Sensing Technology for measuring Particle Number & Mass in Indoor Environments

000

The

Douglas Booker, NAQTS Dr David Booker, NAQTS

Cambridge Particle Meeting – June 28th 2019

Overview

QTS

- Who We Are & What We Do
- Why care about indoor air quality?
- Sensing technology for indoor air quality
- NAQTS V2000
 - Particle Number CPC
 - Particle Mass Laser light scattering
- Applications
 - Indoor Air Quality (IAQ) Homes & Schools
 - Vehicle Interior Air Quality (VIAQ)
- Conclusions

Who We Are and What We Do

National Air Quality Testing Services (NAQTS) is a social business that is passionate about improving the quality of life.

We seek to <u>improve awareness</u> of indoor air <u>quality</u> through widespread public and commercial monitoring using our holistic, high-quality, air pollution monitoring technology.

Based in UK (Lancaster University Environment Centre and Cardiff), Ann Arbor, Michigan, USA, and Guangzhou, China.

INDOOR AIR QUALITY & ENERGY EFFICIENCY

Developing models for assisting building design and modification whilst ensuring energy efficiency and good indoor air quality.

CITIZEN SCIENCE - INDOOR:OUTDOOR AIR QUALITY

Air quality toolkits for citizen science measurements. Capturing real-time pollution levels during school drop off/pick up times, as well as levels of student exposure in the classroom

OCCUPATIONAL HEALTH AND SAFETY

Evaluation of exposure to nanomaterials

Routine mobile monitoring for measuring timeintegrated concentrations at high spatial resolution

BENCHMARKING VEHICLES "COMFORT"

Air Quality, Noise, and Vibration Data on in-cabin comfort from 100s of vehicles per year

Why care about indoor air quality?

- ~87% of our time indoors
 - In a vehicle (5.5%)
 - In a residence (68.7%)
 - Office/factory (5.4%)
- Significant indoor sources from everyday activities
- Potential for indoor air pollution to get "trapped"
- Lack of public & political awareness

NAQTS V2000

- **PN** CPC with 20:1 pre-dilution (IPA, d₅₀ 15nm) **PM** – Laser light scattering
- CO, NO₂, NO Electrochemical
 CO, NO₂, VOCs Metal Oxide
- VOCs Real-time and thermal desorption tubes for GC-MS Analysis
- CO₂ NDIR
- **T, P, RH** BME280
- Vibration 3D accelerometer and 3D Gyro
- Noise dBA
- Vibration 3D accelerometer and 3D Gyro
- Web GUI with SQL Database
- GSM •

Integrated measurement device for a "holistic" understanding of air quality

Our CPC Technology

- Regulatory grade PN: ISO 27891
- Full mixing "fast" CPC
- 20:1 pre-dilution (IPA, d₅₀ 15nm)

CERT	IFICATE	OF CALIBRATI	ON		" numper	יוןיוןיו	
ISSUED BY Ricard a trad	do Energy & Envir ling name of Ricar				lac	MRA	
DATE OF ISSUE		CERTIFICATE NUMBER	DRAFT		"Infailed	Mululut	UKAS
	ardo ergy & Environment	Ricardo Energy & Er Particle Measurement Centre Unit 2 Ludbridge Mill Reading Road, East Hendre Wantage, Oxfordshire OX12 8LN	e	Page Approved Signatory Name Signature	1 of	5 pag	ges

EXAMPLE ONLY

Particle counting efficiency against d_{50} =10 nm transfer standard					
Diameter (nm)	Efficiency	x _{min.} (a₁-1)+a₀ ≤5% max	Standard Error of Estimate (SEE) ≤10% max	Correlation coefficient	
200	107.0%	-	-	0.999	
100	104.0%	-	-	0.999	
70	97.0%	0.67%	0.90%	0.999	
55	104.0%	-	-	0.997	
30	98.9%	-	-	0.998	
23	104.0%	-	-	0.998	

Reference PNC Response (Particles cm-3)

Low Cost PM Technology

- Low-cost sensors can help us identify pollution sources, better understand personal exposure, and complement existing networks to increase the spatial resolution of measurements
- <u>BUT low cost sensors ≠ low</u> <u>cost air quality monitor!</u>
- What is "good enough" data?

