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ABSTRACT

We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light
curve data. We assume flares are described by a model in which there is a rapid
rise with a half-Gaussian profile, followed by an exponential decay. Our signal model
also contains a polynomial background model required to fit underlying light curve
variations in the data, which could otherwise partially mimic a flare. We characterize
the false alarm probability and efficiency of this method under the assumption that any
unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding
method based on that used in Walkowicz et al. (2011). We find our method has a
significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares.
For a conservative false alarm probability our method can detect 95% of flares with
S/N less than ∼20, as compared to S/N of ∼25 for the simpler method. We also test
how well the assumption of Gaussian noise holds by applying the method to a selection
of “quiet” Kepler stars. As an example we have applied our method to a selection of
stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of
1873 flares after vetos have been applied. For these flares we have made preliminary
characterisations of their durations and and signal-to-noise ratios.
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1 INTRODUCTION

Solar flares have been intensely studied for decades, us-
ing imaging, spectroscopy and light-curve data. The record
of soft-X-ray light curves from solar flares, as measured
with the Geostationary Orbiting Environmental Satellites
(GOES) extends back in a systematic, well-calibrated record
to the mid-1970s, and from this, and other (shorter) data
sets many statistical properties of solar flares have been de-
duced, and a fairly solid understanding of the physical pro-
cesses in solar flares has emerged. There are other stars,
in particular UV Ceti stars, for which large numbers of
flares have been observed and statistics gathered, e.g. the
observations of Gershberg (1972) and Moffett (1974) used
in Lacy et al. (1976), or the studies of Ishida et al. (1991)
and Dal & Evren (2012). Flares have also been searched for
in M Dwarf stars using data from the Sloan Digital Sky Sur-

vey (SDSS), using both photometric (Kowalski et al. 2009)
and spectral data (Hilton et al. 2010). However, the Ke-

pler spacecraft, designed to search for exoplanets via the
transit method, has provided a great new resource of pre-
cision long duration high-temporal resolution data needed
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to study a large population of flares from a single star, or
a large population of stars. Previous searches for flares in
this data set include Walkowicz et al. (2011), Balona (2012),
Maehara et al. (2012) and Shibayama et al. (2013), which
have tended to focus on easily recognized large flares.

This paper describes a method for identifying stellar
flares of all sizes, based on their expected temporal charac-
teristics, using a Bayesian odds ratio method. Our method
assumes a specific flare profile, defined by a Gaussian rise
and exponential decay, with a specific range of values, and is
therefore most efficient for flares that can be characterized
by this model. However, we also demonstrate examples of its
performance for other flare shapes. The odds ratio provides a
natural quantitative way to discriminate between noise and
signal models, which provides additional information over
the by-eye judgement relied upon in previous analyses.

1.1 White light flares

Stellar flares are intense, rapid and unpredictable brighten-
ings in the magnetised atmosphere of a star, caused by the
release of previously stored magnetic energy (Benz & Güdel
2010). In the case of solar flares, the usual assumption is
that energy is converted to the kinetic energy of non-thermal
particles which stop collisionally and cause heating in the so-
lar atmosphere and enhanced radiation. Solar flare emission
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can be detected across the entire electromagnetic spectrum
(Fletcher et al. 2011). In the case of the Sun the flare ex-
cess spectrum peaks in the optical to near-UV, but optical
(‘white light’) enhancements are hard to identify in light
curves simply because the Sun’s quiescent spectrum peaks
in the optical as well, and even the largest solar flares pro-
duce an observed optical enhancement which is only slightly
above the background fluctuation caused by solar p-modes
(Woods et al. 2004). When they are observed, however, solar
white light flares provide the most robust means we have of
determining the flare’s total radiated energy. Again in the
case of the Sun, the optical emission originates from the
lower solar chromosphere and/or photosphere, and tends to
have a very impulsive shape, often showing a rapid rise and
fall consistent with fast heating and equally fast cooling, pre-
sumably by radiation in a dense atmosphere (Hudson et al.
2006). On the other hand, solar flares observed at shorter
wavelengths, e.g. UV to soft X-rays, have a characteristic
fast-rise and exponential decay character, indicative of rapid
heating followed by a combination of conductive and radia-
tive cooling in a more tenuous coronal plasma. Solar flare
white light emission was first observed in 1859 (Carrington
1859), but we still do not have a settled theoretical explana-
tion for its production. This is partly because, with the diffi-
culty of observing solar white light flares, we do not have the
spectroscopic information required to discriminate between
different emission mechanisms like enhanced blackbody con-
tinuum, or free–bound emission. On the other hand, we do
have exquisite imaging observations to guide us in under-
standing the structure and development of solar white light
flares, which are of course inaccessible in the stellar case.
In the case of stellar flares we have no such direct spatial
information, but spectroscopy of large flares, which domi-
nate the star’s radiative output, can be carried out readily
(e.g. Kowalski et al. 2010), and evidence for both enhanced
(blackbody) heating and free–bound emission can be found.
This type of study is critical in understanding flare energet-
ics; for example to produce a blackbody or a free–bound con-
tinuum requires heating and ionization in very dense parts
of the stellar atmosphere. This in turn has implications for
flare energy transport.

White light flares observed on stars can be at levels very
much above the star’s quiescent level in that wavelength,
and mostly show the fast-rise exponential decay pattern (e.g.
Moffett & Bopp 1976; Kowalski et al. 2013). Very large stel-
lar flares are readily picked out by eye or by relatively simple
thresholding methods, but we know from the case of the Sun
that flares occur on all scales of physical size, energy content,
and other parameters (Hannah et al. 2011). Identifying the
smaller events is very important for understanding magnetic
energy release in general, therefore we want to have a robust
means to search also for smaller events, not just large ones.
Statistical studies of ‘superflares’ on G-dwarfs in the Ke-

pler sample have been carried out by Maehara et al. (2012)
and Shibayama et al. (2013) using a method based on iden-
tifying signals above some threshold determined from de-
trended signals data. They find a superflare occurrence rate
dN/dE ∝ E−α with α ∼ 2 for all G-dwarfs, with dN/dE
being the rate for flares of total energy E. As with all such
efforts, the flare distributions show a turn-over at low en-
ergy due to the difficulty of detecting small events, and the
location of this turnover is important in many approaches

to fitting the spectral index. The value of the spectral index
in turn determines whether large or small events contribute
most to the overall energisation of the stellar corona, with
α > 2 being required for dominance of small events - the
so-called ‘nanoflare’ heating scenario (Hudson 1991). In the
case of the Sun, this α value varies between 1.5 and 2.1, de-
pending on the wavelength in which observations are made,
the way that background is subtracted, and other parame-
ters. Also in the case of the Sun the flare distributions are
produced using radiation signatures which embody only a
very small minority of the radiated flare energy - for ex-
ample the readily-observed soft X-ray which is correlated
with the total flare energy (identified with the energy con-
tent of the fast particles) but with a rather large scatter
(Emslie et al. 2012). It would be much more satisfactory to
carry out flare statistics using the energetically-significant
white-light radiation, but this is not possible for the Sun.
Therefore we are motivated to develop methods which will
allow this to be attempted for stellar flares, which means we
must pay attention to the identification of small events. We
must therefore be able to decide in a robust way whether an
excursion in the light curve is flare-like or a noise fluctuation.
We will do this on the basis of the shape of the light-curve,
searching for fluctuations consistent with the fast-rise and
exponential decay profile observed in larger flares. In prin-
ciple this method could be adapted to search for different
shape profiles.

1.2 Kepler light curves

Kepler stellar light curves are known to contain low-
frequency variability both from the intrinsic fluctuations
of the instrument (see e.g. Jenkins et al. 2010b) and stel-
lar variations (Basri et al. 2010). We are not interested in
these variations, but if not dealt with carefully they can
influence any flare detection algorithm. The data we have
chosen to use is the PDCSAP FLUX data. This has had the
Pre-search Data Conditioning (PDC) module of the Kepler

analysis pipeline applied, which attempts to remove signa-
tures in the light curves correlated with the spacecraft and
detector and also accounts for discontinuities due to pixel
sensitivity drop-outs (the method attempts to not remove a
true astrophysical signal, although as noted in Basri et al.
2011, some true stellar variability, which we are not inter-
ested in, may be removed). In the example analysis we will
present we have used data from the Kepler data release 21
described in Thompson et al. (2013). For this release there
have been several improvements over the original version of
the PDC (Jenkins et al. 2010a), to remove unwanted instru-
mental artefacts. These improvements mean that the PDC
data for the majority of stars are processed using the multi-
scale maximum a posteriori (msMAP) approach described
in Stumpe et al. (2014), which is an extension to the MAP
approach described in Stumpe et al. (2012); Smith et al.
(2012). It should be noted that in Walkowicz et al. (2011)
the “raw” data, rather than the PDC data, are used with
the detrending of Basri et al. (2011) applied. This means
that there is very different data conditioning between that
analysis and ours, making direct comparisons unreliable as
is reflected in our results (see e.g. Section 5.1).

