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The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation
in the coming years, with compact binary coalescence events a likely source for the first detections.
The gravitational waveforms emitted directly encode information about the sources, including the
masses and spins of the compact objects. Recovering the physical parameters of the sources from the
GW observations is a key analysis task. This work describes the LALInference software library for
Bayesian parameter estimation of compact binary signals, which builds on several previous methods
to provide a well-tested toolkit which has already been used for several studies.

We show that our implementation is able to correctly recover the parameters of compact binary
signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed
comparison on three compact binary systems: a binary neutron star (BNS), a neutron star – black
hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results
obtained using three independent sampling algorithms. These systems were analysed with non-
spinning, aligned spin and generic spin configurations respectively, showing that consistent results
can be obtained even with the full 15-dimensional parameter space of the generic spin configurations.

We also demonstrate statistically that the Bayesian credible intervals we recover correspond to
frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals
drawn from the prior.

We discuss the computational cost of these algorithms, and describe the general and problem-
specific sampling techniques we have used to improve the efficiency of sampling the compact binary
coalescence (CBC) parameter space.

PACS numbers: 02.50.Tt, 04.30.–w, 95.85.Sz

I. INTRODUCTION

The direct observation of GWs and the study of rela-
tivistic sources in this new observational window is the
focus of a growing effort with broad impact on astron-
omy and fundamental physics. The network of GW laser
interferometers – LIGO [1], Virgo [2] and GEO 600 [3]
– completed science observations in initial configuration
in 2010, setting new upper-limits on a broad spectrum
of GW sources. At present, LIGO and Virgo are being

upgraded to their advanced configurations [4, 5], a new
Japanese interferometer, KAGRA (formerly known as
the Large-Scale Gravitational-wave Telescope, LCGT) [6]
is being built, and plans are underway to relocate one of
the LIGO instruments upgraded to Advanced LIGO sen-
sitivity to a site in India (LIGO-India) [7]. Advanced
LIGO is currently on track to resume science observa-
tions in 2015 with Advanced Virgo following soon af-
ter [8]; around the turn of the decade LIGO-India and
KAGRA should also join the network of ground-based
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instruments.

Along with other possible sources, advanced ground-
based interferometers are expected to detect GWs gen-
erated during the last seconds to minutes of life of
extra-galactic compact binary systems, with neutron
star and/or black hole component masses in the range
∼ 1 M� − 100 M�. The current uncertainties on some
of the key physical processes that affect binary forma-
tion and evolution are reflected in the expected detection
rate, which spans three orders of magnitude. However,
by the time interferometers operate at design sensitivity,
between one observation per few years and hundreds of
observations per year are anticipated [8, 9], opening new
avenues for studies of compact objects in highly relativis-
tic conditions.

During the approximately ten years of operation of
the ground-based GW interferometer network, analysis
development efforts for binary coalescences have been
focused on the detection problem, and rightly so: how
to unambiguously identify a binary coalescence in the
otherwise overwhelming instrumental noise. The most
sensitive compact binary searches are based on matched-
filtering techniques, and are designed to keep up with
the data rate and promptly identify detection candi-
dates [10, 11]. A confirmation of the performance of
detection pipelines has been provided by the “blind in-
jection challenge” in which a synthetic compact binary
coalescence signal was added (unknown to the analysis
teams) to the data stream and successfully detected [12].

Once a detection candidate has been isolated, the next
step of the analysis sequence is to extract full informa-
tion regarding the source parameters and the underlying
physics. With the expected detection of GWs in the com-
ing years, this part of the analysis has become the focus
of a growing number of studies.

The conceptual approach to inference on the GW sig-
nal is deeply rooted in the Bayesian framework. This
framework makes it possible to evaluate the marginal-
ized posterior probability density functions (PDFs) of the
unknown parameters that describe a given model of the
data and to compute the so-called evidence of the model
itself. It is well known that Bayesian inference is compu-
tationally costly, making the efficiency of the PDF and
evidence calculations an important issue. For the case
of coalescing binary systems the challenge comes from
many fronts: the large number of unknown parameters
that describe a model (15 parameters to describe a grav-
itational waveform emitted by a binary consisting of two
point masses in a circular orbit assuming that general
relativity is accurate, plus other model parameters to ac-
count for matter effects in the case of neutron stars, the
noise, instrument calibration, etc.), complex multi-modal
likelihood functions, and the computationally intensive
process of generating waveforms.

Well known stochastic sampling techniques – Markov
chain Monte Carlo [13–21], Nested Sampling [22, 23] and
MultiNest/BAMBI [24–27] – have been used in recent
years to develop algorithms for Bayesian inference on

GW data aimed at studies of coalescing binaries. An
underlying theme of this work has been the comparison
of these sampling techniques and the cross-validation of
results with independent algorithms. In parallel, the in-
ference effort has benefited from a number of advances
in other areas that are essential to maximise the science
exploitation of detected GW signals, such as waveform
generation and standardised algorithms and libraries for
the access and manipulation of GW data. The initially
independent developments have therefore progressively
converged towards dedicated algorithms and a common
infrastructure for Bayesian inference applied to GW ob-
servations, specifically for coalescing binaries but appli-
cable to other sources. These algorithms and infrastruc-
ture are now contained in a dedicated software package:
LALInference.

The goal of this paper is to describe LALInference.
We will cover the details of our implementation, designed
to overcome the problems faced in performing Bayesian
inference for GW observations of CBC signals. This
includes three independent sampling techniques which
were cross-compared to provide confidence in the re-
sults that we obtain for CBC signals, and compared with
known analytical probability distributions. We describe
the post-processing steps involved in converting the out-
put of these algorithms to meaningful physical state-
ments about the source parameters in terms of credi-
ble intervals. We demonstrate that these intervals are
well-calibrated measures of probability through a Monte
Carlo simulation, wherein we confirm the quoted prob-
ability corresponds to frequency under correct prior as-
sumptions. We compare the computational efficiency of
the different methods and mention further enhancements
that will be required to take full advantage of the ad-
vanced GW detectors.

The LALInference software consists of a C library and
several post-processing tools written in python. It lever-
ages the existing LSC Algorithm Library (LAL) to pro-
vide

• Standard methods of accessing GW detector data,
using LAL methods for estimating the power spec-
tral density (PSD), and able to simulate stationary
Gaussian noise with a given noise curve.

• the ability to use all the waveform approximants in-
cluded in LAL that describe the evolution of point-
mass binary systems, and waveforms under devel-
opment to account for matter effects in the evolu-
tion of binary neutron stars and generalisations of
waveforms beyond general relativity;

• Likelihood functions for the data observed by a net-
work of ground-based laser interferometers given a
waveform model and a set of model parameters;

• Three independent stochastic sampling techniques
of the parameter space to compute PDFs and evi-
dence;
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• Dedicated “jump proposals” to efficiently select
samples in parameter space that take into account
the specific structure of the likelihood function;

• Standard post-processing tools to generate proba-
bility credible regions for any set of parameters.

During the several years of development, initial imple-
mentations of these Bayesian inference algorithms and
LALInference have been successfully applied to a variety
of problems, such as the impact of different network con-
figurations on parameter estimation [28], the ability to
measure masses and spins of compact objects [17, 29, 30],
to reconstruct the sky location of a detected GW bi-
nary [19, 31, 32] and the equation of state of neutron
stars [33], the effects of calibration errors on informa-
tion extraction [34] and tests of general relativity [35–
37]. Most notably LALInference has been at the heart
of the study of detection candidates, including the blind
injection, during the last LIGO/Virgo science run [38],
and has been used for the Numerical INJection Analysis
project NINJA2 [39]. It has been designed to be flexible
in the choice of signal model, allowing it to be adapted for
analysis of signals other than compact binaries, includ-
ing searches for continuous waves [40], and comparison
of core-collapse supernova models based on [41].

The paper is organised as follows: Section II pro-
vides a summary of the key concepts of Bayesian in-
ference, and specific discussion about the many wave-
form models that can be used in the analysis and
the relevant prior assumptions. In Section III we de-
scribe the conceptual elements concerning the general
features of the sampling techniques that are part of
LALInference: Markov chain Monte Carlo, Nested Sam-
pling and MultiNest/BAMBI. Section IV deals with
the problem of providing marginalized probability func-
tions and (minimum) credible regions at a given confi-
dence level from a finite number of samples, as is the
case of the outputs of these algorithms. In Section V we
summarise the results from extensive tests and valida-
tions that we have carried out by presenting representa-
tive results on a set of injections in typical regions of the
parameter space, as well as results obtained by running
the algorithms on known distributions. This section is
complemented by Section VI in which we consider effi-
ciency issues, and we report the run-time necessary for
the analysis of coalescing binaries in different cases; this
provides a direct measure of the latency timescale over
which fully coherent Bayesian inference results for all the
source parameters will be available after a detection can-
didate is identified. Section VII contains our conclusions
and pointers to future work.

II. BAYESIAN ANALYSIS

We can divide the task of performing inference about
the GW source into two problems: using the observed
data to constrain or estimate the unknown parameters

of the source 1 under a fixed model of the waveform (pa-
rameter estimation), and deciding which of several mod-
els is more probable in light of the observed data, and by
how much (model selection). We tackle both these prob-
lems within the formalism of Bayesian inference, which
describes the state of knowledge about an uncertain hy-
pothesis H as a probability, denoted P (H) ∈ [0, 1], or
about an unknown parameter as a probability density,
denoted p(θ|H), where

∫
p(θ|H)dθ = 1. Parameter es-

timation can then be performed using Bayes’ theorem,
where a prior probability distribution p(θ|H) is updated
upon receiving the new data d from the experiment to
give a posterior distribution p(θ|d,H),

p(θ|d,H) =
p(θ|H)p(d|θ,H)

p(d|H)
. (1)

Models typically have many parameters, which we col-
lectively indicate with θ = {θ1, θ2, . . . , θN}. The joint
probability distribution on the multi-dimensional space
p(θ|d,H) describes the collective knowledge about all
parameters as well as their relationships. Results for a
specific parameter are found by marginalising over the
unwanted parameters,

p(θ1|d,H) =

∫
dθ2 . . . dθNp(θ|d,H) . (2)

The probability distribution can be used to find the ex-
pectation of various functions given the distribution, e.g.
the mean

〈θi〉 =

∫
θip(θi|d,H)dθi , (3)

and credible regions, an interval in parameter space that
containing a given probability (see Section IV).

Model selection is performed by comparing the fully
marginalized likelihood, or ‘evidence’, for different mod-
els. The evidence, usually denoted Z, is simply the inte-
gral of the likelihood, L(d|θ) = p(d|θ, H), multiplied by
the prior over all parameters of the model H,

Z = p(d|H) =

∫
dθ1 . . . dθN p(d|θ, H)p(θ|H). (4)

This is the normalisation constant that appears in the
denominator of Eq. (1) for a particular model. Because
we cannot exhaustively enumerate the set of exclusive
models describing the data, we typically compare two
competing models. To do this, one computes the ratio of
posterior probabilities

Oij =
P (Hi|d)

P (Hj |d)
=
P (Hi)

P (Hj)
× Zi
Zj

(5)

1 The whole set of unknown parameters of the model can also
contain parameters not related to the source, such as noise and
calibration parameters [42–45].
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where Bij = Zi/Zj is the ‘Bayes Factor’ between the two
competing models i and j, which shows how much more
likely the observed data d is under model i rather than
model j.

