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ABSTRACT

The center determination of a galaxy cluster from an optical cluster finding algorithm
can be offset from theoretical prescriptions or N-body definitions of its host halo center.
These offsets impact the recovered cluster statistics, affecting both richness measurements
and the weak lensing shear profile around the clusters. This paper models the centering per-
formance of the redMaPPer cluster finding algorithm using archival X-ray observations of
redMaPPer-selected clusters. Assuming the X-ray emission peaks as the fiducial halo centers,
and through analyzing their offsets to the redMaPPer centers, we find that ∼ 75± 8% of the
redMaPPer clusters are well centered and the mis-centered offset follows a Gamma distribu-
tion in normalized, projected distance. These mis-centering offsets cause a systematic under-
estimation of cluster richness relative to the well-centered clusters, for which we propose a
descriptive model. Our results enable the DES Y1 cluster cosmology analysis by characteriz-
ing the necessary corrections to both the weak lensing and richness abundance functions of
the DES Y1 redMaPPer cluster catalog.

Key words: galaxy clusters: general

1 INTRODUCTION

The abundance of galaxy clusters is a sensitive probe of cosmolog-
ical models (see reviews and the referenced literature in Allen et al.
2011; Weinberg et al. 2013). Cluster cosmology studies from the
latest optical imaging surveys such as the Dark Energy Survey (the
DES Collaboration 2018) will deliver significant improvement in
precision over previous studies based on the Sloan Digital Sky Sur-

vey (SDSS, Rozo et al. 2010) and require (McClintock et al. 2019)
accurate understanding of various systematic effects such as the ori-
entation of clusters (Noh & Cohn 2012; Dietrich et al. 2014), cor-
related structures and their projection effect (Erickson et al. 2011;
Costanzi et al. 2019), mass profile modeling uncertainties (McClin-
tock et al. 2019), and the contamination of cluster member galaxies
in the lensing measurements (Varga et al. 2018).
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One such important systematic effect is the mis-identification
of cluster centers (Johnston et al. 2007a,b; Melchior et al. 2017;
Simet et al. 2017; McClintock et al. 2019; the DES Collaboration
2018). Cluster observables, e.g. gravitational shear profiles, must
be compared to models in order to derive constraints on parame-
ters, and the models are based on some definition of cluster center,
described theoretically or on the basis of the matter density field
in N-body simulations. Cluster lensing studies based on data from
DES (McClintock et al. 2019) require accurate knowledge of clus-
ter mis-centering fraction and offset distribution in order to forward
model masses using analytic halo profiles.

Optical cluster finders often attempt to identify a central
galaxy as the center (Koester et al. 2007; Hao et al. 2010; Rykoff

et al. 2014; Oguri et al. 2018). These central galaxies are typi-
cally quenched of star formation activities and may appear to be
the brightest galaxy in a cluster (see studies in Skibba et al. 2011;
Hoshino et al. 2015; Lauer et al. 2014). The identification of clus-
ter central galaxies may seem straightforward given their dominant
appearances, but mis-identifications or offsets relative to any other
theoretical definition of center is inevitable. Because massive ha-
los experience growth through mergers, cluster central galaxies can
be displaced from the local gravitational potential minimum (e.g.,
Martel et al. 2014). A related effect is when a second galaxy within
the halo is chosen as the center by the cluster finding algorithm.
For a color-based scheme focused on the reddest galaxies, this may
happen if the central galaxy of the host halo has experienced re-
cent star formation (e.g., McDonald et al. 2012; Donahue et al.
2015) or if a merging event brings in two nearly identical central
galaxies of the progenitor halos, as in the case of the Coma clus-
ter (e.g., Vikhlinin et al. 2001). Another cause of mis-centering is
when galaxies lying outside the primary host halo, but aligned in
projection, are chosen as the central galaxy by the cluster finding
algorithm.

The centering performance of optical cluster finding algo-
rithms has been characterized with various methods. Cluster hot
gas is an excellent tracer of the cluster potential as the domi-
nant baryonic mass component. Cluster X-ray or thermal Sunyaev-
Zel’dovich (tSZ) observation centers, identified as the centroids or
the peaks of the surface brightness, are often used to calibrate the
optically selected centers (see examples of X-ray studies in Lin &
Mohr 2004; Stott et al. 2012; Mahdavi et al. 2013; Rozo & Rykoff

2014; Lauer et al. 2014; Rykoff et al. 2016; Zhang et al. 2016 and
examples of tSZ studies in Song et al. 2012; Saro et al. 2015). Other
than calibration to centers identified in multi-wavelength observa-
tions, cluster centering has been characterized through comparing
cluster radial profiles (lensing or galaxy number count) to those
of a cluster sample with well-known centers from X-ray or optical
data (Hikage et al. 2018; Luo et al. 2018) and through examining
the velocity and separation distribution of cluster satellite galaxies
(Skibba et al. 2011).