Various detrending methods have been developed to
remove the low-frequency instrumental variations in the
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light curves (e.g. in addition to the methods in the PDC
in Jenkins et al. 2010a; Stumpe et al. 2012; Smith et al.
2012; Stumpe et al. 2014, or the detrending in Basri et al.
2011, there is the astrophysically robust correction of
McQuillan et al. 2012; Roberts et al. 2013) whilst trying to
retain astrophysical variability. These variations often re-
flect the rotation period of the star and can be due to the
presence of spots on the stars’ surfaces. We have examined
several methods of processing the data to remove, or dimin-
ish the effects of the large sinusoidal variations seen in the
light curves, which would otherwise hamper a flare detection
algorithm. We wanted a method that we could automatically
apply to all light curves without having to tune it for indi-
vidual stars. We also wanted a method that would not add
any major extra artefacts into the data or remove signifi-
cant power from the flares. Methods such as subtracting a
running median, image erosion, whitening the data with an
“average” spectrum, high-pass filtering the data, or remov-
ing a running polynomial fit (e.g. with the filtering algorithm
of Savitzky & Golay 1964) can all remove the variations, but
at the cost of adding artefacts around flares (and other tran-
sient signals) and diminishing the signal power. Instead of
attempting to remove the variations we have taken the ap-
proach of including them in our model of the data, i.e. fitting
the variations and the flare model together. This is discussed
in detail below.

We will be looking at Kepler long cadence data in which
there is one photometric data point every 29.42mins. As
stated in Walkowicz et al. (2011) this is not ideal for the
detection of flares, which generally evolve more quickly than
this. However, our method can very easily be applied to short
cadence data.

2 DETECTION ALGORITHM

The general outline of our method is to use Bayesian model
comparison to create a detection statistic. The detection
statistic is formed by calculating the ratio of the probability
that a light curve contains a flare-like signal described by
a known parameterizable model and any background vari-
ations (the signal model) to the probability that the light
curve contains just the background variations or other non-
flare-like signals and the background variations (the noise

model). We will refer to this ratio as the odds ratio. The
statistic is then characterized by running the algorithm with
mock data that contains no signals. The distribution of the
statistic yields a threshold value above which we will con-
sider a flare detected for a certain false alarm probability
(FAP). Using this threshold and sets of mock data contain-
ing simulated signals we can also find the detection proba-
bility as a function of signal-to-noise ratio (S/N).

The method of flare detection in Walkowicz et al.
(2011) involved smoothing the data with a median filter
over a 10 h interval, finding points that crossed a threshold
of 4.5 times the data standard deviation and then counting
a flare as three contiguous threshold crossings. The values
for these three tunable parameters were found by comparing
an automated algorithm to results from a by-eye search on
a set of training data. Their method did not make use of the
flare signal shape (i.e. information from the below threshold
portion of the data was ignored) to try and gain S/N and

therefore lacked sensitivity to smaller flares. In our method
we attempt to use information on the signal shape by cre-
ating a parametrized flare model with which to compare to
the data. We also attempt to automatically veto impulsive
transients that may be due to instrumental effects by includ-
ing them in our noise model. However, we note that these
models can also veto temporally unresolved flares.

If flare light curves were un-modelled, or far less well
modelled than we allow for here, there are other methods
based on Bayesian model comparison available. Searle et al.
(2008, 2009) describe a general method for finding un-
modelled bursts based on searching for excess power (as
applied to gravitational wave data analysis, but still more
widely applicable). Whilst Hambaryan et al. (1999) have a
Bayesian method to search for flares in X-ray data (based
on the Bayesian Blocks method of Scargle 1998) that looks
for change points in the statistics of the data.

2.1 The flare model

The simple flare model we use is based on the observed shape
of many flares, with a fast rise and exponential decay (e.g.
Kowalski et al. 2011). The rise stage is modelled by a half-
Gaussian, whilst the decay stage is an exponential fall

m(t, τg, τe, T0) = A0

{

e−(t−T0)
2/(2τ2

g ) if t 6 T0,

e−(t−T0)/τe if t > T0,
(1)

where A0 is the amplitude at the flare peak time of T0, τg
is the standard deviation of the Gaussian rise and τe is the
exponential decay time constant. The parametrisation also
allows estimation of these parameters from the detection al-
gorithm. An example of the flare model is given in Fig. 1. We
note that this model does not account for all potential flare
shapes, e.g. the “gradual” flares described in Kowalski et al.
(2011), but still has some power to detect flares with differ-
ent morphologies (see Section 3.5).

2.2 The detection statistic

To create a detection statistic we follow a similar method to
that used to search for ring-down gravitational wave signals
developed in Clark et al. (2007). In the simplest terms we
want to test the hypothesis that the data, d, contain a flare
signal and some background noise (the form of which we
discuss below), F , compared to one in which the data just
consists of the background noise, N . As we will see below
this can be extended to include extra models as required.
We can make this comparison by calculating the so-called
odds ratio

O =
p(F|d)
p(N|d) =

p(d|F)

p(d|N )

p(F)

p(N )
, (2)

where the first fraction on the right hand side is known as the
Bayes factor, and the second part is known as the prior odds,
i.e. the prior belief in each hypothesis. From Bayes theorem
we can calculate the posterior probability distribution of a
set of parameters ~θ defining the model in a hypothesis H ,
given a set of data d, via

p(~θ|d,H) =
p(d|~θ,H)p(~θ)

p(d|H)
, (3)

c© 2014 RAS, MNRAS 000, ??–??
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a) Flare

b) Impulse

c) Exponential rise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (days)

c) Exponential decay

Figure 1. Examples of the signal and noise transient models used
in the algorithm. Panel a) give the flare signal model and panels
b), c) and d) give the noise transient models.

where p(d|~θ,H) is the likelihood of the data given H and
~θ, p(~θ) is the prior probability on those parameters, and
p(d|H) is the probability of the data given the hypothesis
(this is a normalisation factor often known as the Bayesian
evidence). To get to equation 2 the evidence value for each
hypothesis must be calculated, which can be performed via
marginalisation (which is just another term for integration)
of the product of the likelihood and prior over the model
parameters

p(d|H) =

∫ ~θ

p(d|~θ,H)p(~θ)d~θ. (4)

In our detection algorithm we assign the same prior proba-
bility to the two (or more) hypotheses and therefore set the
prior odds to be one, so the odds ratio is entirely defined by
the evidence values (i.e. it is given by the Bayes factor).

For our algorithm we will assume a Gaussian likelihood
distribution for the noise in the light curve data, which
means that for a generic model m parametrized by ~θ the
likelihood of the data given the model parameters is

p(d|~θ) = 1

(2πσ2)n/2
exp

(

−
n
∑

j=1

[d(tj)−mj(~θ, tj)]
2

2σ2

)

, (5)

where σ is an estimate of the noise standard deviation (here
assumed to be constant over the data) and n is the number
of data points. If we assume that any light curve is purely
described by Gaussian random noise and flare signals (i.e. for
the moment we ignore any other low-frequency variability
or correlated noise effects) then for F the model m is given

by equation 1 (so ~θ = {A0, τg, τe, T0}) and for N we have
m = 0. For our detection statistic we do not care about the
actual value of the model parameters other than the flare

time, so we can marginalize over a subset of the parameters
~θ′ = {A0, τg, τe}. However, as discussed in Section 4, we
can still recover A0 when performing parameter estimation.
Inserting equation 5 into equation 2 as appropriate gives an
odds ratio as a function of the flare time of

O(T0) =

∫ ~θ′

exp

(

1

2σ2

[{

2
n
∑

j=1

mj(~θ
′, T0)dj

}

−
{

n
∑

j=1

mj(~θ
′)2
}])

p(~θ′)d~θ′, (6)

where the subscript j refers to the data or model value at
the time tj (note that terms involving d2 and the pre-factors
have cancelled out in forming the ratio of likelihoods).

This assumption of a Gaussian likelihood is mainly due
to its simplicity, but generally it represents the least infor-
mative probability distribution for noise (see e.g. chapter 2
of Bretthorst 1988). Noise in real Kepler light curves is not
purely Gaussian (see Section 3.3), so some care does need
to be taken in estimating noise levels and assessing results
when this assumption is used.

Assuming a constant prior probability on the signal am-
plitude A0 (which we will discuss more in Section 2.4) the
integral in equation 6 is analytic over A0 between [0,∞],
giving

O(T0) =

∫ τmax
g

τmin
g

∫ τmax
e

τmin
e

exp

(

D2

2σ2M

)

√

(

πσ2

2M

)

×
(

1 + erf

[

D√
2σ2M

])

p(τg, τe)p(A0)dτgdτe, (7)

where M =
∑n

j=1 mj(~θ)
2 (where m is the model from

equation 1, but with A0 = 1, i.e. independent of A0) and

D =
∑n

j=1 djmj(~θ). To marginalize over τg and τe we just
perform the integration numerically on a grid over the ranges
[τmin

g , τmax
g ] and [τmin

e , τmax
e ] using the trapezium rule. The

grid intervals we have used are discussed in Section 2.5. For
flares we require that the decay is longer than the rise time-
scale (τe > τg), but the prior probability distribution for
both is otherwise flat, so the distribution we use is

p(τg, τe) =
1

(τmax
g − τmin

g )(τmax
e − τmin

e )− 1
2
(τmax

g − τmin
e )2

.

(8)
Note that this prior is correct for the times scale ranges we
use in this paper, but the time scale prior area could be a
differently shaped polygon for different ranges.

For each T0 value at which we calculate O(T0) the sum-
mation in D requires n operations, so using the time of each
light curve data point as the T0 values would require n2

calculations. However, calculating D for each T0 is just the
cross-correlation of the model and the data, which via the
convolution theorem can be calculated using Fourier trans-
forms1, with of order n log 2n operations. This can offer sig-
nificant speed-up in calculating the odds ratio.