While the Bayesian methods described above are con-
ceptually simple, the practical details of performing an
analysis depend greatly on the complexity and dimen-
sionality of the model, and the amount of data that
is analysed. The size of the parameter space and the
amount of data to be considered mean that the result-
ing probability distribution cannot tractably be analysed
through a fixed sampling of the parameter space. In-
stead, we have developed methods for stochastically sam-
pling the parameter space to solve the problems of pa-
rameter estimation and model selection, based on the
Markov chain Monte Carlo (MCMC) and Nested Sam-
pling techniques, the details of which are described in
section III. Next we will describe the models used for the
noise and the signal.

A. Data model

The data obtained from the detector is modelled as
the sum of the compact binary coalescence signal h (de-
scribed in section II B) and a noise component n,

d = h+ n. (6)

Data from multiple detectors in the network are anal-
ysed coherently, by calculating the strain that would be
observed in each detector:

h = F+(α, δ, ψ)h+ + F×(α, δ, ψ)h× (7)

where h+,× are the two independent GW polarisation
amplitudes and F+,×(α, δ, ψ) are the antenna response
functions ([e.g. 46]) that depend on the source location
and the polarisation of the waves. Presently we ignore
the time dependence of the antenna response function
due to the rotation of the Earth, instead assuming that
it is constant throughout the observation period. This is
justifiable for the short signals considered here. Work is
ongoing to include this time dependence when analysing
very long signals with a low frequency cutoff below 40 Hz,
to fully exploit the advanced detector design sensitiv-
ity curves. The waveforms h+,× are described in Sec-
tion II B.

As well as the signal model, which is discussed in the
next section, we must include a description of the ob-
served data, including the noise, which is used to create
the likelihood function. This is where knowledge of the
detectors’ sensitivity and the data processing procedures
are folded into the analysis.

We perform all of our analyses using the calibrated
strain output of the GW detectors, or a simulation
thereof. This is a set of time-domain samples di sam-
pled uniformly at times ti, which we sometimes write as
a vector d for convenience below. To reduce the volume

of data, we down-sample the data from its original sam-
pling frequency (16384 Hz) to a lower rate fs ≥ 2fmax,
which is high enough to contain the maximum frequency
fmax of the lowest mass signal allowed by the prior, typ-
ically fs = 4096 Hz when analysing the inspiral part of a
BNS signal. To prevent aliasing the data is first low-pass
filtered with a 20th order Butterworth filter with atten-
uation of 0.1 at the new Nyquist frequency, using the
implementation in LAL [47], which preserves the phase of
the input. We wish to create a model of the data that
can be used to perform the analysis. In the absence of
a signal, the simplest model which we consider is that of
Gaussian, stationary noise with a certain power spectral
density Sn(f) and zero mean. Sn(f) can be estimated
using the data adjacent to the segment of interest, which
is normally selected based on the time of coalescence tc
of a candidate signal identified by a search pipeline. The
analysis segment d spans the period [tc−T+2, tc+2], i.e.
a time T which ends two seconds after the trigger (the
2 s safety margin after tc allows for inaccuracies in the
trigger time reported by the search, and should encom-
pass any merger and ringdown component of the signal).
To obtain this estimate, by default we select a period of
time (1024 s normally, but shorter if less science data is
available) from before the time of the trigger to be anal-
ysed, but ending not later than tc − T , so it should not
contain the signal of interest. This period is divided into
non-overlapping segments of the same duration T as the
analysis segment, which are then used to estimate the
PSD. Each segment is windowed using a Tukey window
with a 0.4 s roll-off, and its one-sided noise power spec-
trum is computed. For each frequency bin the median
power over all segments is used as an estimate of the
PSD in that bin. We follow the technique of [48] by us-
ing the median instead of the mean to provide some level
of robustness against large outliers occurring during the
estimation time.

The same procedure for the PSD estimation segments
is applied to the analysed data segment before it is used
for inference, to ensure consistency.

For each detector we assume the noise is stationary,
and characterised only by having zero mean and a known
variance (estimated from the power spectrum). Then
the likelihood function for the noise model is simply the
product of Gaussian distributions in each frequency bin

p(d|HN , Sn(f)) = exp
∑
i

[
− 2|d̃i|2
TSn(fi)

− 1

2
log(πTSn(fi)/2)

]
,

(8)

where d̃ is the discrete Fourier transform of d

d̃j =
T

N

∑
k

dk exp(−2πijk/N). (9)

The presence of an additive signal h in the data simply
adjusts the mean value of the distribution, so that the
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likelihood including the signal is

p(d|HS , Sn(f),θ) = exp
∑
i

[
−2|h̃i(θ)− d̃i|2

TSn(fi)

− 1

2
log(πTSn(fi)/2)

]
. (10)

To analyse a network of detectors coherently, we make the
further assumption that the noise is uncorrelated in each.
This allows us to write the coherent network likelihood
for data obtained from each detector as the product of
the likelihoods in each detector [49].

p(d{H,L,V }|HS , Sn{H,L,V }(f)) =
∏

i∈{H,L,V }

p(di|HS , Sni(f))

(11)

This gives us the default likelihood function which is used
for our analyses, and has been used extensively in previ-
ous work.

1. Marginalising over uncertainty in the PSD estimation

Using a fixed estimate of the PSD, taken from times
outside the segment being analysed, cannot account
for slow variations in the shape of the spectrum over
timescales of minutes. We can model our uncertainty in
the PSD estimate by introducing extra parameters into
the noise model which can be estimated along with the
signal parameters; we follow the procedure described in
[43]. We divide the Fourier domain data into ∼ 8 log-
arithmically spaced segments, and in each segment j,
spanning Nj frequency bins, introduce a scale parame-
ter ηj(fi) which modifies the PSD such that Sn(fi) →
Sn(fi)ηj for ij < i ≤ ij+1, where the scale parameter
is constant within a frequency segment. With these ad-
ditional degrees of freedom included in our model, the
likelihood becomes

p(d|HS , Sn(f),θ,η) = exp
∑
i

[
−2|h̃i(θ)− d̃i|2
Tη(fi)Sn(fi)

−1

2
log(πηiTSn(fi)/2)

]
. (12)

The prior on ηj is a normal distribution with mean 1
and variance 1/Nj . In the limit Nj → 1 (i.e., there is
one scale parameter for each Fourier bin), replacing the
Gaussian prior with an inverse chi-squared distribution
and integrating p(d|HS , Sn(f),θ,η) × p(θ,η|HS , Sn(f))
over η, we would recover the Student’s t-distribution like-
lihood considered for GW data analysis in [42, 50]. For a
thorough discussion of the relative merits of Student’s t-
distribution likelihood and the approach used here, as
well as examples which show how including η in the
model improves the robustness of parameter estimation
and model selection results, see [43]. In summary, the

likelihood adopted here offers more flexibility given how
much the noise can drift between the data used for esti-
mating the PSD and the data being analysed. Further
improvements on this scheme using more sophisticated
noise models are under active development.

B. Waveform models

There are a number of different models for the GW
signal that is expected to be emitted during a compact-
binary merger. These models, known as waveform
families, differ in their computational complexity, the
physics they simulate, and their regime of applicability.
LALInference has been designed to easily interface with
arbitrary waveform families.

Each waveform family can be thought of as a func-
tion that takes as input a parameter vector θ and pro-
duces as output h+,×(θ), either a time domain h(θ; t) or
frequency-domain h(θ; f) signal. The parameter vector
θ generally includes at least nine parameters:

• Component masses m1 and m2. We use a
reparametrisation of the mass plane into the chirp
mass,

M = (m1m2)3/5(m1 +m2)−1/5 (13)

and the asymmetric mass ratio

q = m2/m1, (14)

as these variables tend to be less correlated and
easier to sample. We use the convention m1 ≥ m2

when labelling the components. The prior is trans-
formed accordingly (see figure 1). Another possible
parametrisation is the symmetric mass ratio

η =
(m1m2)

(m1 +m2)2
(15)

although we do not use this when sampling the
distribution since the Jacobian of the transforma-
tion to m1,m2 coordinates becomes singular at
m1 = m2.

• The luminosity distance to the source dL;

• The right ascension α and declination δ of the
source;

• The inclination angle ι, between the system’s or-
bital angular momentum and the line of sight. For
aligned- and non-spinning systems this coincides
with the angle θJN between the total angular mo-
mentum and the line of sight (see below). We will
use the more general θJN throughout the text.

• The polarisation angle ψ which describes the ori-
entation of the projection of the binary’s orbital
momentum vector onto the plane on the sky, as
defined in [46];
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• An arbitrary reference time tc, e.g. the time of
coalescence of the binary;

• The orbital phase φc of the binary at the reference
time tc.

Nine parameters are necessary to describe a circular bi-
nary consisting of point-mass objects with no spins. If
spins of the binary’s components are included in the
model, they are described by six additional parameters,
for a total of 15:

• dimensionless spin magnitudes ai, defined as ai ≡
|si|/m2

i and in the range [0, 1], where si is the spin
vector of the object i, and

• two angles for each si specifying its orientation with
respect to the plane defined by the line of sight and
the initial orbital angular momentum.

In the special case when spin vectors are assumed to be
aligned or anti-aligned with the orbital angular momen-
tum, the four spin-orientation angles are fixed, and the
spin magnitudes alone are used, with positive (negative)
signs corresponding to aligned (anti-aligned) configura-
tions, for a total of 11 parameters. In the case of pre-
cessing waveforms, the system-frame parametrisation has
been found to be more efficient than the radiation frame
typically employed for parameter estimation of precessing
binaries. The orientation of the system and its spinning
components are parameterised in a more physically in-
tuitive way that concisely describes the relevant physics,
and defines evolving quantities at a reference frequency
of 100 Hz, near the peak sensitivity of the detectors [51]:

• θJN : The inclination of the system’s total angular
momentum with respect to the line of sight;

• t1, t2: Tilt angles between the compact objects’
spins and the orbital angular momentum;

• φ12: The complimentary azimuthal angle separat-
ing the spin vectors;

• φJL: The azimuthal position of the orbital angular
momentum on its cone of precession about the total
angular momentum.

Additional parameters are necessary to fully describe
matter effects in systems involving a neutron star, namely
the equation of state [52], or to model deviations from the
post-Newtonian expansion of the waveforms [e.g. 36, 53],
but we do not consider these here. Finally, additional
parameters could be used to describe waveforms from ec-
centric binaries [54] but these have not yet been included
in our models.

GWs emitted over the whole coalescence of two com-
pact objects produce a characteristic “chirp” of increas-
ing amplitude and frequency during the adiabatic inspi-
ral phase, followed by a broad-band merger phase and
then damped quasi-sinusoidal signals during the ring-
down phase. The characteristic time and frequency scales

of the whole inspiral-merger-ringdown are important in
choosing the appropriate length of the data segment
to analyse and the bandwidth necessary to capture the
whole radiation. At the leading Newtonian quadrupole
order, the time to coalescence of a binary emitting GWs
at frequency f is [48]:

τ = 93.9

(
f

30 Hz

)−8/3 ( M
0.87M�

)−5/3

sec . (16)

Here we have normalised the quantities to an m1 = m2 =
1M� equal mass binary. The frequency of dominant
mode gravitational wave emission at the innermost stable
circular orbit for a binary with non-spinning components
is [48]:

fisco =
1

63/2π(m1 +m2)
= 4.4

(
M�

m1 +m2

)
kHz , (17)

The low-frequency cut-off of the instrument, which sets
the duration of the signal, was 40 Hz for LIGO in ini-
tial/enhanced configuration and 30 Hz for Virgo. When
the instruments operate in advanced configuration, new
suspension systems are expected to provide increased
low-frequency sensitivity and the low-frequency bound
will progressively move towards ≈ 20 Hz. The quanti-
ties above define therefore the longest signals that one
needs to consider and the highest frequency cut-off. The
data analysed (the ‘analysed segment’) must include the
entire length of the waveform from the desired starting
frequency.

