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ABSTRACT (150 WORDS) 

 

We analyse the potential to combine catastrophe (CAT) risk modelling with economic 

analysis of vulnerability to poverty using the example of drought hazard impacts on the 

welfare of rural households in Ethiopia. The aim is to determine the potential for applying a 

derived set of damage (vulnerability) functions based on realized shocks and household 

expenditure/consumption outcomes, onto a forward-looking view of drought risk. We 

outline the CAT risk modelling framework and the role of the vulnerability module. We 

present results of a regression model estimating ex-post drought impacts on consumption 

for heterogeneous household types. We assess the generalizability of the derived functions 

to infer applicability to a CAT risk modelling framework. We stress-test the model using 

statistical models of resampling to establish external validity: whether the relationships 

established in the dataset can be used for forecasting. We conclude with caution that a full 

CAT risk model could be applied. 
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1. Introduction 

Probabilistic catastrophe risk models (CAT risk models), used extensively in the international 

insurance and reinsurance markets, develop a view of risk beyond the historical occurrence 

of catastrophes.  CAT risk models generate thousands of synthetic stochastic events whose 

characteristics, evolution and pathways are calibrated based on historical event occurrence 

and a physical knowledge of the potential of the system that generates them. This 

framework is powerful as it allows for changes in exposed population and assets over time, 

and considers an extensive range of possible event scenarios well beyond the historical 

record. This is of particular value when evaluating low recurrence frequency catastrophe 

events, which by nature have a sparse historical record. 

 

Whilst by now a large body of evidence using historical data has been amassed to 

show the actual and potential effects of natural disasters on poverty (Hallegatte et al, 2017), 

CAT risk models have yet to be applied to forecasting poverty outcomes due to stochastic 

events at the household level.1 If CAT risk models could provide perspectives on the 

potential future relationship between the local severity of hazards arising from natural 

catastrophes and indicators of welfare, practitioners would have tools to assess the impacts 

of shocks under a forward-looking view of potential catastrophe occurrence, with a view to 

providing early assistance or insurance.2 The principal challenge is the development of 

                                                        
1 The potential to use probabilistic catastrophe risk models outside of the context of insurance, has been recognized in 
recent years. This has resulted in developments such as the Pacific Risk Information System1 and the CAPRA1  Program 
which both apply the probabilistic catastrophe risk modelling framework developed by the insurance markets for disaster 
risk management. A similar framework has also been applied to estimate food security needs through the Africa RiskView 
platform. See http://pcrafi.sopac.org/about/; 
http://www.ecapra.org/;http://www.rockefellerfoundation.org/uploads/files/fa08d48b-08ef-4fc7-8991-4872f6e929b0-
africa.pdf 
2  Muir-Wood, 2014; Anttila -Hughes and Sharma, 2014-hereafter AHS, 2014. 
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general form relationships between hazard occurrence and indicators of welfare.3 Such 

relationships would comprise the ‘vulnerability module’ in a CAT risk modelling framework.   

 

Vulnerability to poverty in the economics literature is most often conceptualized as a 

high probability that at some future point, household consumption of essential goods will 

fall below the poverty threshold.4  The main empirical constraint to forward looking 

economic analysis of vulnerability has been an imperfect ability to model future states of 

the world. The few studies that are nationally representative rely on cross-sectional 

distribution of wellbeing and shocks (and their correlation) to model the probability of any 

given household falling below the poverty line, though a number of microeconomic studies 

have begun to link to specific stochastic events such as hurricanes, droughts or floods ex-

post.5  

The vulnerability module within a catastrophe risk model contains damage 

functions6 that represent a mean response to a given hazard intensity, with response 

typically given as a damage ratio (the level of damage expressed as a percentage of total 

potential damage7). The relationships are continuous functions, increasing monotonically 

with hazard intensity – their shape denoting the form of response of the impacted asset to 

the shock. Some models account for the uncertainty in the damage ratio, by describing a 

probability distribution around the mean damage ratio for a given level of hazard intensity.  

 

                                                        
3 AHS, 2014. 
4 Hill and Porter, 2014. Poverty, for the purpose of policy analysis, is defined as consumption (or expenditure) 
that falls below some pre-specified level, considered the minimum for an acceptable standard of living. 
5 AHS, 2014. 
6 Also referred to as fragility or vulnerability curves or functions 
7 For buildings, the damage ratio is the cost of repair as a proportion of the total replacement value. Jain, V, 
2010. 
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In considering a microeconomic model as a potential application for the vulnerability 

module we build on a now large body of economic studies that estimate the ex-post impact 

of shocks on welfare (Hallegatte et al, 2017). We ask whether it is possible to reduce these 

complex relationships into functions that can be used to model poverty outcomes under a 

forward-looking view of catastrophe occurrence.  

 

In order to evaluate the feasibility of this approach to the vulnerability module, we develop: 

 

1) A regression model to derive quantitative relationships between a selected 

drought hazard measure and household poverty outcome for rural households in 

Ethiopia. This is a survey-weighted regression model combining historical household 

data with historical data on drought hazard, which effectively constitutes our 

‘vulnerability module’; 

2) Tests of the derived ‘vulnerability module’ to evaluate its robustness, and 

therefore the validity of its future application onto a forward-looking probabilistic 

view of drought occurrence generated from a catastrophe risk modelling framework. 