1 Cross-correlation of two time series f and g satisfies f ⋆ g =
̂(f̃∗ × g̃), where x̃ and x̂ are the Fourier transform and inverse

Fourier transform of x respectively.
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2.3 A variable background

As discussed in Section 1.2 real Kepler light curves con-
tain low-frequency variations. We have chosen to incorporate
these variations into our signal model by modelling them as
a polynomial, giving

m(t) = mf (t) +

Np
∑

i=0

Ait
i, (9)

where mf is our flare model from equation 1, Np is the
number of polynomial terms, and Ai are the polynomial
coefficients. If we treat each of the polynomial coefficients
and our flare amplitude as independent then we can analyt-
ically marginalize over them all (see Appendix A) leaving us
still with only the flare time-scales (τg and τe) to numeri-
cally marginalize out to give us a signal odds ratio, Os. This
method requires no detrending of the data, or applications of
offsets, as the effects of these types of variation are modelled.
With m(t) now being our signal model we want to compare
this (i.e. by forming an odds ratio) with the evidence that
the data contains only a polynomial background, which can
be calculated by setting mf = 0 in equation 9. Technically
what we are calculating in each case is an odds ratio for our
particular model (Os for a flare and background variabil-
ity, or Ob, for just background variability) versus Gaussian
noise, but if we then form a ratio of these the Gaussian noise
case cancels out and we get the odds ratio we require.

Due to the fact that the low-frequency variability can
have periods down to less than a day, and individual Kepler

quarters span many tens of days, it is not practical to try
and use very high order polynomials to try and fit all the
variability. Instead the analysis can be performed on a slid-
ing window across the data thus allowing a relatively low
order polynomial to fit out the variability. The flare model
has T0 centred in the window. The sliding window length
needs to be chosen such that for the range of flare durations
searched for it spans the whole flare whilst also providing
enough background on either side of the flare, so that the
polynomial does not try to fit out any of the flare power.
We discuss the value we have chosen for this analysis in
Section 2.5.

As this window slides on to and off of either end of
the light curve there will not be as many data points with
which to form the odds ratio. To have odds ratios calculated
using consistent amounts of data (which is important when
assessing a detection threshold) we cut off odds ratio values
returned within half the window length of either end of the
data (i.e. when there is not full overlap between the window
and the data).

2.4 Other models

We know that in Kepler data some stars contain transit sig-
nals from exoplanets (e.g. Batalha et al. 2013) and eclipsing
binaries (Matijevič et al. 2012). Due to the above method
using a sliding window, and attempting to fit background
variations, these transits can occasionally trigger the odds
ratio to favour the flare model (this happens as the win-
dow starts to slide on to, and off, the transit). Transits or
eclipses could be parameterized and included in our back-
ground model (the numerator in equation 10), but since
transits in Kepler data are very well studied we propose just

vetoing stars with known transits. In the future it could be
that just short stretches of data known to contain a transit
are vetoed, or transits/eclipses are added to the noise model.

2.4.1 Short transients

The light curves can also contain impulsing delta-function-
like signals, i.e. peaks within a single (or few) time bin(s).
These could be caused by short flares that are not tempo-
rally resolved into several bins due to the long cadence of the
data, but they could also be instrumental in origin. Due to
this ambiguity we choose to model any such impulse as part
of our noise model. We have three models for such behaviour
(see Fig. 1): i) a transient in a single time bin with a posi-
tive or negative amplitude, ii) a transient with a short expo-
nential decay and a positive amplitude, and iii) a transient
with a short exponential rise and a positive amplitude. This
is not an exhaustive list of all potential instrumental arte-
facts (see e.g. Christiansen et al. 2013, for information on
various instrumental effects) and others may be considered
in the future. For each of these the unknown amplitude can
be analytically marginalized over (along with the variable
background polynomial). For model i) there are no other
parameters except the peak time and for each calculation of
the sliding window we marginalize the model over all time
bins within the window. As well as vetoing real transients
this can get rid of detection artefacts around loud flares
(S/N of a few tens or above) caused by the effects of having
a sliding window. For models ii) and iii), as for the flare we
fix the time to be the centre of the sliding window, but have
to marginalize over the short decay time (see Section 2.5).
For these noise models we have odds ratios of Ot, Oe+ and
Oe− respectively, which gives a final detection statistic odds
ratio of

O =
Os

Ob +Ot +Oe+ +Oe−
. (10)

This method biases us against short duration flares, but
without some other (instrumental) information that would
allow us to veto transient artefacts this will remain a prob-
lem for long cadence data.

Note also that this algorithm assumes that the data
contain just one flare within the sliding window, whereas in
reality it could contain several. This could give a slight bias
to the results if there are close flares as it will reduce the
noise model evidence.

Examples of the output of this method, which gives a
time series (representing the flare peak time) of the natu-
ral logarithm of the odds ratio (equation 10), are shown in
Fig. 2. Fig. 2(a) shows an example of ‘mock data’ where
Gaussian noise with a mean of zero and standard devia-
tion of unity (in e−/s) has been generated, a sinusoid with
frequency 3.9 d−1 has been added along with a flare with
parameters A0 = 10 e−/s, τg = 1760 s and τe = 3768 s. The
algorithm estimated the noise standard deviation (see Sec-
tion 2.6) to be 0.98 e−/s. Figure 2(b) shows the output for
Kepler Q1 data for the star with Kepler ID (KID) 1873543.
It can be seen that two flares are obviously found above
the threshold set in Sections 3.1 and 3.2. Conversely, two
short duration events seen near the start and end of the
light curve show dips in the log odds ratio. This means they
are far more consistent with the noise models, in particular
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(a)

(b)

Figure 2. Examples of the output of the algorithm using (a) a simulated light curve containing an injected flare signal, and (b) Kepler

Q1 data for the star with KID 1873543. Grey vertical bars on the light curve plots represent times when the log odds ratio is above the
threshold value of 16.5 (see Sections 3.1 and 3.2).
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the short transient noise models. The noise estimate for this
data is 8.0 e−/s.

Claiming detection of these signals requires some
thresholding on these time series’, which we discuss in Sec-
tions 3.1 and 3.2.

2.5 The parameter space

The ranges of the flare parameters τg and τe that we have
chosen cover flares lasting up to approximately half a day.
The Gaussian rise, τg, spans from [0, 1.5] h, whilst the expo-
nential decay, τe, spans from [0.5, 3] h. These ranges go into
calculating the prior given in equation 8. Both these ranges
are gridded into 10 evenly spaced points for evaluating and
marginalising the odds ratio. If we define the mis-match as
being the fractional power that would be lost by two different
flare models (at [τg, τe] and [τg+∆τg, τe+∆τe] respectively)
not completely overlapping as

M =

∣

∣

∣

∣

∣

1−
∑n

j=1 mj(τg, τe)mj(τg +∆τg, τe +∆τe)
∑n

j=1 mj(τg, τe)2

∣

∣

∣

∣

∣

(11)

then we can see how well this gridding covers our parame-
ter space. The mis-match can be seen in Fig. 3, where the
black box represents our parameter range, and the diago-
nal line gives τg = τe. Given that we require τg < τe only
values above the diagonal line are included when calculat-
ing our detection threshold. Within our range we find that
such a grid spacing gives a maximum mis-match of less than
10%, with a mean mis-match of only 1.5% (i.e. a real flare,
that has duration parameters somewhere between our grid
points, will be detected with on average 1.5% less power
than it really has). This level of mis-match assumes that
the flares are fully described by our model, but in reality
they are likely to show deviations from this that mean that
no flare will be perfectly matched to our model. Therefore
this mis-match is a best case scenario and more power will
be lost for a real search. The grid spacing could be decreased,
but with a corresponding linear increase in computational
time of the algorithm.

It can also be seen that even for flare values well outside
our range we could still detect them without losing too much
power.

2.5.1 Amplitude priors

For the flare amplitudes that we are analytically marginal-
ising over we have assigned a conservative prior range of be-
tween 0 and 1 000 000, giving log p(A) = log (10−6) = −13.8.
As we will assess a detection threshold empirically (see Sec-
tion 3.1) this prior just provides an overall offset in the odds
ratio, so is not of great importance, although we include it
for completeness. The prior ranges for the polynomial ampli-
tudes will cancel between the denominator and numerator
of the odds ratio, so are not required.

2.5.2 Window length

As discussed in Section 2.3 the method uses a sliding win-
dow. We have chosen a window ∼27 h long (i.e. 55 Kepler

light curve time bins). This length means that our longest
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Figure 3. The mis-match across the range of flare parameters
given the grid-spacing defined in Section 2.5

flares will still have almost all their power within the win-
dow, whilst being short enough that a fourth order poly-
nomial provides a reasonable background fit for variations
down to periods of around two days (see Section 3.1).

2.6 Calculating the noise

The odds ratio calculation (e.g. equation 7) requires an es-
timate of the noise standard deviation σ of the data. Just
using a standard calculation of σ in data containing flares
and other variations, will lead to overestimates of the noise.
We instead use a method to calculate the standard devia-
tion that attempts to veto the effects of flares and the low-
frequency background variations.

