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Abstract19

The spatiotemporal distribution of pore water in the vadose zone can have a crit-20

ical control on many processes in the near-surface Earth, such as the onset of landslides,21

crop yield, groundwater recharge, and runoff generation. Electrical geophysics has been22

widely used to monitor the moisture content (θ) distribution in the vadose zone at field23

sites, and often resistivity (ρ) or conductivity (σ) is converted to moisture contents through24

petrophysical relationships (e.g. Archie’s law). Though both the petrophysical relation-25

ships (i.e. choices of appropriate model and parameterisation) and the derived moisture26

content are known to be subject to uncertainty, they are commonly treated as exact and27

error-free. This study examines the impact of uncertain petrophysical relationships on28

the moisture content estimates derived from electrical geophysics. We show from a col-29

lection of data from multiple core samples that significant variability in the θ(ρ) rela-30

tionship can exist. Using rules of error propagation, we demonstrate the combined ef-31

fect of inversion and uncertain petrophysical parameterization on moisture content es-32

timates and derive their uncertainty bounds. Through investigation of a water injection33

experiment, we observe that the petrophysical uncertainty yields a large range of esti-34

mated total moisture volume within the water plume. The estimates of changes in wa-35

ter volume, however, generally agree within (large) uncertainty bounds. Our results cau-36

tion against solely relying on electrical geophysics to estimate moisture content in the37

field. The uncertainty propagation approach is transferrable to other field studies of mois-38

ture content estimation.39

Plain language summary40

Maps and images of electrical resistivity have been widely applied to effectively mon-41

itor the wetting or drying of the Earths’ near-surface. But how well can they quantify42

such change? How variable are the petrophysical model parameters that relate resistiv-43

ity and moisture content? Does uncertainty in such relationships impact our confidence44

in moisture content estimates from resistivity imaging? Our analysis of field samples col-45

lected at a UK field site reveals great variability in petrophysical parameters. Using a46

uncertainty propagation method, which combines the uncertainty contributions from both47

petrophysical parameters and resistivity data errors, we find that the variable petrophys-48

ical parameters can lead to high uncertainty in moisture content estimates and they ap-49

pear to be the dominating factor in many cases. These effects on uncertainty are greater50

than previously appreciated. The implication is that realistic uncertainty bounds are needed51

whenever electrical geophysical methods are used to quantify the amount of water present52

underground or its changes over time. The findings highlight the importance of better53

characterization of petrophysical parameters and the need to supplement the interpre-54

tation of resistivity-based moisture content estimates with other data sources.55
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1 Introduction56

Monitoring the amount of moisture in the Earth’s near-surface is critical in many57

applications. For example, the distribution of soil moisture is an important trigger for58

landslides (Ray & Jacobs, 2007). The amount of water available for root water uptake59

is the most important factor for crop yield (Ahmed, Passioura, & Carminati, 2018). Sim-60

ilarly, the saturation of the vadose zone governs the rate of groundwater recharge and61

travel times of surface contaminants (e.g. nitrate) to an aquifer (Green et al., 2018; Turkeltaub,62

Jia, Zhu, Shao, & Binley, 2018).63

The measurement of moisture content (θ) in the subsurface is not straightforward.64

Point sampling can only cover a small number of discrete points in an investigation area65

and can be labour intensive. These point data may not be representative of site-scale66

variability. In addition, intrusive sampling may disrupt the critical processes occurring67

in the soil (e.g. root growth). Alternative field methods are needed to improve our abil-68

ity to measure and monitor moisture content. A comprehensive review of the different69

ground-based methods to determine soil moisture is given by Jonard et al. (2018).70

The well-established correlation between moisture content and the bulk resistiv-71

ity (ρ) in porous media (Glover, 2015; Lesmes & Friedman, 2005) allows the use of elec-72

trical methods (e.g. electrical resistivity tomography (ERT) and electromagnetic induc-73

tion (EMI)) to be applied to study vadose zone processes. They can be used to derive74

2-D or 3-D distributed resistivity models over a relatively large area and these resistiv-75

ity models can, in turn, be used for translation to moisture content via petrophysical re-76

lationships. ERT or EMI offers much larger spatial coverage than point-based methods77

without disrupting the Earth materials. Specifically, ERT is typically performed in tran-78

sects or between boreholes, while EMI tends to provide even greater spatial coverage since79

it is commonly used for mapping. When applied in time-lapse mode, they can be a pow-80

erful tool to reveal temporal variations in soil moisture (Robinson et al., 2009).81

Over the past two decades, electrical geophysics has been widely used in many ap-82

plications in the vadose zone and increasingly the resistivity images are translated to ob-83

tain quantitative estimates of moisture content. Examples of these applications include84

monitoring the onset of landslides (Lehmann et al., 2013; Uhlemann et al., 2017), hill-85

slope moisture dynamics (Bass, Cardenas, & Befus, 2017; Cassiani et al., 2009; Hübner,86

Heller, Günther, & Kleber, 2015; Yamakawa, Kosugi, Katsura, Masaoka, & Mizuyama,87

2012), seasonal changes in soil moisture dynamics (Amidu & Dunbar, 2007; Binley, Win-88

ship, West, Pokar, & Middleton, 2002), root zone water uptake (Beff, Günther, Vandoorne,89

Couvreur, & Javaux, 2013; Brillante, Mathieu, Bois, Van Leeuwen, & Lévêque, 2015; Garré,90

Javaux, Vanderborght, Pagès, & Vereecken, 2011), unfrozen moisture in permafrost (Old-91

enborger & LeBlanc, 2015), soil moisture profiles beneath different wheat genotypes (Shana-92

han, Binley, Whalley, & Watts, 2015), watershed characterization (Miller, Routh, Brosten,93

& McNamara, 2008), and wetland dynamics (Chambers et al., 2014; Scaini et al., 2017;94

Uhlemann et al., 2016). Previous laboratory studies have shown that ERT is suitable95

for characterizing moisture content dynamics and tracer breakthrough in the unsaturated96

zone (e.g. Koestel, Kemna, Javaux, Binley, & Vereecken, 2008; Wehrer & Slater, 2015).97

