Monocular Gaze Depth Estimation using the Vestibulo-Ocular Reflex

Diako Mardanbegi
Lancaster University, UK
d.mardanbegi@lancaster.ac.uk

Christopher Clarke
Lancaster University, UK
c.clarke1@lancaster.ac.uk

Hans Gellersen
Lancaster University, UK
hwg@comp.lancs.ac.uk

ABSTRACT

Gaze depth estimation presents a challenge for eye tracking in 3D. This work investigates a novel approach to the problem based on eye movement mediated by the vestibulo-ocular reflex (VOR). VOR stabilises gaze on a target during head movement, with eye movement in the opposite direction, and the VOR gain increases the closer the fixated target is to the viewer. We present a theoretical analysis of the relationship between VOR gain and depth which we investigate with empirical data collected in a user study (N=10). We show that VOR gain can be captured using pupil centres, and propose and evaluate a practical method for gaze depth estimation based on a generic function of VOR gain and two-point depth calibration. The results show that VOR gain is comparable with vergence in capturing depth while only requiring one eye, and provide insight into open challenges in harnessing VOR gain as a robust measure.

CCS CONCEPTS
• Human-centered computing → Gestural input;

KEYWORDS
Eye tracking, eye movement, VOR, fixation depth, gaze depth estimation, 3D gaze estimation

ACM Reference Format:

1 INTRODUCTION

Gaze depth estimation is a central problem for 3D gaze tracking and interaction. Where a 3D model of the environment is available, depth can be derived indirectly from the position of the first object a gaze ray cast into the environment intersects [Cournia et al. 2003; Tanriverdi and Jacob 2000]. However such a model is not always available or sufficient, for example when gaze is tracked relative to natural environments [Gutierrez Mlot et al. 2016], or when the gaze ray intersects multiple objects positioned at different depths causing target ambiguity [Deng et al. 2017; Mardanbegi et al. 2019]. It is therefore of interest to estimate fixation depth directly based on information from the eyes. Prior work has suggested vergence, accommodation, and miosis as available sources of such information [Gutierrez Mlot et al. 2016], i.e. the simultaneous movement of the eyes in opposite direction for binocular vision, the curvature of the lens, or the constriction of the pupil. In this work, we investigate the potential of VOR, the stabilising movement of the eyes during head movement based on the vestibulo-ocular reflex, as a temporal cue and alternative information source for gaze depth estimation.

Target distance is known to influence VOR [Biguer and Prablanc 1981; Collewijn and Smeets 2000]. When a user rotates their head during fixation on a target, the eyes perform a compensatory rotation in the opposite direction. As the eyes are closer to the target, their angular movement is larger than the simultaneous movement of the head. The eyes therefore have to move faster and the velocity differential is known as VOR gain. Figure 1 illustrates the effect of target distance on VOR gain: aligning the head with targets A and B involves the same degree of head rotation, while the VOR rotation of the eye is larger for A than for B. The nearer the target, the larger the VOR gain.

Recent work proposed the use of VOR to disambiguate targets selected by gaze in virtual reality [Mardanbegi et al. 2019]. The purpose of this work is to provide a fundamental exploration of VOR gain for gaze depth estimation. We start with a theoretical analysis of the relationship between VOR gain and target depth, expanding on a model of VOR gain developed in neuroscience [Vrire et al. 1986] to understand how the VG-depth relationship is affected by head-angle relative to the target (of importance as the head

Figure 1: Effect of target distance on VOR. Rotation of the head to target A (θH) is compensated by eye rotation in the opposing direction (θEA). As the eyes are nearer the target, they have to rotate faster than the head. This effect, the VOR gain, decreases with target distance (θEB).
travels through an angular range during VOR), and by user variables (variance in head-eye geometry). We then proceed to empirical work to validate the model, based on a data collection with 10 participants using a virtual environment, in which we sampled VOR at target distances from 20 cm to 10 m. Based on insight from the empirical data, we propose measurement of pupil centre velocity for capturing VOR gain, and develop a gaze depth estimation method based on a generic function and two-point depth calibration.