The method assumes that the underlying data distri-
bution is Gaussian, with outliers (e.g. flares) in the wings
of the distribution. However, as we see in Section 3.3, there
are further correlations in the noise that make this an ap-
proximation when using Kepler data. The low frequency
variations in the light curves must initially be filtered out.
So, to account for this we first apply a low-pass filter us-
ing the Savitzky-Golay method mentioned in Section 1.2
with a window and polynomial order the same as used for
our detection algorithm. After this the cumulative prob-
ability distribution of the data is calculated. The stan-
dard deviation can then be calculated by finding the val-
ues that bound a certain fraction of the probability distri-
bution around the 50% value. For example, one standard
deviation (1σ) should enclose 100 × erf (1/

√
2) = 68.3% of

the probability distribution, so one would find the values
xmin and xmax that bound the 50 − (68.3/2) = 15.85% and
50+(68.3/2) = 85.15% probabilities, and calculate the stan-
dard deviation as σ = (xmax−xmin)/2. For smaller data sets
(and provided the outliers do not make up a reasonably large
fraction of the data) a more accurate value of the standard
deviation can be found by using the value enclosing more of
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the probability [e.g. the amount enclosing the probability for
2σ, which is 95.4%, and therefore σ = (xmax−xmin)/(2×2)].

This method is quantitatively similar to repeatedly re-
moving outliers (found with e.g. the generalized extreme
Studentised deviate test of Rosner 1983) and recalculating
the standard deviation, but does not require repeated iter-
ations. Also, unlike simply removing a certain fraction of
the data in descending order from the largest absolute value
first, this method is less prone towards underestimating the
standard deviation when used on data with few, or no, out-
liers.

This method can potentially lead to an underestima-
tion of the noise if the distribution is not Gaussian and has
broad wings. In Kepler data this could be a problem in cases
where there is an excess of high-frequency correlations. In
practice any such light curves could be vetoed during visual
inspection of flare candidate stars. An alternative method,
using the power spectrum of the light curve, and assuming
the noise is white and Gaussian at high frequencies, is dis-
cussed in Appendix B. However, provided flare signals rise
and decay very quickly, this method is less prone to overesti-
mating the noise than the method described in Appendix B
due to power leakage to high frequencies from loud flares.

3 ALGORITHM CHARACTERIZATION

Here we will detail the characterization of the algorithm.
We will first set a threshold value for the natural logarithm
of the odds ratio (when calculating the odds ratio it is al-
ways easier to work in log-space, and since the logarithm
is a monotonic function it makes no difference in practice
using this value) for which we will return a flare detection
candidate for a given FAP. Secondly, we will use this thresh-
old to determine the efficiency of the algorithm for a set of
simulated flare signals. We will also look at how the algo-
rithm performs on real Kepler data to test the validity of
our Gaussian noise assumptions. Other tests are performed
to see the effects of different flare morphologies on our de-
tection ability.

3.1 Threshold calculation

The odds ratio provides a value that, given a set of data,
describes the relative probabilities of competing hypotheses
or models. So, provided the prior probabilities for the model
parameters and hypotheses are well defined, an odds ratio
of greater than or less than one favours the hypothesis on
the numerator and denominator, respectively. The number
of model parameters and their prior ranges give rise to an
Occam factor in the odds ratio calculation (i.e. the model
with the smaller parameter space will a priori be favoured
due to its simplicity). However, the presence of noise means
that the odds ratio will fluctuate and at low S/N neither
hypothesis will be greatly favoured. Jeffreys (1998) (in his
appendix B) gives a qualitative assessment of how to inter-
pret values of the odds ratio, but the significance can also
be assessed empirically.

For a detection algorithm we want to find the distribu-
tion of the value of the odds ratio when looking at data that
contain no flares. We can then use this to set a threshold at
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Figure 4. The cumulative distributions of the log odds ratio
for simulated light curves containing Gaussian white noise and a
sinusoidal variation, and real Kepler data for a selection of “quiet”
stars. Thresholds for two false alarm probabilities are shown.

which we expect noise alone to exceed this value with a cer-
tain probability, known as the FAP. To try and simulate real
data, and incorporate the effect of low-frequency variations,
our simulated data sets all contain sinusoids with ampli-
tudes drawn randomly from a uniform distribution between
10 and 100 times the underlying Gaussian noise standard de-
viation, with frequencies drawn from a uniform distribution
between 0.5 d−1 and 0.03 d−1, and an initial phase between
0 and 2π rad. We purposely chose this frequency range to be
close to the upper end of expected variations (it is in the tail
of the period distribution for solar and late-type stars, e.g.
Figure 5 of McQuillan et al. 2014), as from our studies we
know that these higher frequency variations are more likely
to produce outliers in the odds ratio distribution (due to the
polynomial background model not fitting the faster chang-
ing variations quite so well). This will therefore give us a
reasonably conservative threshold in general. Our simulated
data set are based on Kepler quarter 1 data and are there-
fore 33.5 d long, with one point every 29.42min. We have
run 20 000 such simulations to derive a threshold. The cu-
mulative probability distribution of the maximum log odds
ratio from each simulation can be seen in Fig. 4.

If we choose the FAP to be such that there is a 0.1%
chance of noise (Gaussian white noise plus a background si-
nusoid), giving one false positive per data set (i.e. one false
alarm per thousand light curves, or about one per 80.5 yr
of observations), it gives a log odds ratio threshold of 8.3.
Equivalent thresholds for false alarm probabilities of 0.2%,
0.5% and 1% are 7.9, 7.3 and 6.5, respectively. When cal-
culating the efficiency below we calculate the observed false
alarm rate and compare it to these values.

3.2 Detection efficiency

We calculate the efficiency of the algorithm by creating a set
of fake signals with varying parameters and S/N in simulated
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A Bayesian method for detecting stellar flares 9

Table 1. Efficiency of the detection method for different false
alarm probabilities.

S/N for detection efficiency

50% 95% 99%

FAP
1.0% 6.6 10.6 25.8
0.5% 7.0 11.0 26.0
0.1% 7.4 12.9 26.2
final 10.6 19.8 28.2

σ-threshold method

4.5σ threshold 16.7 25.1 34.0

noise (containing sinusoidal variations as above) and deter-
mining the fraction that are detected above a given thresh-
old. We define a detected signal as a threshold crossing point
(or set of points) that is within two time bins of the known
injected central time. Contiguous above-threshold values are
counted as a single detection and any two above-threshold
segments separated by only one time bin are merged into a

single detection. We define the S/N as ρ =
√

∑n
j=1 m

2
j/σ

2,

where mj is the injected signal calculated from equation 1
and σ is the noise standard deviation calculated as described
in Section 2.6. We have performed 10 000 such injections
with S/N spanning between 2 and 50, and τg and τe uni-
formly drawn from ranges [0, 1.5] h and [0.5, 3] h, respec-
tively under the condition that τe > τg (which is the same
range used by the algorithm described in Section 2.5). The
detection efficiencies for various FAP thresholds are shown in
Fig. 5. For the threshold corresponding to a FAP of 0.1% we
find detection efficiencies of 50, 95 and 99% corresponding
to S/N of 7.4, 12.9 and 26.2, respectively. The efficiencies for
these, and other, false alarm probabilities are summarized
in Table 1.

When estimating the efficiency we also count any false
positives, which are times that the algorithm exceeded
threshold, but for a time that is further than two time bins
from the known injected central time. Given a 0.1% false
alarm threshold of 8.3 and 10 000 simulations we expect
noise to produce ∼10 false alarms. However, we find a total
of 352 false alarms. Investigating these we find that 343 of
the false alarms are within half of the length of the algo-
rithm’s running window of the injected flare, i.e. they are
artefacts related to the injections, which if removed gives
a number very close to the expected false alarm rate. Sim-
ilarly, when calculating efficiencies for thresholds for false
alarm rates of 0.2%, 0.5% and 1%, we actually get numbers
of false alarms of 397, 490, and 669 which, corrected for
artefacts, revert to 12, 28 and 85 out of 10 000 respectively
(these suggest that our false alarm probabilities might be
slight overestimates).

Given that the algorithm will produce these false pos-
itives for loud enough signals it is useful to determine an
odds ratio threshold at which they become significant. Us-
ing the distribution of log odds ratios for the false positives
related to flares we can set a new FAP threshold. As these
false alarms are due to flares themselves they will not harm
our chances of detection, but will just slightly bias our num-
ber of detected signals. Due to this we are less conservative
in setting the FAP and allow a 1% value for these artefacts.

We find this gives a new threshold of 16.5, for which the
efficiency can also be seen in Fig. 5. This gives efficiencies of
50%, 95% and 99% for S/N of 10.6, 19.8 and 28.2, respec-
tively. This is rather conservative (when just assuming the
noise is Gaussian) as it is a FAP that really only applies to
flaring stars rather than all stars, such that for every 100
flares found one is likely to be a false positive. However, it
will also help provide a stronger veto against disturbances
in real Kepler data as shown below. This could be relaxed
in the future, especially if further algorithm development
provides stronger artefact vetoes.

