Introducing PIMS: The Pollution In-Cabin Measurement System

Douglas Booker, NAQTS
9th UCR PEMS Conference – March 15th 2019
Who We Are and What We Do

National Air Quality Testing Services (NAQTS) is a social business that is passionate about improving the quality of life.

We seek to **improve awareness of indoor air quality** through widespread public and commercial monitoring using our holistic, high-quality, air pollution monitoring technology.

Based in UK (Lancaster University Environment Centre and Cardiff), and in Ann Arbor, Michigan, USA

INDOOR AIR QUALITY & ENERGY EFFICIENCY
Developing models for assisting building design and modification whilst ensuring energy efficiency and good indoor air quality.

CITIZEN SCIENCE - INDOOR:OUTDOOR AIR QUALITY
Air quality toolkit for citizen science measurements. Capturing real-time pollution levels during school drop off/pick up times, as well as levels of student exposure in the classroom

OCCUPATIONAL HEALTH AND SAFETY
Evaluation of exposure to nanomaterials

AIR QUALITY MAPPING
Routine mobile monitoring for measuring time-integrated concentrations at high spatial resolution

BENCHMARKING VEHICLES “COMFORT”
Air Quality, Noise, and Vibration
Data on in-cabin comfort from 100s of vehicles per year
What do we call a measurement device for in-cabin?

PEMS

PAMS

SEMS

456,976 combinations!
Introducing PIMS

• PN - CPC with 20:1 pre-dilution (IPA, d_{50} 15nm)
• CO, NO₂, NO – Electrochemical
• CO, NO₂, VOCs – Metal Oxide
• VOCs – Real-time and thermal desorption tubes for GC-MS Analysis
• CO₂ – NDIR
• T, P, RH – BME280
• Vibration – 3D accelerometer and 3D Gyro
• Noise – dBA
• Location – GPS
• OBD – Bluetooth
• Vibration – 3D accelerometer and 3D Gyro
• Web GUI with SQL Database
• GSM

The Pollution In-cabin Measurement System (PIMS)

Integrated measurement device for a “holistic” understanding of air quality
Introducing PIMS

- Installed into a mannequin, “Arnie”, to simulate human exposure, and for easy installation
- Outside unit can either be mounted on a suction cup, or inside with a sample line out
- Simultaneous inside and outside measurements to understand how much ambient air pollution is coming into the vehicle
Geofencing

- Geofenced triggered thermal desorption tubes for integrated full speciation VOCs
- Automatic reporting with averaged concentrations in geofenced areas
- Understand air quality and exposure in non-attainment areas
• PN: Regulatory grade PN: ISO 27891
• CO₂: Auto Baseline algorithm used for long-term sampling
• Calibration - easy, low cost calibration using typical automotive gas bottles, e.g. 16% CO₂ Quad Blend (CO, HC, NO), and NO₂ through the integrated diluter
Metrology - Colocation

- Extensive colocation activities at Chinese Academy of Sciences Supersite to improve low-cost sensor accuracy
- More than 3 months colocation work
Metrology - Colocation

- CO & NO$_2$
- Low-cost sensors a challenge and a great opportunity
- Low-cost sensor ≠ low cost device!
Vehicle Interior Air Quality (VIAQ)

• 101 minutes per day in vehicles (Dong et al. 2004)

• Immediate proximity to significant pollutant sources (other vehicles), plus in urban areas, high outdoor concentrations

NHAPS - Nation, Percentage Time Spent
Total n = 9,196

- TOTAL TIME SPENT
 - INDOORS (86.9%)
 - OUTDOORS (7.6%)
 - IN A VEHICLE (5.5%)
 - OFFICE-FACTORY (5.4%)
 - BAR-RESTAURANT (1.8%)
 - OTHER INDOOR LOCATION (11%)

What causes good/bad VIAQ?

- What are the effects on VIAQ of:
 - Fan Setting
 - Vehicle selection
 - Window open/closed
 - Location
 - Air conditioning

Effect of Occupant Behaviour

- **Ingress Ratio** – How much outside air pollution is getting into the cabin?

- **Stuffiness Factor** – How well is the vehicle ventilating CO$_2$?

<table>
<thead>
<tr>
<th></th>
<th>INGRESS RATIO</th>
<th>STUFFINESS FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>German Sedan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recirculation Off</td>
<td>24%</td>
<td>1.4</td>
</tr>
<tr>
<td>Recirculation On</td>
<td>5%</td>
<td>3.6</td>
</tr>
<tr>
<td>American Hatchback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recirculation Off</td>
<td>60%</td>
<td>1.2</td>
</tr>
<tr>
<td>Recirculation On</td>
<td>13%</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Effect of Occupant Behaviour

- **Ingress Ratio** – How much outside air pollution is getting into the cabin?
- **Stuffiness Factor** – How well is the vehicle ventilating CO₂?