Both our theoretical and practical evaluation of VOR gain are conducted in comparison with vergence. Our results show that VOR gain and vergence behave similarly in relation to gaze depth, leading us to propose a generic model (in the form of a rational function) that can be used for gaze depth estimation with both VOR gain or vergence. A potential advantage of VOR gain over vergence is that it requires tracking of only one eye. However, our results also give detailed insight into limitations and challenges of harnessing VOR gain due to the temporal nature of the cue and complex interaction between head and eyes during VOR.

2 RELATED WORK

Previous works on 3D gaze estimation that are based on computing the fixation depth can be categorised depending on how they utilise the information obtained from the eyes and whether they infer the gaze depth directly or indirectly:

Gaze ray-casting methods: These methods primarily rely on ray-casting a single gaze ray (from either the left or the right eye or the average of both rays) shot from an imaginary cyclopean eye situated midway between the two eyes) with the 3D scene where the intersection of the first object in the scene and the gaze ray is taken as the 3D point of regard, e.g. [Cournia et al. 2003; Mantiuk et al. 2011; Tanriverdi and Jacob 2000]. These techniques rely on 3D knowledge of the scene and are only possible if the gaze ray directly intersects an object. They also do not address the occlusion ambiguity when several objects are intersecting the gaze ray as they don’t measure the fixation depth directly. In contrast to those methods that require prior knowledge of the scene, Munn and Pelz used the gaze ray of a single eye sampled at two different viewing angles to estimate the 3D point-of-regard [Munn and Pelz 2008]. However, this method relies upon robust feature tracking and calibration of the scene camera in order to triangulate 2D image points in different keyframes.

Vergence-based methods: Using the eyes’ vergence has been commonly used for gaze depth estimation. Unlike ray-casting methods, vergence-based techniques do not rely on information about the scene, instead detecting and measuring the phenomena of the eyes simultaneously moving in opposite directions to maintain focus on objects at different depths. Techniques that directly calculate the vergence can estimate the 3D gaze point by intersecting multiple gaze rays from the left and the right eyes [Duchowski et al. 2001; Hennessey* and Lawrence 2009]. Alternatively, vergence can be calculated indirectly, such as techniques that obtain the 3D gaze point via triangulation using either horizontal disparity between the left and the right 2D gaze points [Alt et al. 2014a; Daugherty et al. 2010; Duchowski et al. 2014, 2011; Pfeiffer et al. 2008] or the inter-pupillary distance [Alt et al. 2014b; Gutierrez Mlot et al. 2016; Ki and Kwon 2008; Kwon et al. 2006]. Others have used machine learning techniques to estimate gaze depth from vergence [Orlosky et al. 2016; Wang et al. 2014]. All vergence-based techniques rely on binocular eye tracking capabilities. The range of distances at which changes of the vergence angle are measurable within an acceptable experimental error limits the design and evaluated of gaze distances to less than (approx.) 1.5m. Weier et al. [Weier et al. 2018] introduced a combined method for gaze depth estimation where vergence measures are combined with other depth measures (such as depth obtained from ray casting) into feature sets to train a regression model to deliver improved depth estimates up to 6m.

Accommodation-based methods: It is also possible to estimate gaze depth without knowledge of the gaze position. The accommodation of the eyes - the process of changing the curvature of the lens to control optical power - can be measured using autorefractors to infer the gaze depth [Mercier et al. 2017]. Another example is the work by Alt et al. [Alt et al. 2014a], which used pupil diameter to infer the depth of the gazed target when interaction with stereoscopic content. This technique is based on the assumption that the pupil diameter changes as a function of accommodation given that lighting conditions remain constant [Stephan Reichelt 2010]. Common to these techniques is that the required information can be inferred from the information obtained from a single eye only. However, bulky bespoke devices are required to accurately measure the eye’s accommodation, which are not easily integrated into head-mounted displays.