3.3 Characterization using Kepler data

To test the robustness of our assumption that the noise in
Kepler light curves is Gaussian we have run the algorithm
on a selection of 2 000 “quiet” Kepler stars with little vari-
ability. To chose this set of “quiet” stars we have randomly
run through all the Q1 Kepler long cadence light curves and
picked the first 2 000 fulfilling the following criteria (after the
removal of the best fit quadratic from each light curve): a)
the standard deviation of the data before and after removing
a running Savitzky-Golay filter (with a fourth order polyno-
mial and 55 samples in the running window) are within 25%
of each other, b) the maximum and minimum values within
the light curve are within 7.5 standard deviations of each
other (using the standard deviation without the Savitzky-
Golay filtering), and c) the largest peak in the light curves
amplitude spectrum (the square root of the power spectrum)
is no more that 7.5 times the median value. These criteria
seem to be successful in selecting stars with very little long
duration variability.

For each of these quiet stars we have run our detec-
tion algorithm and calculated the maximum log odds ratio.
The cumulative distribution of log odds ratios can be seen
alongside that for purely Gaussian noise (with simulated si-
nusiodal variations) in Fig. 4. It can be seen that real Kepler

data have a broader distribution and are shifted to the right,
i.e. Kepler data containing no flares more often favour the
flare model than data containing Gaussian noise. We see that
odds ratio thresholds for 1% and 0.1% false alarm rates per
light curve are ∼16.3 and ∼21.9, respectively. The 1% false
alarm rate threshold is very close to the conservative 16.5
threshold we set in Section 3.2 based on signals themselves
producing a 1% false alarm rate.

To check that these “quiet” stars do not actually contain
flares we have visually inspected the light curves for the
17 stars that fall above our previously discussed odds ratio
threshold of 16.5. We find that none of these shows signals
that conclusively look like flare, but we do see that the noise
can have short-term correlations that can mimic flares.

We have also performed an efficiency test equivalent
to the one performed using Gaussian noise, but with 2 000
simulated injections added to the “quiet” star light curves,
and using an odds ratio threshold of 16.5. This efficiency can
be seen in Fig. 5. We find that the efficiency when using real
Kepler data is consistent with that when using Gaussian
noise, i.e. once you have set a threshold you can recover
flare equally well from simulated or real data, albeit with a
potentially different false alarm rate. From these simulations
we found 33 false alarms (or a 1.6% false alarm rate). This
is about the number to be expected given that from Fig. 4
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10 M. Pitkin et al

Figure 5. The efficiency of our odds ratio algorithm for various thresholds and the efficiency of our version of the algorithm from
Walkowicz et al. (2011). The efficiency of our algoithm is assessed using simulations in which the noise is Gaussian for thresholds at
1% and 0.1% false alarm probabilities, and at a final threshold of 16.5. The efficiency based on adding signals to real Kepler data for
“quiet” stars for a threshold of 16.5 is also shown. The shaded error regions are 95% confidence intervals around a best-fitting polynomial,
calculated using the Beta distribution described in Cameron (2011).

we see that 16.5 is roughly the 1% false alarm threshold for
Kepler data, and is also the 1% false alarm threshold for
artefacts associated with the simulated signals.

Based on this for the results presented in Section 5 we
will use the assumption of Gaussian noise and a threshold of
16.5, which as shown should lead to a detection false alarm
rate of ∼1%.

In the future there are various options for the analy-
sis to try and account for the non-Gaussianity of Kepler,
or other, data. The simplest is to keep the assumption of
the data consisting of Gaussian noise, but explicitly using a
detection threshold that is based on real analysis of “quiet”
Kepler stars. Another option is to again keep the assump-
tion of Gaussian noise, but make the method of estimating
the noise in the data (see Section 2.6) give a more conser-
vative value for its standard deviation. Finally, a method
could be developed to model the correlations in the noise
and use this information in the analysis. If the quiet stars
truly are representative of the noise in the majority of stars
then they could provide a model of the noise in the frequency
domain that could be used to “whiten” all light curves in
the analysis. This model could simply be just an average
of all the quiet star spectra, or based on a set of principal
components (e.g. Shlens 2014) calculated from the quiet star
noise that capture the majority of the correlations. We ex-
pect the simplicity of the first option (provided quiet, and
non-flaring, stars are easy to identify using the criteria we
set out above) or second option makes them the most viable
options in the short term, although future investigations of
the third option may prove illuminating.

3.4 Method comparison

It is useful to compare our method with that used in
Walkowicz et al. (2011), which defines a detection as three
contiguous positive threshold crossings, where playground
data has been used to set a threshold of 4.5 times the
data’s standard deviation. We will call this the σ-threshold
method. In Walkowicz et al. (2011) no empirical FAP is
given, but if one assumes that the noise is purely white
and Gaussian (which we have shown above is not really the
case), then the expected FAP for a single data set of length
N would be given by

f = 2
N√
π

N
∑

i=3

i
∏

j=1

∫

∞

σT

e−x2/2dx,

= N
N
∑

i=3

(

erfc
(

σT /
√
2
))i

, (12)

where σT is the threshold in number of standard deviations.
For σT = 4.5 and N = 1638 (the number of points in a Ke-

pler Quarter 1 light curve) this gives a FAP of 3.1×10−14%,
i.e. for any reasonable data set Gaussian noise should never
give a false detection. If the threshold is dropped to σT = 3
then the FAP becomes ∼2×10−6%, which is still very low and
far below the level we have set with our algorithm. However,
dealing with real data may well produce a far higher false
alarm rate than that given by these theoretical calculations.
This is suggested by the fact that in Walkowicz et al. (2011)
the ∼23 000 stars searched give 5784 stars with candidate
flares, of which visual checking confirmed 373 with obvious
flares and 565 marginal cases. This is a FAP of ∼20%. The
main thing this again confirms is that Kepler noise is far
from ideally Gaussian as it contains many noise artefacts,
and therefore in reality the noise estimate used was likely
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to be an underestimate. Our algorithm attempts to account
for some of these non-Gaussian noise artefacts by including
them in the noise model, and by using the more robust un-
derlying noise estimation method described in Section 2.6.

We have compared the detection efficiency of our
method to a version of that used in Walkowicz et al. (2011),
by again simulating 10 000 data sets containing flares with
S/N between 2 and 100 and time-scale parameters defined in
Section 3.2. For this comparison we have not included any si-
nusoidal variations in the simulated data sets as we find that
for short period variations the running median smoothing
leaves many artefacts in the data (at the peaks of the vari-
ations) that are picked up as false alarms. This may be one
of the reasons for the large false alarm rate seen in the real
Walkowicz et al. (2011) analysis. As the data are simulated
we have not had to apply any Kepler-like preprocessing, so
do not completely represent the pipeline on Walkowicz et al.
(2011). We also estimate the σ in the same way as described
in Section 2.6 as we do not know how this was estimated for
the original routine (although it is mentioned that extreme
outliers are excluded). As in Walkowicz et al. (2011), before
applying the detection algorithm we subtract a running me-
dian value from the data calculated for a 10 h window. Fig. 5
shows detection efficiencies of 50%, 95% and 99% for S/N of
16.7, 25.1 and 34.0, respectively. It can be seen that our al-
gorithm substantially improves efficiency over this method,
albeit at far higher theoretical false alarm rates.

We note that many of the light curve figures shown
in Walkowicz et al. (2011) seem to have significantly re-
duced flare heights than seen in the publicly available data
(either the raw simple aperture photometry data, or the
PDCSAP FLUX data). An example is their fig. 2(a) (KID
10320656) for which the flare at ∼5 d is reduced by an or-
der of magnitude and an obvious flare at ∼25 d is com-
pletely missing. This may well be an aspect of their data
pre-processing and the difference between it and the current
msMAP processing (Stumpe et al. 2014).

Other methods have been used to find flares in Ke-

pler and other data sets. Osten et al. (2012) use a statistic
based on the ratio of the relative flux to noise between ad-
jacent bins to search Hubble Space Telescope data for flares.
Shibayama et al. (2013) detect flares in Kepler data by cal-
culating the distribution of brightness variations between
consecutive points and selecting only those points with val-
ues three times the value of the top 1% of the distribution.
Kowalski et al. (2009) searched for flares in SDSS data mak-
ing use of flux changes in two photometric bands. None of
these methods makes use of the flare shape as ours does,
and are therefore both likely to be less efficient. The sec-
ond method was specifically designed to look for very large
flares, so it was not designed to be efficient at finding small
events.

3.4.1 Computational time

Another useful comparison is the computational time of the
algorithms. We have coded up both methods in python

2,
with the core of our method (Appendix A) written in C.

2 The code is freely available as release v1.0.0 of the bayesflare
package http://github.com/BayesFlare/bayesflare/releases.

Running both algorithms for a single Kepler Quarter 1 light
curve on an Intel Core Duo 3GHz machine shows an average
time of 6.5 s for our algorithm compared to the far quicker
time of 165µs for the simpler algorithm. Despite the far
greater computational cost of our algorithm it is still fast
enough that a large number of light curves can be analysed
in a reasonable time (> 10 000 per day on a single machine).
Our algorithm can also make use of parallelization on multi-
core machines to speed up the odds ratio calculation.

3.5 Different flare morphologies

Our flare model assumes that flares are well characterized
by a fast Gaussian rise and exponential decay shape, with
time-scales of & 30min. However, this does not describe all
flare morphologies or situations in which there are very short
flares, or overlapping flares. We have tested our algorithm
on a few examples to see whether flares are still detected.
We note that this is not an exhaustive test of all potentially
flare type, but does point to areas in which our model fails
or could be improved.