This evaluation is conducted through the application of Statistical Learning Methods. 

 

The regression uses a “reduced form” approach. Essentially, this evaluates impacts of 

the shock on household consumption, after households have used every strategy available 

to them to mitigate its effect (diversification, asset sales). This can be contrasted with 

“structural approaches” (Chetty, 2008) that could be an alternatively developed.  Household 
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welfare outcomes after a catastrophe are influenced by many complex, often interacting, 

factors beyond the direct damage to household physical assets. Such factors include 

different adaptive behaviours that lead to different outcomes for a given level of physical 

asset damage. If such strategies include opting for low-risk, low-return activities , then risk 

also carries an ex-ante cost, which cannot be measured with our approach, and is likely 

quite high (Elbers et al, 2007). 

Our evaluation of validity of the resulting damage functions will be centred on concepts 

of internal and external validity.8 The framework for damage function development 

described above, allows for the application of the derived functions out of the context in 

which they were derived. This is a fundamental feature of catastrophe risk models, as their 

purpose is to provide a forward-looking view of risk beyond the historical events used in 

their development, and is the key difference with economic approaches. This out-of-context 

application is more challenging when considering the impact of hazards on poverty, rather 

than physical damage, outcomes.   

 

2. Methodology for deriving vulnerability relationships for the impact of drought on 

poverty in Ethiopia 

 

Within catastrophe risk modelling there are two principal methods used to derive 

damage functions; empirical and analytical derivation. We follow a purely empirical 

approach, developing a survey-weighted regression model that combines household survey 

data with historical data on drought hazard. The analogy for drought damage to crops, for 

                                                        
8  AHS, 2014. 
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example, would be the use of mechanistic agro-meteorological models based on a process 

approach versus statistical methods using historical crop loss and drought hazard data. 

  

The model also attempts to separate out observed relationships for different 

vulnerability-determining characteristics, analogous to how catastrophe risk models 

incorporate distinct damage functions for different classes of exposed asset; for example, by 

structural ‘class’ for buildings or by crop type.  Damage functions developed for buildings in 

one region can be modified for use in another, if sufficient detail around differences in 

construction types and quality is available.  

 

The measure of drought chosen for this study is an index of crop yield shortfall, 

taken from the World Food Programme’s LEAP (Livelihoods Early Assessment and 

Protection) software, as this is used in Ethiopian policy analysis.9 The yield shortfall 

calculation uses time-variable meteorological recordings combined with data tables on soil 

and crop characteristics to calculate yield reductions relative to the expected production 

under non-limiting water conditions. It is available at the Woreda10 level through creation of 

a composite index for the relevant crop basket.  The methodology for the calculation has 

been developed over several years (Doorenbos and Kassam, 1979; Frère and Popov, 1979; 

Frère and Popov, G, 1986; Hoefsloot and Calmanti, 2012;  Abraha, M, 2013).  

LEAP calculates yield shortfall by combining a model for water balance (the FAO’s 

Water Requirement Satisfaction Index (WRSI)) with a model describing crop yield response 

to water stress:  100-((1-(1-A/B)*Ky)*100) 

                                                        
9 Drechsler and Soer, 2016. 
10 Woreda is an administrative unit in Ethiopia, equivalent to a county in the United States. 
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Where: A is the Actual Evapotranspiration;  B is the Total Water Requirement 

without water stress; and Ky is a crop specific factor – “Yield Response Factor” - for growing 

seasons or stages of growing seasons, derived empirically from actual measured crop yield 

responses to water under good growing conditions . The WRSI gives the ratio of Actual 

Evapotranspiration to Total Water Requirement (i.e. A/B in the above) for a season.  The 

Actual Evapotranspiration represents the actual amount of water withdrawn from the soil 

water reservoir and is calculated indirectly using rainfall data within a model of soil water 

balance. It requires inputs of time-variable rainfall data and soil and crop-specific data.  The 

Total Water Requirement is calculated as (Potential Evapotranspiration x Crop Coefficient). 

It requires time-variable climate data inputs on solar radiation (sunshine), air temperature, 

humidity and wind speed.  

 

In the context of a probabilistic catastrophe risk modelling framework, the key 

‘hazard’ input into the process is the rainfall data used in the calculation of Actual 

Evapotranspiration. High levels of rainfall variability determine the occurrence or otherwise 

of meteorological drought (translated into crop yield loss), and this is where the large 

covariate shocks arise that CAT risk models seek to capture.  

 

Using a rainfall-based index confers the advantage of objectivity in the measure, 

removing challenges such as reporting bias that are present when working with reported 

crop yield statistics.  It is also more plausibly exogenous than a self-reported measure. 

