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Abstract—Internet-wide security and resilience have tradition-
ally been subject to large-scale DDoS attacks initiated by various
types of botnets. Since the Mirai outbreak in 2016 myriads of
Mirai-alike IoT-based botnets have emerged. Such botnets rely
on Mirai’s base malware code and they infiltrate vulnerable IoT
devices on an Internet-wide scale such as to instrument them to
perform large-scale attacks such as DDoS. As recently shown,
DDoS attacks triggered by Mirai-alike IoT-based botnets go far
beyond traditional pre-2016 DDoS attacks since they have a much
higher amplification and their propagation is far more aggressive.
Thus, it is of crucial importance to tailor botnet detection
schemes accordingly. This work provides a novel DNS-based
profiling scheme over real datasets of Mirai-alike botnet activity
captured on honeypots that are globally distributed. We firstly
discuss features used in profiling botnets in the past and indicate
how profiling IoT-based botnets in particular can be improved
by leveraging DNS information out of a single DNS record. We
further conduct an evaluation of our developed feature set over
various Machine Learning (ML) classifiers and demonstrate the
applicability of our scheme. Our resulted outputs indicate that
the proposed feature set can significantly reduce botnet detection
time whilst simultaneously maintaining high levels of accuracy
of 99% on average under the random forest formulation.

I. INTRODUCTION

A botnet is a group of infected hosts controlled remotely
over the Internet by commands from a botmaster, used to
facilitate illegal activities including keylogging and identity
theft, malware propagation, cryptocurrency mining and, most
infamously, distributed denial-of-service (DDoS) attacks. The
scale and ambition of botnet activities have increased in
recent years, which is particularly concerning when considered
alongside the recent phenomenon of the Internet of Things
(IoT); the extension of internet connectivity beyond home
computers and mobile devices, and into embedded systems
that have traditionally functioned offline. The growth of the
IoT, coupled with the widely reported lack of security in IoT
devices [1], [2] is a game-changer for botnets, which can now
leverage IoT devices and amplify their attacks to scales orders
of magnitude larger than previously possible.

The majority of identified IoT-based botnets exploit variants
of the Mirai malware that was firstly observed through the
Mirai botnet in October 2016 [3]. The Mirai botnet consisted
of 550k compromised IoT devices from over 164 countries
and initiated a DDoS attack on Dyn’s datacenter, one of the
major global Domain Name System (DNS) service providers.
The resulted attack was recorded as the largest in history and
caused the Internet outage to most of the developed countries,

including the UK, for more than two days [3]. Evidently, the
Mirai attack acted as the cornerstone to a new era of DDoS
attacks since a plethora of its malware variants (e.g., IoTroop,
Satori, Okiru, Owari) have emerged in the last three years. For
instance, the IoTroop malware composes the Reaper botnet
that instrumented a series of DDoS attacks on critical financial
services in the Netherlands during the first three months of
2018 and is expected to affect more networks in the future. 1

Whilst a number of previous studies has identified the
distinctive transport layer (e.g. TCP or UDP) traffic features
of botnets and created methods for their identification, many
of these require time-consuming analysis of large datasets or
the complex monitoring of entire networks over long periods
of time. In parallel, work that aimed to identify botnets using
Domain Name Service (DNS) information has shown to be
used complementary within traditional botnet classification
frameworks (e.g., [4], [5], [6]).

Nonetheless, little has been done in the context of explicitly
identifying IoT-based botnets [7]. Within this work, we argue
that knowledge gathered in terms of generic features on the
transport layer alongside DNS-based information can be ex-
tremely useful for composing statistical meta-features within
a given Machine Learning (ML) classifier. In contrast with
other pieces of work in which multiple DNS records have
been used within a clustering or classification process, we
show that statistical meta-features composed by a single DNS
record are adequate for accurate classification of IoT-based
botnets with reasonable computational cost. Therefore, such
a scheme can be beneficial for future detection mechanisms
as well as for rule-based IP address blacklisting tools as used
broadly by network operators. Our work is conducted over real
datasets gathered by our globally distributed honeypots that
contain infected IP addresses that are already part of Mirai or
a Mirai-alike honeypot. In general, the contributions of this
work are:

• The first study to profile Mira-alike botnet activity using
DNS-based properties over real datasets.

• Highlighting the usefulness of meta-features using a
single DNS record from a given flow for Mirai-alike
identification.