IoT deployment for city scale air quality monitoring with Low-Power Wide Area Networks

Steven J. Johnston^{*†} Philip J. Basford^{*} Florentin M. J. Bulot^{*} Mihaela Apetroaie-Cristea^{*} Gavin L Foster[§] Matthew Loxham[‡] Simon J. Cox^{*} * Faculty of Engineering and the Environment / [§] National Oceanography Centre/ [‡] Faculty of Medicine, University of Southampton, Southampton, UK. [†] sjj698@zepler.org

Particulate matter sensors Alphasense OPC-N2, Plantower PMS5003, Plantower PMS7003, Honeywell HPMA115S0

	Scho	ol A	Scho	ol B
Sensor	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2
Alphasense OPC-N2	0.052	0.276	0.045	0.259
Plantower PMS5003	0.030	0.694	0.024	0.577
Plantower PMS7003	0.027	0.669	0.024	0.566
Honeywell HPMA115S0	0.044	0	0.038	0

Low Cost PM Technology

- By measuring both ultrafine, fine, and coarse particles, we can get a better understanding of indoor aerosol characteristics and source apportionment
- Combustion particulates dominated by UFP
- Re-entrained particles dominated by coarse mode

Figure 1 : Detection Principle

Parameter		Symbol	Min.	Тур.	Max.	Unit
Particle Size		D	0.3	2.5	10	um
Detection Range		D _{reg}	1	—	999	µg/m³
Resolution	R	—	1	—	µg /m³	
1 ~100 ug/m ³		D	—	—	+/-10	µg /m³
Indication Error ⁽²⁾	100~999 ug/m³	D _{err}	—	—	+/-10	%
Warm-Up Time		t _{wup} ⁽²⁾	—	5	—	s
Response Time		t _{rsp} ⁽²⁾	—	1	—	S

Low Cost PM Technology -Colocation

- Extensive colocation activities at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences Supersite to quantify, and improve low-cost sensor accuracy
- We are doing our due diligence on low-cost PM sensors currently

Indoor Air Quality -Homes

- 68.7% of our time in a residence
- Significant indoor sources from everyday activities
- More time spent here by vulnerable populations

Indoor Air Quality -Homes

- Measurements in four homes across the UK for Clean Air Day 2019, using the V2000
- Investigating role of location and activity on indoor PN concentrations
- 10 min rolling averages (1s data)

- Indoor 7x more polluted than outdoors
- Largest PNC from toast, gas stove, and wood burner
- Penetration of outdoor particles correlate with train timetable
- Long decay rates

- Indoor 60% more polluted than outdoors
- Largest PNC related to cooking activities
- Long decay rates

Indoor Air Quality -Homes

- Location less important in determining indoor concentrations, however, evidence of ingress
- Role of individual activities important
- Simple actions can be taken to minimise exposure
- Illegal concentrations outside, legal concentrations inside
- We need more measurements in homes to better understand the problem
- What about energy efficiency?

Indoors — Outdoors

- Indoor 47% more polluted than outdoors
- Largest PNC concentrations from toast and frying steak
- High outdoor background concentrations

- Indoor 3x more polluted than outdoors
- Largest PNC related to cooking activities
- Some correlation between outdoor and indoor peaks suggesting PN infiltration

Indoor Air Quality -Schools

- Children are especially susceptible to air pollution (Pope & Dockery, 2006)
- Poor IAQ associated with poor academic performance (Mohai et al., 2011).
- Children spend a significant amount of time at school: ~190 days per year, and ~30 hours per week.

