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Abstract

This paper proposes a cluster HAR-type model that adopts the hierarchical clustering

technique to form the cascade of heterogeneous volatility components. In contrast

to the conventional HAR-type models, the proposed cluster models are based on the

relevant lagged volatilities selected by the cluster group Lasso. Our simulation evidence

suggests that the cluster group Lasso dominates other alternatives in terms of variable

screening and that the cluster HAR serves as the top performer in forecasting the

future realized volatility. The forecasting superiority of the cluster models are also

demonstrated in an empirical application where the highest forecasting accuracy tends

to be achieved by separating the jumps from the continuous sample path volatility

process.
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1 Introduction

Modelling and forecasting volatility is of critical importance for asset and derivative pricing,

asset allocation and risk management. With the increasing availability of high-frequency

data, a new line of literature aims to exploit intraday information in the estimation and

forecast of return volatility. This literature originates with Andersen and Bollerslev (1998)

who pioneer the use of high-frequency data to derive realized variance (RV), a non-parametric

measure defined as the cumulative sum of squared intraday returns. Compared with volatilities

built on daily, weekly and monthly data, e.g. the parametric GARCH or stochastic volatility

(SV) models, the RV provides model-free unbiased estimates of the ex post return variation

under the conditions specified by Barndorff-Nielsen and Shephard (2002).

Studies of RV have documented compelling evidence of long memory, i.e. historical

RVs have a persistent impact on the future RV, which has been traditionally modelled as

an ARFIMA process, see Andersen et al. (2001) and Andersen et al. (2003) for examples.

However, as a fractional integration model, the ARFIMA is non-trivial to estimate and lacks

a clear economic interpretation. A good alternative is the heterogeneous autoregressive, or

HAR, model proposed by Corsi (2009). The HAR model is an additive cascade of three

volatility components realized over different time horizons, i.e. daily, weekly and monthly,

so that the lag structure assumed in the HAR is fixed as (1,5,22). Although not formally

a long-memory model, the HAR is able to reproduce the strong persistence of financial

volatility by the sum of RV components aggregated at different interval sizes. In addition,

the HAR is easy to implement, interpret and forecast. In spite of its wide application, little

work has been undertaken in terms of determining the optimal lag structure implied by the

HARmodel, e.g. the selection of the relevant lags of the RV and the arrangement of volatility

components.

A recent attempt to tackle this selection issue is the work of Audrino and Knaus (2016)
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who apply the least absolute shrinkage and selection operator (Lasso) proposed by Tibshirani

(1996). The motivation to use the Lasso is in that it produces estimated regression coeffi cients

which are exactly zero, and therefore only predictors with nonzero estimates are perceived

to be relevant. Audrino and Knaus (2016) show that the HAR-implied lag structure can

be recovered asymptotically by the Lasso only where the HAR is the underlying data

generating process (DGP). However, in the empirical study using selected stocks for the

period 2001-2010, they find that the lag structure of the HAR model is not completely in

accord with the one produced by the Lasso, which casts some doubt on the appropriateness

of the HAR in volatility forecasts.

In addition, Audrino et al. (2015)1 adopt the adaptive Lasso estimator introduced by Zou

(2006) and examine the significance of the estimated coeffi cients. In confirming the results

of Audrino and Knaus (2016), the lags selected by the adaptive Lasso are inconsistent with

those implied by the HAR model. Moreover, the distant lags given by the adaptive Lasso,

i.e. lags far beyond the 22nd, are generally statistically insignificant, which, to some extent,

explains the excellent empirical performance of the HAR model. Distinct from Audrino and

Knaus (2016) who concentrate on lassoing the AR terms, Audrino et al. (2016) consider

flexible HAR specifications. They divide the lags in AR(50) into four groups, i.e. {1}, {2-5},

{6-22}, {23-50}, where the first three groups are implied by the lag structure of the HAR

model. Applying the Group Lasso to select all the variables within a group if the group is

considered active, Audrino et al. (2016) show that the hypothesis for the validity of the lag

structure of the standard HAR is rejected in most cases. They argue that the primary reason

for rejection might be the inappropriate arrangement of the groups and that a minor reason

is the equality restrictions imposed on the AR coeffi cients. It is also worth noting that, in

the out-of-sample (OOS) volatility forecasts, none of the models considered in Audrino and

Knaus (2016) or Audrino et al. (2016) bring significant gains over the standard HAR.

1This can be seen as an extension of the earlier version of Audrino and Knaus (2016).
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Against this background, this paper contributes to the existing literature by proposing

a novel cluster HAR-type model. The proposed models utilize the technique of variable

screening and clustering and are found to deliver important forecasting gains over the

standard and alternative HAR specifications. With the use of the cluster group Lasso

introduced by Bühlmann et al. (2013), the cluster models are constructed by the relevant

variables only for the forecast of future RV. In the group of highly correlated variables (lagged

RVs in our case), the Lasso considered in the existing forecasting literature often omits active

variables, i.e. the so-called false negatives, since the Lasso selection is based on the strength

of the individual variables as opposed to the strength of the groups of input variables. Unlike

the Lasso, the cluster group Lasso splits the lagged RVs first and then selects whole clusters

rather than single lagged RVs. In a Monte Carlo simulation study, we provide evidence for

the better performance of the cluster group Lasso in regard to the variable screening and

selection under different conditions.