However, we acknowledge the limitations of working with a modelled estimate rather than 

a direct measure of yield impact. Also, the LEAP protocol for assessing crop yield loss 

estimates only meteorological drought arising from rainfall variability. This has been 
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criticized as limiting the extent to which the LEAP crop loss figures capture experience on 

the ground, as they do not capture the many other factors (such as pests) impacting yields.11 

We also acknowledge that extreme drought is not the only cause of poverty and hunger, 

which can have its root causes in the failure of entitlements.12  People can also be pushed 

into hunger even when rainfall fails only moderately, but if asset prices fall considerably, or 

food prices increase rapidly.    

 

The limited number of survey years available for the regression poses a number of 

challenges. One such challenge is the impossibility of capturing impacts arising from more 

severe seasonal drought on a national or regional scale. For example, in the aftermath of a 

large drought, impacts on food prices (and other commodities for which demand has 

increased), can be expected. This can impact household consumption. Changes in the labour 

market should also be considered, as a large drought event may push a large number of 

households to turn to alternative employment as a coping mechanism even if they were not 

directly affected (Noy and Patel, 2011). A large drought may also prompt a political response 

that influences household consumption in a way not seen in the historical dataset used to 

derive damage functions. These non-local factors are complex and would be difficult to 

capture, even with a more comprehensive dataset. However, the fact that the impact on a 

household is influenced by the scale of a disaster, as well as by its local intensity, is 

indisputable, and not accounted for in the methodology presented in this paper. 

 

 

                                                        
11 As demonstrated by a 2007 ground-truthing exercise described in: FSCB/WFP Workshop Livelihood Early 
Assessment and Protection (LEAP): its potential application, benefits and limits, NOTE FOR THE RECORD. 21st 
January 2008. 
12 Sen, 1981. 
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It is worth reiterating here that the interest of this paper is not the causal 

relationship between household poverty and crop yield losses. Rather, the purpose is to 

establish the validity of relationships derived between a selected poverty indicator and a 

proxy measure of natural hazard that could be modelled within established probabilistic 

catastrophe risk modelling frameworks. Other measures of meteorological drought may 

therefore serve our objectives.  

 

The key questions to be answered in terms of the household regression model are: 

 To what extent can impacts statistically associated with a drought hazard 

measure be attributed to the drought (internal validity/robustness)? 

 To what extent can the regression results be applied to predict outcomes from 

hazard in other contexts (external validity/robustness)? 

 

The regression model specified is: y=D(h,s) where y our outcome of interest is the log of 

consumption per adult equivalent, h is the community level annual crop loss as predicted by 

LEAP (defined above), and s are other household and community characteristics (including 

other shocks experienced by the household). We note also that the relationship between h 

and y is attenuated by certain household and community characteristics (s), and the 

regression model therefore seeks to draw out these attenuating impacts separately to 

increase the external validity/robustness of the model.  

 

The regression model calculates a relationship between consumption and crop loss. 

Households are separated into categories according to the characteristics known to 
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attenuate the impact of drought on consumption. The relationship in all cases is defined by 

a selected functional form and coefficient output from the regression model. The base 

specification is based on initial work13 that derived a general model of consumption for 

Ethiopian households using all areas, rural and urban, and focused on the impact of drought, 

food prices, and other idiosyncratic shocks on ln consumption per adult. We make several 

modifications due to our focus, mainly concerned with achieving precision on the 

relationship between drought and consumption for differing household characteristics.  

 

The dependent variable is the natural logarithm of consumption per adult equivalent at 

household level, as used by Hill and Porter (2014). The drought-crop-loss variable or hazard 

is the LEAP estimated crop losses at woreda level (see above for definitions). Household 

(HH) characteristics included in the model are: HH head gender, age and education, and a 

dummy for household head not in agriculture; HH assets including cattle, sheep, chickens, 

land, good roof, toilet; Idiosyncratic shocks including crop-loss, animal illness or death, HH 

member illness or death, food price shocks; other characteristics including financial capital 

and household composition. Community characteristics include: agro-climactic zone, region, 

distance to town, market access.  

 

As noted above, the model also seeks to capture what in risk-modelling are termed 

attenuating factors, in econometrics as heterogeneous impacts, through interaction terms 

included in the model (e.g. LEAP*varname). Table 2.1 shows these variables. Interacting 

variables proxy for characteristics of the household/community that may affect household 

ability to cope with shock, these include: ability of  head to access coping strategies (head 

                                                        
13 Hill and Porter, 2014. 
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education, head not in agriculture, HH doesn’t own cattle, dependency ratio); other shocks 

that may already be stretching household ability to cope (crop-damage, livestock shock, 

illness); access to institutional coping strategies (distance to town/market, access to 

financial capital, public safety net). Finally, agro-climactic zone is discussed in a separate 

section below. Statistical learning methods are used to perform model selection for the 

appropriate specification of the (potentially non-linear) and heterogeneous relationship 

between drought-crop-loss and consumption. 

Internal validity 

 

In the absence of a randomized experiment assigning some households to better 

community-level crop yields than others, we must assume implicitly that (in some specific 

sense) the crop loss in a given year is exogenous to (uncorrelated with) unobservable 

household and community characteristics that affect household consumption. If households 

more susceptible to the impacts of shocks are locating themselves in hazard-prone areas 

this also limits the extent to which internal robustness/validity can be examined using cross-

sectional data (Winsemius et al, 2015), despite our rich controls and county fixed effects. 

