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Abstract

We consider a variation of the Hastings-Levitov model HL(0) for random growth in which
the growing cluster consists of two competing regions. We allow the size of successive particles to
depend both on the region in which the particle is attached, and the harmonic measure carried
by that region. We identify conditions under which one can ensure coexistence of both regions.
In particular, we consider whether it is possible for the process giving the relative harmonic
measures of the regions to converge to a non-trivial ergodic limit.

1 Introduction

We consider planar random growth models in which clusters grow by the successive attachment of
single particles. In the specific class of models that we study, such clusters are encoded as compo-
sitions of conformal mappings. The simplest model of this type is the HL(0) model, proposed by
Hastings and Levitov [2], in which clusters are constructed as successive compositions of i.i.d. map-
pings. This model has been well studied (see [7, 8] amongst others). In physical models for random
growth, specifically Laplacian random growth models, the growth rate along the cluster boundary
depends on the harmonic measure of the cluster boundary. This dependency makes the analysis
considerably less tractable. In this paper, we introduce dependency on harmonic measure into a
variant of the HL(0) model, through competition. We define a random growth model in which
the cluster is made up of two competing regions and incoming particles are added to the region to
which they attach. Dependency on harmonic measure is introduced by allowing the growth of each
competing region to depend on the relative harmonic measure of that region. We explore whether
it is possible for both regions to coexist indefinitely (in the sense that there is a positive probability
that each region has positive harmonic measure for all time), or whether it is always the case that
one region will dominate to the exclusion of the other.

1.1 Conformal models for random growth

The idea of using conformal mappings to represent random growth in two-dimensions has been
around since the work of Hastings and Levitov [2]. The primary benefit of this approach is that
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it provides a purely analytic, rather than geometric, representation of a randomly growing cluster
which enables one to exploit analytic techniques. In this section we provide the general framework
into which our models fall.

For c > 0, let fc be the unique conformal bijection

fc : ∆ := {z ∈ C : |z| > 1} ∪ {∞} → D := ∆ \ (1, 1 + d]

with fc(z) = ecz + O(1) at infinity, where d = d(c) and c are related via the equation ec =
1+ d2/(4(1 + d)). Observe that d ≍ c1/2 as c → 0. This mapping represents attaching a particle (a
‘slit’ of length d, or equivalently of logarithmic capacity c) to the unit circle T at the point 1. For
θ ∈ [−1, 1), the mapping

f θ
c (z) = eπiθfc(e

−πiθz)

represents attaching a particle with logarithmic capacity c at position eπiθ on T.
Now consider a sequence of positions (θn)n∈N in [−1, 1), a sequence of logarithmic capacities

(cn)n∈N in (0,∞), and a sequence of times (tn)n∈N0
with 0 = t0 < t1 < t2 < · · · . Define

Φt(z) =

{

z if t0 6 t < t1;

f θ1
c1 ◦ · · · ◦ f θn

cn (z) if tn 6 t < tn+1, n > 1.

Then (Φt)t>0 is a cadlag process of conformal mappings, each of which maps the exterior unit disk
to the complement of a compact set. In other words,

Φt : ∆ → C \Kt.

The sets (Kt)t>0 are called clusters which satisfy Ks ⊆ Kt for s 6 t. If tn 6 t < tn+1, then the set
Kt represents the growing cluster after the addition of n particles, and Ktn+1

= Ktn ∪ Pn+1 where

Pn+1 = {Φtn(λe
iπθn+1) : λ ∈ (1, 1 + d(cn+1)]}. (1)

By choosing the sequences (θn)n∈N, (cn)n∈N and (tn)n∈N0
in different ways, one obtains a wide

class of growth processes. The HL(0) process mentioned above is obtained by taking (θn)n∈N to
be i.i.d uniform [−1, 1) random variables, cn = c and tn = n for all n ∈ N. A continuous-time
embedding of HL(0) is obtained by taking (θn)n∈N and (cn)n∈N as before, but letting (tn)n∈N0

be a
constant-rate Poisson process. For other choices in the literature, see [9] and the references therein.

1.2 Harmonic measure

The motivation behind the Hastings-Levitov model was to model growing clusters formed by the
aggregation of diffusing particles. In particular, the aim was to model a process known as diffusion
limited aggregation (DLA) [10]. In the DLA model, particles are released one by one from ‘infinity’
and follow the trajectory of a Brownian motion until they hit the cluster at which point each particle
sticks. This model is very hard to analyse mathematically, and essentially only one rigorous result
has been proved about DLA in the almost 40 years since it was first proposed [4]. DLA is an
example of a Laplacian random growth model in that the rate of growth is determined by harmonic
measure on the cluster boundary.
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Definition 1 (Harmonic measure). Let D ⊂ C and let ∂D be the boundary of D. Then for any
A ⊆ ∂D and x ∈ D, the harmonic measure of the set A as seen from x is defined to be

µx
D(A) = P(Bτ ∈ A|B0 = x),

where (Bt)t>0 is complex Brownian motion and τ = inft>0{Bt ∈ ∂D} is the first exit time from D.