In contrast to the fixed time scale, i.e. daily, weekly and monthly, assumed in the standard

HAR, the cluster models are based on the volatility factors using the partition produced by

the hierarchical clustering, i.e. an algorithm used in the procedure of the cluster group Lasso

discussed above. In our simulation study with the mis-specified HAR as the underlying DGP,

the hierarchical clustering often over selects the ingredients of the volatility components. This

indicates that the effect of a volatility shock at time t − 1 is identical to shocks at t − 2,

t−3,· · · , t− j1, where j1 is often greater than five. To allow for a more flexible lag structure,

we follow the work of Bollerslev et al. (2018) by including the first five daily lagged RVs with

their own AR estimated coeffi cients. We refer to this model as the cluster HAR.

To examine the forecasting performance of the cluster HAR, we first conduct a simulation

of asset prices based on the two-factor stochastic volatility diffusion with noise. In forecasting

the future RV over different horizons, the simulation shows that the cluster HAR dominates

various alternatives, e.g. the HAR, adaptive Lasso AR in Audrino and Knaus (2016) and
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adaptive Lasso HAR in Audrino et al. (2016). We then consider an empirical application

using the high-frequency data of the SPY and ten equities from 2000 to 2013 and implement

the forecasting exercises in both pre- and post-crisis periods. To account for the relevance

of jumps in volatility forecasts, we introduce the cluster HAR-TCJ model, which extends

the HAR-TCJ of Corsi et al. (2010) by applying the cluster group Lasso on the continuous

part of the quadratic variation. We find that the cluster HAR-TCJ even improves upon

the cluster HAR and serves as the top performer in most cases considered. In addition,

results of the Diebold and Mariano test indicate that the forecasting gains of the cluster

HAR (cluster HAR-TCJ) over the HAR (HAR-TCJ) tend to be significant over monthly

horizons, in which cases the superiority of the cluster models are also evident in the Model

Confidence Set procedure introduced by Hansen et al. (2011).

It is worth pointing out that the cluster HAR-type model is motivated by the standard

HAR and draws on insights from the model selection approach. The cluster model is

straightforward to estimate by standard OLS, which indicates that its forecasting superiority

goes along with the ease of implementation. The reasons for the cluster model to be the

best performer can be summarized as follows: (a) it only includes the active predictors for

the future RV; (b) it is based on a flexible arrangement of volatility factors determined

by the hierarchical clustering; (c) it keeps the volatility cascade in the HAR structure to

approximate the long memory observed in real data.

The rest of the paper is organized as follows. Section 2 introduces the models proposed

in this study together with several Lasso-based estimators applied in the existing literature.

Section 3 presents Monte Carlo simulations to illustrate the workings of the cluster models.

Section 4 provides the data description and the empirical results of the in-sample estimation

and OOS volatility forecasts given by different models. Robustness checks are discussed in

section 5. A conclusion is presented in Section 6.
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2 Methodology

We begin this section with an introduction of the cluster models proposed in this paper. We

then present the various Lasso-based forecasting models considered in the existing literature

before closing with a discussion of the forecasts over the multiperiod horizon.

2.1 Cluster HAR-type models

Our cluster models are based on the HAR introduced by Corsi (2009). The HAR model

is among the most heavily adopted specifications for modelling and forecasting RV. For

simplicity, we consider the RV estimator proposed by Barndorff-Nielsen and Shephard (2002),

which is equal to the sum of intraday squared returns

RVt =
M∑
j=1

r2
t,j (1)

where rt,j stands for intraday returns within each time interval. To introduce the HAR

model, we denote the average RV over the previous h days by

RV h
t =

1

h

h∑
i=1

RVt−i+1 (2)

Thereby, RV W
t = 1

5

∑5
i=1RVt−i+1 and RV M

t = 1
22

∑22
i=1RVt−i+1 are respectively the weekly

(5-day) and monthly (22-day) averages of daily RV. The standard HAR is given by

RVt+1 = β0 + βDRVt + βWRV
W
t + βMRV

M
t + εt+1 (3)

where {εt} is a sequence of independent and identically distributed (i.i.d.) innovations with

zero mean. Estimates of coeffi cients, β0, βD, βW and βM , can be consistently obtained by a

standard OLS regression.

As indicated by Corsi (2009), the HAR model in equation (3) is equivalent to an AR(22)
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model with imposed equality constraints on the AR coeffi cients as follows

RVt+1 = β0 +
22∑
i=1

φHARi RVt−i+1 + εt+1 (4)

The coeffi cient restrictions implied by the HAR are given by

φHARi =


βD + 1

5
βW + 1

22
βM for i = 1

1
5
βW + 1

22
βM for i = 2,. . . , 5

1
22
βM for i = 6,. . . , 22

(5)

The HAR is built on the assumption that market participants having different trading

frequencies result in three types of volatility components, i.e. daily, weekly and monthly.

However, it remains unclear whether the HAR-implied lag structure includes all relevant

historical volatilities and whether the arrangement of three volatility components is appropriate

for the purpose of forecasting. To address these issues, we consider a cluster group Lasso

introduced by Bühlmann et al. (2013) to implement variable screening for volatility forecasts

and construct the volatility components based on the selected clusters, which we now introduce.

