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Abstract 

Due to the lack of objective measures, the evaluation and prioritization of clustering methods is 

inherently challenging. Since their evaluation generally involves numerous criteria, it can be 

designed as a multiple criteria decision making (MCDM) problem and using multiple data sets, 

the problem can be formulated as a group MCDM modeling. 

In this paper, a MCDM-based framework is proposed to evaluate and rank a number of clustering 

methods. The proposed approach employs three group MCDM algorithms and a Borda count 

method which leads to a comprehensive, robust framework capable of evaluating and ranking 

multiple clustering models on manifold data sets (cases). Moreover, we introduce a hybrid data 

clustering algorithm which combines a particle swarm optimization (PSO) algorithm with a K-

means clustering algorithm. Finally, a clustering comparison with regard to both external and 

internal evaluation indicators is another contribution of this paper. 

Six clustering methods are compared based on five evaluation measures. The results of 

comparative experiments on ten data sets indicate the effectiveness of the proposed hybrid 

clustering method. More importantly, the experimental results vividly demonstrate the 

effectiveness of the group MCDM-based evaluation on clustering model selection.  

Keywords: Clustering; MCDM; Group TOPSIS; Group COPRAS; Particle Swarm Optimization. 

 

1. Introduction 

In the past few decades, cluster analysis has played a central role in a variety of disciplines, 

including but not limited to computer sciences, life and medical sciences, earth sciences, social 

sciences, and economics (Das, Abraham, & Konar, 2008). This sheer usefulness reflects its 

significance as one of the main steps in data analysis. 

Given the countless number of clustering algorithms available, the significance of evaluating these 

algorithms becomes evident as well. Numerous evaluation metrics have been proposed by 

researchers hitherto. The evaluation metrics can be intrinsic (internal) or extrinsic (external). 

Intrinsic metrics measure the closeness of elements within one cluster as well as the distance, or 

separation, of a cluster’s elements from other clusters. Extrinsic metrics, on the other hand, 

evaluate the output of a given clustering method. Since these metrics measure different 
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characteristics of clustering methods, a perfect evaluation must include both aforementioned 

classes. 

However, the use of different techniques gives rise to another challenge which is the multitude of 

different, and sometimes inconsistent, results which makes the evaluation process extremely 

difficult. Thus, it is of significant importance to aggregate these diverse outcomes into a single, 

final result. Otherwise, comparing the techniques and selecting the best method would be 

impossible in many cases.  

There are also a few papers that consider the clustering modelling as a multi objective optimization 

problem (Liu, Li, Zhao, & Liu, 2019; Shang, Zhang, Li, Jiao, & Stolkin, 2019). Mainly these 

studies take into account the inconsistency in the criteria and enhance the capability of one specific 

model with a sophisticated approach; however, due to encounters with large numbers of datasets, 

the critical issue does not lie in developing or finding a complex clustering algorithm, but in the 

selection of a well-discriminating model. Fulcher, Little, and Jones (2013) discussed how a 

threshold on the simple model computed for each dataset provides comparable 

classification/clustering performance on different problems, undermining the need for computing 

complex classification/clustering algorithms. 

Multiple criteria decision making (MCDM) has proven to be a real boon in such cases and can be 

used to resolve the aforementioned challenge, which is the primary motivation of this paper. 

MCDM deals with choosing among a finite set of alternatives evaluated on the basis of multiple 

criteria. It makes preference decisions, such as selecting, ranking, and prioritization over the 

available alternatives. When the decision making process is conducted by more than one decision 

maker (DM), a MCDM problem becomes a group MCDM problem. For a clustering evaluation 

problem, the utilized methods, data sets, and measures are considered as the alternatives, criteria, 

and DMs, respectively. Therefore, considering the different number of data sets, the problem of 

interest can be approached as a MCDM problem. 

This study, first and foremost, provides a thorough framework to evaluate the clustering algorithms 

in different benchmark data sets, utilizing both internal and external measures. This framework is 

formulated as a group MCDM modeling. Since using only one ranking algorithm may not be 

robust, three MCDM algorithms are provided and the final ranking is aggregated with the Borda 
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method. To the best of our knowledge, such a comprehensive approach has not been presented 

hitherto. 

In this paper, five different groups of clustering approaches, including partitioning based models, 

hierarchical, fuzzy, density based, and a novel optimized clustering algorithm are evaluated with 

external and internal clustering measures. An optimized clustering algorithm is a combination of 

k-means and particle swarm optimization (PSO) which aims to improve the performance of 

distance-based clustering algorithms by iteratively trying to optimize a candidate solution with 

regard to a given measure of quality. 

Ergo, the major contributions of this paper are as follows: 

• A clustering comparison with regard to both external and internal evaluation indicators 

• Proposing a group MCDM (GMCDM) framework in order to evaluate and rank the 

clustering algorithms  

• Presenting a robust ranking via the Borda method for aggregating MCDM algorithms  

• Introducing a new hybrid PSO-clustering approach 

The rest of the paper is organized as follows. In section 2 an extensive review of the literature is 

presented. The proposed algorithm is rendered in Section 3. In Section 4, the experimental results 

on the data sets are demonstrated and finally Section 5 concludes the paper. 

2. Literature review 

2.1. Overview 

The goal of clustering is to categorize an unlabeled data set into groups of objects (Berkhin, 2006). 

Each group, called a “cluster” , consists of objects that are similar among themselves and dissimilar 

to objects of other groups according to specific metrics (Fahad, et al., 2014). In a more formal 

definition, clustering is the act of identifying a structure in an unlabeled data set by organizing data 

into homogeneous groups where the within-group-object similarity is minimized and the between-

group-object dissimilarity is maximized (Liao, 2005). The terms unsupervised learning (Jain & 

Dubes, 1988), numerical taxonomy (Sneath & Sokal, 1973), vector quantization (Oehler & Gray, 

1995), and learning by observation (Michalski & Stepp, 1983) are all synonymous with clustering 

(Jain, Murty, & Flynn, 1999). 
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The process of clustering consists of four steps (R. Xu & Wunsch, 2005): 

1. Feature extraction and selection: the most representative features are extracted and selected 

from the original data set; 

2. Clustering algorithm design: the clustering algorithm is designed pursuant to the 

characteristics of the problem; 

3. Result evaluation: the clustering result and the validity of the algorithm are evaluated; 

4. Result explanation: a pragmatic explanation for the result is provided; 

2.2. Related works 

This section focuses on the clustering evaluation approaches in previous studies. Since the main 

goal of this paper is to provide a comprehensive evaluation framework, we review the studies 

mainly in terms of their evaluation measures and the ways the algorithms are compared to each 

other.   

D. Xu and Tian (2015) analyzed both traditional and modern clustering algorithms. 26 traditional 

and 45 modern clustering methods were discussed in detail. However, no practical experiment was 

performed. Hsu (2015) compared three clustering methods, namely cluster-wise regression, 

model-based clustering and the K-means method using a large data set of buildings in New York. 

The algorithms were evaluated according to the Jaccard coefficient as a measure of cluster stability 

and prediction accuracy. The results showed that cluster-wise regression gives accurate predictions 

but unstable clusters, while the K-means gives more stable clusters but poor predictions in some 

cases. Das, et al. (2008) proposed an application of differential evolution to the automatic 

clustering of large unlabeled data sets.  Superiority of the proposed method over three other 

methods including genetic and PSO clustering, and one hierarchical clustering algorithm was 

demonstrated. Two evaluation metrics, including Davis–Bouldin and Chou–Su (CS) were used in 

order to compare the algorithms. Despite some inconsistencies regarding the results of the 

measures, no aggregate ranking approach was utilized. Tzortzis and Likas (2014) presented the 

MinMax k-Means algorithm, an algorithm that assigns weights to each cluster relative to its 

variance, and the performance of the proposed algorithm was compared to K-means, k-means++ 

and Pifs K-means algorithms on six popular data sets. To evaluate the quality of the solutions, the 

maximum cluster variance and the sum of the cluster variances were utilized. Sanchez, Castillo, 

Castro, and Melin (2014) compared fuzzy granular gravitational clustering algorithm (FGGCA) 
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against four other clustering algorithms, namely hierarchical-complete, hierarchical-centroid, K-

means, and affinity propagation with regard to classification accuracy and 10 clustering validity 

indices over a number of popular benchmark data sets, such as Wine, Iris, Seeds, and Glass 

identification. The results of utilized measures were inconsistent; however, no ranking method is 

presented and the best algorithm is selected intuitively. Ünlü and Xanthopoulos (2019) employ 

four different indices including Silhouette, Calinski–Harabasz (CH), Davies–Bouldin, and 

Consensus to evaluate the correct number of clusters and mentioned that there is no de facto 

optimal approach for finding this. 

In Meila and Heckerman (2013), an experimental comparison of several clustering methods 

including Expectation–Maximization (EM), Classification EM (CEM), and a model-based 

hierarchical agglomerative clustering (HAC) method on a real-world data set was performed. The 

log-marginal-likelihood criterion was used to select the best model structure. Moreover, the 

difference between the number of clusters extracted from the model and the correct number of 

clusters was utilized to measure how well the models understand the domain under study. The two 

aforementioned criteria along with classification accuracy, running time and memory requirements 

were used to evaluate the algorithms. Karaboga and Ozturk (2011) compared a proposed Artificial 

Bee Colony clustering algorithm against 10 clustering methods on 13 data sets from the UCI 

Machine Learning Repository. In order to prioritize the algorithms, classification error percentages 

(CEP) on test data sets were used. The average of CEPs and the sum of the algorithms’ rankings 

of each problem were used as ranking measures. In Lv, et al. (2016), a density-based clustering 

algorithm based on a density-based spatial clustering of applications with noise (DBSCAN) 

method called SB-DBSCAN was proposed. The algorithm was compared with a traditional 

DBSCAN and IS-DBSCAN method on three data sets from the UCI Machine Learning 

Repository. The algorithms were compared according to their respective correct rate. However, in 

real clustering cases, the correct class (label) of the data sets is not available. Therefore, using 

accuracy is not a general approach for the clustering evaluation. Ding and Fu (2016) propounded 

a kernel-based fuzzy C-means (KFCM) based on the genetic algorithm. In order to improve the 

clustering performance of the KFCM algorithm, an improved adaptive genetic algorithm was used 

to optimize the initial clustering centers. The algorithm was compared to FCM and KFCM methods 

on a number of test data sets. The correct rate was employed to evaluate the methods. Márquez, 

Otero, Félix, and García (2018) proposed a strategy for evolving prototype based clustering that 
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uses a weighting scheme to “progressively forget” old samples. They tested their approach on a 

simulated database and did not evaluate it on real-world datasets. Duò, Robinson, and Soneson 

(2018) compared 14 different clustering algorithms on nine public datasets and three simulated 

datasets. The authors tried to assess the stability, run time and scalability of these 14 clustering 

methods for finding subpopulations in genetic datasets yet they did not propose any quantitative 

ranking on the tested algorithms. Yang, Li, Liang, Li, and Xue (2018) proposed a new cluster 

validity index based on an optimized morphology similarity distance and ReliefF algorithm.  