In this paper, we characterize the centering performance of
the redMaPPer cluster finding algorithm – a method for iden-
tifying galaxy clusters from optical imaging data. The redMaP-
Per algorithm excels in producing a complete and efficient cluster
sample with an accurate richness mass proxy and precise redshift
estimations, as characterized with multi-wavelength and spectro-
scopic data (Rykoff et al. 2012; Rozo & Rykoff 2014; Rozo et al.
2015a,b; Saro et al. 2015; Murata et al. 2018). Cluster catalogs con-
structed from SDSS (Rykoff et al. 2014) and DES data (Rykoff

et al. 2016) are used to derive cosmological constraints in Costanzi
et al. (2018); the DES Collaboration (2018). In terms of the clus-

ter center identification, redMaPPer is not exempt from occasional
mis-identification of the central galaxy.

The centering distribution of the redMaPPer algorithm has
been studied using almost all of the aforementioned methods (Rozo
& Rykoff 2014; Saro et al. 2015; Rykoff et al. 2016; Hikage et al.
2018). In this paper, we model the cluster centering distribution
with 211 high signal-to-noise X-ray cluster detections associated
with the redMaPPer SDSS DR8 and DES Year 1 samples from the
Chandra public archives, and the model constraints are then vali-
dated with X-ray cluster detections from the XMM public archives.
We focus on the modeling aspects of redMaPPer centering perfor-
mance in this paper, while the X-ray data processing procedures are
presented in Hollowood et al. (2018) and Giles et al. in prep. The
data set and methods we employ allow us to analyze the redMaP-
Per centering performance with the highest precision to date. We
also develop a model to characterize how mis-centering affects
redMaPPer richness estimation and discuss the impact of cluster
mis-centering on cluster cosmology analyses. It is the first time that
this effect has been quantified.

This paper is a companion paper to the DES and SDSS cluster
weak lensing and cosmology studies presented in McClintock et al.
(2019), Costanzi et al. (2018) and the DES Collaboration (2018). It
uses similar data products to Farahi et al. (2019).

Throughout this paper, we assume a Flat ΛCDM cosmology
with h = 0.7 and Ωm = 0.3.

2 DATA

2.1 The redMaPPer Catalogs

The redMapper algorithm examines galaxy color, spatial over-
density and galaxy luminosity distribution to identify possible
galaxy clusters. Cluster centers are placed on a central galaxy can-
didate according to the color, luminosity and galaxy over-density
computed around the galaxy. Up to five central galaxy candidates
are recorded for each cluster with probabilities assigned to them.
The cluster center is chosen to be the most probable one. The
redMaPPer algorithm also estimates a richness as a mass proxy,
λ, which is a probabilistic count of red sequence galaxies within an
aperture centered on the central galaxy candidate. Detailed presen-
tation of this algorithm can be found in Rykoff et al. (2014, 2016).

The redMaPPer samples studied in this paper have been
derived from both SDSS (Rykoff et al. 2014, 2016) and DES
(Rykoff et al. 2016; McClintock et al. 2019) data. We use the
redMaPPer SDSS 6.3.1 sample (Costanzi et al. 2018) derived from
SDSS DR8 (Aihara et al. 2011) photometric data and the redMaP-
Per DES-Y1-6.4.17 volume-limited catalog which is based on the
DES Y1 gold catalog (Drlica-Wagner et al. 2018), with cluster rich-
nesses ≥ 20. For the SDSS redMaPPer sample, we consider clusters
in the redshift range of 0.1 to 0.35 which are nearly volume-limited.
For the DES redMaPPer sample, we select clusters between red-
shifts 0.2 and 0.7.

2.2 Comparison of Centers in redMaPPer Catalogs

In this paper, we treat the DES and SDSS redMaPPer catalogs
as two independent samples and characterize their centering per-
formances separately. We examine the offset distribution between
redMaPPer centers of the overlapping clusters in the DES and
SDSS samples, to estimate an upper limit of the well-centered clus-
ter fraction.