Vestibulo-ocular reflex: The relationship between VOR gain and fixation depth has been studied in-depth in the fields of physiology and neuroscience, e.g. [Angelaki 2004; Clément and Maciel 2004; Hine and Thorn 1987; Paige 1989; Viirre et al. 1986]. The main goal in these fields is to study the exact mechanisms behind the VOR, and hypothesise how VORs are generated based on sensory information. Viirre et al. studied how actual VOR performed against an ideal VOR, using three Macaca fuscicularis monkeys [Viirre et al. 1986]. By considering the ideal relationship between eye and head angles, they examined the mechanism of VOR, and the effect of target depth and radius of rotation on the VOR gain. Around the same time, Hine and Thorn used human subjects to investigate near fixation VOR targets by developing a similar theoretical model for VOR gain [Hine and Thorn 1987]. In addition, they found that high-frequency horizontal head oscillations were found to markedly affect the VOR gain and that the eyes lagged the head movement by a significant amount at higher frequencies of head oscillations (> 3Hz). These early works demonstrated how target distance affects the VOR gain for angular horizontal movements. Recent work showed that the effect can be used for resolving target ambiguity when gaze is used for object selection in virtual reality [Mardanbegi et al. 2019]. This work, in contrast, presents a fundamental investigation of VOR for gaze depth estimation for which we build on a theory developed in other fields, i.e. theoretical models of how ideal VOR movement is generated.

3 VOR GAIN & FIXATION DEPTH

In this section, we describe the theoretical foundations of the technique using a geometric model of the user’s head and eyes during
a VOR movement, see Figure 2. This model is inspired by previous work from the fields of vision science and physiology [Hine and Thorn 1987; Viirre et al. 1986]. It assumes the user is fixating on a point of regard (PoR) located at distance \(D \) from the centre of rotation of head, when the head is turned slightly to the right. All angles are relative to the neutral position when the centre of rotation of the head \(O \), mid-point of the eyes \((H) \), and PoR are collinear. We assume that head movement is purely due to horizontal rotation, and that the centre of rotation of the head \(O \) is located at the vertebral column.

During VOR eye movements, the head and the eyeballs can be considered as two coupled counter-rotating objects in 3D where both rotate together but in opposite directions. The gain of the VOR eye movement (VG) is defined as the ratio of angular eye velocity to angular head velocity, defined by:

\[
VG = \frac{d\theta_E}{d\theta_H}
\]

(1)

Where \(\theta_E \) and \(\theta_H \) are rotations of the eye and the head respectively.

As a result of the offset between the centre of rotation of the eye and the head, and the fact that the eyes are carried by the head during head movements, the angular displacement of the eyes, \(\theta_E \), varies by a small amount, \(\epsilon \), compared with the angular displacement of the head, \(\theta_H \):

\[
\theta_E = \theta_H + \epsilon
\]

(2)

More specifically, \(\epsilon \) represents the amount that the gaze direction rotates in space during VOR while the fixation point is fixed. Assuming \(\theta_H \) is fixed, \(\epsilon \) changes as a function of fixation depth, \(D \), and the radius of rotation, \(r \) [Viirre et al. 1986]. According to the geometry, the relationship between \(\theta_H \) and \(\theta_E \) for both the left, \(\theta_{El} \), and right, \(\theta_{Er} \), eyes can be derived by the following equations:

\[
\begin{align*}
\theta_{Er} &= \arctan \left(\frac{(D+r)\sin(\theta_H) - \frac{1}{2}}{(D+r)\cos(\theta_H) - \frac{r}{2}} \right) \\
\theta_{El} &= \arctan \left(\frac{(D+r)\sin(\theta_H) + \frac{1}{2}}{(D+r)\cos(\theta_H) - \frac{r}{2}} \right)
\end{align*}
\]

(3)