INSIDE

	Max	Min	Median	Mean	SD
08:00 - 17:00	22078	5058	8324	9991	4191
08:00 - 09:00	7428	5058	5751	5858	702
15:00 - 16:00	22078	8120	9045	10903	4154

OUTSIDE

0010121					
	Max	Min	Median	Mean	SD
08:00 - 17:00	65660	5950	10321	18653	15397
08:00 - 09:00	9592	6656	8424	8299	903
15:00 - 16:00	29710	9399	14798	15768	4560

Vehicle Interior Air Quality (VIAQ)

- 5.5% of our time in a vehicle
- Immediate proximity to significant
 pollutant sources (other vehicles), plus
 in urban areas, high outdoor

concentrations

Effect of Occupant Behaviour

• Ingress Ratio – How much

outside air pollution is getting into the cabin?

• <u>Stuffiness Factor</u> – How well is the vehicle ventilating

CO₂?

	INGRESS RATIO	STUFFINESS FACTOR
Recirculation Off	24%	1.4
Recirculation On	5%	3.6
American PN Hatchback 70000 60000 50000 42748 42748 40000 20000 20000 20000 25640 10000 0 Recirculation Off Recirculation	2500 2000 2000 2000 2000 1500 1000 500 0 Recirc	CO2 474 461 542 ulation Off Recirculation On Inside Outside

464

Recirculation On

	INGRESS RATIO	STUFFINESS FACTOR
Recirculation Off	60%	1.2
Recirculation On	13%	3.3

Effect of Occupant Behaviour

• Ingress Ratio – How much

outside air pollution is getting into the cabin?

• **<u>Stuffiness Factor</u>** – How well is the vehicle ventilating

 CO_2 ?

Recirculation On

4.97

	INGRESS RATIO	STUFFINESS FACTOR
Recirculation Off	99%	1.3
Recirculation On	18%	3.4
German PN MPV 50000 40000 50000 30529 30000 10000 12426 Recirculation Off Redirculation e Inside Outside	3000 2500 2000 Ea 1500 1000 500 0 Reci	CO2
	INGRESS RATIO	STUFFINESS FACTOR
Recirculation Off	41%	1.4

17%

Effect of Occupant Behaviour - Summary

- These data show the heterogeneity of Ingress Ratios
- 24-99% with recirculation mode off, 5-17% with recirculation mode on
- An **inherent tradeoff** between protecting passengers from ambient ingress, and adequate ventilation
- Huge influence of passenger habit on dose. By driver education, and automation of HVAC controls, exposure can be reduced significantly

Effect of Occupant Behaviour

- Drive from Long Beach to Downtown LA
- ~ 2 hours in length
- A variety of HVAC settings
 - "Fresh Air" mode
 - Recirculation mode
- A variety of speeds
 - High
 - Low
 - Stop/start
- A variety of locations
 - Urban
 - Highway

Effect of Occupant Behaviour – "Fresh Air" Mode

- PN peaks at 100,900 #/cm3
- Vehicle is well ventilated, with CO₂ concentrations
 <1000ppm
- VIAQ is susceptible to extremely localized air quality: dirty diesels!

Effect of Occupant Behaviour – Recirculation Mode

- PN exponential decay to low concentrations
- CO₂ peaks at >3500ppm
- Increased leakage of HVAC associated with higher speeds, results in some CO₂ ventilation, and some PN infiltration
- Obvious dichotomy between PN & CO₂

Effect of Occupant Behaviour – Recirculation Mode

- Independent ratings to quantify and compare to empower consumers
- Driver choice between PN from fresh air mode and CO₂ build-up from recirculation mode
- No correlation suggests no trade-off – independent design decisions
- Trade-off is more likely on design cost

Conclusions

- Increasing importance of measuring indoors
- Measurements must be holistic and include UFP and larger size fractions
- Role of individual action in the indoor environment important
- More measurements needed to quantify the problem
- Need to be clear in defining what data is "good enough?"

@NAQTS

Douglas Booker, CEO dbooker@naqts.com

www.naqts.com