In DLA, the attachment position of successive particles is given by the distribution of har-
monic measure as seen from infinity, where the point at infinity is defined via the Riemann sphere.
Therefore, using the notation of the previous section, if Ktn is a DLA cluster with n particles,
corresponding to conformal map Φtn , then θn+1 must be chosen in such a way that Φtn(e

πiθn+1) is
distributed according to harmonic measure on ∂Ktn .

Directly deriving the harmonic measure on ∂Ktn is complicated, since the set Ktn can be
quite intricate. However, the conformal mapping construction turns out to be convenient here.
For a 6 b < a + 2, let Ia,b ⊆ T be the arc of the unit circle between eπia and eπib, taken in
an anticlockwise direction. As the distribution of Brownian motion is invariant under conformal
mappings,

µ∞
Ktn

(Φtn(Ia,b)) = µ∞
∆ (Ia,b) = (b− a)/2.

Hence, in order to model DLA as a conformal mapping model, each θn should be chosen uniformly
on [−1, 1), as for HL(0). This connection provided the original motivation for defining the Hastings-
Levitov family of models. (The HL(0) model is not proposed as a model for DLA, however, as the
successive composition of conformal maps distorts the size and shape of each added particle, as in
(1). This distortion can be corrected for, by allowing the capacity sequence (cn)n∈N to depend on
the harmonic measure. Further detail is given in [2]. So far the Hastings-Levitov version of DLA
has proved intractable to mathematical analysis.)

Define γθc : R → R by

γθc (x) =
1

πi
log
(

(f θ
c )

−1(eπix)
)

and let γc = γ0c , where the branch of the logarithm is chosen so that γc maps (−1, 1) into itself and
γc(x+ 2n) = 2n+ γc(x) for all n ∈ Z. Then

γθc (x) = θ + γc(x− θ).

By direct computation it can be shown that, for 0 < |x| < 1,

γc(x) = 2π−1sgn(x) tan−1
√

ec tan2(πx/2) + ec − 1. (2)

The map γc has a discontinuity at 0 (and hence at every even integer point). The value that γc
takes at this point will turn out not to matter, so without loss of generality we may assume that
γc is right-continuous. Set

Zt(x) =

{

x if t0 6 t < t1;

γθncn ◦ · · · ◦ γθ1c1 (x) if tn 6 t < tn+1, n > 1.

The sequence (Zt)t>0 describes the evolution of harmonic measure on the cluster boundary
in that if a 6 b < a + 2 and At is the section of ∂Kt which lies between eπia and eπib, taken
anticlockwise, then

µt(a, b) := µ∞
Kt

(At) = (Zt(b)− Zt(a))/2.
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In [7] it is shown that, under an appropriate scaling, the evolution of harmonic measure on
the boundary of the HL(0) cluster converges to the Brownian web. Specifically, if (θn)n∈N are
i.i.d. uniform [−1, 1) random variables, cn = c for all n ∈ N and (tn)n∈N0

is a Poisson process
with rate of order Θ(c−3/2), then for all 0 6 x1 < · · · < xk < 2, (Zt(x1), . . . , Zt(xk))t>0 converges
in distribution to (Bt(x1), . . . , Bt(xk))t>0 as c → 0, where (Bt(x1), . . . , Bt(xk))t>0 is a family of
coalescing Brownian motions on the circle starting from (x1, . . . , xk). In particular, as any two
Brownian motions on the circle eventually coalesce, this implies that for all a < b < a+ 2, µt(a, b)
is eventually either 0 or 1. As the attachment position of particles is distributed according to
harmonic measure, this means that it is not possible for infinitely many particles to attach both
between eπia and eπib, and between eπib and eπi(a+2).

1.3 Introducing Competition

The HL(0) model is the simplest conformal model for random growth to analyse, as the individual
mappings which are composed to make up the cluster are i.i.d. In the Laplacian models corre-
sponding to physical growth, the growth rate of the cluster depends non-trivially on the harmonic
measure which makes the analysis considerably less tractable. In this section, we define a variant
of the HL(0) model, in which dependency on harmonic measure is introduced through competition.