To translate resistivities to moisture content, a petrophysical relationship needs to98

be determined. (Note that although the root ”petro” implies an application related to99

rocks (as in this study), similar physical laws applies to soils as well.) One common method100

is to take core samples from the field for laboratory testing (Amidu & Dunbar, 2007) us-101

ing well-established procedures (see Hen-Jones et al., 2017; Jayawickreme, van Dam, &102

Hyndman, 2008). The samples are often oven dried and re-wetted and their resistivities103

are then repeatedly measured as their saturation changes. Although hysteresis has been104

reported in the wetting-drying behaviour of samples, laboratory testing is usually only105

applied to a single drying or wetting regime. Another method is to calibrate field-based106

inverted resistivity from ERT with in-situ measurements of soil moisture, for example107
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using time-domain reflectometry (TDR) probes. Several studies have compared mois-108

ture content estimates from TDR and ERT (Brunet, Clément, & Bouvier, 2010) and in109

recent years it has become increasingly popular to use such field-derived petrophysical110

relationships. The local TDR-derived moisture content is taken as error-free and this is111

typically used to calibrate against inverted resistivities using Archie’s, Waxman-Smits112

(Cassiani et al., 2009; Garré et al., 2013; Lehmann et al., 2013; Michot et al., 2003), or113

data-driven models (Brillante et al., 2014). More recently, calibration methods have been114

developed for apparent electrical conductivity (ECa) from EMI against TDR-derived mois-115

ture content (Robinet et al., 2018). The repeated EMI-moisture content monitoring study116

of Martini et al. (2017) shows that this is not as straightforward as the relationship be-117

tween electrical conductivity and moisture content can change with time. Whalley et al.118

(2017) compared the change in electrical conductivity from EMI and ERT with changes119

in water content from neutron probe measurements. The third (and perhaps most com-120

mon) option is to simply use literature values for petrophysical parameters (e.g. Fried-121

man, 2005). Regardless of the method for the assignment of petrophysical relationships,122

errors will be present in some form. Laboratory measurements assume the observed re-123

lationship and errors from small samples taken at a few locations can be applied to the124

entire resistivity model. Field-based petrophysical relationships, on the other hand, as-125

sume the inverted resistivity model having insignificant and uncorrelated errors so that126

they can be used to calibrate against in-situ soil moisture data. In other words, the re-127

sistivity model uncertainty is implicitly counted twice.128

The uncertainty of the moisture content estimates from electrical geophysics stems129

not only from the uncertainty in the resistivity model, but it also propagates through130

from any constitutive relationships linking geophysical and hydrological properties, and131

yet these relationships are frequently assumed to be precise and error-free (Binley et al.,132

2015), in part due to the time and effort required to measure petrophysical parameters133

in the lab. In fact, they are known to be uncertain due to the competing properties of134

the pore fluids, pore geometry, and pore surface area on resistivity measurements (Weller,135

Slater, & Nordsiek, 2013). Petrophysical model uncertainty is also one of the primary136

factors limiting the utility of coupled inversion approaches (i.e. joint estimation of geo-137

physical and hydraulic properties) (Singha, Day-Lewis, Johnson, & Slater, 2014). While138

some stochastic modelling approaches (Hermans, Nguyen, & Caers, 2015; Hinnell et al.,139

2010; Wiese, Wagner, Norden, Maurer, & Schmidt-Hattenberger, 2018, e.g.) allow some140

modifications so that petrophysical model uncertainty can be accounted for, resolving141

issues caused by such uncertainty remains an area of research. Recent coupled inversion142

approaches allow the option to jointly estimate petrophysical parameters. Kuhl, Kendall,143

Van Dam, and Hyndman (2018) devised a coupled inversion approach to jointly estimate144

soil hydraulic parameters, petrophysical parameters and root parameters simultaneously.145

Such methods are promising but there are concerns over the non-uniqueness in the in-146

verse problem formulation and that the petrophysical parameters obtained may merely147

be ”effective” ones. In summary, research is needed to investigate the extent of the im-148

pact on moisture content estimates due to uncertain petrophysical relationships.149

The oil and gas industry, from where many of the foundational petrophysical re-150

lationships used in hydrogeophysics are borrowed, or originate, has been aware of the151

potential impact of petrophysical uncertainty. For example, Glover (2017) highlighted152

that various sources of uncertainties in Archie parameters can lead to 20-40% error in153

hydrocarbon saturation. For instance, even an uncertainty of 0.01 in a saturation expo-154

nent of 2 (i.e. 0.5% or 2+/- 0.01) would result in an error in global oil reserves of about155

USD +/- 254.36 billion based on figures in December 2015. While it is difficult to put156

a monetary value on many near-surface applications, the above calculation underscores157

the highly sensitive nature of petrophysical parameters and one should anticipate a sim-158

ilar scale of error in soil water content estimation from electrical hydrogeophysics.159
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It is not until recently that the issues associated with petrophysical uncertainty have160

been investigated. The pioneering work of Brunetti, Linde, and Vrugt (2017) considered161

the effect of petrophysical uncertainty on using ground penetrating radar (GPR) data162

for Bayesian hydrological model selection. There has also been some study on the pa-163

rameter uncertainty of petrophysical models. For instance, Laloy, Javaux, Vanclooster,164

Roisin, and Bielders (2011) tested five ‘pedo-electrical‘ models for the reproduction of165

electrical resistivity (determined by ERT) in a silt loam soil sample across a range of mois-166

ture and bulk density values. They were inverted within a Bayesian framework, thereby167

identifying not only the optimal parameter set but also parameter uncertainty and its168

effect on model prediction. However, to date, there has not been any study on how the169

uncertainty of petrophysical relationships affects the quantitative estimation of soil wa-170

ter in the vadose zone using electrical geophysics. The findings on this question are rel-171

evant to many applications mentioned above.172

In this work, we present a first attempt to investigate the extent to which mois-173

ture content estimates are affected by uncertainty in petrophysical models. Our aims are174

to understand the likely variability in petrophysical models, and to develop a method175

for petrophysical uncertainty propagation, which can be used to explore contributions176

to uncertainty in the estimation of soil moisture. We review time-lapse ERT monitor-177

ing data of a controlled infiltration experiment and the rock core data collected in the178

same formation. We test the two types of petrophysical models on the core data and ap-179

ply it to the inverted resistivity model, while keeping track of the uncertainty propaga-180

tion quantitatively. The methods and data used in this work are detailed in section 2.181