The VOR gain can be obtained by differentiating the two sides of the equations above with respect to the angular head velocity. For example, the VOR gain for the right eye (VG\(_r\)) can be expressed as follows:

\[
VG_r = \frac{d\theta_{Er}}{d\theta_H} = \frac{2(D + r)(2D - I \sin(\theta_H) - 2r \cos(\theta_H) + 2r)}{(I - 2(D + r)\sin(\theta_H))^2 + 4(r - (D + r) \cos(\theta_H))^2}
\]

(4)

Figure 3 shows how the VOR gain is a function of target distance as well as three other variables: the head angle (\(\theta_H \)) at which the gain is measured, the radius of rotation \(r \), and the inter-ocular separation \(I \). In the following sections, we discuss how these parameters affect the VOR gain at different fixation depths using the theoretical geometric model.

3.1 Effect of Head-angle on VOR Gain

An important assumption of the proposed method, is that the fixation depth is calculated at a given value of \(\theta_H \). Figure 4 shows how the VOR gain defined in Eq.4 changes for different \(\theta_H \) at different fixation depths. Up to distances of \(\sim 2 \text{ m} \), VOR gain decreases as the distance increases, indicating that the angular velocity of the eye and right, \(\theta_{Er} \), eyes can be derived by the following equations:
becomes higher than the angular velocity of the head at smaller fix-
a tion distances as the eye has to rotate a larger angle. The maximum
VOR gain happens at a head angle where the eye centre, the centre
of rotation of the head (O), and the PoR are collinear. Either side
of this point the VOR gain symmetrically decreases. This peak is
slightly shifted for the right and the left eye due to the inter-ocular
separation. We refer to the head angle at which the peak VOR gain
occurs as the Peak-Gain angle \(\theta_{pH} = \theta_{pE} \approx +20.3^\circ \) for the right
eye and \(\theta_{pH} = \theta_{pE} \approx -20.3^\circ \) for the left eye). The distance between
the eye and the target is minimal at the Peak-Gain angle. The rela-
tionship between VOR gain and head angle implies that gaze
depth estimation using VOR gain works best at peak-gain angles
as the wider range of changes in the gain could better differentiate
the fixation depth value. The VOR gain is close to unity for target
distances greater than \(\sim 2 \) m regardless of the head angle.

In Figure 3, we show the changes of \(VG \) (solid line) at the peak-
gain angle of the right eye at different distances. The radius of
rotation \(r \) is set to 8.8 cm which is the distance between the centre
of rotation of the head (i.e. vertebral column) and the centre of
the eyeballs [Clément and Maciel 2004; Ranjbaran and Galiana
2012]. The distance between the two eyeballs \((l) \) is also set to 6.5
cm [Poston 2000]. To better illustrate the effect of \(\theta_{H} \) on the VOR
gain, we have also shown the VOR gain curves (dashed lines) for
\(\theta_{H} = 0^\circ \) which is about \(20^\circ \) off from the peak-gain angle.

3.2 Effect of User Variables

The remaining two variables which the VOR gain is dependent on
are user-specific variables:

- Distance from centre of rotation to eyes \((r) \)
- Inter-ocular separation \((l) \)

While pure horizontal head rotations are typically done around
the vertebral column (\(\sim 8.8 \) cm behind the eyes), the axis of rotation
may shift depending on how the user performs the head rotation.
In this geometric model, we assume the user performs a horizontal
rotation with a fixed centre of rotation. In the next section, we dis-
cuss how this assumption holds up using real-world data. Figure 3
shows how the values of \(VG \) are affected by varying the distance
of the eyes to the centre of rotation for radii of 8.8 and 6.8 cm. We
can see that the gain decreases by decreasing the radius of rotation
even by a small amount (2 cm).

Changes to the inter-ocular separation affect the angle at which
Peak-Gain can be found. Ideally, having values for both \(r \) and \(l \),
would simplify the calculation of gaze depth estimation. However,
it is not feasible to accurately acquire these values in a practical
manner. In the rest of the paper, we discuss how to derive the gaze
depth estimation empirically from real-world data without the need
to know these values \textit{a priori}.