In the future a more complex model, or set of models,
for flares could be developed. If multiple flare models are
used then the Bayesian evidence values that are calculated in
our method provide a natural way in which to discriminate
between these different models. If the algorithm currently
identifies flares that do not conform to the expected shape
as flares this also has an effect on the parameter estimation
(see Section 4), as the recovered parameters will be biased.

3.5.1 Short flares

The noise models we have used (see Section 2.4.1), which
count short impulsive events as noise, and the time-scale
parameter ranges we use, mean that we are likely to miss
flares that evolve on short time-scales. To check the shortest
flares that we are likely to miss we have simulated sets of
flares with a range of exponential decay time-scales from
5 min to 1 h at the sample rate of Kepler short cadence
data (i.e. 30 times more samples than long cadence data).
Each of these simulations has been down-sampled to the
long cadence rate by averaging consecutive stretches of 30
data points, and then run through our algorithm. Using a log
odds ratio detection threshold of 16.5 we find an efficiency
of ∼12% for flares with 5 min decay time-scales, which rises
to 100% for flares with 25 min decay time scales. This is
not unexpected, but it is important to acknowledge when
presenting results that short flares will be missed.

3.5.2 Superimposed flares

Our algorithm assumes that each analysis segment contains
one flare. However, flares may be close together and super-
imposed over each other. Therefore, it is interesting to see
whether superimposed flares would be detected and at what
point can we tell the flares apart. We have generated two
large flares with equal time-scales and amplitudes, but with
a set of peak times that shifts one of the flares with re-
spect to the other between 1 h and 30 h apart. We find that
the algorithm detects the two flares as a single flare when
they are less than 4 h apart, but after that can distinguish
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the two flares as separate. An example of this is shown in
Figure 6(a), where the two flares are separated by 4.5 h. If
instead we make the second flare five times smaller in ampli-
tude than the first flare we find that only one flare is found
until they are separated by 29 h. This is due to the noise
models that are meant to deal with artefacts generated by
the larger flare are swamping the evidence for the smaller
flare when it is nearby. This shows that flares of similar am-
plitude can be discriminated relatively easily, whilst it gets
harder as the amplitude ratio between them increases.

3.5.3 Gaussian signals

One of the most generic signal shapes for a transient out-
burst would be a Gaussian profile. We have simulated Gaus-
sians of different widths (τg) ranging from 30 min to 7 h.
For τg . 4.5 h the algorithm detects Gaussians as flares,
but does not detect longer Gaussians. The longer Gaussian
will not be seen as they start to be fitted out by our poly-
nomial background model. However, for Gaussians with τg
between approximately 2 and 3 h the algorithm identifies
the Gaussian as two or three separate flares as can be seen
in Figure 6(b). This is due to the signal creating extra arte-
facts in the detection algorithm that are not being vetoed
by our noise models.

3.5.4 Flat-topped flares

A final flare shape that we consider is based on the Gaussian
rise and exponential decay model, but with a flat peak that
varies in width. We have generated such flares with fixed
rise and decay times, but with the flat peak lasting between
15 min and 12 h. All these signals are detected, but often
identified as two or three separate flares, as in Figure 6(c).
It can be seen that the rise and fall appear to be identified
as separate flares.

4 PARAMETER ESTIMATION

Our analysis method also naturally lends itself to being used
for estimation of the flare parameters. However, we note that
this will generally only provide reliable parameter estimates
if the flare can be well characterized by our model. In calcu-
lating the odds ratio we marginalized over the flare ampli-
tude, and rise and decay time-scales. However, for parame-
ter estimation we want to get the probability distributions
of these parameters. For the amplitude, which was analyti-
cally marginalized over, this requires a slight change in the
algorithm as described in Appendix A2, as we still want to
marginalize over the unknown background variation. With
this change we can then just evaluate the signal posterior
probability, p(A0, τg, τe, T0|d), (removing the integral from
equation 6 gives an equation which is directly proportional
to the posterior probability), over a grid in A0, τg, τe and
T0 around the peak time corresponding to any recovered
flare candidate. For parameter estimation we relax the prior
stating that τe > τg and just set a flat prior over the whole
τe − τg area (the black rectangle in Fig. 3). Once the pos-
terior probability for the whole parameter volume has been

(a)

(b)

(c)

Figure 6. Examples of the algorithm run with different flare mor-
phologies: (a) a superposition of two nearby flares, (b) a Gaussian
flare profile, and (c) a flare with a flat top.
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calculated the posterior probability distributions for individ-
ual parameters are obtained by marginalising over the other
parameters, e.g.

p(A0|d) =
∫ ∫ ∫

p(A0, τg, τe, T0|d)dτgdτgdT0. (13)

These integrals are performed numerically with the trapez-
ium rule. From these distributions the most probable pa-
rameter values and credible intervals can be found, or from
the posterior volume the joint maximum a posteriori prob-
ability (i.e. the global maximum) for all parameters can be
found.

When analysing our flare candidates we have used a
grid spanning 0 6 τg 6 2 h, 0 6 τe 6 5 h, an amplitude from
0 to twice the maximum dynamic range in the data (for the
55 bins surrounding the flare), and a flare peak time (T0)
window of an hour either side of the recovered peak log odds
ratio time.

An example of this for a simulated flare can be seen in
Fig. 7, where the true flare parameters were A0 = 80 e−/s,
τg = 0.49 hours and τe = 1.05 hours. This simulation was
added to real Kepler data for the star with KID 893676. The
noise for this light curve was estimated to be 6.0 e−/s, giving
a simulated S/N of 19.1. The maximum a posteriori param-
eters that were recovered were A0 = 83 e−/s, τg = 0.49 h
and τe = 1.36 h, giving a recovered S/N of 21.3 consistent
with the expected value. In this case as the flare time is
precisely known the T0 value was held fixed at this known
value. The recovered probability distribution on τe, whilst
still consistent with the known value, does appear skewed to-
wards high values. This is partially due to larger values of τe
being strongly correlated with the polynomial background
coefficients. These correlations spread the marginalized τe
distribution towards higher values (see also the discussion
in Section 5.1). These correlations could be greatly reduced
by using longer data windows (greater than the 55 time bins
used here), so that the flare and the background are more
easily separated.

Another example of parameter estimation, in this case
for a real flare, is shown in Fig. 8. This flare was found on
star KID 8376893. In this case the peak time of the flare has
also been estimated using a grid in times over a 2 h interval
around the time of the maximum odds ratio. The maximum
a posteriori recovered values are A0 = 529 e−/s, τg = 0h
and τe = 0.72 h, which with the estimated noise of 9.3 e−/s
gives a recovered S/N of 56.2. The flat posterior probability
distribution for τg is due to the fact that given the size of the
data time steps small values of τg produce indistinguishable
models. The best fit flare model is overlaid on the real data
(after the removal of the median offset) in Fig. 9.

5 ANALYSIS RESULTS

As an initial test of the algorithm we have applied it to
Kepler Quarter 1 (Q1) long-cadence data as gathered from
the public data release on the Mikulski Archive for Space

Telescopes (MAST)3. We use the same selection criteria as
used in Walkowicz et al. (2011) to pick stars (log g > 4.2
and Teff 6 5150), which returned 23 301 stars. We veto stars

3 http://archive.stsci.edu/kepler/
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Figure 9. The best fit recovered flare model overlaid on the real
data for star KID 8376893.

that: have known transits, or are Kepler objects of interest;
are in eclipsing binaries4 (Prša et al. 2011; Matijevič et al.
2012) [note that Prša et al. (2011) contains 33 eclipsing bi-
naries that are not flagged in the condition flags returned by
the MAST search]; have periods of less than two days (where
we take periods from tables 1 and 2 of McQuillan et al.
2014 and periods and secondary periods from Reinhold et al.
2013); are possible red giants; or, exhibit any potential arte-
facts5. This reduced the number of stars to 21 746.

When performing the analysis all light curves were
check for data gaps of more than a single time bin, but
none were found (otherwise we would have vetoed them).
For single time bin gaps in any of the light curves (i.e. NaNs
in the light curve .fits files) we linearly interpolated across
the gaps. This is required as the algorithm makes use of dis-
crete Fourier transforms, which required contiguous evenly
spaced data.

For all the flares detected by our algorithm we have run
the parameter estimation routine (see Section 4) to estimate
the most probable set of parameters. We have combined the
estimates of τg and τe to give a characteristic flare duration,
which we define as the timespan that encloses 95% of the
best fit flare power, centred around the point for which half
the flare’s power is on either side. We can also use these es-
timates to derive the recovered S/N of the signals (assuming
that they are well described by our flare model).

5.1 Results

On the above data set the algorithm returned 898 flaring
stars with a total of 2856 flares. However, despite applying
the above selection criterion we have viewed all light curves
returning flare candidates by eye to check for other anoma-
lies. In doing this we have vetoed a further 160 stars, many

4 See e.g. the table at http://keplerebs.villanova.edu/.
5 In practice we veto any star for which the MAST/Kepler

condition flag is defined (e.g. it is not ‘None’)
http://archive.stsci.edu/kepler/condition_flag.html.
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Figure 7. The parameter posterior probability distributions for a simulated signal added to data from star KID 893676. The true values
of the simulated signal are given as vertical dashed lines.
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Figure 8. The parameter posterior probability distributions for a real detected signal in data from star KID 8376893.

showing strong periodic variations (some stars had high-
frequency variations that led to tens of flare signals being
produced), or non-white high-frequency noise, or other odd-
ities (e.g. data discontinuities/offsets, nova-like light curves,
eclipses). We note that for some stars with detected flares
the dynamic range of the underlying light curve variations
was so large that visual identification of flares was very diffi-
cult (the algorithm may do better than the eye in this case),
so in general these stars were vetoed. Other areas where the
algorithm more easily identified flares than visual inspection
were cases when flare lay on steep parts of any underlying
variations.