As before, in order to grow a random cluster, we require a sequence of angles (θn)n∈N in [−1, 1),
a sequence of capacities (cn)n∈N in (0,∞), and a sequence of times (tn)n∈N0

with 0 = t0 < t1 <
t2 < · · · . We aim to establish results in the small-particle limit. That is, we let c > 0 be a scaling
parameter which controls the logarithmic capacities of our particles so that cn = Θ(c) for all n ∈ N,
and we consider the limiting behaviour of the cluster as c → 0 (where the rate of arrivals (tn)n∈N0

is tuned appropriately to produce a non-trivial limit). As in the continuous-time embedding of
HL(0), we take the angles (θn)n∈N to be i.i.d. uniform in [−1, 1) and the arrival times (tn)n∈N0

to
be a Poisson process with constant rate r(c), which will be tuned to provide a non-trivial limit as
c → 0. However, we now introduce two competing regions, blue and red, as follows. At time 0,
we split the unit disk K0 into two regions by colouring the upper half red and the lower half blue.
When each subsequent particle arrives, it takes the colour of the region that it is attached to. We
also define the stochastic process Xc

t to be twice the harmonic measure of the red region at time t.
Note that Xc

0 = 2µ0(0, 1) = 1, and in general

Xc
t = 2µt(0, 1) = Zt(1) − Zt(0).

Figure 1 illustrates how the harmonic measure of the red region changes due to the arrival of a
particle.

We introduce dependency on harmonic measure into the system by allowing the distribution
of cn+1 to depend on Xc

tn . To do this, we introduce functions s±(x, c) : (0, 2) × (0,∞) → (0,∞).
Conditional on Xc

tn = x, the logarithmic capacity cn+1 takes the value cs
+(x, c) if the particle lands

in the red region (i.e. if eπiθn+1 ∈ Φtn(I0,1), which is an event of probability x/2) and cn+1 takes
the value cs−(x, c) otherwise. To ensure the correct scaling, we assume that s+(x, c) → s+(x) and
s−(x, c) → s−(x), uniformly on x ∈ (0, 2) as c → 0, where s+ and s− are Lipschitz continuous
functions on (0, 2), not both identically zero.

In the HL(0) model, a consequence of the evolution of harmonic measure converging to the
Brownian web is that the process (Xc

t )t>0 converges in distribution to a (rescaled) Brownian motion,
stopped on hitting 0 or 2. This means that one of the two regions will dominate in the sense that
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Figure 1: In this illustrative example, the image on the left shows the initial system with the black
dots indicating the boundary between the red and blue regions. The central image shows a particle
joining and acquiring the colour of the region in which it has landed. The image on the right
shows the effect of applying the conformal mapping (f θ1

c1 )
−1, which absorbs the particle into the

boundary. This causes the black boundary points to move, but in such a way that the relative
harmonic measure of the coloured regions is preserved between the second and third image. The
process Xc

t records how the harmonic measure of the red region evolves beween the first and third
images.

eventually all arriving particles will take the same colour. The main question that we wish to
explore is whether it is possible to chose the functions s±(x, c) in order to ensure the coexistence of
the red and blue regions. We are particularly interested in whether these functions can be chosen
to ensure that the harmonic measure of each area stabilises to a non-trivial ergodic process.

One of the challenges in studying true Laplacian random growth models is that the harmonic
measure on the cluster boundary is a Markov process in an infinite-dimensional space. By contrast,
in the model defined above, the process (Xc

t )t>0 giving (twice) the harmonic measure of the red
region is just a real-valued pure-jump Markov process and is therefore amenable to standard tech-
niques for analysing scaling limits of Markov processes. Furthermore, the question of coexistence
can be answered by studying the long-time behaviour of (Xc

t )t>0 in the limit as c → 0. This analysis
makes up the remainder of the paper. In Section 2 we obtain the scaling limitXt of the processX

c
t as

c → 0, under suitable assumptions on r(c), s+(x, c), s−(x, c). In Section 3 we derive the asymptotic
distribution of Xt as t → ∞, and explore conditions under which limc→0 limt→∞Xc

t = limt→∞Xt.
Finally we end with an illustrative example in Section 4.

2 Diffusion Estimates

In this section, we obtain the scaling limit process (Xt)t>0 to which (Xc
t )t>0 converges as c → 0,

under suitable assumptions on r(c), s+(x, c), s−(x, c).
Let ∆Xc

tn = Xc
tn −Xc

tn−1
. Then

∆Xc
tn = ∆Ztn(1)−∆Ztn(0)

=
(

γθncn (Ztn−1
(1)) − Ztn−1

(1)
)

−
(

γθncn (Ztn−1
(0))− Ztn−1

(0)
)

= γ̃cn(Ztn−1
(1) − θn)− γ̃cn(Ztn−1

(0)− θn),

where γ̃c(x) = γc(x) − x. Observe that γ̃c is asymmetric and periodic with period 2. Due to the
rotational symmetry of the model, the distribution of this process is unchanged if θn is taken to
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uniformly distributed on [Ztn−1
(1) − 2, Ztn−1