3.3 Comparison with Vergence

Vergence is traditionally used for gaze depth estimation. To compare
the VOR gain technique with vergence in terms of their relation
with target depth, we derived the vergence equation from the geo-
metry in Figure 2. The vergence angle \((\alpha) \) is defined as the angle
between the left and the right gaze rays, which is derived by:

\[
\alpha = r_{l} + r_{r} = \theta_{E_{r}} + \theta_{E_{l}} \quad (5)
\]
Before each recording, the participants conducted a gaze calibration with five points using the default Tobii calibration procedure. The participants were sat on a chair in a comfortable manner with their head facing straight ahead. After a short training session, the participants went through 18 trials with different target depths in each trial, ranging from 20 cm up to 10 m. The task in each trial was to fixate on a target and to move the head 6 times in the transverse plane (akin to shaking the head “no”). The same procedure was repeated twice for each participant.

At the beginning of the recording, a white colour target with a cross at its centre was shown at 70 cm. To help participants align their head with the target at the beginning of each trial, a cross was shown in the centre of their view at the same depth as the target and they were instructed to keep the centre of the cross aligned with the centre of the target. Participants were also asked to keep their gaze fixed at the centre of the target at all times. The target was then moved closer towards the head and stopped at the first distance (20 cm). This converge-assist step with 6 second duration was used to help the user converge the eyes at such a close distance, which could otherwise be very difficult for some people. The participants were instructed to start moving their head when the target turned green. To ensure that head movements were done in the transverse plane, the participants were instructed to keep the horizontal line of the cross aligned with the target during the movement. The head rotation was limited to ±20° from the centre position, and the target became red as soon as the head angle exceeded this angle to indicate to the participant that they should stop the movement and reverse the direction. A tick-tack sound was played in the background to guide the participants to adjust the speed of the movement by aligning the tick-tack sounds with extreme right and left angles. The desired speed for the head shake was set to 50°/sec (0.4°/frame). This value was decided empirically during a pilot experiment using 4 different speeds (30, 40, 50, and 60)°/sec where 50°/sec yielded smoother side-to-side head movements and it was not too fast for the users. After 10 side-to-side head movements, the target became white indicating that the user can stop the movement. The target then moved to the next distance with a 4 second transition to assist with convergence. The target size was kept constant at 2° of visual angle at all distances.

The following signals were recorded in each trial: pupil positions, gaze rays and eyeball centres of both eyes, head position and orientation, ΘH, and ΘE of each eye. In each trial, on average 40 samples were collected for each side-to-side head rotation from −15° to +15°, resulting in approximately 220 samples per trial. We applied a smoothing filter on the raw signals of head and eye using a 3rd order Butterworth filter with the cutoff frequency of 0.04. Figure 5.a shows example raw and filtered rotation signals of the right eye and head of a random trial for 6 horizontal head movements of 40° (side-to-side) whilst the user was looking at a target located straight in front of the head at 20 cm. A Savitzky-Golay [Gorry 1990] filter using a 3rd order polynomial and a window size of 101 was then used to produce a velocity profile (Figure 5.b). The VOR gain value was then calculated by dividing the eye velocity by the head velocity. Figure 5.c shows an example VG signal measured during VOR. As we see in the figure, the VG value gets very unstable for the velocity signals close to zero.

4.3 Data Pre-processing

We used the raw pupil position data recorded during each trial to measure a relative interpupillary distance. We subtracted the horizontal values of pupil positions of the right eye and the left eye to get a signal that can show how the interpupillary distance has changed for different fixation distances. We refer to this signal as the IPD signal for the rest of the paper even though it is a proxy of the actual IPD measurement. Since accurate measurement of vergence angle is not feasible in general practice (due to the noisy gaze data), we used the IPD signal as an alternative to vergence angle for the rest of the paper. Due to the high frame rate of the capture device there were occasions where we had multiple values per depth, in which case we took the median value. To remove spikes and noise from this signal, we first removed outlier samples by calculating the rolling median signal with a window size of 50 and then removed any sample where the distance from the median was larger than a given threshold.