We report results from our analysis in section 3. Finally, we discuss our findings in sec-182

tion 4 and provide our conclusions in section 5.183

2 Materials and methods184

Our study focuses on data from earlier comprehensive field and laboratory inves-185

tigations, at Hatfield (near Doncaster, South Yorkshire, UK) and Eggborough (near Selby,186

North Yorkshire, UK). Two field sites, 17 km apart from each other, were instrumented187

to study recharge processes to a Sherwood Sandstone aquifer. Tracer injection exper-188

iments, monitored by both ERT and ground penetrating radar (GPR), were performed189

at both sites. At Eggborough, ERT and GPR surveys were conducted in 1999 (Binley,190

Cassiani, Middleton, & Winship, 2002; Cassiani & Binley, 2005) and the data were used191

to study the utility of joint inversion of ERT and GPR data (Bouchedda, Chouteau, Bin-192

ley, & Giroux, 2012; Linde, Binley, Tryggvason, Pedersen, & Revil, 2006) and the influ-193

ence of prior information on vadose zone parameters estimation in stochastic inversion194

(Scholer, Irving, Binley, & Holliger, 2011). Similarly, both ERT and GPR surveys were195

conducted during tracer injection at Hatfield and they have been used in a series of stud-196

ies to improve the monitorability and predictability of vadose zone processes using geo-197

physical measurements (Binley & Beven, 2003; Binley, Cassiani, et al., 2002; Binley, Cas-198

siani, & Winship, 2004; Binley, Winship, Middleton, Pokar, & West, 2001; Binley, Win-199

ship, et al., 2002). Two radar and four ERT boreholes were drilled around an injector200

to monitor tracer injection. Each ERT borehole consists of sixteen stainless steel mesh201

electrodes equally spaced at 0.733 m between 2 and 13 m depth. The borehole electrodes202

were supplemented with eight surface electrodes. Two cored boreholes were drilled close203

to the tracer injection area to obtain a depth profile of grain size distribution. Note that204

the top 2 meters is topsoil while its underlying material is weakly cemented sandstone.205

A similar borehole ERT and GPR setup was applied for the monitoring experiment at206

the Arreneas infiltration plant in Denmark (Haarder et al., 2012; Looms, Binley, Jensen,207

Nielsen, & Hansen, 2008).208

In this study, we fitted the Archie relationships for the cores collected at Eggbor-209

ough and used them as realizations of petrophysical models. We then simulated the ERT210

response of a water injection experiment, assuming a baseline petrophysical relationship.211
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We then inverted the ERT response and use each of the realizations of petrophysical mod-212

els to estimate moisture content with uncertainty bounds, which we compared against213

the simulated value. We summarize the workflow of our approach in Figure 1.214

Figure 1. Moisture content (θ) estimation and petrophysical uncertainty propagation work-

flow used in this study. Rectangles indicate model inputs or data, while ovals represents mod-

elling or analysis steps. We obtained synthetic ERT and θ data using PFLOTRAN-E4D. Then

we inverted the ERT data and used the Eggborough cores as different petrophysical models.

They were passed through the moisture content estimation and uncertainty estimation framework

to obtain ERT-estimated θ, which were compared against the θ data.

2.1 Eggborough core samples215

Core samples collected at Eggborough were used to measure the spectral induced216

polarization (SIP) responses at various saturations (Binley, Slater, Fukes, & Cassiani,217

2005) and they are compared with various physical and hydraulic properties (Table S2).218

They found a strong correlation between mean relaxation time and hydraulic conduc-219

tivity and showed that the former is affected by saturation. Binley et al. (2005) did not220

include the data showing the DC resistivity and hydraulic properties were not published.221

Also, they focused their analysis on only three of the samples extracted. In this work,222

we examine the DC resistivity-saturation behaviour of all the samples to understand its223

variability and the impact of such variability on estimating moisture content from ERT.224

The grain size distribution of the Eggborough cores and blocks are plotted as per-225

centiles (Figure 2a). Also, the percentages of sand, silt, clay at Eggborough are plotted226

as depth profiles (Figure 2b). Note that the cores are not repacked sample but instead227

they are weakly cemented core plugs. In this work, we use the Eggborough data to ob-228

tain petrophysical relationships for predicting moisture content in a water injection sim-229

ulation.230

2.2 Water injection simulation231

The March 2003 tracer infiltration experiment at Hatfield (Binley, 2003; Winship,232

Binley, & Gomez, 2006) used a tracer that consisted of 1,200 litres (or 1.2 m3) of wa-233

ter, dosed with NaCl to give an σf of 2,200 µS cm−1 (groundwater σf was 650 µS cm−1).234

The tracer was injected over a period of three days, from 14th March 2003 to 17th March235

2003 at a steady rate of 17 L/h. The tracer injection port was screened between 3 m and236

3.5 m below ground surface. The water table was at 10 m below ground surface. The237

layout of the electrodes is shown in Figure 5.238

Since our focus here is the change in moisture content, we numerically repeat the239

Hatfield 2003 injection experiment with groundwater instead of a conductive tracer. We240
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Figure 2. (a) Cumulative density functions of grain size distribution of Eggborough cores

and blocks. The legend shows the core or block ID. (b) Depth profiles of sand, silt, and clay

percentages for Eggborough cores.

used the parallel coupled hydrogeophysics code PFLOTRAN-E4D (Johnson, Hammond,241