MNRAS 000, 1–16 (2019)
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Figure 1. The offset distribution of cluster centers assigned in the SDSS
and DES redMaPPer catalogs, measured in radial units of Rλ (Rλ =

(λ/100)0.2h−1 Mpc, which is ∼ 1 Mpc for λ of 20). The solid blue his-
togram is the full sample of overlap clusters while the solid and dashed
histograms are the same distribution in richness bins of λ > 40 and λ < 40
respectively. 77% of clusters have offsets below 0.05 Rλ and are considered
self-consistent, with the remaining 23% comprising a long tail. We notice a
marginal richness dependence that richer clusters appear to be more consis-
tently centered in DES and SDSS.

We match between the DES and SDSS redMaPPer samples to
identify the overlapping clusters in the redshift range of 0.2 to 0.35.
For a pair of DES and SDSS clusters to be considered a match, their
redshift difference, |∆z|, must be less than 0.05 to account for the
scatter in photometric redshifts and possible blending effects. The
redMaPPer centers must be within 1 Rλ (Rλ = (λ/100)0.2h−1 Mpc).
The radius aperture is chosen because redMaPPer does not consider
the clusters to be the same if their centering offset is larger than Rλ.
The richness estimations derived from SDSS and DES data have an
average relation of λDES = (0.88± 0.03)× λS DS S + (3.28± 1.20).
We look for matches to λ > 20 DES clusters in the SDSS redMaP-
Per sample by lowering the SDSS redMaPPer λ threshold to 5 to
account for the λ difference and scatter between DES and SDSS.

There are 150 DES clusters with λ > 20 and 38,786 SDSS
clusters with λ > 5 in the overlap region of both catalogs after ap-
plying redshift, position, and mask cuts. Of these 150 DES clusters,
1481 have SDSS matches given the criteria listed above. 15 of these
148 clusters have at least two matches and the most likely SDSS
match was chosen by inspection of redshift, position, and richness.
As the purpose of this matching process is to verify the center-
ing consistency in SDSS/DES, we further remove 3 clusters in the
total sample (148) because of our poor confidence in the match:
the SDSS matching candidates have large richness differences with
their respective DES clusters. This further reduces our matching
sample size to 145.

Figure 1 shows the scaled offset distribution between SDSS
and DES centers for the matched clusters. For 77% of the matched
clusters, their SDSS and DES centers are within 0.05 Rλ (corre-
sponding to ∼ 50 kpc at λ = 20, close to the size of a typical central
galaxy, Zibetti et al. 2005; Stott et al. 2011). We consider these
clusters as consistently centered between the two catalogs. The re-
maining 23% of the clusters comprise a long tail in the SDSS and
DES offset distribution up to 1 Rλ. The inconsistency indicates
that for at least one of the samples, the mis-centered fraction is

1 After further investigation, the other 2 DES clusters appear to have SDSS
matches with the same central galaxy selections, but the redshift differences
between the DES and SDSS match are ∼ 0.06, and thus didn’t pass our strict
redshift difference cuts.

Figure 2. Normalized redshift and richness distributions of the SDSS
(black) and DES (blue) redMaPPer clusters matched to archival Chandra
observations. The X-ray matched clusters have much higher richnesses than
the general redMapper sample, although we do not find significant richness
dependence of the results presented in the paper.

≥ 0.23/2 = 0.115. As we do not have sufficient information (i.e.,
enough X-ray observations) in the DES/SDSS samples to analyze
which has a greater rate of well-centering, we decide to indepen-
dently analyze the SDSS and DES redMaPPer samples in this pa-
per.

We further examine the richness distribution of the offsets by
dividing the clusters into two richness ranges. We do not notice a
significant richness trend – 34 out of 41 clusters at richness above
40 are consistently centered VS 77 out of 101 at richness below 40.

2.3 Chandra X-ray Data and Center Measurement

While the comparison of centering between different redMaPPer
catalogs above gives an indication of the minimum level of mis-
centering, we use X-ray data to calibrate the absolute value of the
well-centered cluster fraction, and the offset distribution of mis-
centering clusters in each of the redMaPPer samples.

In this paper, we use cluster X-ray emission peaks as the
fiducial centers and rely on these to estimate the redMaPPer mis-
centering fraction and offsets. Some previous studies have used the
X-ray and tSZ centroids within different aperture sizes that closely
resemble the centroids of the cluster gravitational potential to cali-
brate the cluster centering distribution (Stott et al. 2012; Song et al.
2012; Saro et al. 2015; Zhang et al. 2016), while others use X-
ray emission peaks that closely resemble the peaks of the cluster
matter distribution (Lin & Mohr 2004; Mahdavi et al. 2013; Lauer
et al. 2014). In DES and SDSS cluster weak lensing and cosmology
studies (McClintock et al. 2019; Costanzi et al. 2018; the DES Col-
laboration 2018), the aim is to quantify redMaPPer’s accuracy in
identifying the galaxy near the center of a cluster’s host dark mat-
ter halo, or the galaxy that corresponds to the density peak of the
dark matter halo (Tinker et al. 2008). To this end, we employ the
X-ray peak position as a proxy for the host halo center, and mea-
sure the distribution of the projected offsets between X-ray peaks
and redMaPPer central galaxies.