(1)). Let θ′n = Ztn−1
(1) − θn. Then θ′n is a uniform

[0, 2) random variable. Using that

cn =

{

cs+(Xc
tn−1

, c) if eπiθn ∈ IZtn−1
(0),Ztn−1

(1),

cs−(Xc
tn−1

, c) otherwise,

we get

∆Xc
tn =







γ̃cs+(Xc
tn−1

,c)(θ
′
n)− γ̃cs+(Xc

tn−1
,c)(θ

′
n −Xc

tn−1
) if θ′n ∈ (0,Xc

tn−1
),

γ̃cs−(Xc
tn−1

,c)(θ
′
n)− γ̃cs−(Xc

tn−1
,c)(θ

′
n −Xc

tn−1
) if θ′n ∈ (Xc

tn−1
, 2).

Hence the stochastic process (Xc
t )t>0 is a pure-jump real-valued Markov process with kernel

Kc(x, dy)dt := P

(

tn ∈ dt,∆Xc
tn ∈ dy

∣

∣ tn > t,Xc
tn−1

= x
)

=
1

2
r(c)

∫ x

0
δy
(

γ̃cs+(x,c)(θ)− γ̃cs+(x,c)(θ − x)
)

dθdydt (3)

+
1

2
r(c)

∫ 2

x
δy
(

γ̃cs−(x,c)(θ)− γ̃cs−(x,c)(θ − x)
)

dθdydt,

where δy is the Dirac delta function at y.
The scaling limit of this process can be found using Theorem 7.4.1 and Corollary 7.4.2 in [1],

which we restate here for convenience.

Theorem 1 (Ethier and Kurtz). Let a = (ai,j) be a Lipschitz continuous, symmetric, non-negative
definite d × d matrix valued function on R

d and let b : Rd −→ R
d be Lipschitz continuous. Let

KN (x, dy) be the kernel associated with the process (XN
t )t>0, which takes values on some subset

I ⊆ R
d and define

bN (x) =

∫

Rd

yKN (x, dy) and aN (x) =

∫

Rd

yyTKN (x, dy).

Suppose that,
sup
x∈I

|aN (x)− a(x)| → 0 and sup
x∈I

|bN (x)− b(x)| → 0

and that
sup
t>0

|XN
t −XN

t−| → 0

as N → ∞. If XN
0 → X0 weakly as N → ∞, then XN

t → Xt weakly in D[0,∞) where (Xt)t>0 is a
solution to the stochastic differential equation given by

dXt = b(Xt)dt+ σ(Xt)dBt, (4)

where a(x) = σ(x)Tσ(x).

Definition 2 (Generator). Suppose that (Xt)t>0 is a solution of the Markovian SDE

dXt = b(Xt)dt+ σ(Xt)dBt +

∫

R

ζ(Xt−, u)N(dt, du) (5)
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where N(dt, du) is a Poisson random measure with intensity ν(du)dt. The generator of the process
(Xt)t>0 is the linear operator L defined by

Lf(x) = b(x)f ′(x) +
1

2
a(x)f ′′(x) +

∫

R

(f(x+ ζ(x, u))− f(x)) ν(du),

where a(x) = σ(x)Tσ(x).

When the jump-sizes ζ(x, u) = 0 for all x, the process (Xt)t>0 satisfying (5) is just the solution
to the SDE (4), whereas when b(x) = 0 = σ(x) for all x, (Xt)t>0 is a pure-jump process with kernel

K(x, dy) =

∫

R

δy(ζ(x, u))ν(du)dy.

Theorem 1 is therefore a special case of a more general result in [1]: under mild conditions, if the
initial distribution and generator of (XN

t )t>0 converge to those of (Xt)t>0, then XN
t → Xt weakly

in D[0,∞).
By applying Theorem 1 to the kernel (3) we obtain the following.

Proposition 2. Suppose there exist Lipschitz continuous functions a, b : (0, 2) → R such that

c log(c−1)r(c)(s+(x, c) − s−(x, c))/π2 → b(x)

and
16

3π3
c3/2r(c)

(

s+(x, c)3/2 + s−(x, c)3/2
)

→ a(x)

uniformly in x as c → 0. Let (Xt)t>0 be the solution to (4) with X0 = 1. Then Xc
t → Xt∧τ weakly

in D[0,∞), where τ = inf{t > 0 : Xt /∈ (0, 2)}.
Proof. We compute the functions ac(x) and bc(x). First,

bc(x) =
1

2
r(c)

∫ x

0

(

γ̃cs+(x,c)(θ)− γ̃cs+(x,c)(θ − x)
)

dθ +
1

2
r(c)

∫ 2

x

(

γ̃cs−(x,c)(θ)− γ̃cs−(x,c)(θ − x)
)

dθ

=r(c)

∫ x

0
γ̃cs+(x,c)(u)du+ r(c)

∫ 2

x
γ̃cs−(x,c)(u)du

= r(c)

∫ x

0

(

γ̃cs+(x,c)(u)− γ̃cs−(x,c)(u)
)

du.