1NexusGuard DDoS Threat Report 2018: https://www.nexusguard.com/
threat-report-q2-2018



• Accuracy of more than 99% of average accuracy on
detecting Mirai-alike IoT-based botnets using the random
forest classifier.

• Computational time of less than 0.1 seconds for compos-
ing a concrete model for classifying Mirai-alike botnets.

• Computational time of less than 0.2 seconds to detect if
a live DNS domain is Mirai-alike or not.

The remainder of this paper is structured as follows: Sec-
tion II discusses related work and Section III describes the
honeypot datasets used in this work. Section IV discusses
the methodology employed in this work whereas Section V
presents the results obtained through our evaluation. Finally,
section VI concludes and summarises this paper.

II. RELATED WORK

The importance of identifying infected hosts as a compo-
nent of, for example, firewalls and intrusion detection systems,
means that many existing studies have attempted to address
this. Many studies ([4], [5], [6]) use the TTL value in
DNS records, since a short TTL is advantageous for rapidly
changing domain names. Holz et al. [8] argue however that
a low TTL is not a good indicator of botnet activity, since
it carries a risk of misclassifying benign content delivery
networks (CDNs) as malicious fast-flux service networks
(FFSNs). The way in which botnets are distributed across
anonymous systems (ASs) is another feature which has been
previously examined [9], but this study suffered from a high
false negative rate as a result of relying on too minimal a set
of features. Hoang and Nguyen’s 2018 study [10] is one of the
few that exclusively examines features derived from the text
of the domain name, aiming to identify malware through their
use of domain generation algorithms (DGAs). By considering
the bi- and trigrams present in a given domain, and their
relative commonality in natural English text as well as the
frequency of vowels in the name, a domain’s level of entropy
is calculated. Based on these features, classification accuracy
as high as 90.2% was achieved, but the applications of this
are obviously limited to botnets that use DGAs.

Huang, Mao and Lee [11] present a “snapshot” system for
identifying fast-flux networks, based on the principle that they
are distributed across many internet service providers, and
aims to quantify this with two measures. The first is a measure
of distribution relying on time zones to discretise location data,
but is ineffective if all hosts are in the time zone and struggles
to differentiate FFSNs from benign CDNs. Therefore a second
measure is presented, which considers the distance between
the different IP addresses in one DNS query. The method
claims an accuracy of 98.16% and is not relying on analysing
long-term traffic flows.

The prevalence of fast-flux and its characteristic rapid
changing of IP addresses means that most existing studies
use temporal features based on changes in a server’s DNS
response over time, which take several hours to observe since
the system must wait at least the record’s TTL time before it
can check for any changes. This limits practical applications
and potential for real-time detection. However it has also

been proven that it is possible to classify botnets based on
information from a single point in time, based on its spatial
distribution. The remainder of this study will aim to build
upon this and establish a novel snapshot-based system that
goes beyond currently deployed or proposed solutions since it
incorporates non-spatial features and examines their relevance
to the Mirai botnet specifically. Moreover, the utilisation of
minimal DNS-based features out of a single record is an ap-
proach that reduces significantly the feature gathering process,
thus establishing promising paths for future deployments of
anomaly-based IDSs as well as next generation IP blacklisting
tools.

III. DATA DESCRIPTION

We gather probes from IP addresses that are part of a Mirai-
alike botnet by operating 11 SSH and Telnet honeypots located
in three countries. Our honeypots are located in: the United
States (3 in Las Vegas, Nevada, 1 in Minden, Nevada, 3 in
Los Angeles, California), Russia (2 in Moscow), and Brazil
(2 in Sao Paulo). Each honeypot is configured to capture logs
of all incoming traffic, and logfiles are then aggregated and
indexed using Splunk for analysis. We subsequently match
Mirai-alike fingerprints by comparing the TCP sequence with
the IP addresses. In particular, Mirai bots send TCP SYN
packets with the TCP initial sequence number equal to the
destination IP of the targeted host [3]. Given that the TCP
sequence number is a 32-bit integer, the likelihood of an
identified Mirai-alike fingerprint being set at random is only
1

232 . Based on this technique, our honeypots have detected
811,636 Mirai-alike probes between 2017/02/17 – 2019/03/07.

From this dataset, IP addresses were randomly sampled and
reverse queried to obtain domain names, of which a subset
of 25% returned responses. These domain names were then
forward queried to give us a set of DNS records associated
with Mirai hosts. Within our methodology, the responsive
domains are compared against a set of benign DNS records,
obtained by querying the API 2. The Majestic Million list
ranks websites with the highest number of referring subnets
and we consider these entries to be benign.