By consideration the aforementioned studies, the choice of which measure to use to evaluate the 

clustering algorithms is subjective and non-systematic. According to an extensive study by 

Figueiredo, et al. (2019), the existence of too many different clustering evaluation indexes 

demonstrate that this field has not converged to a unique evaluation metrics to fairly and accurately 

evaluate clustering solutions. More importantly, how to assess the clustering efficiency from the 

result of the measures is the second dilemma. In the cases mentioned, different measures for 

evaluating the candidate clustering were implemented; however, they do not provide a ranking 

procedure to deal with the inconsistency on the evaluation measures’ result. This inconsistency is 

intensified when different data sets are utilized to prove the potential of the provided clustering 

algorithms. Lack of a comprehensive method to aggregate results and prioritize the algorithms are 

the main drawback of the studies.  

There are other studies in which a number of clustering methods are compared. However, just like 

the ones that are described in this section, most do not present a comprehensive and objective 

framework to evaluate and rank the algorithms. Among the few that do, Kou, Peng, and Wang 

(2014) presented a MCDM-based approach to prioritize and rank six clustering algorithms in 

financial risk analysis on three data sets. Eleven performance measures were ranked using 3 

MCDM methods, namely TOPSIS, DEA, and VIKOR. However, the lack of an integrated 

approach to combine the results of MCDM methods on the data sets is noticeable. Besides, due to 

this issue, increasing the number of data sets would lead to confusing results. 

We believe that applying a comprehensive framework consisting of both internal and external 

measures, in addition to providing a robust group MCDM approach to rank the utilized methods, 

the above mentioned shortcoming can be resolved. This approach not only integrates the results of 

all methods on all data sets into a final ranking, which is completely clear and comprehensible, but 
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also allows scholars to use as many data sets as necessary to be able to evaluate the algorithms 

more precisely. 

3. Methodology 

Three main elements have a crucial role to evaluate a clustering algorithm: The evaluation 

measures, the data set (or case studies) and the candidate clustering algorithms. This section 

provides detailed explanations about these three major elements which, combined with the 

proposed MCDM framework, basically form the methodology of this study.  

The proposed method consists of two different experiments, each including several steps. Figure 

1 demonstrates the steps of each experiment. In the following sections, the steps are described in 

detail. 

Datasets

The number of classes 

is determined

Utilize external 

measures on the 

algorithms

Utilize internal 

measures
No

Yes

Determine the 

number of 

classes

Performance 

of algorithms 

according to 

the measures

Utilize group MCDM

The results are in 

concordance

Use Borda count 

method
No

Rank the algorithms

Yes

 

Figure 1. The proposed methodology 
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3.1. Data sets 

The data sets analyzed in this paper are retrieved from the UCI Machine Learning Repository, 

which was first created in 1987 at UC Irvine. It is a collection of databases that are widely used by 

scholars for the empirical analysis of algorithms in different fields of study (Bache & Lichman, 

2013). 

Ten data sets from the databases are utilized to demonstrate the results of the techniques. These 

data sets are implemented because of their generality and convenience in reproducing the results 

by other researchers. 

3.2. Clustering algorithms 

As shown in Figure 1, two different approaches were undertaken to cluster the data sets. In the 

first one, the number of clusters is a predetermined parameter (equal to the number of classes for 

each data set), while in the second experiment, each data set was clustered in eight scenarios (from 

two up to nine clusters). Furthermore, six clustering algorithms are chosen to cluster the 

aforementioned data sets. We tried to select them in a way that as many clustering approaches as 

possible have at least one representative among the algorithms. To this end, the utilized algorithms 

are selected from five partition based, hierarchical, fuzzy theory based, density based, and 

metaheuristic based clustering classes. This section presents a brief explanation regarding each 

class, and the utilized algorithms are described in the relevant class. 

3.2.1. Partition based clustering algorithms 

The fundamental idea of partition based clustering algorithms is to consider the center of data 

objects as the center of the corresponding cluster. The partitioning based clustering algorithms 

split data points into a number of partitions, in the way that each partition represents a cluster. 

Each cluster must include at least one data point and each data point must belong to exactly one 

cluster (Fahad, et al., 2014). 

K-means, K-medoids, K-modes, PAM, and CLARANS are some well-known algorithms of this 

class of clusters. 

K-means++ clustering algorithm 
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Originally proposed in 2007, K-means ++ algorithm is an approximation algorithm for the k-

means problem (Arthur & Vassilvitskii, 2007). The main idea of the algorithm is to overcome one 

of the major shortcomings of k-means algorithms. Since a standard k-means algorithm selects the 

primary centers in a random manner, this selection can be arbitrarily bad with regard to the 

objective function. In other words, K-means++ initiates with allocating just one cluster center 

randomly and subsequently searches for other cluster centers given the first one. 

The algorithm consists of 5 steps: 

Step 1. Randomly select one cluster center among the data objects. 

Step 2. For each data object x, calculate D(x), the Euclidean distance between x and the center. 

Step 3. Randomly select a data object as a new center, using a weighted probability distribution 

where a point x is chosen with probability proportional to D(x)2. 

Step 4. Repeat Steps 2 and 3 up to the point that k centers are chosen. 

Step 5. Proceed using standard k-means clustering algorithm. 

In our research, this algorithm is implemented 50 times with different starting random point and 

its standard k-means has a maximum iteration of 500. 

Lloyd's algorithm 

Also known as a Voronoi iteration, Lloyd's algorithm is a closely related k-means algorithm 

originally used for scalar quantization and was later extended for vector quantization. 

Nevertheless, it differs from a standard k-means clustering algorithm in that its input is continuous 

rather than discrete. Hence, Lloyd's clustering algorithm uses Voronoi diagrams rather than 

detecting the closest center to each point as a k-means does. 

In the simplest words, Lloyd’s algorithm consist of two main steps (Hamerly & Drake, 2015): 

1. Initialize the centers 

2. Until the algorithm converges: 

          a. Assign each point to its nearest cluster center 

          b. Move each center to the mean of its assigned points. 

https://en.wikipedia.org/wiki/Voronoi_diagram
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Steps 2(a) and 2(b) repeat until centers have not changed within 500 iterations. 

3.2.2. Hierarchical clustering algorithms 

The underlying idea for hierarchical clustering methods is to construct hierarchical relationships 

among data (Johnson, 1967). Hierarchical clustering algorithms consist of agglomerative and 

divisive methods. An agglomerative clustering method commences with considering each object 

as a cluster and recursively merges the most appropriate clusters. A divisive clustering method 

commences with the whole data set as one cluster and recursively breaks the most appropriate 

cluster. The process continues until a given stopping criterion is satisfied. However, hierarchical 

clustering methods have a major disadvantage, which is once a step is performed, it cannot be 

undone. BIRCH, CURE, ROCK and Chameleon are some instances of hierarchical clustering 

algorithms (R. Xu & Wunsch, 2005). 

Ward’s clustering method 

Originally proposed by Ward in 1963, the Ward clustering method has been widely used and 

generalized in various ways (Murtagh & Legendre, 2014). Among the agglomerative clustering 

methods, Ward’s method is the only algorithm that is based on a classical sum-of-squares criterion, 

producing groups that minimize within-group dispersion at each binary fusion (Murtagh & 

Legendre, 2014). Furthermore, another interesting feature of Ward’s method is that it searches for 

clusters in multivariate Euclidean space. 

Ward’s method indicates the amount of sum of squares increasing by merging any two clusters. 

Merging cost, Δ, of combining two clusters, 𝐶𝑎 and 𝐶𝑏, is defined in equation 1: 

∆(𝐶𝑎, 𝐶𝑏) = ∑ 𝑑(𝑥, 𝑐𝑎∪𝑏)𝑥 𝜖 𝐶𝑎∪𝑏
− ∑ 𝑑(𝑥, 𝑐𝑎)𝑥 𝜖 𝐶𝑎

− ∑ 𝑑(𝑥, 𝑐𝑏)𝑥 𝜖 𝐶𝑏
=

𝑁𝑎𝑁𝑏

𝑁𝑎+𝑁𝑏
𝑑(𝑐𝑎 , 𝑐𝑏)                  (1) 

where x is instance data; 𝑐𝑎, 𝑐b, and 𝑐𝑎∪𝑏 are centers of 𝐶𝑎, 𝐶𝑏 , and 𝐶𝑎∪𝑏 clusters respectively; 𝑑 

stands for distance; 𝑁𝑎 and 𝑁𝑏 are the cardinalities of the clusters 𝐶𝑎 and 𝐶𝑏 respectively. 

With starting each point as one cluster, the sum of squares starts with zero value. Then, by merging 

clusters, it grows. The Ward method keeps merging clusters with slow growth in the sum of squares 

as much as possible. 

3.2.3. Fuzzy theory based clustering algorithms 
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Fuzzy theory based clustering algorithms change the discrete value of belonging label into the 

continuous interval [0, 1]. Among the fuzzy theory based algorithms, FCM, FCS and MM can be 

enumerated. For more information regarding these, read Baraldi and Blonda (1999). 

Fuzzy K-Means Clustering 

In FCM, the membership of data objects to different clusters can vary from 0 to 1. This method 

starts with randomly generated cluster centers and then each point is assigned to a cluster, 

according to membership weight that is calculated as follows: 

𝑊𝑖𝑗 =
1

∑ (
𝑑(𝑥𝑖,𝑐𝑘)

𝑑(𝑥𝑖,𝑐𝑟)
)

2
𝛽−1𝐾

𝑟=1

                                                                                                             (2) 

where d denotes distance and β ϵ [1, ∞) is a predefined constant parameter which controls fuzziness 

of clusters. 

After that, with an iterative gradient descent, the center of clusters is updated by the following 

formula: 

𝑐𝑗 =
∑ 𝑊𝑖𝑗

𝛽
∗𝑥𝑖∈𝐶𝑗

𝑥𝑖

∑ 𝑊
𝑖𝑗
𝛽

𝑥𝑖∈𝐶𝑗

                                                                                                                     (3) 

The objective function is formulated as the sum of membership weighed Euclidean distances 

which should be minimized: 

𝛷 = ∑ ∑ 𝑊𝑖𝑗
𝛽

∗ 𝑑(𝑥𝑖 , 𝑐𝑗)𝑥𝑖𝜖 𝐶𝑗

𝐾
𝑗=1                                                                                            (4) 

Convergence can be evaluated with comparison of changes in the cluster centers or membership 

weight at the end of the iterations. 

3.2.4. Density based clustering algorithms 

Density based clustering algorithms separate data points based on their density, connectivity, and 

boundary. In such algorithms, dense areas in the data space are considered the clusters, which are 

separated by areas with low-density, which are considered noise (Birant & Kut, 2007). Density 

based algorithms are very effective in discovering arbitrary shaped clusters. DBSCAN, 

DENCLUE, FlockStream, and OPTICS are typical examples of this class. 
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DBSCAN clustering algorithm 

DBSCAN is a very popular clustering algorithm proposed in 1996 (Ester, Kriegel, Sander, & Xu, 

1996). It defines the density based on the number of objects in a region of a predetermined radius 

around a given point. 

Using DBSCAN, the points are classified as core points, reachable points and outliers (Aggarwal 

& Reddy, 2013) as follows: 

 A point 𝑥𝑖 is a core point if at least minPts (a pre-defined parameter) points are within 

distance ε of it. 

 A point 𝑥𝑗 is directly reachable from 𝑥𝑖 if point 𝑥𝑗 is within distance ε from point 𝑥𝑖 and 

point 𝑥𝑖 is a core point. 

 A point 𝑥𝑗 is reachable from 𝑥𝑖 if there is a path 𝑥1, 𝑥2 … , 𝑥𝑝 with 𝑥1 = 𝑥𝑖 and 𝑥𝑝 = 𝑥𝑗 , 

where each point is directly reachable from its previous point. 

 All points which are not reachable from any other point are outliers. 