A Cluster Group Lasso

Hierarchical clustering To implement the cluster group Lasso proposed by Bühlmann

et al. (2013)2, efforts must be first made to divide predictors into groups, i.e. homogenous

clusters. Clustering methods are often adopted to split variables into groups so that elements

in each group are strongly related to each other and contain similar information.

In this paper, we consider the hierarchical clustering algorithm in Chavent et al. (2012),

which is based on a principal component method of constructing the synthetic variables of

the clusters for dimension reduction3. We represent the daily RVt by xt with (xt,· · · , xt−p+1)′

2We also consider the cluster representative Lasso (CRL) introduced by Bühlmann et al. (2013) as a
variable screening method. However, we find that the models based on the CRL are dominated by those
using the cluster group Lasso in forecasting future RV. This can be due to the issue of false negatives often
encountered in the use of the CRL.

3Other clustering methods are also considered in our simulation study, including k-means algorithm,
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as predictor variables and let PK = (C1, · · · , CK) be a partition of the p variables into K

clusters. We then define the Homogeneity H of a cluster Ck as follows

H (Ck) =
∑

xt−j∈Ck

r2
xt−j , yk = λk1 (6)

where r2 denotes the squared Pearson correlation and yk is the first component of the

principal component analysis (PCA) applied to all the variables in Ck. For a partition

PK , the sum of the homogeneities of its clusters is given by

H (PK) =
K∑
k=1

H (Ck) = λ1
1 + · · ·+ λK1 (7)

where λ1
1 + · · · + λK1 are the first eigenvalues of the PCA applied to the K clusters of the

partition PK .

The aim of the clustering algorithm is to find a partition which maximizes the homogeneity

criterion in equation (7). Specifically, the procedure begins with the single variables, i.e.

partition into p clusters. It then combines two clustersA andB with the smallest dissimilarity

d defined below

d (A, B) = H (A) +H (B)−H (A ∪B) (8)

The procedure is repeated until the single cluster {xt, · · · , xt−p+1} is obtained. Finally, a

bootstrap procedure is conducted to examine the stability of the partitions and to help select

a suitable number of clusters, see more details in Chavent et al. (2012).

Group Lasso With the group membership given by hierarchical clustering, we can select

the relevant clusters by estimating the coeffi cients of predictors using the group Lasso. When

supervised clustering by Dettling and Bühlmann (2004), clustering based on canonical correlations by
Bühlmann et al. (2013) and density-based clustering. However, these alternatives are found to encounter
great diffi culties in splitting a set of 22 lagged RVs into groups, where the true number of clusters in the
simulation setting is three. The simulation code to evaluate the performances of the various clustering
methods is provided in the supplemental files and results are not reported for brevity.
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one group is active, all the past RVs within this group should be active. This is the key idea

of the group Lasso proposed by Yuan and Lin (2006), who argue that the Lasso can only be

used to select individual variables rather than a group of correlated variables.

We retain the notation used in the earlier subsection. As suggested by Yang and Zou

(2015), the Group Lasso estimator can be obtained by solving the penalized least squares as

follows

φ̂
Group

= arg min
φ

1

2

T∑
t=p

(
xt+1 −

p∑
j=1

φjxt−j+1

)2

+ λ
K∑
k=1

√
pk

√∑
j∈Ik

φ2
j

 (9)

where the p lagged RVs are divided into K non-overlapping groups such that (1, 2,. . . , p) =

∪Kk=1Ik, and Ik ∩ Ik′ = ∅ for k 6= k′, and the cardinality of index set Ik is pk. The selection

of the tuning parameter λ causes shrinkage of the solutions towards zero, where some of

the coeffi cients become exactly zero when λ is suffi ciently large. To determine λ, we follow

the "one-standard-error" rule via cross-validation throughout this paper4. We employ a

simple unified algorithm-groupwise majorization descent (GMD)-as proposed by Yang and

Zou (2015). This is used to solve the group Lasso learning problem if the loss function meets

a quadratic majorization condition.

B the cluster HAR model

To implement the cluster HAR model, we apply the hierarchical clustering to the predictor

variables (xt,· · · , xt−p+1) and then estimate

xt+1 = c+

p∑
j=1

φjxt−j+1 + εt (10)

using the group Lasso based on the group structure implied by the obtained clusters, where

t = p,· · · , T . After removing the predictors considered irrelevant by the group Lasso, we
4We also attempted using alternative way of finding the tuning parameter, λ, e.g. by minimizing the BIC

criterion. However, this does not alter the forecasting results reported below.
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derive K volatility factors from the lagged RVs with nonzero estimated coeffi cients and

obtain the following model

RVt+1 = β0 +
K∑
k=1

βCluster k

(
1

jk

jk∑
j=1

RVt−j+1

)
+ εt (11)

where j1, j2,· · · , jK−1 denotes the partition point between the two non-overlapping clusters

and jK represents the number of relevant predictors. The implementation of the cluster HAR

in equation (11) only utilizes the pre-specified volatility components and does not require

a choice of the unknown tuning parameters, which suggests that the model is simple to

estimate by standard OLS.