Although any waveform model that is included in the
LAL libraries can be readily used in LALInference, the
most common waveform models used in our previous
studies [e.g., 55] are:

• Frequency-domain stationary phase inspiral-only
post-Newtonian waveforms for binaries with non-
spinning components, particularly the TaylorF2 ap-
proximant [56];

• Time-domain inspiral-only post-Newtonian wave-
forms that allow for components with arbitrary,
precessing spins, particularly the SpinTaylorT4 ap-
proximant [57];

• Frequency-domain inspiral-merger-ringdown phe-
nomenological waveform model calibrated to nu-
merical relativity, IMRPhenomB, which describes
systems with (anti)aligned spins [58];

• Time-domain inspiral-merger-ringdown effective-
one-body model calibrated to numerical relativity,
EOBNRv2 [59].

Many of these waveform models have additional options,
such as varying the post-Newtonian order of amplitude
or phase terms. Furthermore, when exploring the param-
eter space with waveforms that allow for spins, we some-
times find it useful to set one or both component spins to
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zero, or limit the degrees of freedom by only considering
spins aligned with the orbital angular momentum.

We generally carry out likelihood computations in the
frequency domain, so time-domain waveforms must be
converted into the frequency domain by the discrete
Fourier transform defined as in eq. (9). To avoid edge ef-
fects and ensure that the templates and data are treated
identically (see Section II A), we align the end of the time-
domain waveform to the discrete time sample which is
closest to tc and then taper it in the same way as the
data (if the waveform is non-zero in the first or last 0.4s of
the buffer), before Fourier-transforming to the frequency
domain and applying any finer time-shifting in the fre-
quency domain, as described below.

Some of the parameters, which we call intrinsic param-
eters (masses and spins), influence the evolution of the
binary. Evaluating a waveform at new values of these pa-
rameters generally requires recomputing the waveform,
which, depending on the model, may involve purely ana-
lytical calculations or a solution to a system of differen-
tial equations. On the other hand, extrinsic parameters
(sky location, distance, time and phase) leave the basic
waveform unchanged, while only changing the detector
response functions F+ and F× and shifting the relative
phase of the signal as observed in the detectors. This al-
lows us to save computational costs in a situation where
we have already computed the waveform and are now in-
terested in its re-projection and/or phase or time shift; in
particular, this allows us to compute the waveform only
once for an entire detector network, and merely change
the projection of the waveform onto detectors. We typi-
cally do this in the frequency domain.

The dependence of the waveform on distance (scaling
as 1/dL), sky location and polarisation (detector response
described by antenna pattern functions F+,×(α, δ, ψ)
for the + and × polarisations, see eq. (7)) and phase

(h̃(φc) = h̃(φ = 0)eiφc) is straightforward. A time

shift by ∆t corresponds to a multiplication h̃(∆t) =

h̃(0)e2πif∆t in the frequency domain; this time shift will
be different for each detector, since the arrival time of a
GW at the detector depends on the location of the source
on the sky and the location of the detector on Earth.

The choice of parameterization greatly influences the
efficiency of posterior sampling. The most efficient pa-
rameterizations minimize the correlations between pa-
rameters and the number of isolated modes of the poste-
rior. For the mass parameterization, the chirp mass M
and asymmetric mass ratio q achieve this, while avoid-
ing the divergence of the Jacobian of the symmetric mass
ratio η at equal masses when using a prior flat in com-
ponent masses. With generically oriented spins comes
precession, and the evolution of angular momentum ori-
entations. In this case the structure of the posterior is
simplified by specifying these parameters, chosen so that
they evolve as little as possible, at a reference frequency
of 100 Hz near the peak sensitivity of the detector [51].

1. Analytic marginalisation over phase

The overall phase φc of the GW is typically of no as-
trophysical interest, but is necessary to fully describe the
signal. When the signal model includes only the funda-
mental mode (l = m = 2) of the GW it is possible to
analytically marginalize over φc, simplifying the task of
the inference algorithms in two ways. Firstly, the elimi-
nation of one dimension makes the parameter space easier
to explore; secondly the marginalized likelihood function
over the remaining parameters has a lower dynamic range
than the original likelihood. The desired likelihood func-
tion over the remaining parameters Ω is calculated by
marginalising Eq. (10),

p(d|HS , Sn(f),Ω) =

∫
p(φc|HS)p(d|θ, HS , Sn(f))dφc

(18)

where p(φc|HS) = 1/2π is the uniform prior on phase.
Starting from Eq. 11 we can write the likelihood for

multiple detectors indexed j as

p(dj |HS , Snj(f),θ) ∝ exp

− 2

T

∑
i,j

|h̃0ij |2 + |dij |2
Snj(fi)


× exp

 4

T
<

∑
i,j

h̃0ije
iφcd∗ij

Snj(fi)


(19)

where h0 is the signal defined at a reference phase of 0.
Using this definition, the integral of Eq. (18) can be cast
into a standard form to yield

p(dj |HS , Snj(f),Ω) =

exp

− 2

T

∑
i,j

|h̃0ij |2 + |dij |2
Snj(fi)

 I0

 4

T

∣∣∣∣∣∣
∑
i,j

h̃0ijd
∗
ij

Snj(fi)

∣∣∣∣∣∣

(20)

in terms of the modified Bessel function of the first kind
I0. Note that the marginalised likelihood is no longer ex-
pressible as the product of likelihoods in each detector.
We found that using the marginalized phase likelihood
could reduce the computation time of a nested sampling
analysis by a factor of up to 4, as the shape of the distri-
bution was easier to sample, reducing the autocorrelation
time of the chains.

C. Priors

As shown in Eq. (1), the posterior distribution of θ (or
θ) depends both on the likelihood and prior distributions
of θ. LALInference allows for flexibility in the choice
of priors. For all analyses described here, we used the
same prior density functions (and range). For component
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FIG. 1: Prior probability p(m1,m2|HS), uniform in component masses within the bounds shown (left), and the same distri-
bution transformed into the M,q parametrization used for sampling.

masses, we used uniform priors in the component masses
with the range 1 M� ≤ m1,2 ≤ 30 M�, and with the total
mass constrained by m1 +m2 ≤ 35 M�, as shown in Fig.
1. This range encompasses the low-mass search range
used in [12] and our previous parameter estimation report
[55], where 1 M� ≤ m1,2 ≤ 24 M� and m1+m2 ≤ 25 M�.
When expressed in the sampling variable M, q the prior
is determined by the Jacobian of the transformation,

p(M, q|I) ∝Mm−2
1 (21)

which is shown in the right panel of figure 1.

The prior density function on the location of the source
was taken to be isotropically distributed on the sphere
of the sky, with p(dL|HS) ∝ dL

2, from 1 Mpc out to
a maximum distance chosen according to the detector
configuration and the source type of interest. We used
an isotropic prior on the orientation of the binary to
give p(ι, ψ, φc|HS) ∝ sin ι. For analyses using waveform
models that account for possible spins, the prior on the
spin magnitudes, a1, a2, was taken to be uniform in the
range [0, 1] (range [−1, 1] in the spin-aligned cases), and
the spin angular momentum vectors were taken to be
isotropic.

The computational cost of the parameter estimation
pipeline precludes us from running it on all data; there-
fore, the parameter estimation analysis relies on an esti-
mate of the coalescence time as provided by the detection
pipeline [12]. In practice, a 200 ms window centered on
the trigger time is sufficient to guard against the uncer-
tainty and bias in the coalescence time estimates from
the detection pipeline, see for instance [10, 60]. For the
signal-to-noise ratios (SNRs) used in this paper, our pos-
teriors are much narrower than our priors for most pa-
rameters.

III. ALGORITHMS

A. MCMC

Markov chain Monte Carlo methods are designed to
estimate a posterior by stochastically wandering through
the parameter space, distributing samples proportionally
to the density of the target posterior distribution. Our
MCMC implementation uses the Metropolis–Hastings al-
gorithm [61, 62], which requires a proposal density func-
tion Q(θ′|θ) to generate a new sample θ′, which can only
depend on the current sample θ. Such a proposal is ac-
cepted with a probability rs = min(1, α), where

α =
Q(θ|θ′)p(θ′|d, H)

Q(θ′|θ)p(θ|d, H)
. (22)

If accepted, θ′ is added to the chain, otherwise θ is re-
peated.

Chains are typically started at a random location in pa-
rameter space, requiring some number of iterations before
dependence on this location is lost. Samples from this
burn-in period are not guaranteed to be draws from the
posterior, and are discarded when estimating the pos-
terior. Furthermore, adjacent samples in the chain are
typically correlated, which is undesirable as we perform
Kolmogorov-Smirnov tests of the sampled distributions,
which requires independent samples. To remove this cor-
relation we thin each chain by its integrated autocorre-
lation time (ACT) τ , defined defined as

τ = 1 + 2
∑
t

ĉ(t), (23)

where t labels iterations of the chain and ĉ(t) is the Pear-
son correlation coefficient between the chain of samples
and itself shifted by t samples [63] The chain is thinned
by using only every τ -th sample, and the samples re-
maining after burn-in and ACT thinning are referred to
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as the effective samples. This is necessary for some post-
processing checks which assume that the samples are sta-
tistically independent.

The efficiency of the Metropolis–Hastings algorithm is
largely dependent on the choice of proposal density, since
that is what governs the acceptance rates and ACTs. The
standard, generically applicable distribution is a Gaus-
sian centered on θ, the width of which will affect the
acceptance rate of the proposal. Large widths relative
to the scale of the target posterior distribution will lead
to low acceptance rates with many repeated samples,
whereas small widths will have high acceptance rates
with highly correlated samples, both resulting in large
ACTs. For a simplified setting of a unimodal Gaussian
posterior, the optimal acceptance rate can be shown to
be 0.234 [64]. Though our posterior can be more compli-
cated, we find that targeting this acceptance rate gives
good performance and consistent ACTs for all posteri-
ors that we have considered. Therefore, during the first
100,000 samples of a run, we adjust the 1D Gaussian
proposal widths to achieve this acceptance rate. This
period of adjustment is re-entered whenever the sampler
finds a log likelihood (logL) that is N/2 larger than has
been seen before in a run, under the assumption that
this increase in likelihood may indicate that a new area
of parameter space is being explored.

When the posterior deviates from a unimodal
Gaussian-like distribution, using only the local Gaussian
proposal becomes very inefficient. The posteriors encoun-
tered in GW data analysis typically consists of multiple
isolated modes, separated by regions of lower probabil-
ity. To properly weigh these modes, a Markov chain must
jump between them frequently, which is a very unlikely
process when using only a local Gaussian proposal. In
section III C we describe the range of jump proposals
more adept at sampling the parameter space of a com-
pact binary inspiral. We also describe the technique of
parallel tempering, which we employ to ensure proper
mixing of samples between the modes.