Based on the above definitions, the DBSCAN algorithm consists of the following steps: 

Step 1: Find the ε neighbors of each point, and identify the core points with more than minPts 

neighbors. 

Step 2: Find the connected elements of the core points on the neighboring graph, disregarding non-

core points. 

Step 3: Assign each non-core point to a nearby cluster if the cluster is an ε neighbor, otherwise 

assign it to the noise. 

In this research, we use 5 and 0.5 values for minPts and ε respectively. 

3.2.5. Metaheuristic based clustering methods 

The core idea of metaheuristic based clustering algorithms, which are among the state of the art 

clustering algorithms, is to imitate the changing process of the biological population (D. Xu & 

Tian, 2015). Since a PSO based clustering is presented in this study, this type of metaheuristic 

based clustering algorithms is described in more detail below. 

https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
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PSO-K-means clustering algorithm 

Because of some shortcomings of the traditional K-means algorithm, such as sensitivity to select 

the initial clustering centers and easy converging to local optimization, a PSO based K-means 

clustering is established (C.-Y. Chen & Ye, 2012; Van der Merwe & Engelbrecht, 2003). The PSO 

algorithm is a population-based search method that was inspired by simulating the social behaviour 

of birds and became very popular due to its unique characteristics (Reyes-Sierra & Coello, 2006). 

A PSO algorithm consists of a swarm of particles in a given space. The position of a particle is 

demonstrated by a vector which represents a solution. PSO is initialized with a population of 

randomly positioned particles and searches for the best position with the best fitness (according to 

some predefined objective function) (R.-M. Chen, 2011). 

The main advantage of using k-means as a local search technique in combination with PSO is that 

the global evolutionary procedure converges more quickly. The evolutionary procedure provides 

a method for automatically optimizing k-means, in terms of the centroids and the number of 

clusters. In general, swarm-based algorithms have advantages over some of the other heuristic-

based clustering algorithms which can be summarized as follows: 

 They are one of the most used algorithms and are reasonably simple to implement (Esmin, 

Coelho, & Matwin, 2015; Figueiredo, et al., 2019) 

 PSO based clustering algorithms can be applied in different applications and domains 

(Esmin, et al., 2015; Figueiredo, et al., 2019; Nanda & Panda, 2014) 

 They have relatively easier parameter selection and have a fast convergence (Figueiredo, 

et al., 2019; Nanda & Panda, 2014) 

 Many papers were proposed in the past two decades when the PSO has been successfully 

applied to real-world problems (Figueiredo, et al., 2019). Also, hybrid PSO 

implementations show promising performance and better results in high dimensional data 

sets (Esmin, et al., 2015) 

 Learning time for PSO based algorithms might be large when applying on big data, but 

they can be easily implemented in parallel frameworks to speed up the learning process 

(Nouaouria, Boukadoum, & Proulx, 2013) 
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In the original PSO algorithm, particles are characterized by their positions and velocities and tend 

to move in solution space with the following rules (Breaban & Luchian, 2011). 

 each particle has inertia in its current position; 

 particles remember their best position and tend to move toward it; 

 particles can find the best position of the population, the global best position, and partially 

move toward it, too. 

The velocity and position of particles are updated with the following equations: 

𝑣𝐼
𝑡+1 = 𝑤𝑣 × 𝑣𝐼

𝑡 + 𝑤𝑝 ×  𝑟1 × (𝑃𝑏𝑒𝑠𝑡𝐼
𝑡 − 𝑃𝐼

𝑡) + 𝑤𝑔 × 𝑟2 × (𝐺𝑏𝑒𝑠𝑡𝑡 − 𝑃𝐼
𝑡)                                  (5) 

𝑃𝐼
𝑡+1 =  𝑃𝐼

𝑡 + 𝑣𝐼
𝑡+1                                                                                                                              (6) 

where 𝑣𝐼
𝑡 and 𝑣𝐼

𝑡+1 are the velocity of particle I in iteration t and t+1, 𝑃𝐼
𝑡 and 𝑃𝐼

𝑡+1 are the position 

of particle I in iteration t and t+1, 𝑃𝑏𝑒𝑠𝑡𝐼
𝑡 is the best position of particle I in iteration t, 𝐺𝑏𝑒𝑠𝑡𝑡 is 

the best position among all the particles in iteration t, 𝑤𝑝 and 𝑤𝑔 are constant positive values, 1r  

and 2r  are random numbers between 0 and 1, and 𝑤𝑣 is the weight of inertia (see Figure 2). 

 

Figure 2. The procedure of updating velocity and position of particles 

In order to enhance the performance of the algorithm, in comparison with the original PSO, some 

modifications were used in the updating procedure which is presented in the Figure 3.   
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The proposed algorithm uses a powerful global search capability of the PSO algorithm to optimize 

the selection of the initial clustering centers while dynamically adjusting the inertia weight and 

other parameters to enhance the performance of the PSO; taking advantage of the fitness variance 

of the group to decide the conversion timing between the front part of the PSO algorithm and the 

rear part of the K-means algorithm; setting the variables to monitor the changes of the optimal 

values of each particle and particle population; and taking the premature convergence particle to 

the mutation operation in a timely manner. Thus, we can find the global optimum initial clustering 

centers for K-means algorithm, then the clustering results are not affected by the initial clustering 

centers, and it will be easy to get a global optimal solution.  
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Figure 3. The pseudo code of hybrid k-means clustering with PSO 

Input: Data set of 𝑛 items in 𝐷-dimensional space 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), the number of clusters K. 

Output: K clusters 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝐾) 

 
1. Setting model parameters 

∅ = 2.05  
 

֜   𝑤𝑝 = 𝑤𝑔 = 1.4962 ; damping rate (𝑤𝑣): 0.99 

Set minimum and maximum value for 𝑃𝐼  and  𝑣𝐼: 

(𝑚𝑖𝑛_𝑃𝐼 , 𝑚𝑎𝑥_𝑃𝐼 , 𝑚𝑖𝑛_𝑣𝐼 , 𝑚𝑎𝑥_𝑣𝐼) 

2. PSO_kmeans algorithm: 

While 𝐺𝑏𝑒𝑠𝑡 has not change in max_iteration=500: 

   # PSO iteration 

For I=1,2,…,N , all particles,  do: 

 Update velocities 

* With equation (5) calculate new velocity for all Particles 

Apply velocity limits 

* Restrict velocities with 𝑚𝑎𝑥_𝑣𝐼 and 𝑚𝑖𝑛_𝑣𝐼: 

  𝑣𝐼 = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑣𝐼 , 𝑚𝑖𝑛_𝑣𝐼}, 𝑚𝑎𝑥_𝑣𝐼} 

 Update positions 

* With equation (6) calculate new position for all Particles 

Apply velocity mirror effect 

* For any dimension (𝑑) which 𝑑th element of 𝑃𝐼   is out of solution space 
(𝑃𝐼𝑑> 𝑚𝑎𝑥_𝑃𝐼    or 𝑃𝐼𝑑< 𝑚𝑖𝑛_𝑃𝐼):  Substitute 𝑑-th element of velocity with its 
mirror value 𝑣𝐼𝑑=-𝑣𝐼𝑑 

Apply positions limits 

* Return Particle positions into the solution space: 

  𝑃𝐼 = min{max{𝑃𝐼 , min _𝑃𝐼}, max _𝑃𝐼}  

Update 𝑷𝒃𝒆𝒔𝒕 

*If  𝑓(𝑃𝐼
𝑡+1) < 𝑓(𝑃𝑏𝑒𝑠𝑡𝐼

𝑡): 

 𝑏𝑒𝑠𝑡𝐼
𝑡+1 = 𝑃𝐼

𝑡+1 

  Else:  𝑃𝑏𝑒𝑠𝑡𝐼
𝑡+1 = 𝑃𝑏𝑒𝑠𝑡𝐼

𝑡 

Update 𝑮𝒃𝒆𝒔𝒕 

  Assign best 𝑃𝑏𝑒𝑠𝑡 to the 𝐺𝑏𝑒𝑠𝑡 

         # k-means Iterations: 

For all particles, 𝐼 = 1,2, … , 𝑁  do: 

For 𝑖 = 1,2, … , 𝑛 do: 

* assign 𝑥𝑖 to the nearest cluster 𝐶𝑗𝐼  :  

 𝑎𝑟𝑔𝑚𝑖𝑛 ൛𝑑(𝑥𝑖 , 𝑐𝑗𝐼)ൟ
𝑗=1,2,…,𝐾

 

* Update center of clusters: 

o 𝑐𝑗𝐼 =
1

ห𝐶𝑗𝐼ห
∑ 𝑥𝑖𝑥𝑖𝜖𝐶𝑗𝐼

  , 𝑗 = 1,2, … , 𝐾 

o  

       # Adjust the velocity with the inertia damping rate 
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The following steps briefly explain the proposed hybrid k-means clustering with PSO as indicated 

in Figure 3. First of all, to assign initial particles values, we run k-means for N times to create a 

population with N particles. After a k-mean convergence, we set results as the initial position of 

the particles. 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = [𝑃1, 𝑃2, … , 𝑃𝑁] 

which means we have N particles, 𝑃1, 𝑃2, … , 𝑃𝑁, each one is an aggregate of K position of cluster 

centers {𝑐1𝐼 , 𝑐2𝐼 , … , 𝑐𝐾𝐼}, 𝐼 = 1,2, … , 𝑁. Then, an iterative process which contains PSO and k-

means algorithms starts until reaching stable clusters in a predefined maximum iteration.  

In PSO iteration, first, we update the velocity of particles with the equation (5). For the first 

iteration, we consider zero velocity for all particles, initial positions as the best, and cost of the 

best position among the population as the 𝐺𝑏𝑒𝑠𝑡.  

After each velocity updating, we limit velocity with our predefined limit values. Then, with 

equation (6) the position of particles is updated. New positions could be out of the solution space 

which can lead to wrong solutions. So, for enhancing the method, we inverse the wrong direction 

of particle movements. To do this, in our D-dimensional solution space, we substitute velocities 

with their mirror value, in dimensions in which particles’ position is out of the solution space. 

Actually, by implementing this mirror effect, we use intelligent velocities for the next iteration. 

Besides, the positions of particles are bonded with predefined min and max values. In this research, 

we choose the following values as bond values: 

𝑚𝑎𝑥_𝑣𝐼 = 0.1 ∗ (max _𝑃𝐼 − min _𝑃𝐼  )                                                                                   (7) 

 𝑚𝑖𝑛_𝑣𝐼 = −𝑚𝑎𝑥_𝑣𝐼                                                                                                                (8) 

 where 𝑚𝑎𝑥 _𝑃𝐼 and 𝑚𝑖𝑛 _𝑃𝐼 are the maximum and minimum position value of our dataset. 

After updating the position and velocity of particles intelligently, we update best personal and 

global values. By utilizing a Euclidean distance objective (cost) function, we evaluate each 

particle: 

𝑓(𝑃𝐼) = ∑ ∑ 𝑑(𝑥, 𝑐𝑗𝐼)𝑥𝜖 𝐼
𝐾
𝑗=1  , 𝐼 = 1,2, … , 𝑁                                                                            (9) 

where 𝑥 is an instance, 𝑐𝑗  is the center of 𝐶𝑗 and 𝑑 denotes distance. 