The purpose of the research sidesteps this issue somewhat, as the question of interest is not 

primarily about causality per se but rather, an externally replicable association. 

 

The question of internal validity may be more weakly stated as being a “stable” 

observable relationship between drought-crop-loss and consumption over several 

specifications (and external validity over several datasets), and answerable by looking at 

whether the point estimates and associated p-values established through the regression 
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work, and statistical learning through the bootstrapping method described later. By giving a 

level of significance around the relationship between consumption and crop loss (defined by 

the coefficients output from the regression, and their associated functional form), the 

derived p-values give us information on the strength of fit of the modelled relationship. The 

bootstrapping method generates a mean estimate of the relationship and a related 

standard error (see below for more detailed methodology) which allows us to examine the 

stability of the coefficients that have been derived.  

 

External validity 

 

External validity is concerned with whether results of any individual piece of analysis 

are generalizable to other contexts. It is helpful to define three specific sub-topics within 

overall external validity that are relevant in our context. These are referred to as EV1) out-

of-sample shock estimates EV2) time-stability of estimated relationships and EV3) concerns 

around over-fitting to the training data. We define this in more detail below.14  

 

The main threat to external validity (EV1) in the context of specifying the damage 

function D(.) as outlined above, lies in mis-specifying the function for values of the hazard 

(shock) that were unavailable for the analysis- in particular, extreme values that occur only 

very infrequently (e.g. a once-in-a-generation severe drought, typhoon, tsunami etc.).15  

 

                                                        
14 EV1) is discussed as overlapping within the scope of the internal validity checking. 
15 AHS, 2014. 
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The initial model estimation combined the years 2004-5 and 2010-11 in order to 

allow the broadest (artificially) cross-sectional range of values for our shock.16 In some pre- 

analysis, we conducted a careful analysis of the range of data (see LEAP document). The 

issue in the context of our dataset is the limited number of observations available at some 

of the high levels of crop loss (e.g. greater than 60 percent crop loss).  

 

Figure 2.1 shows the distribution of the crop loss data for 2011 and 2005 combined, 

and it can be seen that the distribution is left-skewed. Where we identify data paucity that 

challenges the strength of fit of the modelled relationship at this extreme end of the crop 

loss spectrum, we need to highlight a caveat regarding the sparse data above 60% crop loss.  

2005 is somewhat worse year than 2011, with a higher mean crop loss, and 300 

observations above 50%. However in 2011, just under 100 observations lie between 50 and 

60%, and none at all are above 60%.  The distribution is somewhat different between years, 

and we therefore examine the difference between the pooled dataset that has a broader 

distribution, with the use of one round of data as the training data, and another round as 

the testing data, in order to test the stability of the drought-consumption relationship over 

different drought distributions. 

 

The second issue is over what length of time relationships established can be 

considered as valid (EV2). For the purpose of CAT risk modelling, it is helpful to consider 

relationships to be stable over a five-year horizon. To establish this, we attempt to use a 

dataset from a different survey year (2012, as opposed to 2005 and 2010-11) as validation 

data. We do not anticipate the external validity of the derived relationships to be applicable 

                                                        
16 Hill and Porter, 2014 
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over very broad timeframes (i.e. 20 years or more), due to structural changes in the 

economy that lead to changes in lifestyle/behaviour and potential exposure to shocks.  We 

discuss the testing dataset for 2012 in a later section of the paper. 

 

Also related to temporal aspects of shock exposure is the concern of recurrence 

times and macroeconomic (or second order) effects.17 An example of recurrence times is 

that, in one crisis households with livestock may sell something in order to protect their 

consumption, but if another crisis hits, the impact of the second shock is likely to be higher. 

We are not likely able to address this latter point with the data available, and so must simply 

take the ex-post distribution as being standard.  

 

The concept of ecological validity is useful in the context of EV3: “a study has 

ecological validity to the extent that the context in which subjects cast decisions is similar to 

the context of interest.”18 We restrict ourselves to a fairly narrower tractable question 

whether the specified model valid across (non-pastoralist) Ethiopia. In one specification, the 

regression model will also explicitly treat agro-climatic region as an attenuating factor, 

testing whether the relationship between crop loss and consumption will hold across 

regions. This is consistent with the idea that the efficacy of adaptive behaviour to weather 

shocks varies with average climate conditions.19  

 

                                                        
17 AHS, 2014. 
18 Roe and Just, 2009, p1267. 
19 Hsiang and Narita, 2012. 
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A final note of caution around the estimation results is that there is most likely 

measurement error in our variables that could potentially lead to attenuation bias in the 

estimates.  

3. Results: Vulnerability relationships 

 

This section discusses the results of the estimated vulnerability relationships. We 

first present the descriptive statistics, and then the tables of results. The next section 

discusses the statistical learning methods to validate the regression results.  

 

We use the data collected in the 2005 and 2011 rounds of the nationally 

representative Household Income and Consumption Expenditure and Welfare Monitoring 

Surveys (HICES/WMS). The key information recorded in the HICES used to calculate 

vulnerability is expenditure on food and other items. The WMS records household assets 

and characteristics as well as a fairly detailed module on self-reported adverse events 

(referred to as shocks throughout). In both years they were administered by Ethiopia's 

Central Statistics Agency (CSA). 