For the first equality we used the asymmetry of γ̃c and the change of variables u = θ − x on those
terms involving θ − x. For the second equality we used that γ̃c integrates to 0 on (0, 2). Using
similar arguments,

ac(x) =
1

2
r(c)

∫ x

0

(

γ̃cs+(x,c)(θ)− γ̃cs+(x,c)(θ − x)
)2

dθ

+
1

2
r(c)

∫ 2

x

(

γ̃cs−(x,c)(θ)− γ̃cs−(x,c)(θ − x)
)2

dθ

= r(c)

[
∫ x

0

(

γ̃2cs+(x,c)(u)− γ̃2cs−(x,c)(u)
)

du+ 2

∫ 1

0
γ̃2cs−(x,c)(u)du

]

− r(c)

∫ x

0

(

γ̃cs+(x,c)(u)γ̃cs+(x,c)(u− x)− γ̃cs−(x,c)(u)γ̃cs−(x,c)(u− x)
)

du

− r(c)

∫ 1

−1
γ̃cs−(x,c)(u)γ̃cs−(x,c)(u− x)du.

7



By suitable Taylor expansions of (2), it can be shown that

γc(u) =

{

√

u2 + 4c/π2(1 + o(1)) if |u| 6 c1/2 log c−1;

u+ c cot(πu/2)/π(1 + o(1)) if c1/2 log c−1 < |u| < 1.
(6)

Hence,

bc(x) = cr(c)
[

(s+(x, c)− s−(x, c))
(

log(c−1) + 2 log sin(πx/2) + 1 + 2 log 2
)

/π2

−
(

s+(x, c) log(s+(x, c)) − s−(x, c) log(s−(x, c)
)

/π2
]

(1 + o(1))

and

ac(x) =
16

3π3
c3/2r(c)

(

s+(x, c)3/2 + s−(x, c)3/2
)

(1 + o(1)).

Finally, we observe that the jumps in (Xc
t )t>0 are of order at most c1/2.

Now recall that s+(x, c) → s+(x) and s−(x, c) → s−(x) uniformly on x ∈ (0, 2) as c → 0,
where s+ and s− are Lipschitz continuous functions on (0, 2), not both identically zero. Setting
τ = inf{t > 0 : Xt /∈ (0, 2)}, as above, we obtain the following.

Corollary 3. (a) Suppose that r(c) =
(

c log(c−1)
)−1

. If (Xt)t>0 is the solution to

dXt = (s+(Xt)− s−(Xt))dt (7)

starting from X0 = 1, then Xc
t → Xt∧τ weakly in D[0,∞).

(b) Suppose that s+(x) = s−(x) = s(x) for all x ∈ (0, 2), that r(c) = c−3/2, and that

c−1/2 log(c−1)(s+(x, c)− s−(x, c)) → 0

uniformly in x as c → 0. If (Xt)t>0 is the solution to

dXt =

√

32

3π3
s(Xt)3/2dBt

starting from X0 = 1, then Xc
t → Xt∧τ weakly in D[0,∞).

(c) Suppose that s+(x) = s−(x) = s(x) for all x ∈ (0, 2), that r(c) = c−3/2, and that

c−1/2 log(c−1)(s+(x, c) − s−(x, c)) → h(x)

uniformly in x as c → 0 for some Lipschitz continuous function h on (0, 2). If (Xt)t>0 is the
solution to

dXt =
1

π2
h(Xt)dt+

√

32

3π3
s(Xt)3/2dBt

starting from X0 = 1, then Xc
t → Xt∧τ weakly in D[0,∞).

Remark. Observe that taking r(c) = c−3/2 and s+(x, c) = s−(x, c) = 1, for all x ∈ (0, 2) and c > 0,
recovers the HL(0) result mentioned above.
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3 Limit Distributions

Our objective is to analyse the long-term behaviour of Xc
t , in the limit as c → 0. Specifically, we

would like to determine the distribution of

X∞ = lim
c→0

Xc
∞ = lim

c→0
lim
t→∞

Xc
t

(if the limit exists), where all limits are in distribution. As we are interested in whether the red
and blue regions of the associated growth model can coexist, we would like to know whether it is
possible to select s±(x, c) in such a way that X∞ takes values on the interior of the interval (0, 2)
with positive probability. Of particular interest is whether the distribution of X∞ can arise through
non-trivial ergodic behaviour of the harmonic measure and take values on all of (0, 2).