Individual and global best positions are updated by comparing the newly evaluated fitness against 

the previous individual and global best values and replacing the best fitness values and positions 

as necessary. 
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If the current cost of the new particle is the best in comparison with the old one (𝑃𝑏𝑒𝑠𝑡𝐼
𝑡), then we 

keep this new position as 𝑃𝑏𝑒𝑠𝑡𝐼
𝑡+1. The particle which has the best cost among all particles is 

selected and if this cost is better than the old 𝐺𝑏𝑒𝑠𝑡𝑡 value, then its position will be assigned as the 

new 𝐺𝑏𝑒𝑠𝑡𝑡+1. Otherwise, the old Pbest and Gbest will remain as the best particle and global 

position, respectively. To alter the PSO iteration, we run K-mean for all particles and reassign 

instances (xi) to the new centres. After updating clustering, we can update the centers’ position by 

averaging values of instances that belong to the cluster. Actually, in each iteration, the Gbest which 

has the best cost of our solution between particles should be checked to see whether it has reached 

a constant position or not. 

For setting the model parameters, Clerc and Kennedy (2002) demonstrated that the implementation 

of properly defined constriction coefficients could significantly improve the performance of PSO. 

Accordingly, the parameters 𝑤𝑝 and 𝑤𝑔 are set as presented in equations 10 and 11: 

𝑤𝑝 = 𝑤𝑔 = ℎ∅                                                                                                                             (10) 

ℎ =  
2

∅−2+√∅2−4∅
                                                                                                                           (11) 

while considering certain conditions, different values can be assigned to the variable ∅, in this 

study the assigned value for ∅ is equal to 2.05. For more information about the mathematical 

foundations of constriction coefficients, read Clerc and Kennedy (2002) 

Inertia Weight Damping Ratio: Inertia weight, 𝑤𝑣  , is a control parameter used to adjust the impact 

of the previous velocities on the current one. Thus, it affects the tradeoff between the particles’ 

global and local exploration abilities. It is recommended that large inertia weights be used for the 

initial stages that can be gradually decreased over time (iterations). To this end, a damping ratio 

equal to 0.99 has been considered in the algorithm. 

3.3. Measures 

Since clustering is unsupervised learning, it is extremely important to evaluate the strengths and 

weaknesses of any given clustering algorithm compared to others. To this end, we need suitable 

methods for assessing clustering stability and tendency. 

Similarity and Distance (dissimilarity) are two foundations for constructing clustering algorithms 

(D. Xu & Tian, 2015). In most cases, distance is a more suitable measure for dealing with 
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quantitative data features. For qualitative data features, on the other hand, similarity (e.g. Jaccard 

similarity) is usually preferred (R. Xu & Wunsch, 2005). There are some well-known measures 

that different studies have used for their comparison and evaluation of proposed clustering 

techniques. After a comprehensive literature review, Figueiredo, et al. (2019) mentioned that there 

are some studies that showed some of the metrics such as Davies–Bouldin, Rand-index, F-

measure, Entropy-based and Mutual Information are more suitable for assessing the quality of 

clustering results. For example, Dunn and Davies-Bouldin (Karmitsa, Bagirov, & Taheri, 2018; 

Wiwie, Baumbach, & Röttger, 2015), Rand (Karmitsa, et al., 2018; Ros & Guillaume, 2019; 

Wiwie, et al., 2015), Jaccard (Pham, Siarry, & Oulhadj, 2018; Wiwie, et al., 2015), and Fowlkes-

Mallows (Wiwie, et al., 2015) are used in different studies to evaluate the results. 

In general, the methods for clustering validation can be categorized into two classes: 

External measures: An external evaluation compares the predicting labels with the actual labels. 

Though this form of assessment is objective, it requires a priori data structure, (Kou, et al., 2014). 

Some instances of external measures are the Rand indicator, adjusted methods for Rand indicator, 

Jaccard indicator, Fowlkes–Mallows indicator, and Confusion matrix; 

Internal measures: Internal measures judge clustering algorithms based on the resulting clusters’ 

structure. An algorithm is considered suitable if the resulting clusters demonstrate high intra-class 

and low inter-class similarities. Some instances of internal measures are the Davies–Bouldin 

indicator, Dunn indicator and Silhouette coefficient; 

Due to utilizing different approaches in designing the experiments, their evaluation are also 

distinct. In the first experiment, five external measures, including the Rand index, Hubert and 

Arabie's adjusted Rand index, Morey and Agresti adjusted Rand index, Fowlkes and Mallows 

index, and Jaccard coefficient are utilized. To evaluate the second experiment; however, two 

internal measures, namely Dunn’s index and the Davies_Bouldin index are employed, and the 

optimal number of clusters is obtained based on the results of the internal measures. Afterwards, 

the external measures used in the first experiment are employed to evaluate the algorithms. 

In the following, the measures utilized in this study are illustrated.  

3.3.1. Rand Index 
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The Rand index always lies between 0 and 1. If the two partitions agree perfectly, it takes the value 

1 (Yeung & Ruzzo, 2001). This index measures the percentage of decisions that are correct and 

penalizes both false negative and false positive decisions with equal weight.  

Let 𝐶(𝑥𝑖) and 𝐶′(𝑥𝑖) define the class and the cluster of an instance 𝑥𝑖, then SS, SD, 

DS, and DD are defined as follows: 

𝑆𝑆 = [(𝑥𝑖, 𝑥𝑗)|𝐶(𝑥𝑖) = 𝐶(𝑥𝑗) 𝑎𝑛𝑑 𝐶′(𝑥𝑖) = 𝐶′(𝑥𝑗) ] 

𝑆𝐷 = [ (𝑥𝑖, 𝑥𝑗)|𝐶(𝑥𝑖) = 𝐶(𝑥𝑗) 𝑎𝑛𝑑 𝐶′(𝑥𝑖) ≠ 𝐶′(𝑥𝑗) ] 

𝑆𝑆 = [ (𝑥𝑖, 𝑥𝑗)|𝐶(𝑥𝑖) ≠ 𝐶(𝑥𝑗) 𝑎𝑛𝑑 𝐶′(𝑥𝑖) = 𝐶′(𝑥𝑗) ] 

𝑆𝑆 = [ (𝑥𝑖, 𝑥𝑗)|𝐶(𝑥𝑖) ≠ 𝐶(𝑥𝑗) 𝑎𝑛𝑑 𝐶′(𝑥𝑖) ≠ 𝐶′(𝑥𝑗) ] 

The Rand index is defined as equation 12: 

𝑅 =
|𝑆𝑆|+|𝐷𝐷|

|𝑆𝑆|+|𝑆𝐷|+|𝐷𝑆|+|𝐷𝐷|
                                                                                                         (12) 

 

3.3.2. Fowlkes and Mallows index (FM) 

This measure could be either between two clustering results or a clustering and a benchmark. Since 

the index is proportional to the number of true positives, a higher value indicates a greater 

similarity between the clusters and the benchmark. One of the advantages of this index is that it 

performs in a satisfactory way in case of adding noise to a data set (Fowlkes & Mallows, 1983). 

Fowlkes and Mallows’ index is defined as equation 13: 

FM= √
|𝑆𝑆|

|𝑆𝑆|+|𝑆𝐷|
×

|𝑆𝑆|

|𝑆𝑆|+|𝐷𝑆|
                                                                                                      (13) 

3.3.3. Jaccard coefficient 

The Jaccard coefficient is mostly used in order to measure the similarity of clusters (Hennig, 2008) 

and similarity is calculated with equation 14 (Huang, 2008): 

𝐽 =
|𝑆𝑆|

|𝑆𝑆|+|𝑆𝐷|+|𝐷𝑆|
                                                                                                                     (14) 

3.3.4. Morey and Agresti adjusted Rand index (MA)  



22 

 

Morey and Agresti (1984) demonstrated that the Rand Index is extremely dependent upon the 

number of clusters. In order to resolve this shortcoming, they proposed a modified version known 

as the Morey and Agresti adjusted Rand index.  

For two partition 𝐶 and 𝐶′ with 𝐾 and 𝐾′ subset clusters respectively, contingency Table1 can be 

created to show the overlap between them: 

Table 1: Co-occurrence between two partitions 

 𝐶′   

𝐶 

Cluster 𝐶′
1 𝐶′

2 ….. 𝐶′
𝐾′ Sums 

𝐶1 𝑛11 𝑛12 ….. 𝑛1𝐾′ 𝑛1∗ 

𝐶2 𝑛21 𝑛22 ….. 𝑛2𝐾′ 𝑛2∗ 

…
 

…
 

…
  

…
 

…
 

𝐶𝐾 𝑛𝐾1 𝑛𝐾1 ….. 𝑛𝐾𝐾′  𝑛𝐾∗ 

 Sums 𝑛∗1 𝑛∗2 ….. 𝑛∗𝐾′ 𝑛∗∗ = 𝑛 

 

where 𝑛𝑖𝑗 indicates the number of instances which belong to the ith cluster of 𝐶 and the jth cluster 

of 𝐶′. 

Morey and Agresti’s adjusted Rand index is defined as follows: 

𝑀𝐴 =  
∑ ∑ (

𝑛𝑖𝑗
2

)𝐾′

𝑗=1
𝐾
𝑖=1 −𝑡3

1

2
(𝑡1+𝑡2)−𝑡3

                                                                                                              (15) 

where: 

𝑡1 = ∑ (𝑛𝑖∗
2

)K
i=1  , 𝑡2 = ∑ (

𝑛∗𝑗

2
)𝐾′

j=1  , 𝑡3 =
𝑡1∗𝑡2

𝑛2                                                                            (16) 

𝑛𝑖∗ and 𝑛∗𝑗 are respectively the row and the column marginal of the contingency table. 

3.3.5 Hubert and Arabie's adjusted Rand index (HA) 

Proposed by Hubert and Arabie in 1985 and sometimes referred to simply as the Adjusted Rand 

index, this index allows a more appropriate quantitative evaluation of the consistency between two 

partitions (Carrico, et al., 2006). It is defined in equations 17 and 18: 
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𝐻𝐴 =
∑ ∑ (

𝑛𝑖𝑗
2

)𝐾′

𝑗=1
𝐾
𝑖=1 −𝑡′

3

1

2
(𝑡1+𝑡2)−𝑡′

3
                                                                                                            (17) 

Where  

𝑡′
3 =

𝑡1∗𝑡2

(𝑛
2)

                                                                                                                                (18) 

3.3.6 Dunn’s index  

Introduced by Dunn in 1974, Dunn’s index is an internal evaluation scheme. The objective is to 

identify compact sets of clusters, where the means of different clusters are as far apart as possible. 

Dunn’s index is defined in equation 19: 

𝐷𝐼 =
𝑚𝑖𝑛

1≤𝑖≤𝑗≤𝐾
𝑑(𝑐𝑖,𝑐𝑗)

𝑚𝑎𝑥
1≤𝑠≤𝐾

∆𝑠
                                                                                                                   (19) 

where ci and cj are centres of  Ci and  Cj clusters respectively and ∆s is the maximum distance 

between two instances belonging to cluster Cs. 

3.3.7 Davies_Bouldin index 

Davies_Bouldin index is an internal evaluation measure. This method is a function of the ratio of 

the summation of within-cluster scatter to between-cluster separation, and as we want to maximize 

the between-cluster separation and minimize the within-cluster scatter, the aim is to minimize this 

measure (Ray & Turi, 1999). The index is defined in equation 20: 

𝐷𝐵(𝐶)  =  
1

𝐾
∑ 𝑚𝑎𝑥𝐾

𝑖=1,𝑖≠𝑗  {
�̅�(𝐶𝑖)+ �̅�(𝐶𝑗)

𝑑(𝑐𝑖,𝑐𝑗)
}                                                                                       (20) 

where d̅(Ci) is the measure of scatter within the cluster for cluster Ci which is the average distance 

of all instances in cluster Ci to their centre ci, similarly d̅(Cj) is the measure of scatter within the 

cluster for cluster Cj, d(ci, cj) is a distance of two cluster centres ci and c𝑗 that is called the inter-

cluster distance, and K is the number of clusters. 