We search for X-ray observations and determine X-ray peaks
in archival Chandra data for redMaPPer clusters in both SDSS
and DES Y1 of richness above 20. RedMaPPer clusters falling
within an archival Chandra observation are analyzed with a cus-
tom pipeline MATCha, described in Hollowood et al. (2018). A
summary of the X-ray analysis follows.

For each of the redMaPPer clusters with archival Chandra ob-
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Figure 3. The Rλ (Rλ = (λ/100)0.2h−1 Mpc) scaled offset distribution between the redMaPPer centers and the X-ray emission peaks for the redMaPPer SDSS
and DES samples from the Chandra archival observations, with the inset zooming on the mis-centered component, starting at roffset/Rλ = 0.05. The distribution
can be fitted with two components – a concentrated component that represents the well centered redMaPPer clusters, and an extended component that represents
the mis-centered redMaPPer clusters. The best fit SDSS offset model is shown as the solid lines (black: well-centered model, red: mis-centered model), with
the shaded regions representing the uncertainties.

servations, starting with an initial aperture of 500 kpc radius cen-
tered on the redMaPPer center, the pipeline first determines the X-
ray centroid, re-centers, and then iteratively finds X-ray centroids
until convergence is reached within 15 kpc. A cluster is consid-
ered to be detected if the signal-to-noise ratio within a final 500
kpc aperture centered on the converged centroid is greater than
5. For detected clusters, MATCha analysis proceeds with attempts
to measure LX , TX , and centroid within a set of apertures includ-
ing 500 kpc, r2500, r500, and core-cropped r500. Visual checks of
non-detected redMaPPer clusters are employed to examine if any
redMaPPer clusters with Chandra observations were omitted in the
process. We find one SDSS redMaPPer cluster with a large offset
of 1.82 Mpc (1.40 Rλ for this cluster) between the X-ray centroid
and the redMaPPer center, possibly over-looked because of the ini-
tial 500 kpc X-ray centroid searching criteria. Since this omission
makes up less than 1% of the total SDSS Chandra sample, we do
not consider it in further analyses. No similar cases were found in
the DES Y1 sample.

For the clusters with X-ray detections, MATCha additionally
determines the position of the X-ray peak starting from the reduced,
exposure-corrected, and point source subtracted images. Images are
smoothed with a Gaussian with σ = 50 kpc width, and the peak is
defined to be the brightest pixel in this smoothed image. All peaks
are then visually examined. In a small number of cases relic point
source emission or the removal of a point source near the cluster
peak are found to bias the peak determination. The peak position is
adjusted after accounting for the point source emission. In addition,
two failure modes are flagged and removed from the sample. First,

for the centering analysis we remove clusters falling on or near a
chip edge in the X-ray observation such that the position of the X-
ray peak could not be reliably determined. Second, in a few cases
the identified X-ray cluster is clearly not the redMaPPer cluster
(e.g. a bright foreground or background cluster in the same observa-
tion), and these clusters are likewise removed (see Hollowood et al.
2018 for further detail). Moreover, there are some special redMaP-
Per miscentering cases, denoted as mis-percolations in Hollowood
et al. (2018), because these cases are related to a "percolation" pro-
cedure of redMaPPer. In these cases there is a spatially close pair of
clusters with similar redshifts, and the one with a less luminous X-
ray detection is assigned with a greater richness. Hollowood et al.
(2018) manually associates the richer redMaPPer candidate with
the more luminous X-ray detection and removes the less rich sys-
tem from the X-ray samples.

Finally, to improve the accuracy of X-ray peak location,
among all the clusters identified in Hollowood et al. 2018, we fur-
ther impose a signal-to-noise cut removing clusters with a signal-
to-noise ratio less than 6.5 within a 500 kpc aperture. In the end,
144 redMaPPer SDSS clusters are identified with X-ray peak cen-
ters in the Chandra archival data.