Since rescaling time does not change Xc
∞, we are free to take the rate of arrivals r(c) as fast

as possible whilst still ensuring that Xc
t converges to a non-degenerate process Xt as c → 0.

The strategy is to find conditions under which limt→∞Xt∧τ has the required behaviour, where
τ = inf{t > 0 : Xt /∈ (0, 2)}, and then argue that under these conditions X∞ = limt→∞Xt∧τ . Note
that if τ < ∞ then, using that convergence in D[0,∞) implies uniform convergence on compacts,
by the Moore-Osgood Theorem X∞ is supported on {0, 2}. In order to have a limit which takes
values on all of (0, 2) it is therefore necessary to find conditions under which P(τ = ∞) > 0.

By Corollary 3, Xt is either the solution to a deterministic ODE or to a diffusion process. In
Section 3.1 we consider the deterministic case; in Section 3.2 we analyse the limiting behaviour of
diffusion processes.

3.1 Deterministic limit process

Firstly suppose that s+(x) 6= s−(x) for all x ∈ (0, 2). Then taking r(c) = (c log(c−1))−1, we obtain
that Xc

t → Xt as c → 0, where Xt is the solution of the non-trivial ordinary differential equation
(7) as c → 0. It is straightforward to deduce that if s+(x) > s−(x) for all x ∈ (0, 2), then τ < ∞
and Xτ = 2. Hence X∞ = 2 a.s., while if s+(x) < s−(x) for all x, then X∞ = 0 a.s.

It is possible to choose s±(x) so that the ODE (7) has stable fixed points in the interior of
the interval (0, 2), in which case P (X∞ ∈ (0, 2)) > 0. However the limit distribution will still be
supported on a finite number of point masses. For example, if s+(x) = 2 − x and s−(x) = x then
Xc

∞ → 1 in probability as c → 0. Showing this requires some care as the deterministic limit process
does not in general converge to its fixed point in finite time. However, as we are more interested in
whether co-existence can arise through non-trivial ergodic behaviour of the harmonic measure, we
do not discuss the deterministic limit case in any further detail.

3.2 Diffusion limit process

Now suppose that s+(x) = s−(x) = s(x) > 0 for all x ∈ (0, 2). Then taking r(c) = c−3/2, we obtain
that Xc

t → Xt as c → 0, where Xt is the solution to an SDE of the form (4) with X0 = 1, for a and
b as in Corollary 3.

Definition 3 (Scale and speed). For a diffusion (4), define the scale function ρ : (0, 2) → R by

ρ(x) =

∫ x

1
exp

(

−2

∫ y

1

b(u)

a(u)
du

)

dy

9



and the speed density, m : (0, 2) → [0,∞), by

m(x) =
1

a(x)
exp

(

2

∫ x

1

b(y)

a(y)
dy

)

.

The existence of both is guaranteed provided that b/a is locally integrable which is an assump-
tion we shall make throughout. See Chapter 23 of [3] for further details about the scale function
and speed measure, some of which we summarise below.

Suppose that 0 < a < 1 < b < 2 and let τa = inf{t > 0 : Xt 6 a} and τb = inf{t > 0 : Xt > b}.
The scale function has the property that

P(τa < τb) =
ρ(b)− ρ(1)

ρ(b)− ρ(a)
=

ρ(b)

ρ(b)− ρ(a)
.

Hence if ρ(0) := lima→0+ ρ(a) > −∞ and ρ(2) := limb→2− ρ(b) < ∞, then letting a → 0 and b → 2
in the expression above gives τ < ∞ and

P(X∞ = 0) = 1− P(X∞ = 2) =
ρ(2)

ρ(2)− ρ(0)
.

Observe that when b(x) = 0 for all x, ρ(x) = x− 1 and hence

P(X∞ = 0) = 1− P(X∞ = 2) =
1

2
.

Similarly, it can be shown that if ρ(0) = −∞ and ρ(2) < ∞, then

P(X∞ = 0) = 1− P(X∞ = 2) = 0

and if ρ(0) > −∞ and ρ(2) = ∞, then

P(X∞ = 0) = 1− P(X∞ = 2) = 1.

Finally, we consider the case when ρ(0) = −∞ and ρ(2) = ∞. In this case Xt is recurrent if
the speed density m is integrable on (0, 2); otherwise Xt is null-recurrent. In the case that Xt is
recurrent, τ = ∞ and Xt has an asymptotic distribution which has density proportional to m. This
situation can only arise if we are in case (c) of Corollary 3.