It is worth mentioning that both lists of clustering algorithms and clustering measures have more 

potential candidate methods (e.g. graph based clustering algorithms (chameleon), or normalized 

mutual information criterion), but we select based on the popularity of the algorithms in the 

literature and the robustness of the methods in different datasets. Moreover, our proposed approach 
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can be computed in any cases, with no limitation the number of clustering algorithms or clustering 

measures.  

3.4. Group MCDM  

MCDM algorithms deal with the decision making process in the presence of multiple, and usually 

conflicting, objectives. In most cases, the objectives are conflicting and hence, the solution is 

highly contingent upon the preferences of the decision-maker some level of compromise is 

inevitable (Pohekar & Ramachandran, 2004). 

In general, the steps of MCDM are as follows (Opricovic & Tzeng, 2004): 

1. Establishing system evaluation criteria; 

2. Developing alternatives for attaining the goals;  

3. Evaluating alternatives in terms of criteria; 

4. Applying a normative multi criteria analysis method; 

5. Accepting one alternative as optimal; 

In this research, since five evaluation measures are used for evaluation of clustering algorithms, it 

can be modeled as a MCDM problem. Thus, MCDM techniques can be used to select the best 

algorithm. Moreover, evaluation of each data set in clustering models’ selection is an independent 

MCDM problem, and since we have 10 data sets, utilizing a group MCDM approach seems to be 

a suitable approach for comparing the models. 

In the other words, 10 standard data sets are utilized as the case studies and five measures are 

calculated on each data set. If we consider each data set as an expert and each measure as a criteria, 

the problem becomes a group MCDM. 

In this study, a number of group MCDM methods was nominated and eventually, three methods 

including TOPSIS, COPRAS, and WSM were selected. The reason we have selected the 

aforementioned methods is that these algorithms have the least correlation among all the candidate 

MCDM algorithms. 

3.4.1. Group TOPSIS 

Among the vast number of MCDM methods, TOPSIS (technique for order preference by similarity 

to ideal solution) is one of the most applied ones. Developed by Hwang and Yoon (Hwang & 



25 

 

Yoon, 1981), this technique suggests that the ranking of alternatives should be based on the 

shortest distance from the positive ideal solution (PIS) and the farthest distance from the negative 

ideal solution (NIS) (Opricovic & Tzeng, 2004). TOPSIS takes the distances to both PIS and NIS 

into account, and the preference order is ranked by combining the distances (Shih, 2008). 

In the case of group decision making; however, the alternatives are evaluated by more than one 

DM. In other words, one multi-attribute object is represented in a number of versions. For instance, 

object characteristics have been measured in different conditions, and a number of experts 

independently evaluated objects upon intended criteria (Petrovsky, 2014). 

It should be noted that in group decision making, DMs’ opinions may have different values 

(weights) and DMs can form different judgments on the criteria. The aforementioned features 

create more complication rather than simple decision making process. 

The final decision is made through aggregating group members’ preferences on alternatives with 

regard to their weights and judgments on selected criteria. Most of the group decision making 

methods use utility aggregation strategies to derive a consensus preference (Krohling & 

Campanharo, 2011).  

Wei-guo and Hong (2007) extends the TOPSIS framework to group decision making situations by 

presenting two notions: group positive-ideal and group negative-ideal. In this study, a group 

TOPSIS method is utilized based on the same concept.  

Consider a MCDM problem characterized by the following matrix: 

 𝐹1     𝐹2   …  𝐹𝑛 

𝐴1

𝐴2

⋮
𝐴𝑚

[

𝑧11
𝑧21

⋮
𝑧𝑚1

𝑧12
𝑧22

⋮
𝑧𝑚2

… 𝑧1𝑛
… 𝑧1𝑛

⋱ ⋮
… 𝑧𝑚𝑛

]
 

𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑛] 

where 𝐴1, 𝐴2, … , 𝐴𝑚 are possible alternatives that decision makers can choose, 𝐹1, 𝐹2, … , 𝐹𝑛 are 

sets of criteria, 𝑧𝑖𝑗 is the rating of alternative  𝐴𝑖 with respect to criterion 𝐹𝑗, and 𝑤𝑗 is weight of 

criterion 𝐹𝑗. 

The procedure of group TOPSIS consists of the following steps: 
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Step 1: After calculating all criteria for each data set, normalize the resulting (decision) matrix (see 

equation 21). 

𝑟𝑖𝑗 =
𝑧𝑖𝑗

√∑ 𝑧𝑖𝑗
2𝑚

𝑖=1

   𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛.                                                             (21) 

Step 2: Create weighted normalized matrix:               

𝑡𝑖𝑗 = 𝑟𝑖𝑗 ∗ 𝑤𝑗      𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛.                                                              (22) 

Step 3: Determine the positive ideal, 𝐼+, and negative ideal, 𝐼−, solutions as follows: 

𝐼+ = ൛(𝑚𝑎𝑥(𝑡𝑖𝑗ห 𝑖 = 1,2, … , 𝑚)ห𝑗 𝜖 𝐽−), (𝑚𝑖𝑛 (𝑡𝑖𝑗| 𝑖 = 1,2, … , 𝑚)|𝑗 𝜖 𝐽+)} = {𝑡𝑗
+|𝑗 = 1,2, … , 𝑛}                 (23) 

𝐼− = ൛(𝑚𝑖𝑛(𝑡𝑖𝑗ห 𝑖 = 1,2, … , 𝑚)ห𝑗 𝜖 𝐽−), (𝑚𝑎𝑥 (𝑡𝑖𝑗| 𝑖 = 1,2, … , 𝑚)|𝑗 𝜖 𝐽+)} = {𝑡𝑗
−|𝑗 = 1,2, … , 𝑛}                 (24) 

Where  J− and  J+ are the index set of the benefit and cost attributes, respectively. 

Step 4: Using the Euclidean distance, calculate distance between target alternative 𝑖 and positive 

and negative ideal solutions: 

 𝑑𝑖
+ = √∑ (𝑡𝑖𝑗 − 𝑡𝑗

+)2𝑛
𝑗=1 , 𝑖 = 1,2, … , 𝑚                                                                                          (25) 

 𝑑𝑖
− = √∑ (𝑡𝑖𝑗 − 𝑡𝑗

−)2𝑛
𝑗=1 , 𝑖 = 1,2, … , 𝑚                                                                                          (26) 

Step 4: By averaging individual separation measures, calculate group separation measures (gdi
+ 

and gdi
-) 

Step 5: Calculate the relative closeness to the ideal solution. 

𝐶_𝑖𝑛𝑑𝑒𝑥 =  
𝑔𝑑𝑖

+

𝑔𝑑𝑖
−+𝑔𝑑𝑖

+    i = 1, 2, …, m                                                                                              (27) 

Step 6: Rank the alternatives according to the C_index. 

3.4.1. Group COPRAS 

The method of multiple criteria complex proportional assessment (COPRAS) is a MCDM 

algorithm for multi-criteria evaluation of both maximizing and minimizing criteria values 

(Kaklauskas, et al., 2006). Ranking alternatives using COPRAS assumes dependence of the 
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significance and priority of alternatives on a system of criteria. The process of the group COPRAS 

method used in this study consists of the following steps: 

Step 1: Construct the normalized decision-making matrix. 

For normalization in the COPRAS method the following formula is used: 

𝑟𝑖𝑗 =  
𝑧𝑖𝑗

∑ 𝑧𝑖𝑗
𝑚
𝑖=1

  , 𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛                                                                              (28) 

where zij is the result of the ith alternative with respect to the jth criterion, rij is its normalized 

value, and m and n are number of alternatives and criterions respectively. 

Step 2: Calculate the sums of weighed normalized criteria values for positive criteria (criteria that 

are preferred to be maximized) and negative value;  

𝑃+𝑖  are positive and 𝑃−𝑖 are negative criteria calculated as follows:          

𝑃+𝑖 = ∑ 𝑟𝑖𝑗 ∗ 𝑤𝑗
𝑆
𝑗=1    , 𝑖 = 1,2, … , 𝑚                                                                                                (29) 

𝑃−𝑖 = ∑ 𝑟𝑖𝑗 ∗ 𝑤𝑗
𝑛
𝑗=𝑆+1  , 𝑖 = 1,2, … , 𝑚                                                                                         (30) 

where S is the number of positive criteria; n is total number of criteria; and 𝑤𝑗 is weight of the j-

th criterion. 

Step 3: Calculate the relative weight of each alternative 

The relative weight  iQ  of i-th alternative is calculated as follows: 

Q𝑖 = P+𝑖 +
∑ P−𝑖

𝑚
𝑖=1

P−𝑖 ∑ P−𝑖
𝑚
𝑖=1

                                                                                                          (31) 

Step 4: Calculate the group relative weight. 

The group relative weight of each alternative is determined by calculating the arithmetic means of 

relative weights for each alternative. 

Step 5: Rank the alternatives. 

The priority of alternatives is determined based on their relative weight. The alternative with a 

higher relative weight is assigned a higher rank. 
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3.4.1. Group WSM 

The Weighted Sum Model (WSM) is one of the earliest and robust known MCDM methods. 

Suppose that there exist m alternatives, n decision criteria, and wj indicates the relative weight of 

the criterion 𝐹𝑗. Furthermore, zij is the performance value of alternative Ai in terms of criterion 𝐹𝑗. 

Then, the WSM score is calculated as follows (Triantaphyllou & Mann, 1989): 

𝐴𝑖
𝑊𝑆𝑀 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑗

𝑛
𝑗=1 𝑧𝑖𝑗    𝑖 = 1,2, … , 𝑚 .                                                                          (32) 

For group WSM, the group WSM score of each alternative is equivalent to the arithmetic mean of 

all WSM scores. 

3.5. Borda count method 

The Borda count is a preference based election procedure in which voters rank the alternatives in 

order of preference (Van Erp & Schomaker, 2000). It ranks the alternatives and elects a 

representative by aggregating the sum of each alternative’s weighted preference scores. The steps 

are as follows: 

Step 1: Each alternative is ranked by each voter. 

Step 2: Each alternative is assigned a number of points equal to the number of alternatives which 

are ranked lower than them, so that an alternative receives n − 1 points for the first preference, n −2 

for the second, and so on. This procedure is done for each voter. 

Step 3: For each alternative, the sum of its points is calculated. 

Step 4: Based on the total score of alternatives, which are calculated in step 3, the alternatives 

would be ranked.  

We use the Borda count method to assign an overall rank to the algorithms. 

It is valuable to mention that it is not recommended to use one specific clustering model for all 

different datasets, while it is known that k-means and its variations (as well as k-medoids, PAM 

etc.) may be effective only in the case of spherical point clouds, and clusters of more complex 

shapes are better identified by density-based algorithms (like DBSCAN, nearest neighbors 

clustering etc.). That is why we are interested in find the suitable clustering model for each dataset. 

However, with the concept of group MCDM, we can explicitly evaluate which algorithm generally 
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works well within the benchmarks, and if one implements that clustering model instead of 

analysing all the models one by one, then it will have more probability to obtain the best clusters. 