C the cluster HAR-TCJ model

We also consider an extension of the HAR, i.e. the HAR-TCJ model introduced by Corsi

et al. (2010). With the aim of better accommodating jumps in the estimation of volatility

models, the HAR-TCJ modifies the HAR-CJ model in Andersen et al. (2007) by considering

a more powerful test for jump detection. The HAR-TCJ is defined as

RVt+1 = β0 + βC,DT̂Ct + βC,W T̂C
W

t + βC,M T̂C
M

t + βJ,dT̂ J t + εt+1 (12)

where T̂C
W

t and T̂C
M

t are the weekly and monthly averages of T̂Ct as in equation (2).

The jump component is estimated by the threshold bipower variation (TBPV) measure

given by

T̂ J t = I{C−Tz>Φα} (RVt − TBPVt)+ (13)

where C − Tz is the statistics of the jump test based on the corrected version of the TBPV

and Φα denotes the cumulative distribution function of the normal distribution at level
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α = 99.9%, see more details in Corsi et al. (2010). The TBPV is derived as

TBPVt = µ−2
1

M∑
j=2

|rt,j−1| |rt,j| I{r2t,j−1≤υj−1}I{r2t,j≤υj} (14)

with µ1 = (2/π)0.5. The threshold is written as υt = c2
υV̂t with V̂t being an estimator of the

local variance and cυ = 3 considered in the empirical analysis of Corsi et al. (2010). Finally,

the continuous part of variation corresponds to

T̂Ct = RVt − T̂ J t (15)

In similar vein to the cluster HAR, we implement the cluster group Lasso on lags of

the continuous sample path and employ the aggregation of the selected continuous parts to

construct the cluster HAR-TCJ

RVt+1 = β0 +
K∑
k=1

βCluster k

(
1

jk

jk∑
j=1

T̂Ct−j+1

)
+ βJ,dT̂ J t + εt (16)

with j1, j2,· · · , jK defined earlier.

2.2 Lasso-based models

For a comparison with the proposed cluster models in regard to the accuracy of volatility

forecasts, we introduce the adaptive Lasso AR in Audrino and Knaus (2016) and the adaptive

Lasso HAR in Audrino et al. (2016) below.

Considering an AR(p) process in equation (10), we obtain a sparse solution by solving

the minimization problem as follows

φ̂
Lasso

= arg min
φ

1

2

T∑
t=p

(
xt+1 −

p∑
j=1

φjxt−j+1

)2

+ λ

p∑
j=1

∣∣φj∣∣
 (17)

The solution for the constant c is ĉ = x. We remove c from the minimization by demeaning
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the data, i.e. x = 0. In the original Lasso, all the AR coeffi cients are penalized equally.

Zou (2006) provides a refined version of the Lasso (the adaptive Lasso) allowing for a more

flexible penalization, which helps to reduce false positives. The adaptive Lasso estimator is

given by

φ̂
AL

= arg min
φ

1

2

T∑
t=p

(
xt+1 −

p∑
j=1

φjxt−j+1

)2

+ λ

p∑
j=1

λj
∣∣φj∣∣

 (18)

with λj as individual weights for each of the coeffi cients. We follow Zou (2006) by employing

the weights as the inverse of the absolute values of the OLS coeffi cients. We then construct

the adaptive Lasso HAR in Audrino et al. (2016) by applying the adaptive Lasso procedure

to select the active terms in the equation below

RVt+1 = β0 +

p∑
i=1

βi

(
1

i

i∑
j=1

RVt−j+1

)
+ εt+1 (19)

2.3 Longer-horizon Forecasting

Following the work of Andersen et al. (2007), Corsi (2009), Bollerslev et al. (2016) and

Bollerslev et al. (2018), among others, we extend the aforementioned models for one-day RV

to longer horizons by replacing the daily RV on the left-hand-side of the different models with

the aggregated RV over the multiperiod horizon h, i.e. RV h
t+h. As a result, the h-step-ahead

forecasts of the RV can be obtained as the one-step-ahead forecast for a given h (Chen et al.

(2016)).

To generate forecasts over the multiperiod horizon, we split the sample containing T

observations into an estimation period and evaluation period as follows

t = 1, 2, · · · , m,︸ ︷︷ ︸
estimation period

m+ 1, m+ 2, · · · , T︸ ︷︷ ︸
evaluation period

The forecasts are based on re-estimating the parameters of the different models each day

with a rolling window of fixed lengthm. At time m, we estimate the model parameters using

12

 Electronic copy available at: https://ssrn.com/abstract=3342090 



the first m observations, and then generate the h-step-ahead OOS forecasts and compare

them with the realization RV h
t+h. In a similar fashion, the volatility point forecast at time

m + 1 can be obtained using the m observations ending at m + 1. Iteratively applying this

procedure, we finally produce n = (T − h−m+ 1) number of OOS volatility forecasts.

3 Simulation Study

This section begins with a simulation to assess the performance of the cluster group Lasso in

terms of the model selection and to evaluate the appropriateness of the hierarchical clustering

in grouping or clustering variables. We then conduct another simulation experiment to

demonstrate the forecasting superiority of the cluster HAR over alternative models including

the HAR.