 

The advantage of using the HICES-WMS for vulnerability analysis is that they are 

relatively large, nationally representative, and comparable across years and allow measures 

of vulnerability to be estimated at the household level. This allows us to look at the relative 

importance of geographic and household factors in determining vulnerability, and it also 

allows us to examine how vulnerability varies across certain groups of households. The 

descriptive statistics for the two datasets are shown in table 3.1.  
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Our four specifications include the baseline (no interactions). Model 1 is a 

parsimonious model including only female-headed household, head schooling and access to 

the social safety net (PSNP). Model 2 includes further interaction terms of distance to 

market and the dependency ratio. Model 3 includes a full set of interaction terms, including 

the financial access indicator, and the other shocks that may compromise household ability 

to cope with drought. Note that the latter set of variables are self-reported, and therefore 

potentially endogenous, if having experienced a drought in any way affects the response to 

the questions asked.  

 

Table 3.2 presents the results. We show the coefficient on the LEAP variable divided 

by 10, to ease interpretation. As the dependent variable is in log form, we can read the 

coefficients as “a 10% worsening of the LEAP crop loss leads to an X% reduction in 

consumption per adult”. For example, the baseline result shows that a 10% worsening of 

LEAP is associated with consumption falling on average by 1.5%. We computed 

bootstrapped standard errors across all of the statistical learning components (see next 

section) and therefore also present a 95% confidence interval for the point estimate based 

on bootstrapping results. The LEAP drought variable is significant in all specifications. In the 

following columns, interaction terms are included, so the point estimate is interpreted as 

the drought impact for households that are not defined by any of the characteristics 

included. In column 2, we include female headed, PSNP, and schooling. The coefficient of 

2.0% represents the impact of a 10% increase in the LEAP drought on consumption of male 

headed households with no schooling and no access to the PSNP. Schooling and female 

headed do not show differential impacts. However PSNP access mitigates the drought 
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impact by 0.5%: therefore households with PSNP access would experience a 1.5% decrease 

in consumption (rather than 2% with no access).  We find similar results for households with 

cattle and access to finance. However, households that suffered other crop damage 

experienced a heavier impact of the drought. Note above the potential concern that 

financial access and shocks such as crop damage are self-reported. Some households have 

networks and receive transfers, but other coping mechanisms that are used to protect 

consumption such as selling assets, borrowing, may be detrimental in the longer run (Hill 

and Porter, 2014). We note also that the targeting of PSNP to the poorest communities may 

mean that these results are not unbiased. 

 

To explore whether the impact of drought differs across regions we created dummy 

variables for the four non-pastoral agro-ecological zones of Ethiopia ((EDRI 2009: drought 

prone highlands, moisture-reliable cereals areas, moisture-reliable enset areas, humid 

moisture-reliable lowlands), and included these in the final regression model, shown in the 

final column of table 3.2. The results show that the relationship between drought and crop 

loss is different across agro-ecological zones.  

 

We estimated the same model and performed statistical testing on a quadratic and 

cubic form to test for nonlinearity of the relationship between drought and consumption, 

which is plausible. The full set of results is available on request. Adding these higher powers 

did not change the coefficients on the interaction terms, so we present in figure 3.1 a graph 

showing the simulated shape of the curve using the squared and cubic models for ease of 

interpretation. The cubic model appears to have a second turning point around 70% crop 

loss- which is around the point at which we lose support for the data in 2011, so we may not 
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have enough values of the data to create a plausible estimate for any further nonlinearity 

than a squared term.  

4. Validation Methodology 

 

The proposed methodology to testing the predictive power of the vulnerability 

relationships is to use Statistical Learning Methods (re-sampling and cross-validation). 

Statistical learning is used for Assessing model accuracy; Checking the performance of 

different functional forms of D(.); Choosing the model with the lowest “test” MSE (the best 

prediction) instead of just the lowest “training” MSE (the best fit on the currently used 

historic data).20 

 

This validation methodology has not been widely used in economics; one example 

uses “holdout data” to choose the empirical model that performs best in terms of RMSE.21 

Recently, the World Bank has applied the method of training and testing datasets in the 

validation of poverty scorecard methodology.22 

 

The resampling method works by examining the fit of the model when we apply the 

results from the regression using a training dataset (where the model is initially fitted) to a 

testing dataset (a separate dataset or subset of the dataset that has never been used to fit 

the model).23 K-fold cross validation randomly allocates all n observations of the data into k-

parts (folds or groups) of approximately equal sizes. The first fold is treated as the testing 

                                                        
20 James et al 2013 
21 Todd and Wolpin, 2007. 
22 Diamond et al, 2015 
23 James et al 2013 



 

20 

dataset and withheld while the model is fitted to the remaining k-1 folds. The observations 

in the first fold are then fitted to the estimated model and the mean squared error (MSE) 

MSE calculated (MSE1). The procedure is repeated, each time using a different fold as the 

validation dataset. The testing MSE is defined as the average of MSE1, MSE2… MSEk.24 

 

𝐶𝑉𝑘 =
1

𝑘
∑ 𝑀𝑆𝐸𝑖
𝑘
𝑖=1   (5.1) 

 

This methodology gives us information on the strength of fit of the models with 

respect to each other, and in absolute terms, using the testing MSE. In particular we 

examine the relative improvement in the MSE relative to the complexity of the model.  We 

also use the Akaike Information Criteria (AIC), which penalizes a model for including 

“unnecessary” variables or complexity, to complement the k-fold cross validation method of 

model selection.  