Therefore, group MCDM is valuable in big datasets for decreasing the computation time.   

4. Experimental Results 

The experiment design conducted in this paper consists of two parts. The first experiment contains 

the results of the comparison of six clustering methods using external validation, based on actual 

number of classes in each data set. Figure 4 illustrates the tools used in experiment1. In the second 

experiment; however, all the data sets are clustered from two to nine clusters. For each clustering 

output we calculated two internal measures including the Dunn and Davies-Bouldin measures. 

Based on the results of these two measures, the number of clusters for the data sets are determined. 

Then, according to the determined number of clusters, the external measures are applied (see 

Figure 5 for the tools used in experiment 2).  
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Figure 4. Experiment 1 analytical tools 
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Figure 5. Experiment 2 analytical tools 

In order to illustrate the methodology, in both sections we used 10 different data sets from UCI 

(Bache & Lichman, 2013) and clustered them using six methods, namely PSO clustering, Lloyd's 

algorithm, DBSCAN algorithm, Fuzzy clustering, K-means ++, and Ward method. The R 

programming software is used for both experiments. For the sake of the generality of our study, a 

variety of data such as a large size TV data set (TV News Channel Commercial Detection Dataset) 

(Vyas, Kannao, Bhargava, & Guha, 2014), a medium size data set (Mushroom) (Schlimmer, 1981), 

large number of attributes (Heart Disease) and large number of actual classes (Mushroom) have 

been considered. Table 2 briefly demonstrates the specification of each data set.  

Table 2: The specifications of data sets 

NAME 
NUMBER OF 

RECORDS 

NUMBER OF 

ATTRIBUTES 

ATTRIBUTE 

CHARACTERISTICS 

ACTUAL 

CLASSES 

IRIS 150 4 Real 3 

AUSTRALIAN CREDIT 

APPROVAL 
690 14 Categorical, Integer, Real 2 

BREAST CANCER 
WISCONSIN 

688 10 Integer 2 

GLASS IDENTIFICATION 214 10 Real 6 

HEART DISEASE 303 75 Categorical, Integer, Real 4 

GERMAN CREDIT DATA 1000 20 Categorical, Integer 2 

TV NEWS CHANNEL 

COMMERCIAL 

DETECTION DATASET 

129685 12 Real 2 

PIMA 768 8 Integer, Real 2 

ZOO 101 17 Categorical, Integer 10 

MUSHROOM  8124 22 Categorical 23 
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4.1. External validation 

As mentioned in section 2, external evaluation compares the predicting labels with the actual 

labels. So, in this step we clustered all the 10 data sets using six different methods. Then we 

compared the cluster labels with the actual labels. 

Among the six clustering algorithms in this experiment just Fuzzy and Ward are not sensitive to 

the starting points (initial centers) but others are. In order to reduce the impact of initial centers, 

we ran all the algorithms 10 times with different random seeds for each run. Using this approach 

allows us to estimate the performance of the algorithms with higher precision.  

Eventually, five different indices, Rand, HA, MA, FM and Jaccard coefficient, were used for the 

comparison to compare the actual class feature with the results of clustering labels. Table 3, 

contains the values of five indices on the six clustering methods over the utilized data sets. For 

each data set, the bold values show the top two techniques and the gray cells represent the bottom 

two methods based on each evaluation indices. 

Table 3: The values of 5 indices on all of 6 clustering methods over the utilized data sets (Experiment 1) 
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Australia 

Methods Rand HA MA FM Jaccard 

PSO clustering 0.692 0.384 0.385 0.695 0.537 

DBSCAN 0.621 0.243 0.244 0.629 0.465 

Lloyd's K-means 0.621 0.243 0.244 0.629 0.465 
Ward 0.608 0.216 0.218 0.614 0.443 

K-means ++ 0.752 0.504 0.504 0.753 0.604 

Fuzzy clustering 0.703 0.406 0.407 0.704 0.544 

Breast Cancer 

PSO clustering 0.926 0.850 0.850 0.932 0.873 
DBSCAN 0.920 0.839 0.839 0.928 0.865 

Lloyd's K-means 0.920 0.839 0.839 0.928 0.865 

Ward 0.926 0.850 0.851 0.931 0.871 
K-means ++ 0.920 0.839 0.839 0.928 0.865 

Fuzzy clustering 0.910 0.818 0.818 0.919 0.849 

Glass 

PSO clustering 0.804 0.448 0.457 0.578 0.402 
DBSCAN 0.762 0.334 0.345 0.490 0.323 

Lloyd's K-means 0.756 0.319 0.329 0.479 0.314 

Ward 0.852 0.587 0.593 0.686 0.517 
K-means ++ 0.786 0.424 0.432 0.566 0.395 

Fuzzy clustering 0.807 0.443 0.452 0.571 0.390 

Heart 

PSO clustering 0.630 0.112 0.119 0.360 0.212 

DBSCAN 0.634 0.121 0.128 0.367 0.217 
Lloyd's K-means 0.633 0.121 0.128 0.369 0.220 

Ward 0.583 0.014 0.021 0.300 0.173 

K-means ++ 0.646 0.147 0.154 0.385 0.229 
Fuzzy clustering 0.656 0.224 0.229 0.480 0.315 

German 

PSO clustering 0.514 0.012 0.013 0.571 0.400 

DBSCAN 0.527 0.023 0.024 0.597 0.425 
Lloyd's K-means 0.527 0.023 0.024 0.598 0.426 

Ward 0.540 0.044 0.045 0.616 0.444 

K-means ++ 0.539 0.051 0.052 0.606 0.435 
Fuzzy clustering 0.500 -0.001 0.000 0.538 0.367 

Iris 

PSO clustering 0.884 0.739 0.743 0.826 0.704 

DBSCAN 0.843 0.660 0.664 0.782 0.643 
Lloyd's K-means 0.843 0.658 0.662 0.780 0.641 

Ward 0.874 0.720 0.723 0.816 0.688 

K-means ++ 0.874 0.716 0.720 0.811 0.682 

Fuzzy clustering 0.880 0.729 0.732 0.819 0.693 

TV News 

PSO clustering 0.568 0.135 0.138 0.621 0.446 

DBSCAN 0.532 0.052 0.055 0.596 0.422 

Lloyd's K-means 0.530 0.048 0.052 0.595 0.421 
Ward 0.500 -0.086 -0.083 0.610 0.438 

K-means ++ 0.532 0.052 0.055 0.596 0.422 

Fuzzy clustering 0.557 0.111 0.114 0.612 0.437 

PIMA 

PSO clustering 0.557 0.108 0.109 0.591 0.419 

DBSCAN 0.556 0.102 0.103 0.597 0.426 

Lloyd's K-means 0.556 0.102 0.103 0.598 0.426 

Ward 0.537 0.066 0.067 0.576 0.404 

K-means ++ 0.556 0.102 0.103 0.597 0.426 

Fuzzy clustering 0.555 0.107 0.108 0.582 0.410 

Mushroom 

PSO clustering 0.938 0.860 0.862 0.907 0.830 

DBSCAN 0.938 0.860 0.862 0.907 0.830 

Lloyd's K-means 0.904 0.793 0.795 0.869 0.773 

Ward 0.955 0.899 0.900 0.933 0.875 

K-means ++ 0.941 0.869 0.870 0.913 0.839 

Fuzzy clustering 0.933 0.850 0.851 0.900 0.818 

Zoo 

PSO clustering 0.873 0.601 0.617 0.688 0.516 

DBSCAN 0.881 0.627 0.641 0.709 0.543 

Lloyd's K-means 0.850 0.545 0.562 0.644 0.477 
Ward 0.904 0.697 0.709 0.768 0.606 

K-means ++ None None None None None 

Fuzzy clustering 0.885 0.636 0.650 0.718 0.543 

 

For instance, regarding the breast cancer data set, PSO and Ward algorithms outperformed other 

methods by having a higher Rand index of 0.926. Thus, one can claim that there is 0.926 
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probability that these two methods agree on a randomly chosen pair of cluster labels and actual 

class label. On this data set, Lloyd’s algorithm, DBSCAN, and K-means++ have very close 

clustering outputs as demonstrated in Figure 6. Finally, the Fuzzy clustering demonstrated the 

lowest performance on this data set as it has fallen in the bottom of the chart. 

 

Figure 6. The performance of clustering methods according to external measures 

Overall, it seems that Fuzzy clustering, PSO clustering, and K-means++ provide better results over 

different data sets. Although K-means++ has a good overall performance, it failed on the Zoo data 

set. Basically, K-means++ was not able to find different initial points for centers in this data set 

since the Zoo data set contains several Boolean features which makes it harder for K-means++ to 

find various starting points. Since evaluating the algorithms is hard at this stage, we utilized a 

MCDM approach to address the algorithm selection. The following section describes the resulted 

scoring output. 

4.1.1. Using MCDM to select the best Algorithm 

As mentioned in section 3, the utilized algorithms are ranked using three MCDM methods for each 

data set. The results are shown in appendix A. 

From the results it can be seen that regarding all MCDMs, the PSO algorithm outperformed the 

other algorithms in four data sets. Moreover, Ward and K-means++ algorithms outperformed the 

other algorithms regarding three and two data sets, respectively. Finally, regarding the Heart 
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disease data set, the Fuzzy algorithm outperformed the other algorithms. Lloyd and DBSCAN 

algorithms, however, are not selected as the best algorithm in any of the data sets used in the study. 

Another interesting perspective, is to compare the algorithms regarding the real number of classes. 

Based on this concept, the data sets with between two and four classes are considered low class 

data sets and those with between six and ten are considered high class data sets. From this point of 

view, two data sets of Glass and Breast cancer are considered as high class and the rest are 

considered as low class ones. Regarding the high class data sets, the Ward algorithm outperformed 

the other. For all MCDM methods, the Ward algorithm was ranked first and second in the Glass 

and Breast cancer data sets, respectively. The PSO algorithm was ranked first and four in the 

aforementioned high class data sets using TOPSIS, and first and second in the aforementioned 

high class data sets using COPRAS and WSM. Therefore, it can be considered the second best 

algorithm. On the other hand, regarding the low class data sets, the PSO algorithm outranks the 

other algorithms. 

Besides, the results for the fuzzy method are worthy of more consideration. While the fuzzy 

algorithm ranks first only on the Heart disease data set, in many cases it was ranked second. Using 

TOPSIS, the fuzzy algorithm was ranked second in six data sets. Using COPRAS and WSM, it 

was ranked second in five data sets. These results show the satisfactory performance of the fuzzy 

algorithm in experiment 1. 

From the results and the explanations, it is fairly obvious that PSO and fuzzy algorithms are the 

only methods which perform in a satisfactory way in most cases. Using TOPSIS, COPRAS, and 

WSM, PSO and fuzzy algorithms were ranked amongst the two best methods in four and seven 

data sets, respectively. On the other hand, PSO and fuzzy algorithms were ranked amongst the two 

weakest methods in two and three data sets, respectively.  