1. Parallel Tempering

Tempering [65, 66] introduces an inverse “tempera-
ture” 1/T to the standard likelihood function, resulting
in a modified posterior

pT (θ|d) ∝ p(θ|H)L(θ)
1
T . (24)

Increasing temperatures above T = 1 reduces the con-
trast of the likelihood surface, broadening peaks, with
the posterior approaching the prior in the high tempera-
ture limit. Parallel tempering exploits this “flattening” of
the posterior with increasing temperature by construct-
ing an ensemble of tempered chains with temperatures
spanning T = 1 to some finite maximum temperature
Tmax. Chains at higher temperatures sample a distri-
bution closer to the prior, and are more likely to ex-

plore parameter space and move between isolated modes.
Regions of high posterior support found by the high-
temperature chains are then passed down through the
temperature ensemble by periodically proposing swaps
in the locations of adjacent chains. Such swaps are ac-
cepted at a rate rs = min(1, ωij), where

ωij =

(
L(θj)

L(θi)

) 1
Ti
− 1

Tj

, (25)

with Ti < Tj .
For non-trivial posteriors this technique greatly in-

creases the sampling efficiency of the T = 1 chain, but
does so at a cost. In our implementation, samples with
T > 1 are not used in construction of the final poste-
rior distribution, but they are kept for calculation of ev-
idence integrals via thermodynamic integration in post-
processing IV C.

All samples from chains with T > 1 are ultimately dis-
carded, as they are not drawn from the target posterior.
From a computational perspective however, each chain
can run in parallel and not affect the total run time of the
analysis. The MCMC implementation of LALInference,
LALInferenceMCMC, uses the Message Passing Interface
(MPI) [67] to achieve this parallelization. In our calcu-
lations, the temperatures Ti are distributed logarithmi-
cally. Chains are not forced to be in sync, and each chain
proposes a swap in location with the chain above it (if
one exists) every 100 samples.

B. Nested Sampling

Nested sampling is a Monte Carlo technique intro-
duced by Skilling [22] for the computation of the Bayesian
evidence that will also provide samples from the pos-
terior distribution. This is done by transforming the
multi-dimensional integral of Equation (4) into a one-
dimensional integral over the prior volume. The prior
volume is defined asX such that dX = dθp(θ|H). There-
fore,

X(λ) =

∫
p(d|θ,H)>λ

dθp(θ|H). (26)

This integral computes the total probability volume con-
tained within a likelihood contour defined by p(d|θ, H) =
λ. With this in hand, Equation (4) can now be written
as

Z =

∫ 1

0

L(X)dX, (27)

where L(X) is the inverse of Equation (26) and is a mono-
tonically decreasing function of X (larger prior volume
enclosed implies lower likelihood value). By evaluating
the likelihoods Li = L(Xi) associated with a monotoni-
cally decreasing sequence of prior volumes Xi,

0 < XM < . . . < X2 < X1 < X0 = 1, (28)
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FIG. 2: The profile of the likelihood function for each of the
injections in Table II, mapped onto the fractional prior sup-
port parameter X (see Eq. (28)). The algorithm proceeds
from left (sampling entire prior) to right (sampling a tiny re-
stricted part of the prior). The values of log(L) are normalised
to the likelihood of the noise model.

the evidence can be easily approximated with the trapez-
ium rule,

Z =

M∑
i=1

1

2
(Xi−1 −Xi+1)Li. (29)

Examples of the function L(X) for CBC sources are
shown in figure 2.

Applying this technique follows a fundamental set of
steps. First, a set of initial ‘live’ points are sampled
from the entire prior distribution. The point with the
lowest likelihood value is then removed and replaced
by a new sample with higher likelihood. This removal
and replacement is repeated until a stopping condition
has been reached. By default, the loop continues while
LmaxXi/Zi > e0.1, where Lmax is the maximum like-
lihood so far discovered by the sampler, Zi is the cur-
rent estimate of the total evidence, and Xi is the frac-
tion of the prior volume inside the current contour line.
In short, this is checking whether the evidence estimate
would change by more than a factor of ∼ 0.1 if all the re-
maining prior support were at the maximum likelihood.
Posterior samples can then be produced by re-sampling
the chain of removed points and current live points ac-
cording to their posterior probabilities:

p(θ|d,H) =
1
2 (Xi−1 −Xi+1)Li

Z
. (30)

The estimation of the prior volume and method for effi-
ciently generating new samples varies between implemen-
tations. In LALInference we have included two such
implementations, one based on an MCMC sampling of
the constrained prior distribution, and the other on the

MultiNest method, with extensions. These are de-
scribed in the following two sections III B 1 and III B 2.

1. LALInferenceNest

The primary challenge in implementing the nested
sampling algorithm is finding an efficient means of draw-
ing samples from the limited prior distribution

p′(θ|HS) ∝
{
p(θ|HS) L(d|θ) > Lmin

0 otherwise
. (31)

In LALInference we build on the previous inspnest
implementation described in [23], with several enhance-
ments described here. This uses a short MCMC chain
(see section III A) to generate each new live point, which
is started from a randomly-selected existing live point.

We use proposals of the same form as described in III C
with slight differences: the differential evolution proposal
is able to use the current set of live points as a basis for
drawing a random difference vector, and for empirically
estimating the correlation matrix used in the eigenvec-
tor proposal. This ensures that the scale of these jumps
adapts automatically to the current concentration of the
remaining live points. In contrast to Eq. (22), the tar-
get distribution that we are sampling is the limited prior
distribution p′ of Eq. (31), so the acceptance ratio is

α =
Q(θ|θ′)p′(θ′|H)

Q(θ′|θ)p′(θ|H)
. (32)

Furthermore, we have introduced additional features
which help to reduce the amount of manual tuning re-
quired to produce a reliable result.

a. Autocorrelation adaptation In [23] it was shown
that the numerical error on the evidence integral was
dependent not only on the number of live points Nlive

and the information content of the data (as suggested
by Skilling), but also on the length of the MCMC sub-
chains NMCMC used to produce new samples (this is not
included in the idealised description of nested sampling,
since other methods of drawing independent new samples
are also possible, see section III B 2). In inspnest, the
user would specify this number at the start of the run,
depending on their desire for speed or accuracy. The
value then remained constant throughout the run. This
is inefficient, as the difficulty of generating a new sample
varies with the structure of the p′(θ|HS) distribution at
different values of Lmin. For example, there may be many
secondary peaks which are present up to a certain value
of Lmin, but disappear above that, making the distribu-
tion easier to sample. To avoid this inefficiency (and to
reduce the number of tuning parameters of the code), we
now internally estimate the required length of the sub-
chains as the run progresses. To achieve this, we use the
estimate of the autocorrelation timescale τi (defined as in
Eq. 23) for parameter i of a sub-chain generated from a
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FIG. 3: Length of MCMC sub-chain for nested sampling
analysis of the BNS system (as in Table II) as a function of
prior scale. As the run progresses, the length of the MCMC
sub-chain used to generate the next live point automatically
adapts to the current conditions, allowing it to use fewer it-
erations where possible. The chain is limited to a maximum
of 5000 iterations.

randomly selected live point. The sum is computed up to
the lag Mi which is the first time the correlation drops
below 0.01, i.e ĉi(Mi) ≤ 0.01. The timescale is com-
puted for each parameter being varied in the model, and
the longest autocorrelation time is used as the number
of MCMC iterations (M = max(M1, . . . ,Mi) for subse-
quent sub-chains until it is further updated after Nlive/4
iterations of the nested sampler. As the chain needed to
compute the autocorrelation timescale is longer than the
timescale itself, the independent samples produced are
cached for later use. We note that as the nested sam-
pling algorithm uses many live points, the correlation
between subsequent points used for evaluating the evi-
dence integral will be further diluted, so this procedure
is a conservative estimate of the necessary chain thinning.
The adaptation of the sub-chain length is shown in fig-
ure 3, where the algorithm adapts to use < 1000 MCMC
steps during the majority of the analysis, but can adjust
its chain length to a limit of 5000 samples for the most
difficult parts of the problem.

b. Sloppy sampling For the analysis of CBC data,
the computational cost of a likelihood evaluation com-
pletely dominates that of a prior calculation, since it re-
quires the generation of a trial waveform and the calcu-
lation of an inner product (with possible FFT into the
frequency domain). The task of sampling the likelihood-
limited prior p′(θ|H) is performed by sampling from the
prior distribution, rejecting any points that fall beneath
the minimum threshold Lmin. During the early stages of
the run, the Lmin likelihood bound encloses a large vol-
ume of the parameter space, which may take many itera-
tions of the sub-chain to cross, and a proposed step orig-
inating inside the bound is unlikely to be rejected by this

FIG. 4: Acceptance ratio and fraction of sloppy jumps for
nested sampling analysis of a BNS system. The dashed blue
line shows the automatically determined fraction of propos-
als for which the likelihood calculation is skipped. The solid
green line shows the overall acceptance rate for new live
points, which thanks to the adaptive jumps remains at a
healthy level despite the volume of the sampled distribution
changing by 17 orders of magnitude throughout the run.

cut. We are free to make a shortcut by not checking the
likelihood bound at each step of the sub-chain, allowing
it to continue for ME iterations, where E is the fraction
of iterations where the likelihood check is skipped. Since
the calculation of the prior is essentially free compared
to that of the likelihood, the computational efficiency is
improved by a factor of (1−E)−1. The likelihood bound
is always checked before the sample is finally accepted as
a new live point.

Since the optimal value of E is unknown, and will vary
throughout the run as the Lmin contour shrinks the sup-
port for the p′(θ|H) distribution, we adaptively adjust
it based on a target for the acceptance of proposals at
the likelihood-cut stage. Setting a target acceptance rate
of 0.3 at the likelihood cut stage, and having measured
acceptance rate α, we adjust E in increments of 5% up-
ward when α > 0.3 or downward when α < 0.3, with a
maximum of 1. This procedure allows the code to cal-
culate fewer likelihoods when the proposal distribution
predominantly falls inside the bounds, which dramati-
cally improves the efficiency at the start of the run.

c. Parallelisation Although the nested sampling al-
gorithm itself is a sequential method, we are able to
exploit a crude parallelisation method to increase the
number of posterior samples produced. This involves
performing separate independent runs of the algorithm
on different CPU cores, and then combining the results
weighted by their respective evidence. Consider a set of
nested sampling runs indexed by i, with each iteration in-
dexed by j = 1 . . . ξi, where ξi is the number of iterations
in run i before it terminates, and Zi denotes the evi-
dence estimate from that run. Our implementation also
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outputs the Nlive live points at the time of algorithm ter-
mination, which are indexed ξi+1 . . . ξi+Nlive

. These last
samples are treated separately since they are all drawn
from the same prior volume. The runs must all be per-
formed with identical data and models, but with different
random seeds for the sampler.

For each sample θij we calculate the posterior weight
wij = LijVij/Zi, where log Vij = −j/Nlive for the points
up to j ≤ ξi and Vij = −ξi/Nlive for the final points
j > ξi. By resampling any individual chain according
to the weights wij we can produce a set of samples from
the posterior. The resulting sets of posteriors for each
i are then resampled according to the evidence Zi cal-
culated for each chain. This ensures that chains which
fail to converge on the global maximum will contribute
proportionally fewer samples to the final posterior than
those which do converge and produce a higher Zi esti-
mate. The resampling processes can be performed either
with or without replacement, where the latter is useful
in ensuring that no samples are repeated. In this paper
independent samples are used throughout, as repeated
samples will distort the tests of convergence by artifi-
cially lowering the KS test statistic.

In practice, this procedure reduces the wall time nec-
essary to produce a given number of posterior samples,
as the chains can be spread over many CPU cores.