 

For the bootstrapping approach, M distinct data sets with n observations are drawn 

(with replacement), by repeatedly sampling observations from the original data set, the 

same observation can occur more than once in the bootstrap data set. The model is fitted to 

each of these M datasets. The coefficient of interest is computed M times to compute the 

standard error. We then compare the bootstrap estimates of the drought parameter across 

the candidate models. The model with the least bootstrap variance would be selected.  

 

Note here that either method (bootstrapping or k-fold) can be used to validate the 

parameters of an estimated model. 

                                                        
24 James et al 2013 
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Outputs from the analysis 

 

Recall that D(.) comprises the hazard I and household characteristics X. The 

shortlisted functions of D(.) are candidate models 1-4 outlined above. We proposed that the 

control variables should be selected on the basis of economic theory/empirical 

findings/common sense. The interactions should also be selected on that basis, however the 

number of interactions, and the functional form is decided using the statistical analysis. The 

next step is to test the performance of the candidate models in predicting consumption out 

of sample using different vectors of X.      

 

The first round of testing discussed above involved random division into k parts.  We also 

split groups according to characteristics that vary across the dataset, but that we have not 

explicitly identified as determinant of vulnerability, to test external validity, or 

generalizability across ecological contexts. We use non-random sampling for the k-Fold 

Cross Validation method, separating the k groups according to geographical area (e.g. 

Woreda) but controlling for differences expected from changes in agro-climatic conditions. 

This will tell us if, when we separate out households according to what we have determined 

to be the key vulnerability characteristics, the relationships hold across (non-pastoral) 

geographies. 

5. Results from the validation analysis  
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We began with the combined 2005/11 dataset, and conducted q-fold (10 rep) cross-

validation on the shortlisted 4 models with a linear specification for the drought variable.  

To be specific, this meant that for the pooled dataset, we fit the model onto 9/10 of the 

data (randomly selected), and assess the fit on the one remaining tenth. The exercise is 

repeated 10 times. As discussed in section 4, the models are assessed based on the average 

mean squared error (MSE) over all ten repetitions as defined in equation (5.1). The results 

are shown in table 5.1. There is little difference between the models, with model 4 having 

the lowest average MSE by a small margin. 

 

We then repeat the exercise, but considering the whole dataset for 2005 (2011) as 

the training (testing) dataset respectively (table 5.2). In this way one might imagine going 

back in time to 2005, predicting consumption with that dataset for 2011, and assessing the 

results.  When 2005 (2011) is the training dataset, Model 2 (1) is the best predictor (lowest 

MSE). For all the models, training on the 2011 dataset predicts the 2005 data slightly more 

accurately than the reverse, suggesting that the relationship between drought and 

consumption is fairly homogenous, and stable. The results using the squared models appear 

very similar to those of the linear model. The cross-validation results are identical to three 

decimal places.  

 

For the regional validation we non-randomly hold out one region at a time to use as 

a testing dataset, shown in table 5.3.25 Overall, the full model with all interactions and a 

quadratic crop loss function is the preferred specification. We use this model to illustrate 

                                                        
25 Todd and Wolpin, 2007. 
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below for a simulation of CAT risk modelling outcomes, using the pooled 2005-2011 model 

as the training data.  

6. Application of the derived vulnerability relationships within a probabilistic catastrophe 

risk modelling framework 

 

The purpose of this section is to demonstrate how the derived functions would be applied in 

practice, and to propose future work on the basis of the findings of the paper.  

 

In the absence of a probabilistic hazard model for rainfall variability in Ethiopia at the 

resolution required, and compatible with the LEAP protocol, we have produced illustrative 

examples based on the results from the regression model.  

  

Figure 6.1 shows the simulated crop loss with examples of heterogeneous impacts: The 

baseline (in dark blue) shows crop losses up to 100% and subsequent impact on 

consumption (e.g. at 80% crop loss, consumption would fall by just under 30%). The most 

effective mitigation is cattle ownership.  

For the simulated impacts on consumption overall, net impact of the drought should be 

calculated given each household’s characteristics (e.g. households with PSNP and cattle will 

be impacted even less than those just PSNP, but another idiosyncratic shock would 

exacerbate impact).  
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Finally, if the policy interest is poverty impacts of drought, then this should be incorporated 

into the module. E.g. a 20% average drop in consumption will push households already 

below the poverty line into deeper poverty, plus other households will fall below the line. 