The compilation of the DES redMaPPer Chandra sample fol-
lows a similar process to the SDSS redMaPPer sample, with the
exception that the X-ray peaks of the DES sample are initially iden-
tified around the redMaPPer centers within 500 kpc due to pipeline
re-factoring. The peak identifications are visually examined and ad-
justed if needed. Overall, 67 DES redMaPPer clusters are identified
with Chandra observations of signal-to-noise ratio higher than 6.5.

MNRAS 000, 1–16 (2019)
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Figure 4. Centering offset parameter constraints (Equation 1) for the Chan-
dra DES (blue) and SDSS (gray) redMaPPer samples. About 70% of the
DES and SDSS redMaPPer clusters appear to be well centered in both sam-
ples (indicated by the ρ parameter). For the mis-centered clusters, their mis-
centering offsets is characterized by a Gamma distribution with a character-
istic offset (the τ parameter) around 0.18 Rλ.

In Figure 2, we show the redshift and richness distributions of
the SDSS and DES redMaPPer Chandra samples. Figure 3 shows
the scaled offset distributions between the X-ray peaks and the
redMaPPer centers. The tail of the offset distribution indicates a
population of mis-centered clusters. Examples of the mis-centered
clusters can be found in Hollowood et al. (2018).

3 THE X-RAY REDMAPPER OFFSET

3.1 Model

In this paper, we use the X-ray peaks as the cluster fiducial center,
and model the offsets between X-ray peaks and redMaPPer centers
to characterize the redMaPPer centering distribution.

When redMaPPer misidentifies the galaxy at the cluster cen-
ter, an offset between X-ray peaks and the redMaPPer centers is
expected. On the other hand, when the redMaPPer centers are cor-
rect, the X-ray peaks may still be offset from them because of the
different dynamics and relaxation timescales of gas and galaxies
(e.g., see studies about cluster state and X-ray galaxy offsets in
Mantz et al. 2015; Kim et al. 2017; Roberts et al. 2018), as well
as observational uncertainties in identifying the X-ray peaks 2, but
these offsets tend to be small, i.e., less than tens of kpc. Therefore,
we expect the well and mis-centered redMaPPer clusters to have
different offset distributions to the X-ray peaks, and we model the
redMaPPer and X-ray offset as a mixture of well-centered and mis-

2 The photometric and astrometric uncertainties of galaxy positions are
negligible in DES compared to X-ray Drlica-Wagner et al. 2018

Table 1. Centering offset Parameter constraints (Equation 1) for the Chan-
dra DES and SDSS redMaPPer samples.

ρ σ τ

Prior [0.3,1] [0.0001,0.1] [0.08,0.5]

Chandra SDSS Posterior 0.678+0.035
−0.051 0.0156+0.0026

−0.002 0.179+0.021
−0.021

Chandra DES Posterior 0.835+0.112
−0.075 0.0443+0.0231

−0.0094 0.166+0.111
−0.042

centered components, written as:

P(x|ρ,σ,τ) = ρ×Pcent(x|σ) + (1−ρ)×Pmiscent(x|τ),

Pcent(x|σ) =
1
σ

exp(−
x
σ

),

Pmiscent(x|τ) =
x
τ2 exp(−

x
τ

).
(1)

In the above model, the peaked exponential distribution char-
acterized by the parameter σ, Pcent(x|σ), describes the X-ray offset
distribution of the correctly centered clusters. The second compo-
nent, Pmiscent(x|τ), a Gamma distribution of shape parameter 2 and
characterized by a scale parameter τ, describes the offset of the mis-
centered clusters. This distribution has a heavy tail and the choice
of this distribution is inspired by the Chandra SDSS sample having
an extended offset distribution. The fraction of well-centered clus-
ters are modeled by the ρ parameter. In total, the models consists
of three parameters ρ, σ and τ. The redMaPPer and X-ray center
offset, x, is computed as

x = roffset/Rλ,

Rλ = (λ/100)0.2h−1 Mpc,
(2)

which scales the offset with a mild dependence on redMaPPer rich-
ness denoted by λ.

Given the measurements of these offsets, {xi}, the Bayesian
posterior distribution of ρ, σ and τ is written as

P(ρ,σ,τ|{xi}) ∝ P({xi}|ρ,σ,τ)P(ρ,σ,τ)

= P(ρ,σ,τ)
∏

i

P(xi|ρ,σ,τ), (3)

where P(ρ,σ,τ) is the prior distribution of ρ, σ and τ listed in
Table 1, which is chosen to be flat and independent parameters.
We sample the posterior distribution of ρ, σ and τ using a Markov
Chain Monte Carlo (MCMCc ) method.