Japanese Crossover

<table>
<thead>
<tr>
<th></th>
<th>INGRESS RATIO</th>
<th>STUFFINESS FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recirculation Off</td>
<td>99%</td>
<td>1.3</td>
</tr>
<tr>
<td>Recirculation On</td>
<td>18%</td>
<td>3.4</td>
</tr>
</tbody>
</table>

German MPV

<table>
<thead>
<tr>
<th></th>
<th>INGRESS RATIO</th>
<th>STUFFINESS FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recirculation Off</td>
<td>41%</td>
<td>1.4</td>
</tr>
<tr>
<td>Recirculation On</td>
<td>17%</td>
<td>4.97</td>
</tr>
</tbody>
</table>
Effect of Occupant Behaviour - Summary

• These data show the heterogeneity of Ingress Ratios

• 24–99% with recirculation mode off, 5–17% with recirculation mode on

• An inherent tradeoff between protecting passengers from ambient ingress, and adequate ventilation

• Huge influence of passenger habit on dose. By driver education, and automation of HVAC controls, exposure can be reduced significantly
Effect of Occupant Behaviour

- Drive from Long Beach to Downtown LA
- ~ 2 hours in length
- A variety of HVAC settings
 - “Fresh Air” mode
 - Recirculation mode
- A variety of speeds
 - High
 - Low
 - Stop/start
- A variety of locations
 - Urban
 - Highway
Effect of Occupant Behaviour – "Fresh Air" Mode

- PN peaks at 100,900 #/cm³
- NO₂ peaks associated with following dirty diesels!
- Vehicle is well ventilated, with CO₂ concentrations <1000ppm
- VIAQ is susceptible to extremely localized air quality: dirty diesels!
Effect of Occupant Behaviour – Recirculation Mode

- PN exponential decay to low concentrations
- CO₂ peaks at >3500ppm
- Increased leakage of HVAC associated with higher speeds, results in some CO₂ ventilation, and some PN infiltration
- Obvious dichotomy between PN & CO₂, but it is not so clear for NO₂
Effect of Location - Mobile Air Quality Monitoring

- Routine mobile monitoring for measuring time-integrated concentrations at high spatial resolution

- **4-5 orders of magnitude improvements** in spatial resolution than current central site monitoring stations

- Where are vehicles causing poor air quality? And in what areas are drivers exposed to higher concentrations?
Mobile Air Quality Monitoring – Lancaster, UK

- Lancaster is a small city of 138,000 people in the North-West of England

- Over a period of 1 week, particle number concentrations were recorded every second over a 20-mile route during evening rush hour (5:30/7:00pm)
Mobile Air Quality Monitoring – Lancaster, UK

- Air Quality "hotspots" change in space and time!
Mobile Air Quality Monitoring – Lancaster, UK

- Air Quality "hotspots" change in space and time!
Air Quality Mapping

- 2 year project in Guangzhou (megacity)
- **Land-use regression model** combining: mobile air quality monitoring, fixed site stations, meteorological, land-use, traffic volume, POI data etc.
- Will map UFP and other pollutants
- Developing an **app to predict air pollution exposure**
- When combined with cellular GPS data, rich “personal exposure analytics” become possible
- Case study to demonstrate feasibility of a low-cost air quality monitoring network
Conclusions

• Measurements to reduce population level exposure must include measurements inside AND outside vehicles

• Vehicles are already being equipped with PEMS, PIMS air quality measurements can be “piggybacked” to provide valuable air quality and exposure data

• The general public can leverage PIMS data to have informed choice when purchasing a car, and to reduce their exposure

• OEMs can use this technology to refine HVAC systems to provide “clean air cabins”

• Unregulated space? - what are the implications for occupational health and safety?
Indoor Air Quality at UCR PEMS

- Average person spends ~90% of their time indoors.
- There is far less information / public knowledge on it!
- Particles reach 10x higher than background concentrations
Indoor Air Quality at UCR PEMS

- Average person spends ~90% of their time indoors.
- There is far less information / public knowledge on it!
- Very well ventilated conference, with levels not exceeding 1000ppm
Any questions?

Douglas Booker, CEO
dbooker@naqts.com

www.naqts.com