3.1 In-sample evaluation

Following the work of Audrino and Knaus (2016), we undertake the Monte Carlo study under

the assumption that the true model is the extended HAR as follows

RVt+1 = β0 + βDRVt + βWRV
W
t + βMRV

M
t + γκt+1 + εt+1 (20)

where εt+1 = h
1/2
t+1ωt+1, ht+1 = α0 + α1ε

2
t + β1ht, with κt (jump) being an i.i.d. random

variable following Poisson distribution with intensity λ = 0.1 and ωt following a standard

t distribution with five degrees of freedom. Settings of the parameters, i.e. α0, α1, β1, β0,

βD, βW and βM , and values of the unconditional mean µ̂ and the unconditional variance σ̂
2

are consistent with those in Audrino and Knaus (2016)5. We then compute the implied AR

coeffi cients using equation (5). Next, we simulate x1,· · · , x22 from the normal distribution

5The HAR parameters, β0, βD, βW and βM , are averaged over the estimated HAR coeffi cients for the
ten individual stocks under consideration in section 4. We employ the T̂Ct of the empirical data when
estimating the HAR parameters so that the estimated coeffi cients are not affected by the presence of jumps
in the real data. The sample size is in line with that used in Audrino and Knaus (2016).
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N
(
µ̂, σ̂2

)
and obtain x23,· · · , x2483 by equation (4).

The following subsection evaluates the ability of different estimators in selecting the

relevant predictors for xt+1, which are lags 1 to 22 suggested by equation (20). In applying the

cluster group Lasso, we determine the number of clusters using the results of the bootstrap

procedure of Chavent et al. (2012). With p = 100 in model (10), the number of clusters is

set as five6. In addition to the Lasso and cluster group Lasso, we also consider the elastic net

proposed for situations where high correlations or nearly linear dependence among a group

of variables exist, see details in Zou and Hastie (2005). This procedure is replicated 1000

times and results are summarized in Figure 1 where the cases with (γ = 1) and without

jumps (γ = 0) are reported separately.

Left panel of Figure 1 shows that, when jumps do not exist, the cluster group Lasso

generally recovers the HAR structure in that the selection of lags φ1,· · · , φ22 is abundant

and that the false positives are rare and virtually disappear at lags greater than 27. However,

the Lasso tends to treat lags greater than 6 as irrelevant and the elastic net results in the

selection of monthly coeffi cients only at a moderate level of certainty. In addition, compared

with the cluster group Lasso, the elastic net leads to more false positive selections, e.g. lag 33

is considered active by the elastic net in many cases. In our scenario which contains highly

correlated variables, the poor performance of the elastic net in terms of variable selection and

screening may be attributed to its failure in accounting for the correlation-structure among

the variables7 (Bühlmann et al. (2013)). Under the presence of jumps, the Lasso is clearly

6In the simulation and empirical study, our results in terms of the variable selection and volatility forecasts
are found to be insensitive to the choice of the number of clusters.

7In the simulation study, we also consider the use of the elastic net in selecting the relevant predictors
in forecasting future RV. Similar to the construction of the adaptive Lasso AR and adaptive Lasso HAR
discussed earlier, we implement the elastic net AR and elastic net HAR in the OOS forecasts. We find
that the elastic net-based models perform on a par with their adaptive Lasso counterparts and both are
significantly inferior to the standard HAR in terms of the volatility forecast accuracy. Hence, we do not take
the elastic net-based models into account when comparing the forecasting performances of the various models
in the following analysis. Results of the elastic net-based models are not reported but can be obtained upon
request.

14

 Electronic copy available at: https://ssrn.com/abstract=3342090 



inferior to the other alternatives in selecting the relevant lags, i.e. only the first few lags

are included in the active set. The disappointing performance of the Lasso can be induced

by its sensitivity to the signal-to-noise ratio, which greatly increases in our setting including

jumps8. In addition, there is an increase in false positives for both the elastic net and cluster

group Lasso. However, the latter does a slightly better job by making the correct selection,

i.e. lags 1 to 22, more often.

We then employ this simulation containing jumps to evaluate whether the hierarchical

clustering can produce a suitable partition of highly correlated variables. For this purpose,

we consider two different scenarios, each with 1000 replications: (a) the true number of

clusters is known but the arrangement of groups is unclear; (b) both the group structure and

the number of clusters are unknown. To facilitate a more direct comparison, we let p = 22

and summarize the results in Figure 2. The left panel corresponds to the situation where

the underlying HAR(1, 5, 22) lag structure is known and presents two partition points at

lag 2 and 6, respectively.

We start with scenario (a) presented in the middle panel of Figure 2 where the true

number of clusters is given. The hierarchical clustering often results in a partition with the

first cluster being very large, i.e. the first partition point is around lag 7 and the second is

identified at 7 lags beyond the first partition point. Similar performances of the clustering

algorithm are observed in scenario (b) demonstrated in the right panel. We only report the

cases where the number of clusters produced by the hierarchical clustering is less than 3,

which accounts for 80% of the 1000 replications. The clustering algorithm is considered to

perform well by correctly identifying the underlying number of clusters in more than half of

the replications.