We following provide an insightful assessment of various
DNS-based features from our datasets such as to describe their
statistical profiles and pinpoint Mirai-alike characteristics.

IV. METHODOLOGY

A. Feature composition

1) DNS response: The answer to a DNS query, i.e. the IP
address mapped to a given domain name, is contained in the
packet’s ”Answer” section. In addition to this there is also
an ”Authority” section, which contains records pointing to
the domain’s authoritative nameservers, and an ”Additional”
section which can contain any record to aid query resolution,
but in practice almost exclusively contains full records for the
nameservers in the Authority section. Thus, a single response
message will contain information on a domain’s nameservers

2Majestic Million list: https://majestic.com/reports/majestic-million
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without the need to run additional queries. Previous studies
[8], [6] have indicated that fast-flux domains on average return
a higher number of records than a benign domain, making
record count an easy to compute and useful indicator of botnet
activity. However, this pattern was not present in Mirai-alike
botnet activity, with Mirai-alike bots returning on average
the same number of ”Answer” records (fig. 1) and fewer
additional records (fig. 2) than a benign domain. However,
we did observe that Mirai-alike bots almost exclusively return
one ”Answer” record, forming a distinctive pattern which can
be used in detection mechanisms and IP blacklisting tools.

2) TTL: Time to live (TTL) is an integer value included
in every response record (RR), specifying the time interval
for which that record should be cached in a server. After the
period has passed, the server must pass any queries up the
DNS hierarchy for resolution. For a botnet, especially one
using fast-flux techniques, lower TTL values are preferable
as this allows the botnet to evade detection and react more
quickly to hosts being taken down. Stalmans and Irwin [6]
found a significant difference in TTL between fast-flux and
normal domains, with benign domains having an average TTL
of 14885 and fast-flux domains only 595. In our datasetwe
identified that the maximum TTL across all IP addresses in a
single malicious record was on average 87,854, compared to
107,585 for benign domains. Thus, confirming that Mirai-alike
bots tend to have lower TTLs.

As previously mentioned, TTL can be an unreliable fea-
ture for identifying botnets, since legitimate content delivery
networks (CDNs) will also have low TTLs. Nevertheless, the
classifiers discussed later incorporate TTL as one of the many
features contributing to classification. Hence, we reduce the
risk of CDN misclassification.

3) AS diversity: An autonomous system (AS) is a col-
lection of IP routing prefixes under the control of a single
administrative entity, sharing a common routing policy. A
benign domain is likely to have most, if not all, of its servers
within the same AS for practical reasons including the costs
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Fig. (3) Boxplot- number of ASes linked to a domain
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Fig. (4) Distribution of the mean MSD for each domain by
classification

of using a particular ISP, or the convenience of keep the hosts
geographically adjacent in one data centre. This pattern has
been observed in a number of different botnets [6], [9]. Ad-
ditionally Holz et al. [8] observe that legitimate domains and
CDNs both tend to return only one ASN, making AS diversity
a potentially useful feature in preventing misclassification of
CDNs as botnets and countering any anomalies created by
using TTL as a feature. However, the Mirai botnet does not
share this pattern (Fig. 3), with hosts spanning a lower number
of ASs than a benign domain on average.

4) Spatial distribution: Legitimate businesses will com-
monly cluster their servers closer together for cost rea-
sons, whilst botnets by their nature will indiscriminately
hijack anything with a vulnerability, resulting in a greater
dispersion. The spatial service relationship estimator [11]
takes advantage of this by measuring service relationship,
i.e. the relationship between an IP address (i.e., the con-
sumer) and a nameserver (i.e., the provider). For each
address in the answer section, the minimum service dis-
tance (MSD) dmm′ is calculated as the shortest distance
between that address qm ∈ QAS and any address in the
additional section qm′ ∈ QNS , based on the Euclidean
distance between the two host’s geographic coordinates:
dmm′ =

√
(lat(qm)− lat(qm′))2 + (long(qm)− long(qm′))2

In this study however we use the Haversine distance formula
, which is more suitable for data on a global scale, as it
eliminates distortion at northern and southern extremities and
allows latitudes to “wrap around” from -180◦ to +180◦. For a
malicious domain, the mean MSD was 355.5km, compared to
18.7 for a benign domain (fig. 4), confirming that Mirai-alike
bots are more widely distributed than benign domains.