The underlying assumption of the VOR method is that the users keep their gaze fixed on the target during head movements. Moving gaze during head rotations significantly changes the gain value which has a large impact on gaze depth estimation. We checked the gaze to target angle when calculating the VOR gain values, and excluded those samples where the gaze-to-target angle was larger than 4°. Smaller thresholds could result in insufficient samples per trial, as the majority of participants tended to move their gaze from the target for small amount during head movements. There were two subjects (P5 & P7) that had problems maintaining their gaze fixed on the target during head movements.

5 ANALYSIS OF REAL-WORLD VOR DATA

Based on the data collected in Section 4 we investigate how empirically derived VOR gain compares with the theoretical model introduced in Section 3.

5.1 Empirically Derived VOR Gain

Figure 6 shows the VOR gain samples of the right eye (figures a and b) as well as the IPD values (figures c and d) of 2 participants (P3 and P6). The peak that the theory predicted was not as pronounced as we would have expected in the empirical data. As can be seen in the
We also observed the same linearity across head angles for the IPD we also used pupil data instead of gaze data. Being able to use the
taken the average of gain values above 5 m. Note that there were
values into the range [0,1] where 1 corresponds to the values at
(calibration. We used the velocity of the pupil centre instead of the
some of the recordings. As suggested in [Mardanbegi et al. 2019],
5.2 VOR Gain using Pupil Centre
The raw pupil position data was less noisy than the gaze signal for
no significant changes in the VOR and IPD samples at distances
samples, with no pronounced peak. The VOR gain obtained from our
dataset varied across participants and was often not consistent with
the theory (Figure 4). The VOR gain values were also sometimes
deeper than 1 indicating lower velocity for eye movements compared
to the head in some trials which should not occur in pure VOR
movements (we will discuss this more in the following subsections).
Due to the instability of the VOR gain samples in each trial (see
e.g., Figure 5.c), the median of all gain samples within the range
of [−10°, +10°] was used as the final gain value for each distance.
The mean of the IPD value within the same range was taken as
the IPD value for each distance. Samples outside the interquartile
range were considered as outliers and were excluded.
In order to be able to compare the VOR gain values between
subjects, we normalised the gain and IPD curves by mapping the
values into the range [0,1] where 1 corresponds to the values at
D=20 cm as measured for each individual subject. The lower limit (0)
for IPD corresponds to the value obtained at D=10 m. Since the VOR
gain values were noisier than the vergence samples, we took more
samples at far distances to define the lower limit for VOR gain and
we took the average of gain values above 5 m. Note that there were
no significant changes in the VOR and IPD samples at distances
above 5 m. Figure 7.b shows the overall VOR gain and IPD samples
collected from all subjects at different target distances. Despite the
noise in the VOR signals, we can clearly see that monocular VOR
gain and vergence change similarly across different target depths
as the theory predicts.

5.2 VOR Gain using Pupil Centre
The raw pupil position data was less noisy than the gaze signal for
some of the recordings. As suggested in [Mardanbegi et al. 2019],
we also used pupil data instead of gaze data. Being able to use the
pupil position makes the proposed method independent from gaze
calibration. We used the velocity of the pupil centre instead of the
angular velocity of the eyeball in our calculation of VOR gain:

\[
VGP = \frac{dPC}{dH} \tag{6}
\]

where PC is the centre of the pupil in the eye image. Strictly speaking,
the VOR gain obtained from the pupil centre data (VGP) is not
VOR gain and is not unitless, but it decreases similar to the VG
value as the target moves away from the eye. The pupil position
is measured in pixels and its changes (as seen in the eye image)
are nonlinear during eye rotations, however this nonlinearity is
insignificant at small eye angles. The VGP values obtained from the
pupil centre data gave us more stable results and more consistency
across participants at each depth compared to VG values (Figure 7).
We, therefore, used the VGP values in the rest of the paper.