From the parameter estimation we found that for some
of the flare candidates the parameter estimates peaked at
the upper edge of the flare time-scale ranges, i.e. we are
not including the best fitting value within the range of our
parameter estimation grid. For many flares it could be due
to correlations between our polynomial background varia-
tion model and the flare time scales6, but for others it may

6 With our current analysis window length around a flare of 27 h,

be that the candidates just do not match the flare model
very well. However, with these estimates we can further veto
flare candidates where this happens [i.e. veto flares for which
p(τe)max = 5h and/or p(τg)max = 2h]. This will bias us
against long duration flares.

From this analysis, and after the above vetoing, we
found 687 stars with a total of 1873 flares (cf. 373 star with
2358 flares in Walkowicz et al. 2011). Prior to the time-scale
parameter estimate veto the numbers we found were 738
stars and 2357 flares. We find flares on 305 of the 373 stars
identified by Walkowicz et al. (2011) (of the 68 not found in
our search 41 of those were missed through our veto criteria)
and on these star find on average ∼70% of the number of

flares with τe & 5 h do not decay to zero by the end of the window.
This causes large correlations with the polynomial background
that heavily bias the τe estimate towards large values. Longer
window lengths could be used, but at the expense of a fourth
order polynomial not properly fitting the background variations
for stars with higher frequency periodicities. Further studies are
needed to investigate this more thoroughly.

c© 2014 RAS, MNRAS 000, ??–??
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flares they found. This means that we have confidently re-
covered flares on 382 additional stars than previously found.
As we are mainly interested in the performance of our algo-
rithm we have just quoted numbers of flares returned by the
algorithm, and we therefore do not include flares that could
be identified by subsequent visual inspection of the light
curves. Inspection would reveal more flares on the identified
flaring stars.

We have visually inspected the light curves and log odds
ratio time series’ for the 27 unvetoed stars where we found
no candidates, but Walkowicz et al. (2011) did. We have also
run these through our implementation of the standard de-
viation threshold detection algorithm (see Section 3.4). Of
these 27 only four return a flare candidate using that al-
gorithm, which suggests that the differently processed data
sets between our analysis and theirs, and the different noise
estimation method, can make a significant difference to the
results. For one of these stars the flare is missed as our al-
gorithm removes odds ratios for the beginning and end of
the data, and a flare fell into this period. For the other stars
there appear to be either: candidate flares just below the
log odds ratio-threshold; times where potential flare-like sig-
nals are vetoed by a strong consistency with the background
model (i.e. the events are too short and look more like a short
transient, or are inconsistent with our flare model in some
other way); or, in some cases no obvious flares were present
at all.

Median parameters for the flare candidates after the pa-
rameter veto are given in Table 2. The distributions for all
flares in both S/N and flare duration are given in Fig. 10.
The mean S/N is 36 and the standard deviation of the dis-
tribution is 50, with a median value of 20, peak at ∼14,
and range between 6 and 808. The S/N distribution shows
the expected fall-off to low values given our efficiency curve
in Fig. 5, whilst the fall-off after the peak is related to the
true distribution of flares. The duration distribution has a
mean of 4.6 h and standard deviation of 3.1 h, a median
duration of 3.8 h, a peak at 2.9 h and a range between 0.9
and 19.2 h. It is interesting that there is a anti-correlation
between the S/N and the duration. Further simulations are
needed to see if this is an effect of the algorithm or a fea-
ture of the population. However, it is hard to see why longer
high S/N signals would be missed, so it is more likely re-
lated to the population of flares. In the future it would be
worthwhile to also estimate the relative flare energies using,
for example, the method given in Walkowicz et al. (2011) or
Shibayama et al. (2013).

We do find a few cases where an obvious loud flare is
missed. An example is KID 8176468 where five flares are
found, but not the loudest looking event (at around 25.5 d
into the data set). Looking at this case we see that this flare
is strongly consistent with the background model, because
even though it is loud it actually has a decay time that is
shorter than our model range. This is consistent with our
knowledge that we will be biased against short flares, but
in this particular case, where the flare is obvious and has a
long tail, it may suggest that the flare model we use may
need augmenting to allow a steeper initial decay.

Visual inspection of the flaring light curves identified
some interesting candidates. A particularly noteworthy ex-
ample was KID 9450669, which appeared to undergo an in-
tense period of flaring activity before dropping back to a

Figure 10. The distributions of the recovered S/N and dura-
tions of flares found in the analysis. The figure was produced
using an edited version of the python triangle module from
https://github.com/dfm/triangle.py.

more normal rate. The light curve and odds ratio time se-
ries can be seen in Fig. 11. Inspection of light curves from all
later Kepler Quarters does not show such an intense period
of activity again.

6 CONCLUSIONS

This paper has been primarily focused on the development
and characterization of an algorithm for detecting flares. The
algorithm works under the general assumption that flares
have a characteristic shape that we model as a Gaussian
rise and exponential decay. This assumption seems reason-
able from observations of flares, but a more generic model
(or indeed a more specific model if there is good theoretical
motivation for a particular flare shape) could in the future
prove more appropriate. Along with the flare model we have
assumed that the data contains unknown low frequency vari-
ations, which we model as a fourth order polynomial. The
algorithm computes an odds ratio comparing the probabil-
ity of the data containing a flare model plus the background
polynomial variations (the signal model) to the probabil-
ity of the data just consisting of the background variations
or the background variations plus very short duration tran-
sients within the analysis window (the background model).
This method allows further signal or background models to
be added in the future based on updated knowledge of flare
morphologies, or better understanding of background arte-
facts. Another fundamental assumption is that the noise in
the data can be modelled with a Gaussian likelihood, which
we have seen in Section 3.3 is not wholly reliable, but can
be robust provided a conservative threshold is set.

We have characterized this method using simulated
data sets consisting of Gaussian white noise plus a low fre-

c© 2014 RAS, MNRAS 000, ??–??
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Table 2. Statistics of detected flares.

Kepler ID No. of Teff log (g) Median duration Median Median amp. σ
flares (K) (cm s−2) (h) S/N (e−/s) (e−/s)

1569863 4 3809 4.45 3.14 11.01 55.79 5.9
1570924 3 4923 4.55 2.99 64.85 3774.86 59.5
1722506 2 4270 4.43 12.20 68.62 963.49 9.8
1873543 2 3702 4.52 4.33 25.76 176.47 8.0
2013754 5 4280 4.57 4.55 12.06 79.42 7.8
2140782 1 4946 4.62 2.35 12.87 77.39 5.1
2437317 1 4250 4.70 7.49 575.65 2574.92 8.6
2441562 1 3806 4.46 4.49 37.02 149.61 5.0
2442866 3 4344 4.49 9.44 14.56 62.76 8.6
2570846 1 3865 4.61 2.62 24.98 152.08 5.3

This is an abridged version of the table. A full version is available with the online version of the

article.

Figure 11. The light curve and log odds ratio time series for KID 9450669 showing an intense period of flaring activity. Shaded areas
in the upper plot represent times when the log odds ratio exceeds our threshold of 16.5.

quency sinusoidal background. If requiring a FAP of 0.1%
(based on data that are the length of Kepler Quarter 1 long
cadence data) from noise alone this provides a detection
threshold on the log odds ratio of 8.3. When this threshold
is used for simulated data sets with fake signals of varying
parameters and S/N it returns a 95% detection efficiency for
signals with S/N & 13. However, we find that when adding
signals they can occasionally produce spurious extra false
detections at times when the analysis window is sliding on
to the flare. To reduce these false alarms to occur for only
∼1% of simulated flares requires increasing the detection
threshold to 16.5. This corresponds to a 95% detection effi-

ciency for signals with S/N & 20. Studies using real Kepler

data for “quiet” stars, in which the noise deviates from the
Gaussian assumption, show that this threshold of 16.5 again
gives an approximately 1% false alarm rate.

Applying our method to a selection of stars within the
ranges log g > 4.2 and Teff 6 5150 in Kepler Q1 data (see
Section 5 for other veto criteria) we find 687 stars exhibiting
flares (cf. 373 stars in the analysis of Walkowicz et al. 2011).
We have not aimed at attempting a detailed statistical anal-
ysis of distributions of flare properties, but have shown basic
distributions of flare duration and S/N.

Future modifications to the algorithm could be to in-

c© 2014 RAS, MNRAS 000, ??–??