8The Lasso is found to be robust against the presence of jumps in the work of Audrino and Knaus (2016).
This may be due to the inclusion of the intercept coeffi cient in the demeaned data prior to estimation. In
our simulation, we consider the same specification of the Lasso in cases with and without jumps and do not
clean the data to demonstrate the workings of the Lasso in the nearly real data dynamics.
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In both scenarios (a) and (b), the clustering algorithm leads to the first two disjoint

clusters {xt−1 · · ·xt−j1 ; xt−j1−1 · · · } where j1 is around 7. Based on these partition results,

we construct the first volatility factor as 1
j1

∑j1
j=1RVt−j+1, suggesting that the role played by

a volatility shock which occurred the previous day is identical to a shock which occurred j1

days ago. The observation that j1 is often greater than 5 clearly contradicts the underlying

DGP and reduces the flexibility of the cluster models. To address this problem, we follow

Bollerslev et al. (2018) by including the first five daily lagged RVs with their own estimated

AR coeffi cients in the cluster models in the subsequent analysis.

3.2 Out-of-sample forecasts

To demonstrate the superior performance of the cluster HAR in OOS volatility forecasts, we

conduct another simulation study which more closely mimics the dynamics of the realistic

high-frequency prices. We follow Huang and Tauchen (2005) and Bollerslev et al. (2016)

in employing the two-factor stochastic volatility diffusion with noise (SV2F) to simulate

the log price level9. Although the SV2F model generates continuous sample paths, it can

result in the rugged shape of the price series with the use of the volatility feedback effect

and the exponential function (Huang and Tauchen (2005)). Our simulation is based on 78

intraday return observations, corresponding to 5-minute sampling frequency on which the

RV is constructed. In the rest of this paper, we make use of the level RV10 unless otherwise

noted. We simulate 2000 observations in the sample and rely on a rolling window of 1000

observations for the OOS forecasts over daily (h = 1), weekly (h = 5) and monthly (h = 22)

9See details about the model specification and the parameter settings in Appendix A of Bollerslev et al.
(2016).
10This is in contrast to the work of Audrino and Knaus (2016) who consider the log RV in comparing the

forecasting performances between the HAR and Lasso AR. However, their approach is inconsistent with the
standard construction of the HAR model cast in logarithmic form, see Andersen et al. (2007) for example,
which applies the log transformation to the volatility components rather than the RV series directly. To
make our results more comparable to those of the existing literature using the HAR, we employ the level RV
throughout the paper.
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horizons.

For the purpose of comparing the OOS forecasting performances, we consider the mean

square error (MSE) and then standardize the MSE of each of the models by the MSE

of the HAR model in order to highlight the relative gains. To examine the significance

of difference in the squared forecasting errors between the HAR and its competitors, we

employ the Diebold and Mariano (DM) test with the significance level of 5% corrected for

autocorrelations and heteroskedasticity. In addition, we further assess the significance of

differences of all the competing models considered using the model confidence set (MCS) by

Hansen et al. (2011). This procedure sequentially eliminates models that are found to be

inferior in the process of testing the null hypothesis of equal predictive ability (EPA), and

the surviving models in the final set of the MCS contain the best-performing model with a

given level of confidence, 90% in our case. Under the criterion of MSE, we rely on the range

statistics, TR, proposed by Hansen et al. (2011) in testing the EPA and obtain the p-values

based on 5000 block bootstraps.

The main results are summarized in Table 1. It reports the average losses and the

percentages of times that the model is found to display significant forecasting gains over the

HAR based on the DM test and that the model survives all tests without being removed

in the MCS11. On average, the cluster HAR outperforms the standard HAR in terms of

the OOS volatility forecasts over various horizons. The cluster HAR survives in the MCS in

almost all cases whereas the HAR is dropped more often as the forecasting horizon increases.

Over monthly horizons, the superiority of the cluster HAR is greater and its gains over the

11When implementing the cluster models in forecasting RV, we apply the cluster group Lasso to the
observations available for variable selection and clustering. Based on the selected variables and group
structure, we construct the cluster models and then obtain the model estimates each day with a fixed length
rolling window containing the previous 1000 days. Alternatively, one could apply the cluster group Lasso on
the recent 1000 observations every day and update the specifications of the cluster models and re-estimate
the model parameters for the h-step forecasts. This procedure will be repeated n = (T − h−m+ 1) times.
The second approach is found to improve the accuracy of volatility forecasts. However, the price to pay for
this is an increase in computation time induced by the implementation of the group Lasso n times in large
datasets.
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HAR are considered significant by the DM test in more replications conducted. However,

the two models based on the adaptive Lasso are found inferior in various situations and

are eliminated from the MCS in every single case over weekly and monthly horizons. As a

result, the adaptive Lasso-based models are no longer under consideration in our following

empirical application. Our results indicate that the idea of variable screening and clustering

can improve forecasting accuracy over the HAR and that the gains are non-trivial, especially

over long horizons.