6 GAZE DEPTH ESTIMATION
In this section, we investigate if VOR gain can be used for estimat-
gaze fixation depth. The fixation depth is estimated when the
user performs a head rotation (e.g., left/right head shake) whilst fix-
ating on a fixed target. Ideally, gaze depth estimation is done using
Eq.4 at a specific head angle (ideally at peak-gain angle) assuming
that the radius of the rotation is constant, however as previously
mentioned we used the median of gain samples in the range of ±10°
to compensate for gain instability. The general form of the VG
function for fixed head angle and radius is a rational function:

\[
VG(D) = \frac{D^2 + DP_0 + P_1}{D^2P_2 + DP_3 + P_4} \tag{7}
\]

Where D is the fixation depth. The P_i values are fixed coefficients
which we find during a calibration procedure (Depth Calibration).
The fixation depth can then be obtained for any gain value by
solving the expression above for D.
6.1 Data Pruning

The main assumption of the gaze depth estimation method is that the gain samples from each distance are taken during VOR with the gaze fixed on the target. To assess the gaze depth estimation method we excluded recordings where the gain values were likely to be invalid due to translational head shifts, fixation issues, etc. The IPD and gain signals are assumed to be very similar, therefore we took the median of the IPD signals across all subjects as our baseline to compare the VOR gain samples with. For each VOR gain curve, we calculated the sum of squares (SS) of the distance between the gain sample (X_g) and the baseline (X_b) at different target distances.

$$SS = \sum_{i=1}^{18}(X_{gd_i} - X_{bd_i})^2$$

(8)

Where d_i refers to an individual target distance (18 distances in total). Any recording where $SS > thr$ was considered as an outlier. The value for the threshold thr was set to 0.1 which gave us a good separation of the abnormal curves. Based on the above criteria, all recordings belonging to the subjects with fixation difficulties during the VOR (P5 & P7), as well as 14 out of 60 remaining recordings (∼23%) were excluded. Potential reasons for these erroneous recordings are discussed in Section 7.

6.2 Depth Calibration

In order to derive a model for gaze depth estimation, a number of VOR gain measurements need to be taken at different depths to estimate the unknown parameters of the model. To evaluate the gaze depth estimation in our study, we took all the VGP samples collected at four distances (20, 60, 150, 500 cm) to fit the model for every participant. The fitted model was then used to estimate the depth using the median of samples taken at every depth. Figure 8 shows the gaze depth estimation error (defined as the difference between the estimated depth and actual depth) at different distances. The results show that the error using VOR gain increases proportionally to the fixation depth. The error from the vergence method was lower than the VOR method, in particular at distances below 2 meters. The result of the model fitting on the VGP samples (right eye) from a subject with a good recording (P3) is shown in Figure 9 and the gaze depth estimation error for this subject is also shown in Figure 8.

$$S(D) = \frac{D^2 + 0.66 \times D + 100}{0.06 + D^2 + 3.2 \times D + 25.96}$$

(9)

Since the generic model relies on normalised samples, it requires the IPD or VGP measures obtained from the subject to be normalised before using the model. For this, the upper and lower bounds of the IPD or VGP must be found which requires taking samples at two different distances, one at 20 cm, and one above 500 cm for which the generic model is made.

6.3 Generic Model

We further investigated the possibility of using a generic model for gaze depth estimation, since both the theory and our empirical data show that vergence and VOR gain curves against depth are almost identical (Figure 7). The ability to use a generic model decreases the number of calibration points required for gaze depth estimation.

We took the average of the coefficients obtained from fitting the model using Eq. 7 to all normalised IPD and VGP curves collected from all subjects (except those recording that were excluded) and used that fixed generic model for gaze depth estimation. The generic model (S) obtained from all the subjects was:

Figure 9: The VGPr samples (green curve) of a subject (P3) with very low $SS = 0.017$ (see Sec. 6.1) as an example of a good recording. The fitted model and the samples used for depth calibration are shown in red.