3.2 Model Constraints

The aforementioned X-ray redMaPPer offset model is constrained
separately for the Chandra SDSS and DES redMaPPer samples.
Table 1 lists and Figure 4 shows the posterior constraints of
the model parameters including the correctly-centered fraction ρ,
and the mis-centered characteristic offset τ, as well as the char-
acteristic redMaPPer X-ray offset, σ. The SDSS sample yields
higher precision because of the larger sample sizes. The fraction

MNRAS 000, 1–16 (2019)
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of well-centered clusters ρ and the mis-centering offset τ for the
mis-centered clusters are mildly different from the DES redMaP-
Per sample which displays a hint of having a higher fraction of
well-centered clusters at a 1.5σ significance level. For the well-
centered clusters, the characteristic redMaPPer X-ray offset, σ,
of the DES sample is larger than the respective parameter of the
SDSS sample, reflecting the limited angular resolution of X-ray
peak identification and the higher redshift range of the DES sam-
ple (and therefore lower physical separation resolution of the DES
X-ray peak identification).

The redMaPPer algorithm computes a centering probability,
Pcen, as an indicator of whether or not the selected central galaxy is
the right choice. We do not find the values of Pcen to accurately re-
flect the centering statistics of the redMaPPer sample. Specifically,
we study the dependence of the centering performance by sepa-
rately constraining the centering model of the redMaPPer SDSS
sample in two Pcen ranges, ≥ 0.9 and < 0.9 respectively. Clusters of
Pcen ≥ 0.9 have centering fraction of 0.76± 0.05 while clusters of
Pcen < 0.9 have a notably lower centering fraction of 0.49± 0.09.
Although a larger Pcen value does indicate a better centering per-
formance, it does not reflect the real centering fractions at the face
values.

We have tested the dependence of the centering parameters
through constraining the model with the SDSS sample in different
ranges of richnesses, X-ray temperatures or luminosities, and for
serendipitous vs targeted observations. We do not find significant
differences in the centering parameter constraints. A larger set of
X-ray observations would be needed to reveal any trends.

Interpretation of the results from this centering offset char-
acterization depends on the adopted models. Different functional
forms of the mis-centering offset – a Rayleigh distribution for the
mis-centered component, and a Gaussian distribution for the well-
centered clusters – have been attempted in previous studies (Saro
et al. 2015; Rykoff et al. 2016; Hikage et al. 2018). We have tested
alternative models (listed in Table 2) for the mis-centering and cen-
tering distributions with the Chandra SDSS sample. As the com-
mon parameter shared across different models, the well-centered
cluster fraction, ρ, is consistently constrained to be in the range of
64% to 70% for SDSS.

We use the Bayesian deviance information criterion (DIC,
Gelman et al. 2003) to compare the fitness of the models listed in
Table 2. We compute the Bayesian DIC values (DIC, Gelman et al.
2003) by sampling the posterior constraints of the alternative and
nominal models presented in the paper. DIC is computed as

DIC = −2log(p({xi}|θ) + 2log(p({xi}|θ̄). (4)

log(p({xi}|θ) is the probability of the observed offsets averaged over
the posterior mis-centering model, and log(p({xi}|θ̄) is the proba-
bility of the observed offsets given the best-fitting mis-centering
model. Lower DIC values indicate better fitting of the model, and a
DIC difference larger than 2 is considered significant. This DIC
comparison strongly favors the nominal model described in this
section.

Notably, when adopting a Rayleigh distribution for the mis-
centered component, our SDSS posterior values on the well-
centered cluster fraction, ρ, and the mis-centered characteristic off-
set, τ is highly consistent with the previous study in Hikage et al.
(2018) which adopts a similar model and is based on a similar
SDSS redMaPPer catalog. The posterior precision of the param-
eters has improved significantly in our analysis.

Figure 5. Posterior predictive check of the centering offset model. We show
the predictions on the fraction of clusters in different offset ranges (x > 0.1,
x > 0.5 and x > 1.0) from the offset model sampling the posterior con-
straints (histograms). These predictions agree with the measurements from
data (solid squares) for both the SDSS and DES models and data.

3.3 Model Validation

We check the model goodness-of-fit with a posterior prediction test.
Specifically, we compare the fractions of clusters in an offset range
from the data to the predictions from the constrained models. The
procedures are as the follows.

(i) From the measurements of x = roffset/Rλ, record the number
of clusters with offsets larger than a comparison value x0.

(ii) Take one set of model parameters, ρ, σ and τ from the
MCMC posterior constraints, denoted as ρi, σi and τi. Randomly
draw a set of centering offsets, {xi j}, from the offset model (Equa-
tion 1) with the above set of posterior model parameters. The
number of random draws should match the size of the X-ray-
redMaPPer sample being tested.