The components for the vulnerability module that would be needed are as follows: 

 A model of geo-referenced exposure, as assets or population at risk (exposure 

module);  

 

 A model of the frequency, severity and location of possible hazard occurrence 

(hazard module);  

 

 A model of the relationship between the modelled hazard occurrence and the 

impact on the exposure (vulnerability module).  

 

An illustration is shown in figure 6.2 – which shows simulated headcount poverty for 

each level of crop loss as predicted by the model. The full vulnerability module would thus 

combine these impacts with a more fully developed risk model and the final result would 

allow policymakers to understand the likely poverty burden in future time periods.  

Conclusion and extensions  

 

We have explored the possibility of combining a regression-based model of shock 

impact on consumption with a catastrophe risk model for the purposes of producing a 

forward-looking instrument for policy. The relationship between consumption and a 
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drought measure comprised of crop losses based on water adequacy has been calculated. 

This relationship has then been stress tested using statistical validation techniques.  

 

The results show that the impact of drought is significant across all models 

examined; with the baseline result showing that for every 10% worsening of the LEAP 

drought variable, consumption falls on average by 1.5%. The results also show an apparent 

mitigating impact on this relationship from certain community and household 

characteristics; for example, access to a safety net (PSNP) mitigates the drought impact on 

consumption by 0.5%. However, whilst the results show consistency, we advise caution in 

interpretation of this relationship, given that the two years of data available do not show 

the worst rainfall experienced in Ethiopia.  

 

As an extension a full probabilistic catastrophe risk model could be developed. This 

would entail development and application of a stochastic model of rainfall that could be 

applied into the LEAP framework to produce values for actual evapotranspiration in the 

index calculation. Sensitivity analyses could be applied within the hazard modelling to 

consider potential outcomes in the longer term under climate change scenarios. For 

example, increases in the rates of occurrence of extreme rainfall variability could be used to 

look beyond the near term view. Similarly, projections of population increase and 

composition change could be applied to the exposure dataset. 
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TABLES AND FIGURES FOR TEXT 

 

Table 2.1: Household characteristics and proxy variables 

  

Household characteristics Interacting variables 

Ability of head to access coping strategies Head education level, sector of occupation, 

gender 

Household composition that allows labour 

response 

Dependency ratio, ratio of able-bodied 

Household assets that mitigate shock Cattle, other livestock, jewellery 

Other shocks that compromise ability to 

mitigate shock 

Illness, livestock disease, crop damage from 

pests  

Access to institutional coping strategies Distance to market, access to financial 

products (insurance, credit), public safety 

net access. 
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Figure 2.1 Frequency and 5% bin of Drought-Crop-Loss Data (LEAP)26 

 

 

 

  

                                                        
26 NB: Distributions use 2004 LEAP  (Meher and Belg) for 2005 survey,                                                           
2010 LEAP (Meher and Belg) for 2011 survey (interviews Jan - June 2011) 
2009 Meher and 2010 Belg LEAP for 2011 survey (interviews July-Dec 2010) . 
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Table 3.1: Descriptive statistics 

Variable 2005 2011 
Ln adult monthly 

expend 

7.27 7.28 
 (0.50

) 

(0.50

) 

LEAP crop loss 16.3

3 

11.5

8 

 (18.53

) 

(13.25

) 

Female head 0.23 0.23 
 (0.42

) 

(0.42

) 

Head not agriculture 0.16 0.14 
 (0.37

) 

(0.35

) 

Head school 0.25 0.30 
 (0.43

) 

(0.46

) 

HH has many plots 0.57 0.53 
 (0.49

) 

(0.50

) 

Cattle 0.66 0.67 
 (0.47

) 

(0.47

) 

Financial access 0.25 0.50 
 (0.43

) 

(0.50

) 

Distance to town 326.8

3 

378.6

4 

 (229.93

) 

(285.74

) 

Dependency ratio 0.49 0.50 
 (0.24

) 

(0.23

) 

Death shock 0.08 0.02 
 (0.27

) 

(0.13

) 

Illness shock 0.23 0.08 
 (0.42

) 

(0.27

) 

Cropdamage shock 0.10 0.03 
 (0.30

) 

(0.17

) 

Livestock shock 0.09 0.05 
 (0.29

) 

(0.21

) 

Jobloss shock 0.01 0.00 
 (0.09

) 

(0.04

) 

Price shock 0.02 0.18 
 (0.14

) 

(0.38

) 

PSNP beneficiary 0.00 0.15 
 (0.00

) 

(0.36

) 

Highlands-drought 0.39 0.37 
 (0.49

) 

(0.48

) 

Highlands-reliable 0.38 0.34 
 (0.48

) 

(0.47

) 

Lowlands-reliable 0.03 0.11 
 (0.18

) 

(0.3)

1 

Lowlands-enset 0.19 0.18 
 (0.40

) 

(0.39

) 

Number obs 8431 8807 
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Table 3.2 Main regression results 

 

 Baseline Specparsi Spec3 

(Intercept) 7.794∗∗∗ 7.800∗∗∗ 7.815∗∗∗ 

 (0.018) (0.018) (0.020) 

Drought shock −0.015∗∗∗ 

(0.002) 

−0.020∗∗∗ 

(0.003) 