2. MultiNest & BAMBI

MultiNest [24–26] is a generic algorithm that imple-
ments the nested sampling technique. It uses a model-
based approach to generate samples within the volume X
enclosed by the likelihood contour L(X) > Lmin. The set
of live points is enclosed within a set of (possibly over-
lapping) ellipsoids and a new point is then drawn uni-
formly from the region enclosed by these ellipsoids. The
volume of ellipsoids is used in choosing which to sam-
ple from and points are tested to ensure that if they lie
in multiple (N) ellipsoids they are accepted as a sample
only the corresponding fraction of the time (1/N). The
ellipsoidal decomposition of the live point set is chosen
to minimize the sum of volumes of the ellipsoids. This
method is well suited to dealing with posteriors that have
curving degeneracies, and allows mode identification in
multi-modal posteriors. If there are various subsets of
the ellipsoid set that do not overlap in parameter space,
these are identified as distinct modes and subsequently
evolved independently.

MultiNest is able to take advantage of parallel com-
puting architectures by allowing each CPU to compute
a new proposal point. As the run progresses, the actual
sampling efficiency (fraction of accepted samples from
total samples proposed) will drop as the ellipsoidal ap-
proximation is less exact and the likelihood constraint
on the prior is harder to meet. By computing N samples
concurrently, we can obtain speed increases of up to a
factor of N with the largest increase coming when the

efficiency drops below 1/N .
The user only needs to tune a few parameters for any

specific implementation in addition to providing the log-
likelihood and prior functions. These are the number
of live points, the target efficiency, and the tolerance.
The number of live points needs to be enough that all
posterior modes are sampled (ideally with at least one
live point in the initial set) and we use from 1000 to
5000 for our analyses. The target efficiency affects how
conservatively the ellipsoidal decomposition is made and
a value of 0.1 (10%) was found to be sufficient; smaller
values will produce more precise posteriors but require
more samples. Lastly, a tolerance of 0.5 in the evidence
calculation is sufficiently small for the run to converge to
the correct result.
MultiNest is implemented for LALInference within

the Blind Accelerated Multimodal Bayesian Inference
(BAMBI) algorithm [27]. BAMBI incorporates the
nested sampling performed by MultiNest along with
the machine learning of SkyNet [68] to learn the like-
lihood function on-the-fly. Use of the machine learning
capability requires further customisation of input settings
and so is not used for the purposes of this study.

C. Jump Proposals

For both the MCMC sampler and the MCMC-
subchains of the Nested Sampler, efficiently exploring the
parameter space is essential to optimising performance
of the algorithms. Gaussian jump proposals are typi-
cally sufficient for unimodal posteriors and spaces with-
out strong correlations between parameters, but there are
many situations where strong parameter correlations ex-
ist and/or multiple isolated modes appear spread across
the multi-dimensional parameter space. When param-
eters are strongly correlated, the ideal jumps would be
along these correlations, which makes 1D jumps in the
model parameters very inefficient. Furthermore to sam-
ple between isolated modes, a chain must make a large
number of improbable jumps through regions of low prob-
ability. To solve this problem we have used a range of
jump proposals, some of which are specific to the CBC
parameter estimation problem and some of which are
more generally applicable to multimodal or correlated
problems.

To ensure that an MCMC equilibrates to the target dis-
tribution, the jump proposal densities in Eq. (22) must
be computed correctly. Our codes achieve this using a
“proposal cycle.” At the beginning of a sampling run,
the proposals below are placed into an array (each pro-
posal may be put multiple times in the array, according
to a pre-specified weight factor). The order of the ar-
ray is then permuted randomly before sampling begins.
Throughout the run, we cycle through the array of pro-
posals (maintaining the order), computing and applying
the jump proposal density for the chosen proposal at each
step as in Eq. (22). This procedure ensures that there is
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only a single proposal “operating” for each MCMC step,
simplifying the computation of the jump proposal den-
sity, which otherwise would have to take into account the
forward and reverse jump probabilities for all the propos-
als simultaneously.

Differential Evolution

Differential evolution is a generic technique that at-
tempts to solve the multimodal sampling problem by
leveraging information gained previously in the run [69,
70]. It does so by drawing two previous samples θ1 and
θ2 from the chain (for MCMC) or from the current set
of live points (nested sampling), and proposing a new
sample θ′ according to:

θ′ = θ + γ(θ2 − θ1) , (33)

where γ is a free coefficient. 50% of the time we use this
as a mode-hopping proposal, with γ = 1. In the case
where θ1 and θ are in the same mode, this proposes a
sample from the mode containing θ2. The other 50% of
the time we choose γ according to

γ ∼ N
(

0, 2.38/
√

2Ndim

)
, (34)

whereNdim is the number of parameter space dimensions.
The scaling of the distribution for γ is suggested in ter
Braak and Vrugt [70] following Roberts and Rosenthal
[71] for a good acceptance rate with general distribu-
tions. The differential evolution proposal in this latter
mode proves useful when linear correlations are encoun-
tered in the distribution, since the jump directions tend
to lie along the principal axes of the posterior distribu-
tion. However, this proposal can perform poorly when
the posterior is more complicated.

Drawing from the past history of the chain for the
MCMC differential evolution proposal makes the chain
evolution formally non-Markovian. However, as more
and more points are accumulated in the past history, each
additional point accumulated makes a smaller change to
the overall proposal distribution. This property is suffi-
cient to make the MCMC chain asymptotically Marko-
vian, so the distribution of samples converges to the tar-
get distribution; in the language of Roberts and Rosen-
thal [72], Theorem 1, Dn → 0 in probability as n → ∞
for this adaptive proposal, and therefore the posterior is
the equilibrium distribution of this sampling.

Eigenvector jump

The variance-covariance matrix of a collection of repre-
sentative points drawn from the target distribution (the
current set of nested sampling live points) can be used
as an automatically self-adjusting proposal distribution.
In our implementation, we calculate the eigenvalues and

eigenvectors of the estimated covariance matrix, and use
these to set a scale and direction for a jump proposal.
This type of jump results in a very good acceptance rate
when the underlying distribution is approximately Gaus-
sian, or is very diffuse (as in the early stages of the nested
sampling run). In the nested sampling algorithm, the co-
variance matrix is updated every Nlive/4 iterations to
ensure the jump scales track the shrinking scale of the
target distribution. Within each sub-chain the matrix is
held constant to ensure detailed balance.

Adaptive Gaussian

We also use a 1 dimensional Gaussian jump proposal,
where the jump for a single parameter θk is θ′k = θk +
N(0, σk). The width of the proposal is scaled to achieve
a target acceptance rate of ξ ' 0.234 by adjusting

σk ← σk + sγ
1− ξ
100

∆ (35)

when a step is accepted, where sγ is a scaling factor and
∆ is the prior width in the kth parameter, and adjusting

σk ← σk − sγ
ξ

100
∆ (36)

when a step is rejected. For the MCMC, the adap-
tation phase lasts for 100,000 samples, and sγ =

10 (t− t0)
−1/5 − 1 during this phase; otherwise sγ = 0.

The nested sampling algorithm has sγ = 1.

Gravitational-wave specific proposals

We also use a set of jump proposals specific to the CBC
parameter estimation problem addressed in this work.
These proposals are designed to further improve the sam-
pling efficiency by exploring known structures in the CBC
posterior distribution, primarily in the sky location and
extrinsic parameter sub-spaces.

Sky location Determining the sky position of the CBC
source is an important issue for followup observations of
any detected sources. The position, parameterised by
(α, δ, dL), is determined along with the other parameters
by the LALInference code, but it can present difficul-
ties due to the highly structured nature of the posterior
distribution. Although the non-uniform amplitude re-
sponse of a single detector allows some constraint of the
sky position of a source, the use of a network of detectors
gives far better resolution of the posterior distribution.
This improvement is heuristically due to the ability to
resolve the difference in time of arrival of the signal at
each detector, which allows triangulation of the source
direction. The measured amplitude of the signal and
the non-uniform prior distribution further constrain the
posterior, but the major structure in the likelihood can
be derived by considering the times of arrival in multi-
ple detectors. This leads us to include two specific jump
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proposals similar to those outlined in [23], which preserve
the times of arrival in two and three detector networks
respectively.

Sky Reflection In the case of a three-detector network,
the degeneracy of the ring based on timing is bro-
ken by the presence of a third detector. In this case,
there are two solutions to the triangulation prob-
lem which correspond to the true source location,
and its reflection in the plane containing the three
detector sites. If the normal vector to this plane
is n̂, the transition (in Cartesian coordinates with
origin at the geocentre) between the true point x̂
and its reflection x̂′ is written

x̂′ = x̂− 2n̂|n̂.(x̂− x̂i)| (37)

where x̂i is the unit vector pointing in the direction
of one of the detector sites. The resulting point is
then projected back onto the unit sphere parame-
terised by α, δ. To ensure detailed balance, the re-
sulting point is perturbed by a small random vector
drawn from a 3D Gaussian in (t, α, δ) The time pa-
rameter is updated in the same way as for the sky
rotation proposal above. As in the two-detector
case, the degeneracy between these points can be
broken by consideration of the signal amplitudes
observed in the detector, however this is not al-
ways the case as the secondary mode can have a
similar likelihood.

Extrinsic parameter proposals

Extrinsic Parameter proposal There exist a correla-
tion between the inclination, distance, polarization
and the sky location dues to the sensitivity of the
antenna beam patterns of the detectors. This corre-
lation makes the two solutions for the sky location
from the thee-detector network (described above)
correspond to different values of inclination, dis-
tance and polarization. We solve analytically the
values of those parameters when trying to jump
between the two sky reflections. The equations are
detailed in [73].

Polarization and Phase correlation There exists a
degeneracy between the φ and ψ parameters when
the orbital plane is oriented perpendicular to the
line of signal, i.e. ι = {0, π}. In general these
parameters tend to be correlated along the axes
α = ψ + φ and β = ψ − φ. We propose jumps
which choose a random value of either the α or β
parameter (keeping the other constant) to improve
the sampling of this correlation.

Miscellaneous proposals

Draw from Prior A proposal that generates samples
from the prior distribution (see section II C) by re-
jection sampling. This is mostly useful for improv-
ing the mixing of high-temperature MCMC chains,
as it does not depend on the previous iteration.

Phase reversal Proposes a change in the orbital phase
parameter φj+1 = (φj + π) (mod 2π), which will
keep the even harmonics of the signal unchanged,
but will flip the sign of the odd harmonics. Since
the even harmonic l = m = 2 dominates the signal,
this is useful for proposing jumps between multi-
ple modes which differ only by the relatively small
differences in the waveform generated by the odd
harmonics.

Phase and polarization reversal Proposes a simulta-
neous change of the orbital phase and polarisa-
tion parameters φj+1 = (φj + π) (mod 2π) and
ψj+1 = (ψj + π/2) (mod π).

Gibbs Sampling of Distance The conditional likeli-
hood of the distance parameter dL follows a known
form, which allows us to generate proposals from
this distribution independently of the previous iter-
ation, reducing the correlation in the chains. As the
signal amplitude scales proportionally to dL

−1 = u,
the logarithm of the likelihood function (Equation
(10)), constrained to only distance variations, is
quadratic in u,

logL(u) = A+Bu+ Cu2, (38)

which in our case yields a Gaussian distribution
with mean µ = −B/2C and variance σ2 = 1/2C.
By calculating the value of logL at three different
distances, the quadratic coefficients are found and
a new proposed distance can be generated from the
resulting Gaussian distribution.

