cassava cultivars. Values represent mean ± SE. n = 6 except for 

cultivars TMS98/0505 and TMS97/2205 where n = 3. Different letters represent statistically 

significant differences (P<0.05) among the cultivars.  

 

 

 

 

 

 

 

 

 

Cultivar T50A T90A CCF gsT0 T50gs 

Mbundumali 4.2 ± 0.3d 13.8 ± 0.6bcd 272 ± 20.7abcde 0.032 ± 0.006abcd 8.08 ± 0.52abc 

TME3 6.1 ± 0.4bc 15.5 ± 1.2bcd 187 ± 22.7def 0.016 ± 0.003de 7.7 ± 0.58abc 

TME419 4.6 ± 0.7cd 14 ± 1.5bcd 291 ± 24.3abc 0.027 ± 0.006abcde 7.38 ± 1.20bc 

TME693 10.6 ± 1.4a 21.2 ± 1.1a 122 ± 27.2f 0.005 ± 0.004e 9.48 ± 2.11ab 

TME7 6.4 ± 0.5b 17.0 ± 1.6abc 201 ± 35.4cdef 0.019 ± 0.003cde 10.58 ± 1.43a 

TMS01/1412 3.5 ± 0.5d 17.1 ± 1.5abc 179 ± 31.6ef 0.025 ± 0.006bcde 5.75 ± 0.96c 

TMS30001 4.1 ± 0.5d 17.1 ± 2.2abc 280 ± 46.2abcd 0.028 ± 0.006abcde 6.21 ± 0.55c 

TMS30572 5.1 ± 0.7bcd 13.3 ± 1.6cd 262 ± 40.5abcde 0.020 ± 0.005cde 7.67 ± 0.55abc 

TMS96/1632 4.5 ± 0.8cd 17.8 ± 1.3ab 276 ± 45.8abcde 0.045 ± 0.008ab 10.33 ± 1.32ab 

TMS97/2205 3.1 ± 1.0d 11.3 ± 0.5d 333 ± 46.1ab 0.054 ± 0.013a 7.4 ± 0.92abc 

TMS98/0002 4.0 ± 0.7d 16.4 ± 2.2bcd 279 ± 41.2abcd 0.032 ± 0.013abcd 5.73 ± 0.67c 

TMS98/0505 3.1 ± 0.2d 11.6 ± 0.7d 349 ± 16.1a 0.047 ± 0.003abc 7.18 ± 1.78abc 

TMS98/0581 4.2 ± 0.6d 17.6 ± 1.6ab 226 ± 33.9bcde 0.034 ± 0.015abcd 7.36 ± 0.69bc 
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