−0.058∗∗∗ 

(0.007) 

boot.se 0.0025 0.0028 0.0078 

boot.ci (-0.020,  -0.0104) (-0.0242, -0.0130) (-0.0728, -0.0425) 

Drought* Head school  0.000 0.000 

  (0.001) (0.001) 

Drought*Femalehead  0.000  

  (0.000)  

Drought* PSNP  0.005∗∗∗ 0.005∗∗∗ 

  (0.001) (0.001) 

Drought*non-agri hh   −0.000 

   (0.001) 

Drought*dist. market   0.000∗∗∗ 

   (0.000) 

Drought* dependency   0.001 

   (0.001) 

Drought* anycattle   0.018∗∗∗ 

   (0.004) 
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Drought* Fin. access   0.001∗∗ 

   (0.000) 

Drought* Illness   0.000 

   (0.001) 

Drought* Cropdamage   −0.001∗ 

(0.001) 

Drought* livestock shock   −0.000 

(0.001) 

D* highlands reliable   0.005∗∗∗ 

   (0.001) 

D*  lowlands reliable   −0.004∗∗∗ 

(0.001) 

D* lowlands enset   0.004∗∗∗ 

   (0.001) 

R-squared 0.245 0.246 0.251 

Adj.  R-squared 0.244 0.245 0.249 

AIC 20047.21 20022.04 19937.65 

BIC 20271.92 20270.00 20263.10 

Num.   obs. 17134 17134 17134 

boot.cv.cropleap 0.249 0.248 0.248 

boot.cv 0.170 0.171 0.169 

RMSEtest05 0.0232 0.0281 0.0291 

RMSEtest11 0.0438 0.0431 0.0490 
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RMSEtestHRE 0.0514 0.0546 0.0602 

RMSEtestHDR 0.0302 0.0297 0.0544 

RMSEtestLOE 0.0042 0.0060 0.0055 

RMSEtestLOR 0.0602 0.0080 0.0013 

Notes: s.e.=standard error cv=cross validation. R2=r-squared; AIC=Aikike information 

Criterion; BIC= ; boot=bootstrap; RMSE=root mean squared error. Sample size = 17238. Full 

results in appendix.  

 

Figure 3.1  
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Table 5.1: Testing the models with 2005 and 2011 as training and “holdout” data 

 

 Baseline Model 1 Model 2 Model 3 Model 4 

      

Original R2 0.245 0.246 0.247 0.247 0.251 

Original Adj.  

R2 

0.244 0.245 0.245 0.246 0.249 

Original AIC 20047.21 20022.04 20072.26 20065.60 20001.73 

Original BIC 20271.92 20270.00 20335.72 20360.06 20319.43 

Num.   obs. 17134 17134 17134 17134 17134 

boot.cv 0.170 0.171 0.170 0.170 0.169 

RMSEtest05 0.0232 0.0281 0.0338 0.0272 0.0291 

RMSEtest11 0.0438 0.0431 0.0427 0.0429 0.0490 

      

Notes: cv=cross-validation, R2=r-squared; AIC=Aikike information Criterion; BIC= ; 

boot=bootstrap; RMSE=root mean squared error. HRE=Highlands, Reliable Region; 

HDR=Highland, drought-prone Region; LOE=Lowlands Enset growing region; LOR=Lowlands 

reliable region. 05,11 refer to the datasets collected in 2005, 2011 respectively (and defined 

above). 
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Table 5.2: Testing the models with 2005 and 2011 as training and “holdout” data – 

squared model 

 Baseline Model 1 Model 2 Model 3 Model 4 

      

R2 0.245 0.246 0.244 0.245 0.248 

Adj.  R2 0.244 0.245 0.243 0.243 0.246 

AIC 20044.22 20020.87 20068.66 20065.60 20003.63 

BIC  20276.69 20276.58 20339.87 20360.06 20329.08 

Num.   obs. 17134 17134 17134 17134 17134 

boot.cv 0.170 0.171 0.170 0.170 0.169 

RMSEtest05 0.0297 0.0386 0.0338 0.0344 0.0348 

RMSEtest11 0.0412 0.0408 0.0422 0.0424 0.0453 

Notes: cv=cross validation. R2=r-squared; AIC=Aikike information Criterion; BIC= ; 

boot=bootstrap; RMSE=root mean squared error. 
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Table 5.3: Results of excluding regions 

 

 Baseline  Model 1 Model 2 Model3 

     

RMSEtestHRE 0.0514 0.0546 0.0595 0.0602 

RMSEtestHDR 0.0302 0.0297 0.0519 0.0544 

RMSEtestLOE 0.0042 0.0060 0.0055 0.0055 

RMSEtestLOR 0.0602 0.0080 0.0034 0.0013 

Notes: cv=cross validation. R2=r-squared; AIC=Aikike information Criterion; BIC= ; 

boot=bootstrap; RMSE=root mean squared error. HRE=Highlands, Reliable Region; 

HDR=Highland, drought-prone Region; LOE=Lowlands Enset growing region; LOR=Lowlands 

reliable region. 
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Figure 6.1 
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Figure 6.2  

 