IV. POST-PROCESSING

The main data products of all the above algorithms
are a set of ‘samples’ assumed to be drawn independently
from the posterior probability distribution p(θ|d, I) (as
defined in Equation (1)) and, for the nested sampling al-
gorithms, an approximation to the evidence Z = P (d|I)
(for MCMC, evidence computation is performed in post-
processing, see section IV C). Each algorithm initially
produces outputs which are different in both their form
and relation to these quantities. A suite of Python scripts
has been specifically developed for the purpose of con-
verting these outputs to a common results format in or-
der to facilitate comparisons between the algorithms and
promote consistency in the interpretation of results. At
the time of writing these scripts (and associated libraries)
can be found in the open-source LALsuite package [47].
The end result of this process is a set of web-ready HTML
pages containing the key meta-data and statistics from
the analyses and from which it should be possible to re-
produce any results produced by the codes. In this sec-
tion we outline in more detail the steps needed to convert
or post-process the output of the different algorithms to
this common results format and important issues related
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to interpreting these results and drawing scientific con-
clusions.

A. MCMC

The MCMC algorithm in LALInference produces a
sequence of O(106) - O(108) samples, depending on the
number of source parameters in the model, the number
of interferometers used, and the bandwidth of the signal.
Each sample consists of a set of source parameters {θ}
and associated values of the likelihood function L(d|θ)
and prior p(θ). We cannot immediately take this output
sequence to be our posterior samples as we cannot assume
that all the samples were drawn independently from the
actual posterior distribution.

In order to generate a set of independent posterior sam-
ples the post-processing for the MCMC algorithm first
removes a number of samples at the beginning of the
chain – the so-called ‘burn-in’ – where the MCMC will
not yet be sampling from the posterior probability den-
sity function. For a d-dimensional parameter space, the
distribution of the log-likelihood is expected to be close
to Lmax − X, where Lmax is the maximum achievable
log-likelihood, and X is a random variable following a
Gamma(d/2, 1) distribution [74]. Thus, we consider the
burn-in to end when a chain samples log-likelihood val-
ues that are within d/2 of the highest log-likelihood value
found by the chain. Once we have discarded these sam-
ples, the set of remaining samples is then ‘down-sampled’;
the chain is re-sampled randomly at intervals inversely
proportional to the the autocorrelation length to produce
a sub-set of samples which are assumed to be drawn in-
dependently from the posterior distribution. See section
III A above for more details.

B. Nested sampling

The output of both of the nested sampling algorithms
in LALInference are a list (or lists in the case of parallel
runs) of the live points sampled from the prior distribu-
tion for a particular model and data set and consisting
of a set of parameters and their associated log(Lij) and
Zij . These live points approximately lie on the contours
enclosing the nested prior volumes and each has associ-
ated with it some fraction of the evidence assumed to be
enclosed within said contour. The post-processing step
takes this information and uses it to generate posterior
samples from the list of retained live points using Eq. 30
for single runs, along with the procedure described in
section III B 1 c for parallel runs.

C. Evidence calculation using MCMC outputs

Whilst the nested sampling algorithms in
LALInference directly produce an approximation

to the value of the evidence Z (and produce posterior
samples as a by-product), we can also use the output
from the MCMC algorithms to calculate independent
estimates of Z in post-processing. We have tested
several methods of computing the evidence from pos-
terior samples, including the harmonic mean [75–77],
direct integration of an estimate of the posterior density
[78], and thermodynamic integration (see e.g. [79, 80]).
We have found that only thermodynamic integration
permits reliable estimation of the evidence for the typical
number and distribution of posterior samples we obtain
in our analyses.

Thermodynamic integration considers the evidence as
a function of the temperature, Z(β|H), defined as

Z(β|H) ≡
∫

dθp(d|H,θ, β)p(θ|H)

=

∫
dθp(d|H,θ)βp(θ|H) (39)

where β = 1/T is the inverse temperature of the chain.
Differentiating with respect to β, we find

d

dβ
lnZ(β|H) = 〈ln p(d|H,θ)〉β (40)

where 〈ln p(d|H,θ)〉β is the expectation value of the log
likelihood for the chain with temperature 1/β. We can
now integrate (40) to find the logarithm of the evidence

lnZ =

∫ 1

0

dβ 〈ln p(d|H,θ)〉β . (41)

It is straightforward to compute 〈ln p(d|H,θ)〉β for each
chain in a parallel-tempered analysis; the integral in Eq.
(41) can then be estimated using a quadrature rule. Be-
cause our typical temperature spacings are coarse, the
uncertainty in this estimate of the evidence is typically
dominated by discretisation error in the quadrature. We
estimate that error by performing the quadrature twice,
once using all the temperatures in the chain and once
using half the temperatures. To achieve very accurate
estimates of the evidence, sometimes ∼ 20 to ∼ 30 tem-
peratures are needed, out to a maximum of β−1 ∼ 105,
which adds a significant cost over the computations nec-
essary for parameter estimation; however, reasonably ac-
curate estimates of the evidence can nearly always be
obtained from a standard run setup with ∼ 10 chains.
Figure 5 plots the integrand of Eq. (41) for the synthetic
GW signals analysed in § V B, illustrating both the coarse
temperature spacing of the runs and the convergence of
the evidence integral at high temperature.

D. Generation of statistics and marginal posterior
distributions

Whilst the list of posterior samples contains all the
information about the distribution of the source param-
eters obtained from the analysis, we need to make this
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FIG. 5: The integrand of the evidence integral (Eq. (41))
versus β for the analyses of synthetic GW signals in § V B.
The evidence is given by the area under each curve. Table I
gives the results of the integration together with the estimated
error in the quadrature, following the procedure described in
§ IV C. The jaggedness of the curves illustrates that the tem-
perature spacing required for convergent MCMC simulations
is larger than that required for accurate quadrature to com-
pute the evidence; the flatness at small β illustrates that, for
these simulations, the high-temperature limit is sufficient for
convergence of the evidence integral.

more intelligible by summarising it in an approximate
way. We have developed a number of different sum-
mary statistics which provide digested information about
the posterior distributions, which are applied in post-
processing to the output samples.

The simplest of these are simply the mean and stan-
dard deviation of the one-dimensional marginal distribu-
tions for each of the parameters. These are estimated
as the sample mean, standard deviation, etc., over the
samples, which converge on their continuous distribution
equivalents (3) in the limit of large numbers of samples.
These are particularly useful for giving simple measures
of the compatibility of the results with the true values, if
analysing a known injection.

However, estimators are not always representative of
the much larger amount of information contained in the
marginal posterior distributions on each of the parame-
ters (or combinations of them). For summarising one- or
two-dimensional results we create plots of the marginal
posterior probability density function by binning the
samples in the space of the parameters and normalising
the resulting histogram by the number of samples.

We are also interested in obtaining estimates of the
precision of the resulting inferences, especially when com-

paring results from a large number of simulations to ob-
tain an expectation of parameter estimation performance
under various circumstances. We quantify the precision
in terms of ‘credible intervals’, defined for a desired level
of credibility (e.g. Pcred = 95% probability that the pa-
rameter lies within the interval), with the relation

credible level =

∫
credible interval

p(θ|d)dθ. (42)

The support of the integral above is the credible in-
terval, however this is not defined uniquely by this ex-
pression. In one dimension, we can easily find a region
enclosing a fraction x of the probability by sorting the
samples by their parameter values and choosing the range
from [N(1− x)/2, N(1 + x)/2] where N is the number of
independent samples in the posterior distribution. The
statistical error on the fraction x of the true distribu-
tion enclosed, caused by the approximation with discrete
samples is ≈

√
x(1− x)/N . To achieve a 1% error in the

90% region we therefore require 900 independent sam-
ples. Typically we collect a few thousand samples, giving
an error < 1% on the credible interval.

We are also interested in the minimum credible inter-
val, which is the smallest such region that encloses the
desired fraction of the posterior. In the case of a uni-
modal one-dimensional posterior this leads to the highest
posterior density interval.

To find estimates of the minimum credible intervals we
use a number of techniques that have different regimes of
usefulness, depending primarily on the number of sam-
ples output from the code and the number of parameters
we are interested in analysing conjointly.

When we are considering the one-dimensional marginal
posterior distributions, we simply compute a histogram
for the parameter of interest using equally-sized bins.
This directly tells us the probability associated with that
region of the parameter space: the probability density
is approximately equal to the fraction of samples in the
bin divided by the bin width. This simple histogram
method involves an appropriate choice of the bin size.
We must be careful to choose a bin size small enough
that we have good resolution and can approximate the
density as piecewise constant within each bin, but large
enough so that the sampling error within each bin does
not overwhelm the actual variations in probability be-
tween bins.

To recover the minimum credible interval we apply a
greedy algorithm to the histogram bins. This orders the
bins by probability, and starting from the highest prob-
ability bin, works its way down the list of bins until the
required total probability has been reached. Although
this procedure generally yields satisfactory results, it is
subject to bias due to the discrete number of samples per
bin. To see this, consider a uniform probability distribu-
tion that has been discretely sampled. The statistical
variation of the number of samples within bins will cause
those where the number fluctuates upward to be chosen
before those where it fluctuates downward. The credi-
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Nested MCMC
Distribution Analytic Sampling BAMBI thermo.

Unimodal -21.9 −21.8± 0.1 −21.8± 0.12 −20.3± 1.9

Bimodal -30.0 −30.0± 0.1 −29.9± 0.14 −26.7± 3.0

Rosenbrock – −70.9± 0.2 −69.1± 0.2 −63.0± 7.6

BNS – 68.7± 0.34 69.98± 0.17 68.2± 1.1

NSBH – 62.2± 0.27 63.67± 0.16 63.40± 0.72

BBH – 71.4± 0.18 72.87± 0.15 72.44± 0.11

TABLE I: The log evidence estimates for the analytic likeli-
hood distributions (§V A) and the simulated signals (§V B)
calculated with the three methods, with estimated uncer-
tainty. For the thermodynamic integration method we used 16
steps on the temperature ladder, except for the Rosenbrock
likelihood which required 64. For distributions that permit
an analytic computation of evidence, the samplers produce
evidence estimates consistent with the true value. For the
others, the estimates produced by the samplers are not con-
sistent, indicating that there remains some systematic error in
the evidence calculation methods for the more difficult prob-
lems.

ble interval estimated by this method will therefore be
smaller than the true interval containing the desired pro-
portion of the probability. In [81] we investigate several
methods of overcoming this problem.

V. VALIDATION OF RESULTS

To confirm the correctness of the sampling algorithms,
we performed cross-comparisons of recovered posterior
distributions for a variety of known distributions and ex-
ample signals. The simplest check we performed was
recovery of the prior distribution, described in section
II C. The one-dimensional distributions output by the
codes were compared using a Kolmogorov-Smirnov test,
where the comparisons between the three codes on the
15 marginal distributions were all in agreement with p-
values above 0.02. We next analysed several known like-
lihood functions, where we could perform cross-checks
between the samplers. These were a unimodal 15-
dimensional correlated Gaussian, a bimodal correlated
Gaussian distribution, and the Rosenbrock banana func-
tion. For the unimodal and bimodal distributions we can
also compare the results of the samplers to the analytical
marginal distributions to confirm they are being sampled
correctly.

A. Analytic likelihoods

The multivariate Gaussian distribution was specified
by the function

logLMV = −1

2
(θ̂i − θi)C−1

ij (θ̂j − θj). (43)

where Cij is a covariance matrix of dimension 15, and

the mean values θ̂i are chosen to lie within the usual
ranges, and have the usual scales, as in the GW case.
Cij was chosen so that its eigenvectors do not lie parallel
to the axes defined by the parameters θi, and the ratio
of the longest to shortest axis was ∼ 200. The evidence
integral of this distribution can be computed to good
approximation over a prior domain bounded at 5σ using
the determinant of the covariance matrix and the prior

volume V , ZMV = V −1(2/π)15/2 detCij
−1/2 ≈ e−21.90.