& Chen, 2017) to simulate the flow and transport of the water injection and to obtain242

the corresponding ERT response. PFLOTRAN (Hammond, Lichtner, & Mills, 2014) is243

a subsurface flow and reactive transport code and we use the Richards model to simu-244

late variably saturated flow. E4D (Johnson, Versteeg, Ward, Day-Lewis, & Revil, 2010)245

is a 3D modeling and inversion code designed for subsurface imaging and monitoring us-246

ing static and time-lapse 3D electrical resistivity or spectral induced polarization data,247

which we use here as a forward ERT simulator. The PFLOTRAN grid consists of 129,600248

cells that are 0.25m to 1m wide and 0.5m thick. The E4D mesh is an unstructured tetra-249

hedral mesh generated by tetgen (Si, 2015). The resultant mesh comprises 8,124 nodes250

and 46,842 elements. PFLOTRAN-E4D interpolates and maps the PFLOTRAN out-251

puts to electrical resistivity on the E4D mesh given element-wise petrophysical trans-252

form. ERT snapshots are taken on days 7, 9, 10, 15, 18, 21, 27, and 41. We assume a253

2% measurement error in each of the 3,108 measurements taken in each frame. An ad-254

ditional 2.5% is added to the data errors in the inversions to account for forward mod-255

elling errors. The parameters used in the simulation can be found in Table 1. The as-256

sumed petrophysical parameters are also plotted in Figure 4.257

2.3 Petrophysical models258

2.3.1 Archie’s Law259

Assuming minimal contribution from electrical conductivity on the grain surface,260

Archie’s Law relates bulk electrical resistivity ρ (1/conductivity) to fluid saturation S.261

It is given by:262

ρ = σ−1
f φ−mS−n (1)

where m is the cementation factor, σf is the fluid conductivity, φ is the porosity263

and n is the saturation exponent. Assuming constant material and fluid properties (e.g.264

m, n,σf ), Archie’s Law can be re-written in terms of the electrical resistivity at satu-265

ration (i.e. S=1), which is given by:266
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Table 1. Parameters used for the water injection experiment

Parameters Value

Initial water saturation 0.375
Water fluid conductivity σf 650 µS cm−1

Injector depth interval 3-3.5 m
Assumed Archie’s n 1.35
Water injection rate 0.408 m3/d
Assumed Archie’s ρs(at 650 µS/cm−1) 44 Ωm
Injection period Days 8-11
Assumed ERT data errors 4.5%
Hydraulic conductivity 0.4 m/d
van Genuchten α 10 m−1

Porosity 0.32
van Genuchten n 2.5

S =
(ρs
ρ

) 1
n

(2)

where ρs = σ−1
f φ−m. To obtain best-fit estimates of Archie parameters, a straight267

line is fitted for log10(S) and log10(ρS) using the least-squares criterion. The fitting rou-268

tine returns the covariance structure of the model estimates, which can be used to de-269

termine the 68% confidence interval (1 standard deviation) of the model estimates. Note270

that ρs corresponds to a particular σf . Therefore, it needs to be scaled when applied to271

a different σf using eq. (1). We note that constant fluid conductivity may not be ap-272

propriate in a range of environments (e.g. Altdorff et al., 2017). Because the clay con-273

tent in the cores is low, the results from fitting the Waxman-Smits model are not reported.274

Note that saturation and moisture content θ are related by S = θ/φ. The total amount275

of moisture Vw within a volume V is given by φV S.276

The fractional change of θ, or equivalently that of S, is given by277

θt
θ0

=
( ρt
ρ0

σf,t
σf,0

)− 1
n

(3)

where the subscripts t and 0 represent the variable at time t and at baseline.278

2.4 ERT modeling and inversion279

We use the code R3t version 1.8 (www.es.lancs.ac.uk/people/amb/Freeware/280

R3t/R3t.htm) for ERT inversion. To obtain the resistivity variation, we seek to find a281

model solution that minimizes the following objective function:282

Φ = Φd + Φm = (d− F (m))TWT
d Wd(d− F (m)) + αmTRm (4)

where d is the data (e.g. measured apparent resistivities), F (m) is the set of simulated283

data using the forward model and estimated parameters m. Wd is a data weight matrix,284

which, if we consider the case of uncorrelated measurement error and ignore forward model285

errors, is a diagonal matrix with entries equal to the reciprocal of the errors of each mea-286

surement. Forward modelling errors are also added to the diagonal of Wd. α is the scalar287
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regularisation factor, while R is a roughness matrix that describes the spatial connect-288

edness of the parameter cell values. α is selected via a line search and isotropic smooth-289

ing is applied.290

Using a Gauss-Newton procedure, the above is solved iteratively using the follow-291

ing solution:292

(JTWT
d WdJ + αWT

mWm)∆m = JTWd(d− F (m)) − αRmk

mk+1 = mk + ∆m
(5)

where J is the Jacobian (or sensitivity) matrix, given by Ji,j = ∂di/∂mj ; mk is the293

parameter set at iteration k; and ∆m is the parameter update at iteration k. For the294

DC resistivity case, the inverse problem is typically parameterized using log-transformed295

resistivities, which we have adopted here.296

For analysis of time-lapse ERT, we follow the difference inversion approach (Labrecque297

and Yang, 2001) to invert on the change in ERT data. Its model penalty function seeks298

to minimize model variation relative to a reference model mref :299

Φm = α(m−mref )TR(m−mref ) (6)

Again, using a Gauss-Newton procedure, the objective function can be solved it-300

eratively by:301

(JTWT
d WdJ + αR)∆m = JTWd((d− dref ) − (F (m) − F (mref )) − αR(m−mref )

mk+1 = mk + ∆m
(7)

where dref is the baseline data vector. This approach, which has been proven to302

be effective in removing the effect of systematic errors (e.g. artefacts), has been applied303

to numerous time-lapse imaging studies (Doetsch, Linde, Pessognelli, Green, & Gunther,304