5) Vowel density: In natural English text, around 38.1% of
letters are vowels [12], despite them only representing 19.2%
of letters. Therefore the proportion of letters in a domain
name may provide an indicator of how likely that domain
is randomly generated. In our dataset, the domain names of
Mirai-alike bots had an average vowel density (vowel count
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/ length) of 0.16, compared to 0.32 for benign domains. This
roughly corresponds to the percentages mentioned above, con-
firming that Mirai-alike botnets use easily detectable domain
generation algorithms (DGAs).

6) Shannon entropy: We use the Shannon information
entropy of a variable as a way to effectively quantify “random-
ness” being the negative logarithm of that value’s probability
mass function:

H(X) = −
∑
i∈X

P (i) log2 P (i)

This is relevant when considering botnets since the do-
main names used by botnets are often randomly generated.
Therefore botnet-related domains contain combinations of
characters with entropy distinct from what would be expected
from the English language. Mirai-alike domains were found
to have on average a higher entropy than benign domains, as
illustrated by the probability distribution in Fig. 5.

B. Feature engineering: system method

When optimising our system, input and output (I/O) is a
concern, since this has the potential to slow down operation
by orders of magnitude. DNS queries are particularly time-
consuming, especially since a DNS server often has to query
multiple other servers before it can respond. This is addi-
tionally limited by the bandwidth of the available bandwidth.
Whilst control over this is limited, we can speed up database
access time. To map IP addresses to ASNs and coordinates, we
use the publicly available MaxMind GeoLite 2 databases3. The
database file format is effectively a binary search tree, giving
it O(log n) search complexity, and the API loads the entire
database into memory once at the beginning of the process,
minimising access times as far as possible.

C. IoT-based Botnet classification

In this study we investigated the performance of two
supervised and one unsupervised classification algorithm:

3MaxMind GeoLite 2: https://dev.maxmind.com/geoip/geoip2/geolite2/

1) Naı̈ve Bayes classifier: uses Bayes’ theorem to calculate
the most probable class of a variable under the “naı̈ve”
assumption that each of its attributes is conditionally indepen-
dent. Whilst this is rarely true is most real-world scenarios,
it significantly reduces the complexity of computation. Naı̈ve
Bayesian methods are expected to perform well on our dataset
since we will be considering features from the domain name
text, record count, and spatial distribution, all unrelated fac-
tors, meaning that the naı̈ve assumption may actually be true
and provide a more realistic model of the data, leading to
more accurate classification. Within our evaluation we explore
three different implementations of the Naı̈ve Bayes classifier
relating the the a-priori considered statistical distribution.
Namely we assess the Gaussian, multinomial and Bernoulli
distributions.

2) Random forest classifier: an ensemble classifier, i.e. it
aggregates the results of multiple independent classifiers to
create an overall model, increasing accuracy. Each individual
decision tree classifier only uses a random subset of features
as its input, and a majority vote determines the overall
classification, meaning that over half need to be incorrect
for the overall classification to be wrong. Random forests
perform poorly where there is a large number of irrelevant
variables, since this lowers the chance of a relevant variable
being selected. A major advantage of this approach is the
ability to see the effect of each individual feature on the final
classification, and determine the importance of each feature.

3) k-Nearest Neighbours (k-NN) classifier: an example
of unsupervised instance-based learning, since it makes no
attempt to construct a model of the data or understand its
underlying structure, instead simply storing each data point,
thus exploiting a priori knowledge. Classification is based
on a simple majority vote of a predefined number k of the
closest pre-computed samples. The lack of any attempt to
infer underlying structure has the potential to produce fast
performance, and the majority voting mechanism suggests that
accuracy will be similar to random forests, although it remains
to be seen how well it will perform given the dimensionality
of our data set.

4) Classification performance metrics: In order to assess
the accuracy performance of the utilised classifiers we employ
standard metrics in terms of the confusion matrix and operate
over True Positives (TP), False Positives (FP), False Negatives
(FN) and True Negatives (TN). Thus we employ:
• Precision, the proportion of detected malicious domains

that actually were botnet domains.

Precision =
TP

TP + FP

• Recall, representing the percentage of truly malicious
domains correctly detected.

Recall =
TP

TP + FN

• F -score, that is the harmonic mean of precision and
recall such as to ensure greater capture of accuracy in
our Mirai-alike classification process.
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F − score = 2.
Recall.Precision

Recall + Precision

Alongside accuracy we also assess the importance of the
features identified within ths section. In order to achieve that
we employ the Gini Index. The Gini Index, G, is defined as:

G =

K∑
k=1

pmk(1− pmk)

where K is the total number of classes, and pmk is the
proportion of training data in the mth region of assessment
that belong to the kth class.