In addition to using the original MCDM methods, three group MCDM methods are utilized to rank 

the applied methods considering all the data sets simultaneously. The results of the group MCDM 

methods for the first experiment are presented in Table 4 and Table 5 as follows: 
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Table 4: Group MCDMs for experiment 1 

ALGORITHM GROUP TOPSIS GROUP COPRAS GROUP WSM 

 𝑑𝑖
+ 𝑑𝑖

− 𝐶_𝑖𝑛𝑑𝑒𝑥 𝑄𝑖  WSM Score 
PSO 0.1853 0.3979 0.6823 0.8644 0.1880 

DBSCAN 0.2661 0.3163 0.5431 0.7877 0.1715 
LOYD 0.2869 0.2961 0.5080 0.7413 0.1613 
WARD 0.3268 0.2562 0.4395 0.8096 0.1764 

KMEANS++ 0.2369 0.3461 0.5936 0.5000 0.1077 
FUZZY 0.1724 0.4107 0.7043 0.8973 0.1951 

 

Table 5: The final rankings of 3 group MCDMs for experiment 1 

ALGORITHM GROUP TOPSIS GROUP COPRAS GROUP WSM 
PSO 2 2 2 

DBSCAN 4 4 4 
LOYD 5 5 5 
WARD 6 3 3 

KMEANS++ 3 6 6 
FUZZY 1 1 1 

 

The results of group MCDM methods for experiment 1 indicate that the Fuzzy clustering algorithm 

outperformed the other methods and the PSO algorithm is ranked second. By consideration of the 

C_ index, the 𝑄𝑖 index, and weighted sum average it can be seen that the differences between fuzzy 

and PSO are non-significant. The differences among these two algorithms and the other methods 

are significant; however, for instance, regarding group TOPSIS, C_indexes for fuzzy, PSO and 

Kmeans++, which are ranked first, second and third respectively, are 0.704, 0.682, and 0.593. The 

difference between fuzzy and PSO is 0.022, while the difference between PSO and Kmeans++ is 

0.089. Regarding group COPRAS, 𝑄𝑖 indexes for fuzzy, PSO and Kmeans++ are 0.897, 0.864, 

and 0.809, respectively. Finally, for group WSM, weighted sum averages for fuzzy, PSO and 

Kmeans++ are 0.195, 0.187, and 0.176, respectively. These results confirm that the fuzzy and PSO 

algorithms provided very close results and outperformed the other four utilized algorithms. 

Among the benefits of using group MCDMs is their ability to avoid intuitive mistakes. For 

instance, since the PSO algorithm seems to be the best method at the first glance, due to its superior 

performance on four data sets out of 10. However, the utilized MCDMs proved that intuitive 

conclusion as specious. The three MCDM methods showed that the fuzzy algorithm, which was 

ranked first only on one data set, is the best algorithm due to its satisfactory results in most data 
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sets. This counter intuitive conclusion could readily be overlooked without utilizing the group 

MCDMs.    

It is obvious from the Table 5 that the results of the three utilized techniques are highly in 

concordance. Therefore, one can claim that they are robust and no further analyses are necessary. 

4.2. Internal validation 

The internal validation evaluates the quality of clustering results without considering any external 

information. In this study, we used the Dunn and Davies-Bouldin measures for evaluating the 

clustering quality. The higher value for the former and lower value for the latter indicate the 

existence of a possible pattern in the clustering with regard to different numbers of clusters. So, 

we clustered all the data sets from two to nine clusters and for each clustering output we calculated 

these two measures. The Dunn index was considered as the main criterion for selecting the number 

of clusters and, in case of ties (equal Dunn index for two different number of clusters), we used 

the Davies-Bouldin one to adjust our judgment. For instance, Table 6 contains the values of the 

Davies-Bouldin and Dunn indexes for PSO clustering and DBSCAN on the German data set. 

Table 6: Internal measures for PSO and DBSCAN 

 
PSO CLUSTERING DBSCAN 

CLUSTERS Davies_Bouldin Dunn Davies_Bouldin Dunn 

2 8.302 0.0141 27.700 0.0131 

3 7.780 0.0141 6.518 0.0151 

4 8.635 0.0152 19.562 0.0152 

5 6.639 0.0108 4.994 0.0152 

6 6.503 0.0152 12.962 0.0143 

7 4.797 0.0134 3.994 0.0134 

8 6.415 0.0143 8.846 0.0144 

9 8.837 0.0108 14.057 0.0108 

 

Based on the Dunn index for PSO clustering, 4 and 6 clusters with a Dunn value of 0.0152 are 

optimal numbers of clusters on this data set. Nevertheless, since opting 6 clusters provides smaller 

Davies Bouldin value compared to 4 clusters, we selected 6 clusters as the optimal number of 

clusters. Similarly, regarding the DBSCAN algorithm, the Dunn index for 4 and 5 clusters are 

equal. The optimal number of clusters for this method is 5 because 5 clusters have a Davies Bouldin 

value of 4.99 which is significantly smaller than 19.56 for 4 clusters. After selecting the optimal 
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number of clusters, we re-ran all the methods and we calculated the 5 evaluation indices to assess 

the correctness of clustering. The results are summarized in the appendix in Table 7.   

Table 7: The values of 5 indices on all of 6 clustering methods over the utilized data sets (Experiment 2) 

Australia 

Methods Rand HA MA FM Jaccard Cluster 

PSO clustering 0.608 0.216 0.218 0.614 0.443 2 

DBSCAN 0.526 0.051 0.052 0.538 0.368 2 
Lloyd's K-means 0.500 0.000 0.002 0.504 0.337 2 

Ward 0.608 0.216 0.218 0.614 0.443 2 

K-means ++ 0.752 0.504 0.504 0.753 0.604 2 
Fuzzy clustering 0.605 0.216 0.217 0.491 0.287 6 

Breast Cancer 

PSO clustering 0.926 0.850 0.850 0.932 0.873 2 

DBSCAN 0.920 0.839 0.839 0.928 0.865 2 
Lloyd's K-means 0.920 0.839 0.839 0.928 0.865 2 

Ward 0.926 0.850 0.851 0.931 0.871 2 

K-means ++ 0.920 0.839 0.839 0.928 0.865 2 
Fuzzy clustering 0.910 0.818 0.818 0.919 0.849 4 

Glass 

PSO clustering 0.788 0.501 0.506 0.655 0.480 3 

DBSCAN 0.757 0.423 0.429 0.597 0.420 4 
Lloyd's K-means 0.598 0.262 0.266 0.575 0.360 2 

Ward 0.607 0.261 0.265 0.565 0.356 2 

K-means ++ 0.785 0.425 0.433 0.568 0.396 2 
Fuzzy clustering 0.604 0.272 0.275 0.580 0.365 2 

Heart 

PSO clustering 0.610 0.219 0.222 0.550 0.371 2 

DBSCAN 0.632 0.137 0.143 0.395 0.241 4 

Lloyd's K-means 0.642 0.176 0.182 0.435 0.276 4 
Ward 0.627 0.048 0.057 0.260 0.131 8 

K-means ++ 0.649 0.154 0.160 0.390 0.232 5 

Fuzzy clustering 0.655 0.223 0.228 0.480 0.315 5 

German 

PSO clustering 0.485 0.029 0.030 0.440 0.264 6 

DBSCAN 0.461 0.005 0.006 0.373 0.204 5 

Lloyd's K-means 0.461 0.006 0.007 0.371 0.201 5 
Ward 0.540 0.044 0.045 0.616 0.444 2 

K-means ++ 0.539 0.051 0.052 0.606 0.435 2 

Fuzzy clustering 0.440 -0.001 0.001 0.269 0.115 8 

 
 

 

 
Iris 

PSO clustering 0.776 0.568 0.571 0.771 0.595 2 
DBSCAN 0.776 0.568 0.571 0.771 0.595 2 

Lloyd's K-means 0.776 0.568 0.571 0.771 0.595 2 
Ward 0.776 0.568 0.571 0.771 0.595 2 

K-means ++ 0.776 0.568 0.571 0.771 0.595 2 

Fuzzy clustering 0.764 0.540 0.544 0.750 0.572 4 

TV News 

PSO clustering 0.568 0.135 0.138 0.621 0.446 2 
DBSCAN 0.518 0.115 0.119 0.520 0.327 3 

Lloyd's K-means 0.475 0.046 0.051 0.463 0.276 2 

Ward 0.456 0.071 0.076 0.383 0.183 3 
K-means ++ 0.518 0.115 0.119 0.520 0.327 3 

Fuzzy clustering 0.557 0.111 0.114 0.612 0.437 2 

PIMA 

PSO clustering 0.532 0.100 0.102 0.452 0.270 4 
DBSCAN 0.541 0.117 0.119 0.468 0.284 4 

Lloyd's K-means 0.507 0.072 0.074 0.354 0.171 9 

Ward 0.493 0.042 0.044 0.346 0.175 7 

K-means ++ 0.551 0.138 0.140 0.474 0.286 5 

Fuzzy clustering 0.555 0.107 0.108 0.582 0.410 2 

Mushroom 

PSO clustering 0.941 0.869 0.870 0.913 0.839 19 

DBSCAN 0.895 0.751 0.754 0.831 0.700 17 
Lloyd's K-means 0.851 0.637 0.642 0.750 0.583 15 

Ward 0.784 0.434 0.443 0.602 0.372 16 

K-means ++ 0.895 0.751 0.754 0.831 0.700 14 
Fuzzy clustering 0.842 0.612 0.617 0.732 0.554 15 

Zoo 

PSO clustering 0.882 0.630 0.644 0.712 0.540 2 

DBSCAN 0.867 0.582 0.598 0.673 0.493 2 
Lloyd's K-means 0.849 0.525 0.544 0.626 0.444 2 

Ward 0.841 0.641 0.648 0.771 0.595 4 

K-means ++ None None None None None None 
Fuzzy clustering 0.885 0.636 0.650 0.718 0.543 2 
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According to Table 7, in the TV News data set which is considered as a large data set, PSO 

outperformed the other methods. Here, PSO achieved the 0.57 in Rand and 0.446 in Jaccard which 

clearly is higher than other methods. One interesting result happened on the Iris data set. All 

methods except Fuzzy clustering achieved the equal evaluation metrics and the same clustering 

pattern in the data.  

Since in some cases we could not find the actual number of classes using different methods across 

different data sets, it might be interesting to investigate the accuracy of the utilized methods based 

on their ability to find the exact number of classes based on the Dunn and Davies-Bouldin index. 

Table 8 contains the difference of the actual number of classes in data sets and the numbers found 

by clustering evaluation measures. 

Table 8: The differences between actual number of classes and the number of classes determined by 

clustering methods 

 Australia 
Breast 

Cancer 
Glass Heart German Iris TV News PIMA 

Mush

room 
Zoo STD 

PSO clustering 0 0 -3 -2 4 -1 0 2 -4 -8 3.33 

DBSCAN 0 0 -2 0 3 -1 1 2 -6 -8 3.45 

Lloyd's K-means 0 0 -4 0 3 -1 0 7 -8 -8 4.61 

Ward 0 0 -4 4 0 -1 1 5 -7 -6 3.91 

K-means ++ 0 0 -4 1 0 -1 1 3 -9 None 3.54 

Fuzzy clustering 4 2 -4 1 6 1 0 0 -8 -8 4.70 

 

Among all the methods, PSO clustering is the only one that could find the exact number of classes 

in four data sets. It seems all the algorithms except Fuzzy clustering could detect the exact number 

of clusters in the Australia and Breast cancer data sets. This proves the fact that PSO clustering 

can result in a similar pattern recognition as most of the other techniques. Also, PSO clustering 

has the lowest standard deviation and overall, PSO, DBSCAN, and K-means ++ algorithms have 

significantly less standard deviation for differences between actual and predicted classes with 3.33, 

3.45 and 3.54 standard deviation, respectively. Again, here we used MCDM methods for selecting 

the best algorithm. 