2012; LaBrecque, Heath, Sharpe, & Versteeg, 2004). Note that the same mesh is used305

for both ERT forward modelling and inversion.306

2.5 Uncertainty propagation and moisture content estimation307

After inverting the electrical resistivity models, we can obtain the corresponding308

element-wise moisture content using the petrophysical relationships. The quantity of wa-309

ter within a certain volume is given by the spatial integral of the moisture content within310

the volume.311

Rules of analytical uncertainty propagation (Chen & Fang, 1986; Taylor, 1982) were312

followed to propagate petrophysical uncertainty to moisture content estimates at each313

element. The uncertainty of saturation estimated from Archie’s law is given by the fol-314

lowing equation (see Appendix 1 for details):315

σ2
S =

(∂S
∂ρ

)2

σ2
ρ +

( ∂S
∂ρs

)2

σ2
ρs +

(∂S
∂n

)2

σ2
n (8)

where σ2 is the variance of parameters. σ2
ρs and σ2

n are determined by the param-316

eter fitting procedures. σ2
ρ are determined by running Monte Carlo simulations of ERT317

inversion (Aster, Borchers, & Thurber, 2005; Tso et al., 2017, see supplementary infor-318

mation for details). This procedure, in essence, samples the measurement errors based319
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on the prescribed error levels and obtains a distribution of inverted resistivity at each320

cell due to the perturbed measurements. The first term in the above equation can be viewed321

as the variance contribution from the variance of ERT inversion, while the other terms322

are the contributions from the uncertainty in the petrophysical fits. When evaluating323

the difference in saturation between two survey times, it is important to take account324

of the fact that their uncertainties may be correlated. Therefore, the variance of the dif-325

ference in saturation ∆S is given by:326

σ∆S =
√
σ2
S + σ2

S0
− 2 cov(S, S0) (9)

where S0 is saturation at baseline and cov(S, S0) is approximated by all the S val-327

ues in the model domain at the two times. The variance of saturation can be converted328

to that of the total amount of water (Vw) within a volume by:329

σ2
Vw

=
(∂Vw
∂φ

)2

σ2
φ +

(∂Vw
∂S

)2

σ2
S = (V S)2σ2

φ + (V φ)2σ2
S (10)

If porosity ρ is assumed to be known and constant, the first term is dropped. For330

a finite element domain consisting of many elements, the total variance is simply the sum331

of variances of all the elements.332

3 Results333

3.1 Fitting Archie models334

Figure 3 shows the water saturation-electrical resistivity relationship of twelve of335

the Eggborough cores and blocks. Note that some sample exhibits rather large scatter336

and in a few occasions, the resistivity shows a decrease with decreasing saturation. Archie’s337

Law is fitted on the data. The best-fit line and the corresponding ± 1 standard devia-338

tion envelope are also plotted. Both ρs (27.45 − 64.35 Ωm) and n (0.513-2.174) show339

significant variability. As observed in Table S1, the variability in Archie parameters does340

not tend to correlate with texture-related properties. In most previous studies literature-341

based estimates of Archie parameters are adopted and where laboratory analysis is car-342

ried out, only a few samples are used. The significant variability (within the same unit)343

and lack of correlation with other properties presented here illustrate the challenge of344

constraining Archie parameters in the field. Our data shows two distinct groups of clay345

contents (∼2% and ∼3.5%) and the corresponding Archie parameters show slightly dif-346

ferent ranges. Figure 3 also shows the Archie’s parameter estimation of all Eggborough347

cores and blocks. The predictions using the best-estimate of the parameters are shown348

in solid lines, while the 68% (i.e. ±1 standard deviation) confidence intervals are shown349

in dashed lines. It shows that when fitting all of the cores and blocks together, the re-350

sultant standard deviation is low, leaving some data points outside the ±1 standard de-351

viation envelope. We have also included the fit for Hatfield cores reported in Binley, Win-352

ship, et al. (2002) and summarize all the Archie models in Figure 4. Further details, in-353

cluding hydraulic and surface area measurements, of the Eggborough cores and blocks354

can be found in Table S2.355

3.2 Moisture content estimation for the water injection simulation356

The time-lapse ERT monitoring data during the water injection simulation was in-357

verted using a difference inversion as described above. The iso-surfaces in Figure S1 show358

a volume that has 5.5% reduction of resistivity relative to baseline (Day 7). The inver-359

sion results capture the geometry and the swell-shrink dynamics of the plume very well.360

The plume expanded gradually once the injection commenced and then migrated down-361

wards within a few days after the injection finished.362
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Figure 3. Archie’s parameter estimation of individual Eggborough cores and blocks. The pre-

dictions using the best estimate of the parameters are shown in solid lines, while the 68% (i.e. ±1

standard deviation) confidence intervals are shown in dashed lines. Note that the measurements

are made at 1000 µS cm−1. Note that ρ, which is the dependent variable, is shown on the x-axis.

Our subsequent results focus on an ERT snapshot 10 days after the injection (Day363

18). Figure 5a-b show the resultant mean and standard deviation of electrical resistiv-364

ities obtained from Monte Carlo runs of ERT inversion. Since we have assumed uniform365

initial saturation, the variation of resistivity is within the same order of magnitude. The366

centre region of the ERT array shows reduced resistivity due to injection. The standard367

deviation is higher around the electrodes and is lower in the centre region because the368

resolution of ERT decreases away from electrodes. Conceptually, however, the uncertainty369

in the centre region through which the water plume evolves should be higher. This is-370

sue is not addressed in this study. Based on the Monte Carlo inversion results, Figure 5c371

shows the volume extracted from the ERT inversion domain where there is at least a 5.5%372

reduction in resistivity on Day 18 relative to the pre-injection baseline (Day 7). Such a373

threshold is used so that the effects of inversion artefacts are minimized. The size of this374

volume is 79.97 m3. The total amount of water in this volume at Day 7 and Day 18 are375

9.65 m3 and 10.68 m3 respectively. The resistivities on the nodes of the extracted vol-376

ume were converted to saturation using the different petrophysical relationships (i.e. Archie377

model fits) discussed above, while a Monte Carlo experiment was run to estimate the un-378

certainty in the inverted resistivities.379

For each of the petrophysical models, we then integrate the moisture contents over380

the extracted volume to estimate the total water volume (Vw) in it. At the same time,381

we derive error bars for the total water volume estimates using eq. 8 and 9. Figure 6a382

shows the mean and uncertainty bounds for the amount of water within the extracted383

volume, assuming a constant porosity of 0.32. For Day 18 (post-injection), best-estimates384

of total water volume among Archie models lies between 8.70 m3 (Binley02) to 16.74 m3
385