The bimodal distribution was composed of two copies
of the unimodal multivariate Gaussian used above, with

two mean vectors θ̂i and λ̂i separated by 8σ, as defined
by Cij . Using a bounding box at ±9σ about the mid-
point of the two modes, the evidence is calculated as
Z ′BM ≈ e−30.02.

The Rosenbrock “banana” function is a commonly
used test function for optimisation algorithms [82].
For this distribution, we do not have analytic one-
dimensional marginal distributions to compare to, or
known evidence values, so we were only able to do cross-
comparisons between the samplers.

Each sampler was run targeting these known distri-
butions, and the recovered posterior distributions and
evidences were compared. The posterior distributions
agreed for all parameter as expected, and an example of
one parameter is shown in figure 6.

The recovered evidence values are shown in table I.
For the MCMC sampler the quoted errors come from the
thermodynamic integration quadrature error estimates
described in § IV C; for the nested samplers the quoted
errors are estimated by running the algorithm multiple
times and computing the standard deviation of the re-
sults. For the simplest unimodal and bimodal distribu-
tions we see excellent agreement between the sampling
methods, which agree within the 1σ statistical error esti-
mates. The more difficult Rosenbrock likelihood results
in a statistically significant disagreement between the
nested sampling and BAMBI algorithms, with BAMBI
returning the higher evidence estimate. To highlight the
difficulty, for this problem the thermodynamic integra-
tion methods used with MCMC required 64 temperature
ladder steps to reach convergence to β〈logL〉 = 0 at high
temperatures, as opposed to the 16 used in the other
problems. This pattern is repeated in the evidence for
the signals, where there is a difference of several stan-
dard deviations between the methods.

B. Simulated GW signals

As an end-to-end test, we ran all three sampling
flavours of LALInference (MCMC, section III A; Nest,
section III B 1 and BAMBI, section III B 2) on three test
signals, described in table II. These signals were injected
into coloured Gaussian noise of known power spectrum
and recovered with the same approximant used in gen-
erating the injection, listed in table II. Since we used
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FIG. 6: Example comparing cumulative distributions for the analytic likelihood functions for each sampler for the (arbitrary)
m1 parameter for the three test likelihood functions. The samplers are shown as Nest:purple left hatches, MCMC: green
horizontal hatches BAMBI: blue right hatches, with the true cumulative distributions shown in red where available. (left) uni-
modal multivariate Gaussian distribution (middle) bimodal distribution (right) Rosenbrock distribution. The different methods
show good agreement with each other, and with the known analytic distributions. Vertical dashed lines indicate the 5%–95%
credibility interval for each method.

inspiral-only waveforms models for both injection and
recovery, there is a sharp cutoff in the signal above the
waveform’s termination frequency. It has been shown
that in some circumstances the presence of this cut-
off provides an artificially sharp feature which can im-
prove parameter estimation beyond that of a realistic sig-
nal [83]. Nonetheless, since the focus of this study is the
consistency of the algorithms, we can proceed to use the
sharply terminating waveforms for comparison purposes.

Figures 7, 8 and 9 show two-dimensional 90% credible
intervals obtained by all three samplers on various com-
binations of parameters. Figure 7 (see table II) shows
the typical posterior structure for a BNS system. We
show only three two-dimensional slices through the nine-
dimensional (non-spinning) parameter space, highlight-
ing the most relevant parameters for an astrophysical
analysis. Selected one-dimensional 90% credible inter-
vals are shown in table III. This is the least challenging of
the three example signals, since we restrict the model to
non-spinning signals only. The posterior PDFs show ex-
cellent agreement between the sampling methods. In the
leftmost panel we show the recovered distribution of the
masses, parametrised by the chirp mass and symmetric
mass ratio. This shows the high accuracy to which the
chirp mass can be recovered compared to the mass ra-
tio, which leads to a high degree of correlation between
the estimated component masses. The domain of the
prior ends at a maximum of η = 0.25, which corresponds
to the equal mass configuration. In the central panel
we show the estimated sky location, which is well deter-
mined here thanks to the use of a three-detector network.
In the rightmost panel, the correlation between the dis-
tance and inclination angle is visible, as both of these
parameter scale the effective amplitude of the waveform.
The reflection about the θJN = π/2 line shows the de-
generacy which is sampled efficiently using the extrinsic
parameter jump proposals III C.

Similarly to Figure 7, Figure 8 (see table II) shows the
posterior for a NSBH system. This signal was recovered
using a spin-aligned waveform model, and we show six
two-dimensional slices of this eleven-dimensional param-
eter space. Selected one-dimensional 90% credible inter-
vals are shown in table IV. The top-left panel shows the
M− η distribution; in comparison to Figure 7 the mass
ratio is poorly determined. This is caused by the cor-
relation between the η parameter and the aligned spin
magnitudes, which gives the model greater freedom in
fitting η, varying a1 and a2 to compensate. This cor-
relation is visible in the bottom-right panel. The other
panels on the bottom row illustrate other correlations
between the intrinsic parameters. The top-right panel
shows the correlation between distance and inclination,
where in this case the spins help break the degeneracy
about the θJN = π/2 line.

Lastly, figure 9 (see table II) shows the posterior for
a BBH system, recovered taking into account precession
effect from two independent spins. We show nine two-
dimensional slices of this fifteen-dimensional parameter
space. One-dimensional 90% credible intervals are shown
in table V. In addition to the features similar to figure 7
in the top row, correlations with spin magnitudes (middle
row) and tilt angles (bottom row) are shown. Note that
the injected spin on the first component is almost anti-
aligned with the orbital angular momentum, such that
the tilt angle t1 = 3.1, an unlikely random choice. This
angle has a low prior probability, and as a result the in-
jected value lies in the tails of the posterior distribution.
This has repercussions in the recovered distributions for
the spin magnitude and mass ratio, since they are par-
tially degenerate in their effect on the phase evolution of
the waveform, which results in the true value also being
located in the tails of these distributions.

In all three cases, the three independent sampling al-
gorithms converge on the same posterior distributions,
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Fig. Name Approximant m1 m2 a1 a2 t1 t2 ι distance Network SNR

(M�) (M�) (Rad) (Rad) (Rad) (Mpc)

7 BNS TaylorF2 3.5PN 1.3382 1.249 0 0 - - 2.03 135 13

8 NSBH SpinTaylorT4 3.5PN 15 1.35 0.63 0 0 - 1.02 397 14

9 BBH SpinTaylorT4 3.5PN 15 8 0.79 0.8 3.1 1.44 2.307 500 15

TABLE II: Details of the injected signals used in section V B, showing the waveform approximant used with the masses (m{1,2}),
spin magnitudes and tilt angles (a{1,2}, t{1,2}), and the distance and inclination (ι).

indicating that the algorithms can reliably determine the
source parameters, even for the full 15-dimensional spin-
ning case.

We also computed the evidence for each signal, rela-
tive to the Gaussian noise hypothesis, using each sampler,
with errors computed as in §V A. The results in table I
show that the two flavours of nested sampling produce
more precise estimates, according to their own statisti-
cal error estimates, but they disagree in the mean value.
The thermodynamic integration method used with the
MCMC algorithm (with 16 steps on the temperature lad-
der), produces a larger statistical error estimate, which
generally encloses both the nested sampling and BAMBI
estimates. These results indicate that there remains some
systematic disagreement between the different methods
of estimating evidence values, despite the good agree-
ment between the posteriors. The BAMBI method gen-
erally produces a higher evidence estimate compared to
the nested sampling approach, by around a factor of e.
This indicates that further improvement is necessary be-
fore we can rely on these methods to distinguish models
which are separated by evidence values lower than this
factor.

C. Confidence intervals

Having checked the agreement of the posterior distri-
butions on three selected injections, we performed a fur-
ther check to ensure that the probability distributions
we recover are truly representative of the confidence we
should hold in the parameters of the signal. In the ideal
case that our noise and waveform model matches the
signal and noise in the data, and our prior distribution
matches the set of signals in the simulations, then the
recovered credible regions should match the probability
of finding the true signal parameters within that region.
By setting up a large set of test signals in simulated noise
we can see if this is statistically true by determining the
frequency with which the true parameters lie within a
certain confidence level. This allows us to check that our
credible intervals are well calibrated, in the sense of [84].

For each run we calculate credible intervals from the
posterior samples, for each parameter. We can then ex-
amine the number of times the injected value falls within
a given credible interval. If the posterior samples are an
unbiased estimate of the true probability, then 10% of the
runs should find the injected values within a 10% credi-

ble interval, 50% of runs within the 50% interval, and so
on.

We perform a KS-test on whether the results match the
expected 1 to 1 relation between the fraction of signals in
each credible region, and the level associated with that
region.

For 1 dimensional tests our credible regions are defined
as the connected region from the lowest parameter value
to the value where the integrated probability reaches the
required value. In practice we order the samples by pa-
rameter value and query what fraction of this list we
count before passing the signal value.

To perform this test, we drew 100 samples from the
prior distribution of section II C, providing a set of injec-
tions to use for the test. This was performed using the
TaylorF2 waveform approximant for both injection and
recovery, with simulated Gaussian data using the initial
LIGO and Virgo noise curves and 3 detector sites.

We calculated the cumulative distribution of the num-
ber of times the true value for each parameter was found
within a given credible interval p, as a function of p,
and compared the result to a perfect 1 − 1 distribution
using a KS test. All three codes passed this test for
all parameters, indicating that our sampling and post-
processing does indeed produce well-calibrated credible
intervals. Figure 10 shows an example of the cumula-
tive distribution of p-values produced by this test for the
distance parameter. Similar plots were obtained for the
other parameters.

VI. COMPUTATIONAL PERFORMANCE

We have benchmarked the three samplers using the
three GW events described in section V B. Although the
specific performances listed are representative only of
these signals, they do provide a rough idea of the rel-
ative computational performance of the sampling meth-
ods and the relative difficulty in the BNS, NSBH and
BBH analyses, when running in a typical configuration.
The computational cost of a parameter estimation run is
strongly dependent on two main factors: the waveform
family used (see sec. II B) and the structure of the param-
eter space. Profiling of the codes show that computation
of waveforms is the dominating factor, as the calculation
of the phase evolution at each frequency bin is relatively
expensive compared to the computation of the likelihood
once the template is known.
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FIG. 7: Comparison of probability density functions for the BNS signal (table II) as determined by each sampler. Shown are
selected 2D posterior density functions in greyscale, with red cross-hairs indicating the true parameter values, and contours
indicating the 90% credible region as estimated by each sampler. On the axes are superimposed the one-dimensional marginal
distributions for each parameter, as estimated by each sampler, and the true value indicated by a vertical red line. The colours
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source showing the characteristic V-shaped degeneracy.
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M (M�) η m1 (M�) m2 (M�) d (Mpc) α (rad) δ (rad)

Nest 1.12531.1255
1.1251 0.24870.25

0.2447 1.41.5
1.3 1.21.3

1.1 197251
115 3.193.24

3.14 −0.997−0.956
−1.02

MCMC 1.12531.1255
1.1251 0.24870.25

0.2447 1.41.5
1.3 1.21.3

1.1 195250
113 3.193.24

3.14 −0.998−0.958
−1.02

BAMBI 1.12531.1255
1.1251 0.24870.25

0.2449 1.41.5
1.3 1.21.3

1.1 196251
114 3.193.24

3.14 −0.998−0.958
−1.02

Injected 1.1253 0.2497 1/3382 1.249 134.8 3.17 -0.97

TABLE III: BNS recovered parameters. Median values and 5%− 95% credible interval for a selection of parameters for each
of the sampling algorithms.