4 Empirical Study

4.1 Data

In this study, we rely on 5-minute price data of SPY, which tracks the S&P 500 index closely,

Citigroup Inc. (C), Microsoft (MSFT), PG&E Corp. (PCG), Pfizer (PFE), General Electric

(GE), The Home Depot (HD), AT&T (T), ExxonMobil (XOM), Duke Energy (DUK) and

Wal-Mart (WMT). Our sample covers the period from Jan 03, 2000 to Dec 31, 2013 with

a total of 3521 observations. All data are obtained from Tick Data Inc. Table 2 provides

summary statistics of the RV (1) and T̂C (15) series for each of the stocks considered. The

mean of the RV is greater than T̂C due to the presence of jumps. All of the series are right

skewed and exhibit positive kurtosis, indicative of their non-Gaussian distributions.

4.2 In-sample Estimation

Given the existence of jumps in the RV series considered, we account for the relevance of

jumps by employing the HAR-TCJ and the cluster HAR-TCJ models in the subsequent

analysis. The cluster HAR-TCJ applies the cluster group Lasso to the lags of the continuous

part of the quadratic variation directly. This is motivated by the simulation evidence in

section 3.1, which is indicative of the less desirable performance of the cluster group Lasso
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in terms of the variable screening under the presence of jumps. Table 3 reports the adjusted

R2 of the HAR, HAR-TCJ and their cluster counterparts over the whole sample period. The

cluster HAR-TCJ clearly outperforms the alternative models with regard to the in-sample

fit over various horizons at both the stock and SPY level. To help gauge where the high R2

of the cluster HAR-TCJ is coming from, we take the SPY as an example and compare the

parameter estimates of the four models with the standard errors based on a Newey-West

correction allowing for serial correlation.

Performing inference after model selection is always a diffi cult task. Although several

approaches for the post-selection inference have been suggested by Lee et al. (2016), Tibshirani

et al. (2016) and Tian and Taylor (2018), Liu et al. (2018) argue that these selection-adjusted

intervals are often "too long to be useful". For simplicity, we employ the data splitting first

introduced by Cox (1975), an approach to post-selection inference that most practitioners

would agree is valid due to its transparent justification. By dividing the data into two halves,

we select the variables for the cluster models using only the former and conduct inference

based on the latter. Specifications of the cluster models for the SPY are discussed below12.

Applying the cluster group Lasso to 100 lagged RVs, we obtain the active groups of the

RV in the cluster HAR as follows: lags {1 · · · 29} for h = 1 and 5; lags {1 · · · 29; 53 · · · 68}

for h = 22, i.e. the optimal number of clusters is one for daily and weekly RV and two for

monthly RV. The continuous volatility components in the cluster HAR-TCJ is constructed

as: lags {1 · · · 29} for h = 1 and 5; lags {1 · · · 29; 52 · · · 67} for h = 22. Table 4 presents the

parameter estimates. For the one-day-ahead forecasts, both the HAR and HAR-TCJ place

more weight on the weekly lag whereas the cluster models assign a greater weight to the daily

lag, which is in line with the intuition that the shorter lags are more informative for the daily

predictions. For the monthly horizon, longer lags are expected to increase in importance,

which can be found in the cluster HAR-TCJ giving the largest weight to the second volatility

12We demean the data and thus drop the intercept of the different models.
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component containing lags {1 · · · 29; 52 · · · 67}. However, this anticipation is not reflected in

the HAR and HAR-TCJ where the weekly lag is considered the most important and receives

the largest weight. In addition, our results for the positive and insignificant estimates of the

jump coeffi cient are consistent with those in Corsi et al. (2010).

4.3 Out-of-sample Forecasts

This subsection provides a comparison of the HAR, HAR-TCJ and their corresponding

cluster models in regard to the volatility forecasting accuracy. To examine the impact of the

extreme conditions of the crisis on the forecasting performances of the different models13, we

divide our sample into pre-crisis period [Jan 03, 2000 to Aug. 31, 2007] and post-crisis period

[Sep 04, 2007 to Dec 31, 2013]14. Figure 3 depicts the evolution of the RV over the period

2000 to 2013 and the timing of estimated breakpoints using the sequential test introduced

by Bai and Perron (1998). It shows that all the RV series are subject to at least one break

and that the common break occurred across all the stocks around the end of 2007, which is

associated with the onset of the financial crisis. We construct forecasts with a rolling window

containing the previous 1000 days in both sub-samples and thus, for most stocks selected,

the forecasts in each sub-sample are subject to one break in their in-sample estimation. In

applying the cluster models, we consider 100 lagged volatilities, i.e. p = 100.

Forecasting results for the pre-crisis period are reported in Table 5, where the DM test

examines the null hypothesis that the standard HAR (HAR-TCJ) and the cluster HAR

(cluster HAR-TCJ) have the equal forecast accuracy. Over different horizons, the lowest

loss is given by the cluster HAR-TCJ with the single exception of the case of the daily SPY

13We also implement the forecasting exercises using the whole sample with a rolling window comprised of
the previous 2000 days. Although the gains of the cluster models are still evident in most cases, no models
are removed from the MCS, indicating that all the models are of equal predictive ability. This could be
due to the turbulent times the stocks experienced during the financial crisis, when all the models encounter
diffi culties in forecasting the future RV accurately.
14The choice for the date of the beginning of the crisis is in line with Audrino and Knaus (2016).
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where the standard HAR dominates the others. The HAR and HAR-TCJ are outperformed

by their corresponding cluster counterparts over weekly and monthly horizons at both the

stock and SPY levels. This suggests that non-trivial forecasting gains over long horizons

can be achieved by the construction of heterogenous volatility components using the active

predictors. In addition, the gains afforded by the cluster models reach the maximum for

h = 22, in which case the cluster HAR (cluster HAR-TCJ) is significantly superior to the

HAR (HAR-TCJ) in 7/10 (8/10) stocks and the cluster model is the only object that survives

all tests in the MCS procedure for 8/10 stocks.