(iii) With the above set of centering offsets sampling, {xi j},
record the number of offsets larger than a comparison value x0,
N(xi j > x0).

(iv) Repeat the process for each set of ρ, σ and τ values from
the MCMC posterior chain and acquire the distribution of N. This
is the posterior prediction on the number of clusters with offsets
larger than the comparison value x0.

(v) Compare the number from data to this posterior prediction.
We expect a two-sided P-value, defined as the minimum of the frac-
tions of the posterior predictions above and below the data, to be
larger than 0.025.

We use the above process to evaluate the goodness of the
model at offsets larger than 0.1, 0.5 and 1 Rλ. Figure 5 shows the
posterior predictive distribution of these offset ranges. For both the
SDSS and DES redMaPPer samples, the prediction from the model
and its respective model constraints well match the measurements
from the data in these small, medium and large offset ranges, with
the two-sided P-values being 0.35, 0.37 and 0.18 for SDSS and
0.11, 0.25 and 0.17 for DES.

4 MIS-CENTERING IMPACT ON RICHNESS SCALING
RELATION

When a cluster is mis-centered, the redMaPPer richness estimation
may become biased, and the bias depends on the mis-centering off-
set. In this section, we use the redMaPPer catalog itself to constrain
a model that describes the bias of λ upon a mis-centering offset.
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Table 2. Alternative offset models and constraints derived with the Chandra SDSS redMaPPer sample, and DIC comparisons to the nominal model in this
paper.

Name Model Constraints DIC - DICnominal

Gaussian P(x|ρ,σ,τ) = ρPcent + (1−ρ)Pmiscent ρ = 0.64+0.05
−0.05 19.0

Pcent(x|σ) = 2√
2πσ

exp(− x2

2σ2 ) σ = 0.0177+0.0025
−0.0020

Pmiscent(x|τ) = x
τ2 exp(− x

τ ). τ = 0.161+0.021
−0.016

Rayleigh P(x|ρ,σ,τ) = ρPcent + (1−ρ)Pmiscent ρ = 0.70+0.05
−0.04 4.4

Pcent(x|σ) = 1
σ exp(− x

σ ) σ = 0.0185+0.0025
−0.0023

Pmiscent(x|τ) = x
τ2 exp(− x2

2τ2 ). τ = 0.323+0.029
−0.024

Full Gamma P(x|ρ,σ,τ,k) = ρPcent + (1−ρ)Pmiscent ρ = 0.64+0.07
−0.05 1.85

(Four Parameters) Pcent(x|σ) = 1
σ exp(− x

σ ) σ = 0.015+0.0027
−0.003

Pmiscent(x|τ,k) = xk−1

Γ(k)τk exp(− x
τ ) τ = 0.21+0.07

−0.05

k = 1.0+0.83
−0.0

Cauchy P(x|ρ,σ,τ) = ρPcent + (1−ρ)Pmiscent ρ = 0.645+0.05
−0.05 14.2

Pcent(x|σ) = 1
σ exp(− x

σ ) σ = 0.014+0.0028
−0.0022

Pmiscent(x|τ) = xτ
(x2+τ2)1.5 τ = 0.14+0.04

−0.03

As mentioned in Section 3, the redMaPPer algorithm selects
the five most probable central galaxies and stores the λ estimations
computed at each of the centers. The default redMaPPer center is
chosen as the one with the highest centering probability. We make
use of this information to construct a richness shift VS offset model.

Assuming that there existed a redMaPPer catalog with the
most probable centers always being the correct ones, the λ esti-
mations computed at the other four centers will be affected by the
mis-centering effect. The λ bias between the real center and each of
the four remaining center candidates, and the positional offsets be-
tween them, can be used to constrain a λ vs. centering offset model.

We use the lambda offsets between the 2nd and the 1st
(redMaPPer default center) most likely centers, and the distance
offset between them, to model the richness VS centering offset
(Section 4.1). The model is further validated with X-ray data (Sec-
tion 4.2).

4.1 Model and Model Constraints

We quantify the fractional shift of λ, y = λmiscentered/λtrue due to
miscentering. This shift is quantified as being dependent on the
scaled mis-centering offset in terms of rλ. Upon trial of different
analytical forms, we model the probabilistic distribution of y as a
Gaussian distribution:

y ∼ N(ȳ(x),σy(x)), (5)

with the mean and the dispersion, ȳ(x) and σy(x), both depend-
ing on x. The mean is positive, decreases with larger offsets start-
ing from 1, and asymptotically reaches 0 for large offsets (Fig-
ure 6). The dispersion is positive, increases with larger offsets start-

Table 3. Parameter constraints for the lambda offset VS centering offset
model as in ȳ(x) = exp(−x2/σ2) and σy(x) = a× arctan(bx).