M(M�) η m1 (M�) m2 (M�) d (Mpc) a1 a2 α (rad) δ (rad)

Nest 3.423.48
3.36 0.110.23

0.076 1115
5.3 1.72.9

1.4 612767
383 0.360.75

0.041 0.490.95
0.046 0.8430.874

0.811 0.4590.495
0.422

MCMC 3.423.48
3.36 0.120.23

0.077 1115
5.3 1.72.9

1.4 601763
369 0.350.73

0.038 0.480.94
0.045 0.8430.874

0.812 0.4590.496
0.422

BAMBI 3.423.48
3.37 0.110.22

0.075 1115
5.8 1.62.7

1.3 609767
378 0.360.72

0.042 0.490.95
0.044 0.8430.874

0.811 0.4590.495
0.422

Injected 3.477 0.076 15 1.35 397 0.63 0.0 0.82 0.44

TABLE IV: NSBH recovered parameters, defined as above.

M (M�) η m1 (M�) m2 (M�) d (Mpc) a1 a2 α (rad) δ (rad)

Nest 9.59.8
9.3 0.150.217

0.12 24.329.3
16.3 5.57.7

4.7 647866
424 0.340.66

0.082 0.480.95
0.049 0.210.29

0.14 −0.612−0.564
−0.659

MCMC 9.59.8
9.3 0.150.23

0.12 23.829.1
14.8 5.58.2

4.7 630847
404 0.360.78

0.092 0.510.95
0.05 0.210.3

0.14 −0.612−0.563
−0.658

BAMBI 9.59.8
9.3 0.1490.216

0.12 24.529.2
16.3 5.47.5

4.7 638859
428 0.350.69

0.087 0.490.94
0.049 0.210.29

0.14 −0.612−0.565
−0.659

Injected 9.44 0.227 15 8 500 0.79 0.77 0.230 -0.617

TABLE V: BBH recovered parameters, defined as above.

The computationally easiest waveform to generate is
TaylorF2, where an analytic expression for the waveform
in the frequency domain is available. For the BNS signal
simulated here, around 50 waveforms can be generated
per second at our chosen configuration (32 s of data sam-
pled at 4096 Hz). On the other hand, more sophisticated
waveforms, like SpinTaylorT4 with precessing spins, re-
quire solving differential equations in the time domain,
and a subsequent FFT (the likelihood is always calcu-
lated in the frequency domain), which raises the CPU
time required to generate a single waveform by an order
of magnitude.

The structure of the parameter space affects the length
of a run in several ways. The first, and most obvious, is
through the number of dimensions: when waveforms with
precessing spins are considered a 15-dimension parame-
ter space must be explored, while in the simpler case of
non-spinning signals the number of dimensions is 9. The
duration of a run will also depend on the correlations
present in the parameter space, e.g. between the distance
and inclination parameters [38]. Generally speaking runs
where correlations are stronger will take longer to com-
plete as the codes will need more template calculations
to effectively sample the parameter space and find the
region of maximum likelihood.

Table VI shows a comparison of the efficiency of each
code running on each of the simulated signals in terms of
the cost in CPU time, wall time, and the CPU/wall time
taken to generate each sample which ended up in the
posterior distribution. These numbers were computed
using the same hardware, Intel Xeon E5-2670 2.6 GHz
processors.

BNS Bambi Nest MCMC

posterior samples 6890 19879 8363

CPU time (s.) 3317486 1532692 725367

wall time (s.) 219549 338175 23927

CPU seconds/sample 481.5 77.1 86.7

wall seconds/sample 31.9 17.0 2.9

NSBH Bambi Nest MCMC

posterior samples 7847 20344 10049

CPU time (s.) 2823097 9463805 4854653

wall time (s.) 178432 2018936 171992

CPU seconds/sample 359.8 465.2 483.1

wall seconds/sample 22.7 99.2 17.1

BBH Bambi Nest MCMC

posterior samples 10920 34397 10115

CPU time (s.) 2518763 7216335 5436715

wall time (s.) 158681 1740435 200452

CPU seconds/sample 230.7 209.8 537.5

wall seconds/sample 14.5 50.6 19.8

TABLE VI: Preformance of all three sampling methods on
the three signals from table II. The time quoted in the “CPU
time” line is the cumulative CPU-time across multiple cores,
while the time quoted in the “wall time” line is the actual
time taken to complete the sampling. The difference is an in-
dication of the varying degrees of parallelism in the methods.

We note that at the time of writing the three samplers
have different level of parallelization, which explains the
differences between codes of the ratio CPU time to wall
time.
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FIG. 9: Comparison of probability density functions for the BBH signal (table II), with same color scheme as fig 7. (first row
left) The mass posterior distribution parametrized by chirp mass and symmetric mass ratio. (first row centre) The location of
the source on the sky. (first row right) The distance dL and inclination θJN of the source showing the degeneracy is broken,
as in the NSBH case. (second row left) The spins magnitude posterior distribution. (second row centre) The spin and mass of
the most massive member of the binary illustrating the degeneracy between mass and spin. (second row right) The spin and
symmetric mass ratio. (third row left) The spins tilt posterior distribution. (third row centre) The spin tilt of the more massive
member of the binary and the symmetric mass ratio. (third row right) The spin tilt and mass of the most massive member of
the binary.

VII. CONCLUSIONS AND FUTURE GOALS

In this paper we have described the application of three
stochastic sampling algorithms to the problem of com-
pact binary parameter estimation and model selection.

Their implementation in the LALInference package pro-
vides a flexible and open-source toolkit which builds upon
much previous work to give reliable results [13–17, 17–
21, 23, 25–27, 29, 30]. The independent sampling meth-
ods have allowed us to perform detailed cross-validation
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x axis is the probability p contained in a credible interval,
and on the y axis the fraction of true values which lay inside
that interval. The diagonal line indicates the ideal distribu-
tion where credible intervals perfectly reflect the frequency of
recovered injections. For all three sampling algorithms the
results are statistically consistent with the diagonal line, with
the lowest KS statistic being 0.25.

of the results of inference on a range of GW signals from
compact binary coalescences, such as will be observed by
future gravitational-wave detectors. We have also per-
formed internal consistency checks of the recovered pos-
terior distributions to ensure that the quoted credible
intervals truly represent unbiased estimates of the pa-
rameters under valid prior assumptions.

The release of the LALInference toolkit as part of the
open-source LAL package, available from [47], has already
provided a base for developing methods for testing gen-
eral relativity [35–37] and performing parameter estima-
tion on a variety of other GW sources[40, 41]. In the fu-
ture we intend to further develop the implementation to
accommodate more sophisticated noise models for data
analysis in the advanced detector era. This will enable us
to provide parameter estimation results which are robust
against the presence of glitches in the data, against time-
dependent fluctuations in the noise spectrum[42, 43, 45],
and will allow us to incorporate uncertainty in the cali-
bration of the instruments.

Work is also ongoing in improving inference to incor-
porate systematic uncertainties in the waveform models
which affect estimates of intrinsic parameters [55].

Meanwhile, recent advances in reduced order modelling
of the waveforms and developments of surrogate mod-
els for the most expensive waveforms should result in a

dramatic improvement in the speed of parameter esti-
mation [85? –87]. More intelligent proposal distribu-
tions also have the potential to reduce the autocorrela-
tion timescales in the MCMC and Nested Sampling algo-
rithms, further improving the efficiency of these methods.

The work described here should serve as a foundation
for these further developments, which will be necessary
to fully exploit the science capabilities of the advanced
generation of gravitational-wave detectors, and produce
parameter estimates in a timely manner.

Acknowledgements

The authors gratefully acknowledge the support of the
LIGO-Virgo Collaboration in the development of the
LALInference toolkit, including internal review of the
codes and results. We thank Neil Cornish and Thomas
Dent for useful feedback on the manuscript. The results
presented here were produced using the computing fa-
cilities of the LIGO DataGrid and XSEDE, including:
the NEMO computing cluster at the Center for Gravita-
tion and Cosmology at UWM under NSF Grants PHY-
0923409 and PHY-0600953; the Atlas computing cluster
at the Albert Einstein Institute, Hannover; the LIGO
computing clusters at Caltech, Livingston and Hanford;
and the ARCCA cluster at Cardiff University. Figures 7
to 9 were produced with the help of triangle.py [88].

JV was supported by the research programme of the
Foundation for Fundamental Research on Matter (FOM),
which is partially supported by the Netherlands Organ-
isation for Scientific Research (NWO), and by the UK
Science and Technology Facilities Council (STFC) grant
ST/K005014/1. VR was supported by a Richard Chase
Tolman fellowship at the California Institute of Technol-
ogy (Caltech) PG was supported by an appointment to
the NASA Postdoctoral Program at the Goddard Space
Flight Center, administered by Oak Ridge Associated
Universities through a contract with NASA. MC was
supported by the National Science Foundation Graduate
Research Fellowship Program, under NSF grant number
DGE 1144152. JG’s work was supported by the Royal
Society. SV acknowledges the support of the National
Science Foundation and the LIGO Laboratory. LIGO
was constructed by the California Institute of Technology
and Massachusetts Institute of Technology with funding
from the National Science Foundation and operates un-
der cooperative agreement PHY-0757058. NC’s work was
supported by NSF grant PHY-1204371. FF is supported
by a Research Fellowship from Leverhulme and Newton
Trusts. TL, VK and CR acknowledge the support of the
NSF LIGO grant, award PHY-1307020. RO’S acknowl-
edges the support of NSF grants PHY-0970074 and PHY-
1307429, and the UWM Research Growth Initiative. MP
is funded by STFC under grant ST/L000946/1.

This is LIGO document number P1400152.



24

[1] B. Abbott et al. (LIGO Scientific Collaboration),
Rept. Prog. Phys. 72, 076901 (2009), 0711.3041.

[2] F. Acernese et al., Class. Quantum Grav. 25, 114045
(2008).

[3] H. Grote (LIGO Scientific Collaboration),
Class.Quant.Grav. 27, 084003 (2010).

[4] G. M. Harry and the LIGO Scientific Collabora-
tion, Class. Quantum Gravity 27, 084006 (2010),
arXiv:1103.2728.

[5] Virgo Collaboration, Virgo Technical Report VIR-
0027A-09 (2009), URL https://tds.ego-gw.it/itf/

tds/file.php?callFile=VIR-0027A-09.pdf.
[6] K. Kuroda (LCGT Collaboration), Int.J.Mod.Phys.

D20, 1755 (2011).
[7] C. S. Unnikrishnan, International Journal of Modern

Physics D 22, 1341010 (2013).
[8] Tech. Rep. LIGO-P1200087, The LIGO Scientific Col-

laboration and the Virgo Collaboration (2013), URL
https://dcc.ligo.org/LIGO-P1200087/public.

[9] J. Abadie et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Class. Quantum Grav. 27, 173001
(2010).

[10] S. Babak, R. Biswas, P. R. Brady, D. A. Brown, K. Can-
non, C. D. Capano, J. H. Clayton, T. Cokelaer, J. D. E.
Creighton, T. Dent, et al., Phys. Rev. D 87, 024033
(2013), 1208.3491.

[11] K. Cannon et al., The Astrophysical Journal 748, 136
(2012), URL http://stacks.iop.org/0004-637X/748/

i=2/a=136.
[12] J. Abadie et al. (LIGO Collaboration, Virgo Collabora-

tion), Phys.Rev. D85, 082002 (2012), 1111.7314.
[13] N. Christensen and R. Meyer, Phys.Rev. D64, 022001

(2001), gr-qc/0102018.
[14] N. Christensen, R. Meyer, and A. Libson, Class. Quan-

tum Grav. 21, 317 (2004).
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