V. EVALUATION

As already presented earlier(Section IV, we consider a
number of features that can be used to identify botnets, and
how these apply to our Mirai-alike dataset. We subsequently
assess the resulted feature vector with classification algorithms
such as to evaluate the feasibility of an ML-based detection
system. Although systems for botnet classification have been
created in the past with success, they often require significant
amounts of data and time-consuming analysis to complete.
Whilst at least one previous study [11] has achieved detection
times of half of a second, it relies entirely on geographic fea-
tures with questionable applicability for IoT-based, Mirai-alike
botnets[7]. Our aim therefore is to increase credibility using
a wider range of features, whilst simultaneously maintaining
rapid detection times explicitly for IoT-based botnets.

A. Classification performance

We assessed each of the classifiers over varying tuning
phases within their algorithmic configuration and examined
their performance in terms of accuracy, and computational
cost. Figure 6 depicts how each classifier performed on aver-
age over the three classification accuracy metrics defined in
section IV. As evident, we see the random forest formulation
to be far more accurate than the 3 Bayesian-based classi-
fiers and the K-means Nearest Neighbour (k-NN) clustering
approach. Under varying model parameters (e.g., number of
decision trees) the random forest achieved an average of 99%
for precision and 98% for recall and F-score. We also witness
that the best formulation for a Bayesian-based classifier is
essentially the one that considers a Gaussian distribution
with 80%, 75%, 77% for average precision, recall and F-
score respectively. In parallel, the k-NN algorithm outperforms
all three Bayesian-based classifiers with 90%, 78%, 80%
for al the three aforementioned metrics. Therefore, the k-
NN approach is much more capable of identifying precisely
the proportion of detected malicious domains that are part
of a greater botnet than any Bayesian-based classifier (i.e.
precision).

Nonetheless, Figure 8 shows how accuracy varies accord-
ing to the training set size. The three Bayesian methods
demonstrate relatively consistent performance, k-NN improves
noticeable with additional training data, whilst random forests
improve slightly. The random forest method has a clear
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advantage as it not only performs consistently well against
all metrics, it performs well on smaller datasets. Thus, we
consider random forests to be more practical for real-time
implementations where limited amount of data is likely to be
available particularly for medium-scale IP blacklisting tools
or edge detection methods within small enterprise networks
or medium-sized ISPs.

B. Computational performance

The relationship between a dataset’s size and overall detec-
tion time (i.e. the entire process of reverse querying a given IP
address, querying the domain name, extracting and preparing
the features, and classifying the domain) is shown in figure 7 .
A dataset of 100 domains takes around 200 seconds to analyse,
giving an average detection time of 2 seconds. However, the
historic nature of this dataset meant that a large proportion
of the requests timed out since those hosts were no longer
active. The average detection time excluding these timeouts
was 0.17 seconds. In addition, a live implementation of such
a scheme, for example in an intrusion detection system or
an IP blacklisting tool, might extract a domain name from a
packet flow in real time, necessitating only one DNS query and
further reducing this time. Figure 9 shows the time taken to
train different classifiers. Whilst the random forest algorithm
was significantly slower than other approaches, training time
was still less than 0.1 seconds, hence unlikely to be a limiting
factor in any implementations of this scheme.

C. Feature importance

By utilising the Gini Index we assess the usefulness of the
identified features used subsequently within our classification
process. As evidenced by Fig. 10, vowel density and entropy
were the most important features and demonstrates that the
usage of DGAs by Mirai-alike bots, easily sets their profile
apart from benign traffic.

VI. CONCLUSION

In this study we described a new and novel feature set for
detecting Mirai-alike botnet activity through DNS, with the

distinction that it can be entirely derived from the contents of
a single DNS query. We conducted our evaluation over real
honeypot datasets and witnessed that Mirai-alike activity tends
to differ significantly from benign traffic. Mirai-alike bots tend
to span fewer ASes and that an entropy-based description
of domain names is a distinct property due to their use of
DGAs. We assessed our proposed feature-set over a number
of machine learning techniques, and witnessed that the random
forest classifier provides the best accuracy performance with
99% of accuracy. In parallel, the exceptionally low computa-
tional cost of this technique places it as the best candidate for
future implementation of intrusion detection systems as well
as IP blacklisting tools.
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