Theorem 4. Suppose that s+(x) = s−(x) = s(x) > 0 for all x ∈ (0, 2), that r(c) = c−3/2 and that

c−1/2 log(c−1)(s+(x, c) − s−(x, c)) → h(x)

uniformly in x as c → 0 for some Lipschitz continuous function h on (0, 2) for which h(x)/s(x)3/2

is locally integrable on (0, 2). Setting

a(x) = 32s(x)3/2/(3π3) and b(x) = h(x)/π2,

define the scale function ρ and speed measure m as in Definition 3. Suppose that the following
conditions hold:

(i) ρ(x) → −∞ as x → 0 and ρ(x) → ∞ as x → 2;

10



(ii)

M :=

∫ 2

0
m(x)dx < ∞;

(iii) There exist constants C > D > 0 and 0 < η < 1 such that, for all x ∈ (0, 2),

2(x− 1)b(x) + a(x) 6 −C(x− 1)2 +D. (8)

Then X∞ = limc→0 limt→∞Xc
t exists and has density m(x)/M on (0, 2).

Proof. By Theorem 23.15 of [3], conditions (i) and (ii) guarantee that for any solution Xt to the
SDE (4), the weak limit limt→∞Xt exists, regardless of the initial distribution X0, and has density
m(x)/M . We denote this distribution by π∞.

We now show that if c is sufficiently small, then there is an invariant distribution for the process
Xc

t . By the proof of Proposition 2, ac → a and bc → b uniformly as c → 0. Therefore, there exists
some c0 > 0 such that

‖a− ac‖∞ + 2‖b− bc‖∞ < (C −D)/2

for all c < c0. In everything that follows, assume that c < c0. Let L
c be the generator corresponding

to Xc
t . Then, taking V (x) = (x− 1)2 + 1, by (8),

LcV (x) = ac(x) + 2bc(x) 6 −C(x− 1)2 + (C +D)/2.

The function V (x) is therefore a Lyapounov function for the process Xc
t satisfying

LcV (x) 6 −C ′V (x) +D′IK(x), (9)

with K = {x : |x− 1| 6 η} for any
√

(C +D)/(2C) < η < 1, and C ′,D′ > 0 (which depend on the
choice of η). By Theorem 4.5 of [6], Xc

t has an invariant distribution πc.
Since the space of probability measures on [0, 2] is compact, every subsequence of πc has a

convergent subsequence. Suppose πcn → π0 is one such subsequence. Let Xn
t be the pure jump

process with generator Lcn , starting from Xn
0 ∼ πcn and let X0

t be the solution to the SDE (4),
starting from X0 ∼ π0. By Theorem 1, Xn

t → X0
t weakly in D[0,∞). Since Xn

0 was started in its
invariant distribution, Xn

t ∼ πcn for all t and hence X0
t ∼ π0 for all t. However, limt→∞X0

t ∼ π∞
and therefore π0 = π∞. Since this holds for every convergent subsequence of πc, it follows that
πc → π∞ as c → 0.

It is therefore enough to show that for c sufficiently small limt→∞Xc
t ∼ πc. Suppose that X̄c

t is
the pure jump process with generator Lc, starting from X̄c

0 ∼ πc, and coupled with Xc
t so that if T

is the first time that Xc
T = X̄c

T , then Xc
t = X̄c

t for all t > T . Since X̄c
t ∼ πc for all t, Xc

t ∼ πc for all
t > T and therefore limt→∞Xc

t ∼ πc as required. It is therefore sufficient to construct a coupling
in which T < ∞ a.s.

By Corollary 2.9 in [5], (9) implies that for any coupling, the two processes Xc
t and X̄c

t visit the
compact set K at the same time infinitely often, almost surely. For each x ∈ K, let Xc,x

t denote
the process with generator Lc, starting from Xc,x

0 = x. Suppose we can couple the processes Xc,x
t

and Xc,y
t so that after a unit of time

inf
x,y∈K

P(Xc,x
1 = Xc,y

1 ) > 0. (10)

11



Then every time the processes Xc
t and X̄c

t are simultaneously in K, there is a positive chance that
they will have coalesced one unit of time later. It follows that

P(T = ∞) 6 lim
n→∞

(

1− inf
x,y∈K

P(Xc,x
1 = Xc,y

1 )

)n

= 0.