4.2.1. Using MCDM to select the best Algorithm 

The same process described in section 4-1-1 applies for the second experiment as well. The results 

are illustrated in appendix B. 
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From the results it is clear that the PSO algorithm is far superior to the other algorithms. For all 

three MCDM methods, the PSO algorithm ranked first on six data sets out of 10. K-means++, 

Ward, Loyd, Fuzzy, and DBSCAN ranked first in data sets 3, 2, 1, 1, and 1, respectively. It should 

also be mentioned that in the Iris data set, all algorithms, except for the Fuzzy algorithm, reached 

the same results and ranked first. 

Furthermore, it can be seen that regarding the data sets in which PSO has not outperformed the 

other algorithms, its performance is still completely satisfactory. On the other hand, Loyd, Ward, 

and Fuzzy clustering algorithms performed extremely poorly in some cases compared to the other 

algorithms. For instance, the Ward algorithm ranked last in four cases out of 10 on all MCDMs. 

From high class/low class perspective, it can be seen that PSO, DBSCAN and Kmeans++ are the 

best three algorithms with regard to high class data sets. For high class data sets, PSO was ranked 

1st for both data sets on all MCDMs. DBSCAN was ranked 2nd and 3rd on all MCDMs for Glass 

and Breast cancer, respectively. Finally, Kmeans++ was ranked 3rd for both data sets on all 

MCDMs. On the other hand, regarding low class data sets, the results are almost the same with the 

overall analysis provided in the above paragraphs. Furthermore, the results of the group MCDM 

methods for the second experiment are shown in Table 9 and Table 10 as follows: 

Table 9: Group MCDMs for experiment 2 

ALGORITHM GROUP TOPSIS GROUP COPRAS GROUP WSM 

 𝑑𝑖
+ 𝑑𝑖

− 𝐶_𝑖𝑛𝑑𝑒𝑥 𝑄𝑖  WSM Score 

PSO 0.15994 0.49390 0.75538 0.77792 0.19137 

DBSCAN 0.32489 0.32418 0.49945 0.63181 0.15007 

LOYD 0.43351 0.22351 0.34019 0.56021 0.13154 

WARD 0.36719 0.28046 0.43304 0.79365 0.19472 

KMEANS++ 0.21457 0.44105 0.67272 0.50000 0.15019 

FUZZY 0.30874 0.34780 0.52974 0.74806 0.18210 

 

Table 10: The final rankings of 3 group MCDMs for experiment 2 

ALGORITHM TOPSIS SCORE COPRAS SCORE WSM SCORE OVERALL SCORE OVERALL RANK 

PSO 6 5 5 16 1st 
DBSCAN 3 3 2 8 5th 

LOYD 1 2 1 4 6th 
WARD 2 6 6 14 2nd 

KMEANS++ 5 1 3 9 4th 
FUZZY 4 4 4 12 3rd 
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The results of group MCDM methods for experiment 2 demonstrate the superiority of the PSO and 

Ward algorithms over the other methods. Although the Ward algorithm was ranked first in two out 

of three methods, its poor rank on group TOPSIS questioned its overall performance. PSO 

algorithm, on the other hand, was ranked 1st only in group TOPSIS method, but according to group 

COPRAS and group WSM, its performance is quite satisfactory. Considering these results, and 

unlike experiment 1, the results of utilized method are diverse for experiment 2. Thus, the Borda 

count method is used to aggregate the results into one, final ranking as shown in Table 11. 

Table 9: Borda count method 

ALGORITHM TOPSIS SCORE COPRAS SCORE WSM SCORE OVERALL SCORE OVERALL RANK 

PSO 6 5 5 16 1st 
DBSCAN 3 3 2 8 5th 

LOYD 1 2 1 4 6th 
WARD 2 6 6 14 2nd 

KMEANS++ 5 1 3 9 4th 
FUZZY 4 4 4 12 3rd 

 

The overall score of the PSO algorithm, for example, is calculated by assigning a score based on 

its rank for each MCDM method. PSO is ranked 1st, 2nd and 2nd in TOPSIS, COPRAS and WSM, 

respectively. Therefore, its score would be six, five and five. The overall score is the sum of all 

three scores, which is equal to 16. The overall scores for the other algorithms are calculated in the 

same way. 

According to the final results, the PSO algorithm outperformed the other algorithm due to its 

satisfactory performance on all three MCDM methods. It is worth mentioning that, running PSO 

clustering on very big data would be a lengthy process compared to some other traditional 

techniques, one can easily modify the algorithm for a parallel running in order to speed up the run 

time (Nouaouria, et al., 2013). 

On the other hand, though the Ward algorithm was recognized as the best method in two cases, 

due to its poor rank in one case, it was ranked second by the Borda count method. The Fuzzy 

algorithm, which was ranked 3rd, was selected as the 3rd method by all MCDM methods as well. 

Regardless of the final ranking, it should be mentioned that two algorithms, namely Ward and 

Kmeans++, experienced significant fluctuations in their performance which negatively affects 

their reliability. 
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The main advantage of using the Borda count method is that it can unify different, and sometimes 

inconsistent, results of multiple methods. Since the scores assigned to each algorithm are 

commensurate with their ranks, the Borda count method is not biased toward one method or 

another. 

To recapitulate, two experiments were conducted in this study. One with predetermined cluster 

numbers, and one without. The former is useful for understanding how the methods work under 

controlled conditions. The latter, on the other hand, evaluates the performance of algorithms under 

uncontrolled situations. Regarding the first experiment, fuzzy and PSO algorithms were selected 

as the best methods, while in the second experiment, PSO and Ward were chosen as the superior 

ones. Though one might claim that the second experiment is more comprehensive, and thus more 

reliable, none of the two experiments are able to eliminate the need for the other. That is because 

the difference between the two experiments is the distinction between supervised and unsupervised 

learning.  

5. Conclusion 

The task of evaluation and selection of models has been an important and challenging issue in 

numerous disciplines, such as operations research, data mining, and machine learning. Given the 

multitude of clustering algorithms and the nature of cluster analysis, this issue is even more 

demanding when it comes to clustering. 

While there exist numerous studies regarding prioritizing, ranking, and selecting clustering 

methods, the lack of a comprehensive, objective, and robust framework for evaluating and ranking 

various clustering algorithms has been a major deficiency. 

This paper proposed a novel evaluation framework that utilizes MCDM methods to assess the 

quality of numerous clustering algorithms. The proposed approach first utilizes three MCDM and 

group MCDM method to aggregate the results of a collection of both external and internal 

evaluation measures on a number of data sets. Afterwards, the results of group MCDM methods 

are unified using the Borda count method. 

Two experiments were designed to validate the proposed framework. Six clustering algorithms, 

seven performance criteria including five external and two internal measures, three MCDM and 
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group MCDM methods and one final aggregating, namely the Borda count method, and ten data 

sets were analyzed in the experiments. 

The results indicate that no single algorithm can achieve the best performance on all measures for 

any data set. Besides, it is necessary to utilize more than one single performance measure to 

evaluate clustering methods. The experimental studies also indicate that the group MCDM 

methods may disagree with each other. In such cases, the Borda count method can unify the results 

and provide a final solution. This is the case for experiment two. The proposed group MCDM 

compromises our decision on selection of clustering algorithms in different group of datasets. It 

selects one clustering model instead of analysing all the models one by one, which has more 

probability to be the best clustering algorithm based on different internal and external measures. 

Therefore, this approach is a filter methodology and valuable in evaluating large numbers of data 

sets for decreasing the computation time.   

For future work, multi objective optimization and evaluation of clustering algorithms with more 

objective functions could be considered. Also, there are many different clustering evaluation 

measures (Figueiredo, et al., 2019; Khanmohammadi, Adibeig, & Shanehbandy, 2017; Wiwie, et 

al., 2015), and future studies can explore the effectiveness of these in overall performance of model 

selection. Applying the proposed evaluation approach to time series data instead of standard data 

sets can be another future research direction. Moreover, calculating meta-features for clustering 

evaluation instead of applying internal and external measures can exploit the power of meta-

learning in the area of clustering.  
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Appendix A: The detailed tables for MCDM methods for experiment 1  

 

Table A 1: the utilized algorithms’ performance on each data set (Experiment 1) according to TOPSIS methods 

ALGORITHM 1 2 3 4 5 6 7 8 9 10 

PSO 3 5 3 4 5 1 1 1 1 4 

DBSCAN 4 4 3 3 4 4 3 5 4 3 

LOYD 4 3 6 5 3 3 5 6 4 5 

WARD 6 2 1 1 6 6 6 3 2 1 

KMEANS++ 1 1 2 6 2 4 4 4 3 6 

FUZZY 2 6 5 2 1 2 2 2 6 2 
 

Table A 2: the utilized algorithms’ performance on each data set (Experiment 1) according to COPRAS methods 

ALGORITHM 1 2 3 4 5 6 7 8 9 10 

PSO 3 5 3 2 5 1 1 1 1 4 

DBSCAN 4 4 3 5 4 4 3 5 4 3 

LOYD 4 3 6 6 3 3 5 6 4 5 

WARD 6 2 1 1 6 6 6 3 2 1 

KMEANS++ 1 1 2 4 2 4 4 4 3 6 

FUZZY 2 6 5 3 1 2 2 2 6 2 
 

Table A 3: the utilized algorithms’ performance on each data set (Experiment 1) according to WSM methods 

ALGORITHM 1 2 3 4 5 6 7 8 9 10 

PSO 3 5 3 2 5 1 1 1 1 4 

DBSCAN 4 4 3 5 4 4 3 5 4 3 

LOYD 4 3 6 6 3 3 5 6 4 5 

WARD 6 2 1 1 6 6 6 3 2 1 

KMEANS++ 1 1 2 4 2 4 4 4 3 6 

FUZZY 2 6 5 3 1 2 2 2 6 2 

 

Appendix B: The detailed tables for MCDM methods for experiment 2 

 

Table B 1: The utilized algorithms’ performance on each data set (Experiment 2) according to TOPSIS methods 

ALGORITHM 1 2 3 4 5 6 7 8 9 10 

PSO 2 3 1 1 1 4 1 1 1 3 

DBSCAN 5 5 2 2 5 3 3 1 3 4 

LOYD 6 4 4 5 3 5 6 1 3 5 

WARD 3 2 6 6 6 6 5 1 2 1 

KMEANS++ 1 1 2 3 4 2 3 1 3 6 

FUZZY 4 6 5 4 2 1 2 6 6 2 
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Table B 2: The utilized algorithms’ performance on each data set (Experiment 2) according to COPRAS methods 

ALGORITHM 1 2 3 4 5 6 7 8 9 10 

PSO 2 3 1 1 1 4 1 1 1 3 

DBSCAN 5 5 2 2 5 3 3 1 3 4 

LOYD 6 4 4 5 3 5 6 1 3 5 

WARD 2 2 6 6 6 6 5 1 2 1 

KMEANS++ 1 1 2 3 4 2 3 1 3 6 

FUZZY 4 6 5 4 2 1 2 6 6 2 
 

Table B 3: The utilized algorithms’ performance on each data set (Experiment 2) according to WSM methods 

ALGORITHM 1 2 3 4 5 6 7 8 9 10 

PSO 2 3 1 1 1 4 1 1 1 3 

DBSCAN 5 5 2 2 5 3 3 1 3 4 

LOYD 6 4 4 5 3 5 6 1 3 5 

WARD 2 2 6 6 6 6 5 1 2 1 

KMEANS++ 1 1 2 3 4 2 3 1 3 6 

FUZZY 4 6 5 4 2 1 2 6 6 2 

 

 