A Bayesian method for detecting stellar flares 17

clude extra models for the background variations that would
be a better fit to the low frequency variations than the
polynomial currently used. This could be done by adding
a low-frequency sinusoid model with unknown amplitude,
frequency and phase to the current polynomial fit. The un-
known amplitude and phase could be analytically marginal-
ized over by splitting m = A sin (2πft+ φ) into m =
B sin (2πft) + C cos (2πft) and using the algorithm de-
scribed in Appendix A. However, we would need to nu-
merically search of this frequency range, which would slow
down the method. Such a method could allow longer win-
dows to be used and potentially reduce the additional arte-
facts caused by flares themselves, meaning that non-flare-
like transients (such as transits and eclipses) would not trig-
ger a flare detection. This could allow the threshold to be
significantly lowered allowing smaller flares to be recovered.
As discussed in Section 3.3 further modifications to the noise
model to account for short period correlations seen in real
Kepler data could also be taken into account. Another type
of artefact that triggered the algorithm and was observed
during visual inspection of Kepler data was large step offsets
between stretches of data. This type of artefact could easily
be modelled in the noise model by including a step func-
tion of unknown amplitude (to be analytically marginalized
over). The algorithm currently relies on data being contigu-
ous over a Kepler Quarter. However, future quarters contain
some large gaps. These can easily be dealt with by making
the algorithm treat data separated by large gaps as inde-
pendent analyses.

We plan to run the algorithm on further Kepler Quar-
ters to build up a complete picture of flaring activity at
statistics on these stars. This would include running on
short-cadence data. In further studies it would also be inter-
esting to compare any times highlighted by our method as
strongly favouring the noise model with Kepler data quality
flags. We also expect our method to be applicable to other
flare searches, in particular using the large sets of multi-
wavelength solar observations.
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APPENDIX A: MARGINALIZING OVER A

POLYNOMIAL BACKGROUND

In Section 2.3 we introduced a polynomial background vari-
ation. Rather than having to integrate numerically over each
polynomial coefficient it is possible to analytically integrate
each of them. We define a generic model as m = Af + g,
where f(x) is an arbitrary function with an amplitude that
can be factored out as A, and g contains any other compo-
nents of the model. If we substitute this into the odds ratio
defined in equation 6, and place the integral over A between
[−∞,∞], we can rearrange it to give

O =

∫

∞

−∞

exp

(

− 1

2σ2
(A2X + AY + Z)

)

p(A)dA, (A1)

where X =
∑

j f
2
j , Y = 2

(

∑

j fjgj −
∑

j djfj
)

and Z =
∑

j g
2
j − 2

∑

j djgj . Provided that the prior on A, p(A) is
constant, or varies very little, over the range in which the
likelihood ratio is significant (e.g. is very wide Gaussian),
this integral is solved to give

O = p(A)

√

2πσ2

X
exp

(

− (Z − Y 2/4X)

2σ2

)

. (A2)

For the case where the amplitude A must be purely positive
(e.g. a flare) then equation A1 can be integrated between
[0,∞] to give

O = p(A)

√

πσ2

2X
exp
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− (Z − Y 2/4X)

2σ2

)

erfc

(

Y

2
√
2σ2X

)

.

(A3)
If we consider a model containing a third order polyno-

mial and a flare signal

m = A0mf (t, τg, τe, T0) + A+Bt+ Ct2 +Dt3 (A4)

the odds ratio in equation 6 would instead be given by

O(T0) =

∫

τg

∫

τe

∫

∞

0

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

e
−

∑
(m2

−2dm)

2σ2 ×

p(τg, τe, A0, A,B,C,D)dτgdτgdA0dAdBdCdD,
(A5)

which can be analytically reduced by four applications of
equation A2 followed by a final application of equation A3.
Note that the integral over [0,∞] can only be used for one

parameter and must be performed last. If explicitly perform-
ing the integral for the five amplitudes being marginalized
over above (e.g. using a symbolic mathematics program) the
algebraic expression is far too large to be easily transcribed
into an analysis code. However, we have developed an algo-
rithm that can perform the integral for an arbitrary num-
ber of model component amplitudes without the need to
explicitly write out the whole expression7. This is given in
pseudo-code below.

If performing all amplitude marginalizations between
[−∞,∞] an alternative approach to simpifying the integral
would be to create an orthogonal set of model components
(via diagonalization of a model component matrix), which
would mean that all cross terms between the orthogonal

models were zero (see e.g. Bretthorst 1988).

A1 The marginalization algorithm

Given N model components for which an amplitude can be
factored out we have a generic model

m =
N
∑

i

Aifi (A6)

where Ai are the amplitude components and fi are the com-
ponent functions. We can create a matrix, C, containing the
sums of the products of each of the component functions
with each other and with the data d, such that

C =











−2
∑

j djf1j 2
∑

j f1jf2j 2
∑

j f1jf3j . . .

0 −2
∑

j djf2j 2
∑

j f2jf3j . . .

0 0 −2
∑

j djf3j . . .
...

...
...

. . .











,

where the sums are over all the model and data points. We
can also create a vector containing the squared model terms

S =

{

∑

j

f2
1j ,
∑

j

f2
2j ,
∑

j

f2
3j , . . .

}

.

Algorithm 1 can then be applied to produce the X, Y and
Z values given in equations A2 and A3 and calculate the log
of the odds ratio marginalized over the amplitudes of the
model components.

A2 Marginalization without the final amplitude

In the above marginalizations all the component amplitudes
have been marginalized. However, if, for example, perform-
ing parameter estimation one might be interested in the ac-
tual posterior probability distribution of one of those ampli-
tudes, or there might be some subset of components that do
not have a factorizable amplitude, which therefore cannot be
marginalized over with this algorithm. These require a slight
modification of Algorithm 1 as given in Algorithm 2, where
essentially the final amplitude integral is not performed. In
our case when performing parameter estimation we would
be interested in the actual posterior probability distribution

7 A version of this algorithm is provided in the
amplitude-marginalizer function library found at
http://github.com/mattpitkin/amplitude-marginalizer
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Algorithm 1 Calculate logO marginalized over model
component amplitudes (this assumes C-style array indexing
starting from 0).

1. Z = 0
2. M = N − 1
3. logO = 0
4. for i = 0 to M − 1 do

5. for j = i to M do

6. for k = i to M do

7. if j is equal to i then
8. if k > j then

9. S[k] = S[k]− C[j][k]2/4S[i]
10. else if k is equal to j then

11. Z = Z − C[j][k]2/4S[i]
12. end if

13. else

14. if k is equal to i then
15. C[j][j] = C[j][j] − C[i][j] × C[i][k]/2S[i]
16. else if k > j then

17. C[j][k] = C[j][k] − C[i][j] × C[i][k]/2S[i]
18. end if

19. end if

20. end for

21. end for

22. end for

23. X = S[M ]
24. Y = C[M ][M ]
25. for i = 0 to M do

26. logO = logO − log
(

√

S[i]
)

27. end for

28. logO = logO +N log σ − (Z − Y 2/4X)/2σ2

29. if integrating the final amplitude from [0,∞] then

30. logO = logO +M log
(√

2π
)

+ log
(

√

π/2
)

31. logO = logO + log
(

erfc
(

Y/
(

2
√
2σ2X

)))

32. else {integrating the final amplitude from −∞ to ∞}
33. logO = logO +N log

(√
2π
)

34. end if

35. add log (amplitude priors) to odds ratio

of the flare amplitude, but would still want the background
polynomial coefficients marginalized over.

APPENDIX B: AN ALTERNATIVE METHOD

FOR NOISE ESTIMATION

Here we describe an alternative to the noise estimation
method discussed in Section 2.6. Flares have most of their
spectral power at low frequencies, and also the background
variations are at low frequencies (compared to the sample
time), so assuming that the underlying noise is white and
Gaussian the high-frequency end of the spectrum can be
used to estimate the noise standard deviation. For spectra
of light curves with very large amplitude variations a large
amount of the power from the variations can leak into the
high-frequency part of the spectrum and lead to an overesti-
mation for the noise, so the data must first be detrended us-
ing e.g. the Savitzky-Golay filtering algorithm. We then take
the mean of the final half of the one-sided power spectrum
of the filtered data S̄n (although different fractions of the

Algorithm 2 Calculate logO marginalized over model com-
ponent amplitudes except for a final model component,
where the sizes of C and S are the same as for Algorithm 1
(again this assumes C-style array indexing and that N refers
to the total number of model components including the one
being left out of the marginalisation).

1. Z = 0
2. Y = 0
3. M = N − 1
4. P = N − 2
5. logO = 0
6. for i = 0 to P do

7. for j = i to M do

8. for k = i to M do

9. if j 6= i+1 and j 6= P and k 6= i+1 and k 6= P
then

10. Z = Z − C[i][j] × C[i][k]/4S[i]
11. end if

12. if j is equal to i then
13. if k > j and k < M then

14. S[k] = S[k]− C[j][k]2/4S[i]
15. end if

16. else

17. if k is equal to i and j < M then

18. C[j][j] = C[j][j] − C[i][j] × C[i][k]/2S[i]
19. else if k > j then

20. C[j][k] = C[j][k] − C[i][j] × C[i][k]/2S[i]
21. end if

22. end if

23. end for

24. end for

25. end for

26. X = S[P ]
27. for i = P to M do

28. Y = Y + C[P ][i]
29. end for

30. Z = Z + S[M ] + C[M ][M ]
31. for i = 0 to P do

32. logO = logO − log
(

√

S[i]
)

33. end for

34. logO = logO +M log
(√

2πσ2
)

− (Z − Y 2/4X)/2σ2

35. add log (amplitude priors) to odds ratio

spectrum could be used) and get the time series standard

deviation via σ =
√

S̄n/(2∆t), where ∆t is the time-step
between points (in seconds).

For flare signals with S/N of a few 10s their power can
start leaking into the part of the spectrum we use for noise
estimation. This would mean that for data containing loud
flares there would be a bias against finding quieter flares due
to noise overestimation.
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