By using (3), (6), that s±(x, c) → s(x) uniformly on (0, 2), and that, by the compactness of K, s(x)
is uniformly bounded away from 0 and ∞ on K, it can be shown that there exist a0, b0, c0 ∈ (0, 1)
such that for all c < c0, and measurable A ⊆ [−b0

√
c,−b0

√
c/8] ∪ [b0

√
c/8, b0

√
c],

inf
x∈K

P(∆Xc
tn ∈ A|Xc

tn−1
= x) > a0|A|,

where |A| denotes the Lebesgue measure of A and tn is the nth jump time of Xc
t . Let K0 = {x :

|x−1| 6 b0
√
c/8} and let ν denote the uniform probability measure on A0 = {x : b0

√
c/4 < |x−1| <

7b0
√
c/8}. Then if β = a0|A0|, 0 < β < 1 and

inf
x∈K0

P(Xc
tn ∈ A|Xc

tn−1
= x) > a0|A ∩A0| = βν(A)

for all measurable sets A ⊆ (0, 2), where we have used translation invariance of Lebesgue measure
here.

We now describe the coupling for Xc,x
t and Xc,y

t with x, y ∈ K. Let the processes evolve
independently until the first time that they are both in the set K0. At this point sample the
time until the next jump to be the same Exp(r(c)) random variable for both processes (which
can be done by the memoryless property of the exponential distribution). Then, with probability
β, sample the new position for both processes from ν, from which point onwards the processes
remain equal; otherwise sample the new positions independently from the respective distributions
A 7→ (P(∆Xc

tn ∈ A|Xc
tn−1

= x)−βν(A))/(1−β) and A 7→ (P(∆Xc
tn ∈ A|Xc

tn−1
= y)−βν(A))/(1−β)

and allow the processes to evolve independently until they are next both in K0. At this point,
attempt to coalesce again as above, and repeat.

Finally we need to show that (10) holds for processes coupled in this way. For simplicity, suppose
that 1 − η 6 x, y 6 1; a similar argument works in the other cases. Set A1 = [b0

√
c/8, b0

√
c/4],

N = ⌊8/(b0√c)⌋ + 1, and sk = k/N for k = 0, . . . , N . Let txk and tyk be the respective jump
times of Xc,x

t and Xc,y
t , set Nx = inf{k : Xc,x

tx
k

∈ K0} and define Ny similarly. Define Ax,y to be

the intersection of the three events {sk−1 6 txk < sk,∆Xc,x
tx
k

∈ A1, k = 1, . . . , Nx}, {sk−1 6 tyk <

sk,∆Xc,y
ty
k

∈ A1, k = 1, . . . , Ny} and {sN−1 6 txNx+1 = tyNy+1 < sN ,Xc,x
tx
Nx+1

= Xc,y
ty
Ny+1

}. Hence

inf
x,y∈K

P(Xc,x
1 = Xc,y

1 ) > inf
x,y∈K

P(Ax,y) > e−2r(c)(a0|A1|r(c)/N)2Nβ > 0,

as required.

Remark. The condition (8) can be relaxed to the weaker assumption requiring the existence of
a Lyapounov function and compact set K that satisfies (9) with generator Lc, for every c > 0.
Although the current condition is slightly more restrictive, it is straightforward to verify for specific
examples.
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4 An example of coexistence

The above analysis identifies sufficient conditions for ensuring coexistence between the two regions.
It shows that constructing cases in which the limiting distribution arises through non-trivial ergodic
behaviour of the harmonic measure is very delicate. The way in which the sizes of particles must be
tuned depending on which region they land in, and how close to the boundary they land, is subtle.
In this section we give an example of a process in which the necessary conditions are satisfied.

Set

s+(x, c) = π2

(

(

3x(2− x)

16

)2/3

+ c1/2(log(c−1))−1(2− x)

)

,

s−(x, c) = π2

(

(

3x(2− x)

16

)2/3

+ c1/2(log(c−1))−1x

)

.

Taking r(c) = c−3/2, the conditions of Corollary 3 (c) are satisfied with s(x) = π2(3x(2−x)/16)2/3

and h(x) = 2π2(1− x). Hence Xc
t → Xt weakly in D[0.∞) as c → 0, where

dXt = 2(1−Xt)dt+
√

2Xt(2−Xt)dBt.

The scale function and speed density are given by

ρ(x) =

∫ x

1
exp

(

−2

∫ y

1

1− u

u(2− u)
du

)

=

∫ x

1

1

y(2− y)
dy = log

√

x

2− x
,

m(x) =
1

2x(2− x)
exp

(

2

∫ x

1

1− u

u(2− u)
du

)

=
1

2x(2− x)
exp (log x+ log(2− x)) =

1

2
.

It is straightforward to check that the conditions of Theorem 4 are satisfied. It follows that the
weak limit X∞ exists and is uniformly distributed on (0, 2).

Acknowledgments. We are grateful to Eva Löcherbach for directing us to the paper [5], which
provided the key ideas for the proof of Theorem 4.
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