(VEC15-5), except for VEG2R1 and VEC18-1 it lies at 2.51 and 3.88 m3, respectively.386

The size of the error bars varies between ± 0.68 m3 (VEG2R1) and ± 2.28 m3 (VEG15-387

8), or between 9.59% (VEC18-2) and 27.01% (VEG2R1), depending on the Archie pa-388

rameters estimates and their uncertainties. We observe similar results for Day 7 (pre-389

injection); yet we note that while the size of the error bars generally increases from Day390

7 to Day 18, the increase ranges from 0.19 m3 (HEC15-1) to 0.72 m3 (”all”).391
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Figure 4. Summary of Archie model fits for the Eggborough/Hatfield cores and blocks. Note

that values correspond to σf = 1000µS cm−1. The point label ”synthetic” is the ”true” solution

considered in the syynthetic study in section 3.2.

Figure 6b shows the change in total water volume on Day 18 relative to baseline.392

The mean change is the difference between the total water volume at the two times. Us-393

ing eq. 10, the error bars shown here have accounted for potential correlation between394

total water volume estimates between the two times. As a result, when fluid conductiv-395

ity is assumed constant, the uncertainty bounds for the change in total moisture would396

lie between one and two times of that of the total moisture. The Archie models estimate397

an increase in mean change in total water volume of 0.46 m3 (VEG2R1) – 1.08 m3 (VEG2R2).398

They are more consistent than the estimates of the absolute total water volume. Note399

that, the total injection volume was 1.224 m3, meaning all the models have underesti-400

mated the addition of water due to injection. The uncertainty bounds in Figure 6b are401

generally large, ranging from ±0.71 m3 (VEG2R1) to ±2.96 m3 (VEC15-8), or 154% (VEG2R1)402

to 350% (HEC15-1) of the mean value. This shows that even though the mean estimates403

for the change in total water volume using Archie models is consistent, they are never-404

theless highly uncertain.405

The size of the error bars in Figure 6a is determined by a combination of the un-406

certainty of the petrophysical parameters (ρs and n) and that of the inverted resistiv-407

ities ρ. Based on eq. 8 and 9, the variance of the total moisture estimates is the sum-408

mation of the squared product of the partial derivative and standard deviation of the409

individual terms. We plot the terms as stacked bars for Day 18 (post-injection) in Fig-410

ure 6c to show their contribution to the total variance. The square root of the total height411

of the bars equals the size of the error bars in Figure 6a. The contribution from inverted412

resistivities ρ is below 2 (m3)2 for all the Archie models. For the Archie models with vari-413

ance smaller than 2 (m3)2, inverted resistivities can be an important source of errors;414

–12–©2018 American Geophysical Union. All rights reserved.



manuscript submitted to Water Resources Research

otherwise, the effects of uncertain petrophysical parameters dominate. Our results in-415

dicate that for the Archie models, n plays a more important role than ρs, with the ex-416

ception of Binley02, which shows very low n error. n contributes 3.88% (VEG2R1) to417

69.25% (HEC15-1) of the total variance, while ρs contributes 2.55% (VEG2R1) to 36.71%418

(VEC16-3) of the total variance.419

So far we have assumed the porosity has a constant value of 0.32. Additional un-420

certainty is introduced if it is treated as uncertain. We consider the case where poros-421

ity is assumed to be 0.32±0.032. In Figure 6d, the height of the blue bars is the total422

height of the bars in Figure 6c. The height of the yellow bars shows the additional vari-423

ance due to the uncertain porosity value, which ranges from 0.0631 (m3)2 (VEG2R1) to424

2.8026 (m3)2 (VEC15-5). Percentage-wise, the uncertain porosity values lead to an in-425

crease in variance ranging from 13.7% (VEG2R1) to 108% (VEC18-2).426

We have examined in Figure 6b the change in total moisture within the extracted427

volume. We examine in Figure 7 the change in volume of water within each finite ele-428

ment cell of the extracted volume. Figure 7a shows the estimated change in the volume429

of water (Vw) in four selected cells. It is observed that while the true change spans from430

0 to 0.18 m3, the estimates for Archie models stays within the 0 to 0.05 m3 range. Fig-431

ure 7b shows the scatter plots for the ERT-estimated Vw using the 15 Archie models.432

For all of them, the fit at individual cells is unsatisfactory. Conversely, in Figure 6b the433

changes in total moisture within the extracted volume are fairly consistent across the434

petrophysical models and they agree with the true value. We observe that within the435

extracted volume (the threshold was change in inverted resistivity greater than 5.5%),436

101 of 219 cells show change in saturation of less than 0.01. This indicates the true wa-437

ter plume is much narrower than estimated by ERT inversion and highlights the detec-438

tion limit of ERT, particularly in the context of smoothness-constrained inversion used439

here. The smoothing effect of the ERT inversion, however, roughly preserves mass bal-440

ance in this case.441

4 Discussion and implications for future work442

4.1 Fitting petrophysical models443

Most previous studies have either fitted petrophysical models for up to a few cores444

or used petrophysical parameters based on literature values without assuming any er-445

rors or uncertainty. Our results from cores collected at a relatively uniform and clay-free446

sandstone unit suggest that in future studies, a wider range of petrophysical relation-447

ships or a larger uncertainty bound should be assumed. The n and ρs estimates do not448

appear to show significant correlation with other properties that were measured, mak-449

ing it difficult to constrain petrophysical relationships with more core samples. In fact,450

compared with previous studies at Hatfield and Eggborough, the use of more core data451

reveals greater petrophysical model uncertainty. The individual Archie model fits are good452

but the concatenated dataset shows a U-shape θ(ρ) behaviour, which suggests satura-453

tion is controlled by properties other than a saturation exponent or it implies a hetero-454

geneous petrophysical parameter field.455

4.2 The uncertainty propagation approach456

We have proposed and demonstrated an effective procedure to propagate uncer-457

tainties in petrophysical relationships to uncertainties in the inferred moisture contents458

and the amount of water within the plume. The procedure requires mean and standard459

deviation of both the petrophysical parameters and inverted resistivities. The applica-460

tion of this method on field data using two types of petrophysical models shows how un-461

certainty in petrophysical parameters and ERT data errors propagate through the mod-462

elling and inversion process and lead to uncertainty in moisture content estimates. Specif-463
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Figure 5. (a) Mean (log10) and (b) standard deviation (linear) of electrical resistivity for