Figure 10: Gaze depth estimation error using the generic model (Eq. 9). The median of the samples taken 20 cm and 10 m were used to normalise the data from each subject.
generic model for gaze depth estimation is close to the accuracy of the normal calibration using four distances.

7 DISCUSSION

Our results show that fixation depth can be recovered from VOR gain of a single eye, with a similar response to using binocular vergence. We have shown that gaze depth estimation can be achieved using regression models of VOR gain by fitting a model per participant based on four calibration depth estimates. Additionally, a generic model can be used across users, thus requiring only two depth estimates to establish upper and lower boundaries for normalisation. In contrast to other gaze depth estimation techniques, VOR-based gaze depth estimation is a non-continuous process, requiring head movements to trigger the gaze depth estimation. The gaze depth estimation error using VOR gain increases proportionally to the fixation depth, suggesting that this technique may not be appropriate for accurate gaze depth estimation. However, as shown in previous work this is a compelling mechanism for target disambiguation in 3D environments, where objects may be partially occluded at different distances, and when combined with head gestures for selection [Mardanbegi et al. 2012, 2019; Nukariinen et al. 2016]. Unlike vergence-based methods, the VOR method using pupil centre is not reliant on gaze calibration and therefore does not suffer gaze calibration drift which is a common issue in many commercial eye trackers.

Compared to previous methods of gaze depth estimation, extraction of the signals required to calculate VOR gain does not rely on camera-based systems. The required eye velocity signals can also be measured using electrooculography (EOG) signals, whereas head velocities can be calculated using cheap inertial measurement units which are prolific in many HMDs. Beyond virtual reality, VOR-based gaze depth estimation is also applicable for applications in mixed or augmented realities, either as target disambiguation during selection or to adapt display rendering non-continuously.

Our results show that the measured VOR gain is unexpectedly noisier than the vergence response. Causes of this noise are unclear and may be specific to our setup, signal processing, or several factors that affect the VOR gain which we disregarded in our implementation. Factors that could contribute to the noise include:

- Inconsistent radius of rotation: While the vertebral column is the centre of rotation for a pure horizontal head rotations, the location of the centre could vary during natural head rotations. We investigated the head rotations in our experiment to see whether the centre of rotation (point O in Figure 2) remains fixed during natural and self-generated horizontal head rotations. This was assessed by intersecting the consecutive head rays (black lines in Figure 11). The locus of this intersection point, which represents the centre of rotation was not perfectly fixed in any of the trials (see Figure 11). As a result, the VOR movements were not ideal and head rotations were often combined with head translation and torso rotation.

- The average distance between the midpoint of two eyes and the centre of rotation at the beginning of each trial was taken as the radius for each trial. The average radius of our participants was 6.17 cm ($SD=0.86$, $min=4.8$, $max=7.3$). This value is much smaller than the average distance between the vertebral column and cyclopean eye that we referred to in our theoretical discussion.

8 CONCLUSION

This work has analysed the possibility of using VOR gain for estimating gaze depth using data from one eye as an alternative to binocular methods, such as vergence. Using a theoretical model, we have discussed how target distance and anthropometry affect the VOR gain. Using empirical data acquired from a virtual reality headset, we compared our theoretical understanding of VOR gain to real-world data. Furthermore, we demonstrated how regression models can be used to estimate fixation depths based on eye and head velocities alone. We also discussed the limitations of using VOR gain for gaze depth estimation, and elaborated on possible causes of error that could be improved upon in future work. Using VOR gain for gaze depth estimation is compelling due to the flexibility of sensing configurations that can be used to measure the required signals, whilst only requiring data from one eye at a time.

ACKNOWLEDGMENTS

This work is funded by the EPSRC project MODEM Grant No. EP/M006255/1.
REFERENCES