The superiority of the cluster models remains unchanged in the case of the post-crisis

period in Table 6. However, relative to the pre-crisis period, their gains over the HAR-type

models are slightly dampened due to the presence of many extreme values of the RV triggered

by the financial crisis of 2007-2008. The cluster HAR-TCJ continues to serve as the top

performer on average for individual stocks over daily and weekly horizons as well as for the

weekly and monthly SPY. Similar to the pre-crisis period, the greatest improvements of

the cluster HAR (cluster HAR-TCJ) over the standard HAR (HAR-TCJ) are observed over

monthly horizons when the MCS is purely constituted by the cluster model(s) in the cases

of SPY and 6/10 stocks.

5 Robustness

Finally, we investigate the robustness of our simulation and empirical evidence by considering

different numbers of lags in equation (10), i.e. p = 50 and p = 150. Figure 4 presents the

comparison of the Lasso and cluster group Lasso with p = 50 in recovering lags for the

simulated HAR process in equation (20). Consistent with the finding of Figure 1 with

p = 100, cluster group Lasso dominates the Lasso in selecting the relevant lags, i.e. φ1,· · · ,

φ22, whether the jump component is included or not. Although several false positives are
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made by the cluster group Lasso, it rarely selects lags beyond 27. The Lasso is clearly inferior

in that many active lags are omitted and that the issue of false negatives is even more severe

under the presence of jumps. The results corresponding to p = 150 reported in Figure 5

remain qualitatively intact.

We then examine the sensitivity of the empirical forecasting results to different values of

lag order. Given the earlier evidence for the good performances of the cluster models over

long horizons, we concentrate on the monthly forecasting horizons only when comparing the

various models with different numbers of lags, i.e. p = 50, 100 and 150. To render results

comparable across different values of p, we consider the same evaluation window, that is

the one implied by the case of p = 150. Forecasts are constructed in the same procedure

as described in section 4.3. Table 7 reports the MSE of the different models relative to

the standard HAR in the pre-crisis period. For different values of p, the cluster HAR-TCJ

remains as the best-performing model at both the stock and SPY level. The gains of the

cluster HAR (cluster HAR-TCJ) over the standard HAR (HAR-TCJ) are significant in most

cases considered and the final set of the MCS only includes the cluster model(s), i.e. either

the cluster HAR or the cluster HAR-TCJ, in 8/10 individual stocks. In addition, the cluster

models display similar forecasting accuracy in the cases of p = 50 and 100 and their gains

over the HAR-type models are even more substantial for p = 150.

Moving to the results for the post-crisis period in Table 8, the cluster models still dominate

their competitors significantly in most cases with p = 100 and 150 but their gains are not

observed for p = 50. This could be explained by an increase in volatility persistence during

the crisis (Gagnon et al. (2016)), in which case the higher order lags still exhibit non-trivial

predictive power for future RV. However, these distant lags relevant for the forecast of the

post-crisis RV are not included in the case of p = 50. We therefore conclude that our results

in support of the superiority of the cluster group Lasso in terms of the model selection and the

cluster models in pre-crisis volatility forecasts remain robust to alternative numbers of lags
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p. During the post-crisis period, distant lags appear more crucial in accurately forecasting

the future RV and thus should not be omitted in the construction of the cluster models.

6 Conclusion

Based on the HAR framework, this paper introduces a cluster HAR model using the relevant

lags of volatility selected by the cluster group Lasso. Construction of the volatility factors in

the cluster HAR, i.e. cascade of realized variance (RV) aggregated over different horizons,

is determined by a hierarchical clustering algorithm. To account for the relevance of jumps

in volatility forecasts, we apply the same idea to the HAR-TCJ by Corsi et al. (2010) and

obtain the cluster HAR-TCJ. In the simulation study, the cluster group Lasso is found to

dominate the Lasso in terms of the model selection and the clustering algorithm often results

in a partition with the first volatility component as being a very large cluster. To add to the

flexibility of the proposed cluster models, we follow Bollerslev et al. (2018) by introducing

the first five lagged RVs with their own estimated AR coeffi cients.

The forecasting superiority of the cluster HAR is first demonstrated using a Monte

Carlo simulation where the standard HAR and the Lasso-based alternatives are considered.

Furthermore, we conduct an empirical application using the daily RV data for the SPY and

ten individual stocks from 2000 to 2013. Forecasting performances of the HAR, HAR-TCJ

and their cluster counterparts are then evaluated in the pre- and post-crisis subsamples to

highlight the impact of the extreme observations during the financial crisis. In line with the

simulation evidence, the cluster models dominate the HAR-type models in various situations

and the gains are best over long horizons. In particular, the cluster HAR-TCJ tends to work

as the top performer by applying the technique of variable screening and clustering on the

continuous part of the quadratic return variation.
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