Day 18 obtained from Monte Carlo runs of ERT inversion. (c) Extracted volume where there

was a 5.5% reduction of resistivity relative to baseline on Day 18. The purple cubes are electrode

locations.

ically, the inversion procedure smooths the resistivity profiles (a proxy of moisture con-464

tent) spatially, while the uncertain petrophysical relationships add uncertainties to the465

quantitative conversion from resistivity to moisture content. These uncertainties, if un-466

tracked, can lead to significant bias and over-confidence in the moisture content estimates.467

Part of our analysis has utilized a commonly employed smoothness-based inversion468

for our geophysical data to evaluate the impact of uncertain petrophysical relationship.469

Other inversion algorithms may yield different uncertainty estimates. In fact, a limita-470

tion of this work is that our computation of the uncertainty contribution from inverted471

resistivity only considered the propagation of data errors through the inversion code. We472

have assumed no uncertainty contribution from the choice of the inverse model, its res-473

olution, or its discretization, mainly because there is no standard procedure to compute474

the uncertainty of an inverted resistivity field yet. Some emerging techniques, such as475

trans-dimensional ERT (Galetti & Curtis, 2018), are attempts to address this issue. We476

also acknowledge Markov chain Monte Carlo (McMC) sampling (Brunetti & Linde, 2018)477

may be more accurate and robust than the conventional MC sampling we use here.478

Finally, we note that our approach follows the classical approach to error analy-479

sis (Taylor, 1982). The extent to which some of the underlying assumptions are valid,480

such as whether the uncertainties of petrophysical parameters and inverted resistivities481

are independent, is open to future investigation. Nevertheless, we highlight that the un-482

certainty propagation framework presented in this work is flexible and straightforward.483

It is potentially applicable to any type of petrophysical models and inversion methods484

and it may be extended to consider the uncertainty of the inversion itself. It is indepen-485

dent of the inversion methods and petrophysical models used, and we expect it to be used486

widely in future studies.487

4.3 Total moisture content estimation488

The great variety of petrophysical models lead to a large range of total water vol-489

ume estimates (Figure 6a). This shows that using only a single petrophysical model de-490

terministically can give misleading results. It also shows that any applications wishing491

to quantify the absolute amount of moisture present must not rely on geophysics alone.492

The changes in moisture content estimated by Archie’s law, however, are generally con-493

sistent (Figure 6b). This can be explained by the work of Lehmann et al. (2013), who494

show that the fractional changes in moisture content obtained from electrical resistiv-495

ity are a scaling of the saturation exponent only. This means the other parameters in496
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Figure 6. (a) Total water volume within the extracted volume (with uncertainty bounds)

using the different petrophysical models. The uncertainty bounds correspond to ±1 standard

deviation. The vertical lines show the true total water volume. (b) The corresponding changes in

the amount of moisture within the extracted volume relative to baseline. The vertical lines show

the true change in total water volume. (c) The contribution of different variables to the variance

of total moisture of each petrophysical models. (d) Additional variance (i.e. uncertainty) caused

by uncertain porosity values (0.32±0.032). The contribution from uncertain porosity is significant

in most cases, especially when the variance in saturation is low.

simple empirical models do not play a role in converting ratios of inverted resistivities497

to ratios of θ. Nevertheless, most applications are interested in at least the difference of498

moisture content between two times, not just their relative change. We note the high un-499

certainty bounds associated with the change in θ obtained from most of the Archie petro-500

physical models. This shows that this scaling of n can lead to highly uncertain estimates501

of the amount of the change. This effect should be acknowledged and assumed when in-502

terpreting ERT-derived moisture contents. Moreover, other parameters in petrophysi-503

cal models are still important in other frequently used methods. For example, coupled504

modelling of hydrogeophysics requires reliable petrophysical relationships. Examining505

the impact of the different uncertain petrophysical parameters and models remains an506

important research question.507

Our uncertainty analysis shows that for most cases, the uncertainty in ERT-derived508

saturation is dominated by uncertain petrophysical parameters, not uncertain inverted509

resistivities due to data errors (Figure 6c). This presents a challenge because unlike in-510

verted resistivities, petrophysical uncertainties cannot be straightforwardly reduced by511

good quality data or better inverse modelling approaches. Future studies should focus512

their efforts on better characterizing petrophysical uncertainties and incorporating them513

in moisture content estimation procedures. Figure 6d also shows that significant addi-514

tional uncertainty can be caused by uncertain porosity values. Since porosity ultimately515
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Figure 7. (a) ERT estimated changes in volume of water in 4 selected cells. The vertical lines

indicate the true change. (b) Scatter plots showing the fit for change in volume of water at indi-

vidual cells using the 15 Archie models. The red dashed line in each plot is the best-fit line of the

scatter points.

controls the volume of pore space for water to fill, better characterization of it can re-516

duce the uncertainty of the moisture content estimates from ERT.517

Our work has focused on a water injection experiment where there is no variation518

in fluid conductivity over time. Changes in fluid conductivity (e.g. in a saline tracer in-519

jection or leak of saline solute) will further complicate the estimation of moisture con-520

tent changes since bulk resistivity is affected by both fluid conductivity and moisture con-521

tent. When inverting time-lapse ERT data, the change relative to baseline is often set522

to be minimized. This setting works well in our water injection experiment but may give523

an insufficient change in resistivity to account for both changes in saturation and fluid524

conductivity.525

Since laboratory petrophysical measurements are labour-intensive and time-consuming,526

many authors have used TDR data (in shallow vadose zone investigations) to fit field-527

based petrophysical relationships (e.g. Fan, Scheuermann, Guyot, Baumgartl, & Lock-528

ington, 2015). The typical setup, for shallow investigations, consists of a trench with ERT,529

TDR, and temperature sensors installed. This in-situ setup can be viewed as advanta-530

geous over lab measurements since it correctly represents pore water conductivity (given531

dynamic exchange of ions between particles and pore water) and avoids forced conditions532

in the lab. Despite its advantages, the range of ρ it considers is limited because only the533

range of the ERT-measured apparent ρ are evaluated. Given the large variability of petro-534

physical relationships observed in this study, perhaps the TDR data is best used to in-535

dependently verify or constrain the inverted moisture contents (e.g. Beff et al., 2013).536

It is important to check independently whether the uncertainty bounds of ERT-predicted537

moisture content consistently capture the TDR data. While TDR or neutron probe can538

only be applied in shallow soil, radar can be used in deeper investigations. The joint use539

of ERT and radar measurements (e.g. Binley, Cassiani, et al., 2002; Linde et al., 2006)540

yields independent estimates of moisture contents and allows cross-validation.541
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We have examined the changes in total moisture content in the extracted volume542

and at selected locations obtained from ERT and their agreement with the simulation.543

Future uncertainty studies should consider the agreement by comparing ERT estimates544

and other (e.g. TDR, neutron probe) data in the field. Further work should also exam-545

ine the extent to which the uncertainty in ERT-derived moisture content affects the decision-546

making in specific applications, such as landslide monitoring or precision agriculture.547

4.4 Strategy when petrophysical data is unavailable548

With the increasing popularity of ERT or EMI studies for hydrological investiga-549

tions, there will be an increasing number of studies that do not collect samples for petro-550

physical calibration, which is often more time-consuming than the geophysical survey551

itself. Conversely, a few depth profiles of grain size distributions are relatively easy to552

obtain (e.g. using a hand auger) in near-surface applications. Soil texture is commonly553

used to approximate unsaturated zone parameters through pedotransfer functions (e.g.554

ROSETTA (Schaap, Leij, & van Genuchten, 2001; Zhang, Schaap, Guadagnini, & Neu-555

man, 2016)) and it will be useful if these functions can approximate the petrophysical556

parameters or models too. Future efforts should be devoted to building a global database557

on θ(ρ) and grain size distribution data, in order to formulate pedotransfer functions across558

sites. Data-driven methods such as multiple adaptive regression splines (MARS) (Bril-559

lante et al., 2014) are particularly suitable for this task because they are capable of han-560

dling fairly large datasets (e.g. 105 observations and 100 variables). We attempted to561

apply some of these methods to fit the Eggborough data (not reported here) but we have562

too few samples to apply them reliably. Nevertheless, they are potentially powerful meth-563

ods to apply in the future once there is a database for near-surface petrophysical mea-564

surements.565

4.5 Relevance to EMI and other geophysical methods566

We have focused mainly on the effect on ERT inversion results, but similar con-567

clusions can be extended for EMI results or methods that use a combination of EMI and568

ERT results (von Hebel et al., 2014), as well as other applications in hydrogeophysics569

where petrophysical transforms are involved. Moreover, we recognize that there is a wealth570

of literature studying the spatial and temporal patterns of electrical conductivity and571

soil moisture in the Earth’s near-surface. Similarly, there have been many recent stud-572

ies on data assimilation of moisture content data across multiple spatial scales (e.g. Zhu573

et al., 2017). Hydrogeophysicists, whilst frequently working at the plot-scale and site-574

scale, should be involved in these developments. Closer collaboration between soil sci-575

entists, geostatisticians, geophysicists, and hydrologists are needed to tackle this grand576

challenge.577

5 Conclusions578

Our study showed the extent of petrophysical variability present at a field site and579

demonstrated an approach to computing uncertainty bounds of moisture content esti-580

mates due to uncertain petrophysical models. First, we showed that highly variable petro-581

physical relationships can be observed in field samples of a relatively uniform and clay-582

free sandstone unit. We then fitted and applied various petrophysical models to convert583

ERT images to moisture content images. The different petrophysical models led to a wide584

range of total moisture content estimates of a plume, but their changes over time gen-585

erally agreed. Using rules of error propagation, we were able to quantify the uncertainty586

bounds of the moisture content estimates and gained further insight by showing the in-587

dividual contribution of the petrophysical parameters and inverted resistivities terms to588

the total uncertainty. We showed that, assuming the inverse model only smooths the re-589

sistivity field, the uncertainty is dominated by the petrophysical parameters. The total590
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uncertainty was found to be 7.52% - 23.18% of the mean total water volume estimate.591

When translated to the change in time, the uncertainty can be as high as several mul-592

tiples of the mean estimate—both uncertainties are higher than previously appreciated.593

Our results have highlighted the potential danger of converting ERT images to mois-594

ture content from similar environments using a single petrophysical model determinis-595

tically. In particular, they should not be used to quantify the amount of moisture present596

independently of other data. Although the different Archie petrophysical models give597

consistent estimates of the change in total water volume, their relatively large uncertainty598

bounds highlight that even though electrical geophysics reliably determines the direc-599

tion of the change in θ, its quantification of the amount of such change is highly uncer-600

tain. It is prudent to assume large uncertainties for θ and ∆θ estimates where they have601

not been quantified. Data-driven methods (e.g. MARS) have the potential to be applied602

to build petrophysical models where such data is unavailable.603

Appendix: Petrophysical uncertainty propagation604

Following the analytical sensitivity analysis of Chen and Fang (1986) and Taylor605

(1982), we can obtain the uncertainty contributions of the various terms in Archie’s Law606

(eq. 2). Assuming they have uncorrelated errors, by laws of error propagation, the vari-607

ance of saturation is given by:608
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