SDSS α SDSS b SDSS a
Prior (0, 10) (0, 10) (0, 10)

Posterior 1.64±0.02 1.76±0.07 0.241±0.008

DES α DES b DES a
Prior (0, 10) (0, 10) (0, 10)

Posterior 1.66±0.06 1.43±0.22 0.26±0.04

ing from 0, and asymptotically reaches a constant for large offsets
(Figure 6). Specifically, we choose ȳ(x) to be a Gaussian function
between y and x, ȳ(x) = exp(−x2/α2) with α being a model parame-
ter. σy(x) is chosen as σy(x) = a×arctan(bx) and a and b are model
parameters.

The process of evaluating the above model goes as follows:

(i) We compute the separation between the 1st and the 2nd most
probable centers, rsep, assuming the cluster photometric redshift
from the redMaPPer algorithm for both of the galaxies. We scale
rsep as rsep/rλ to become quantity x.

MNRAS 000, 1–16 (2019)
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Figure 6. The richness VS offset distributions and models. The cluster richness tends to be biased lower by mis-centering (a, e), and the mean of the bias
can be characterized by a Gaussian function (b, f). The biases have large dispersions (c, g), which can be further characterized by an arctan function (c, g).
Posterior predictive checks show that the models are tightly constrained from the data and fit the data well (d, h).
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Figure 7. Parameter constraints for the lambda offset VS centering offset
model. See Section 4.2 for details.

(ii) We compute the relative λ offset between the 1st and the 2nd
most probable centers as y = λ2nd/λ1st.

(iii) We repeat the above process for each cluster i in the
redMaPPer catalog, acquiring a measurement data set {xi} and {yi}.
This data set is shown in Figure 6.

(iv) With the above measurement data set, we constrain the
model parameters of y with the following likelihood: L =∑

i,xi<0.1
(
−

[yi−ȳ(xi)]2

2σ2
y (xi)

− ln[σy(xi)]
)
. The likelihood is sampled with

a MCMC algorithm.
(v) Note that only the data points with xi > 0.1 are used in the

fitting process. This helps eliminate over-fitting at small x, and im-
proves the fitting results at large x.

The same measurements and modeling processes are per-
formed for the SDSS and DES redMaPPer catalogs separately. Fig-
ure 6 shows the data points as well as the best fitted models in the
first two columns. For comparison, the red lines/points are the data
running averages and running dispersions in the x bins (bin widths
indicated by the x error bars in the second column). The MCMC
posterior constraints are shown in Figure 7 and listed in Table 3. α
does not appear to be covariant with a or b, but a and b appear to
be highly covariant.

Overall, the impact of mis-centering on cluster richness is
mild with a low scatter at small mis-centering offset, but grows
with a larger offset, reaching a bias ratio λmiscentered/λtrue of 0.5 at
rsep/Rλ ∼ 1.40.

4.2 Model Validation with X-ray Centers

As a test of the richness offset model, we make use of the Chandra-
redMaPPer samples (Section 2.3) and compare the X-ray peak
redMaPPer centered λ to the prediction from the model.

We rerun the redMaPPer λ algorithm with the X-ray peaks as
the cluster centers. The procedures are equivalent to the original
λ estimation with the exception of a "percolation" process (Rykoff

2014), which re-evaluates λ upon masking neighboring redMaP-
Per clusters. The λ estimations on X-ray peaks do not go through

the "percolation" process as the run does not consider redMaP-
Per clusters not present in the X-ray sample. In this test, to en-
sure that the "percolation" process is negligible, we remove clus-
ters whose λ changed by 10% in the initial redMaPPer percolation
process3.

We calculate the λ offsets VS the distance offsets between the
X-ray peaks and redMaPPer centers. The λ offsets are calculated as
yx = λRM/λxray, and the corresponding X-ray and redMaPPer mis-
centering offsets as xx = rsep/rλ, where rλ is evaluated with the
X-ray centered λ. Clusters of centering offsets xx less than 0.1 are
considered well-centered (a similar cut is applied when deriving the
model in Section 4.1) and do not enter the test. In Figure 8, we show
the derived λ and centering offsets from the X-ray observations.
The constrained models in Section 4.1 appear to be qualitatively
consistent with these offsets.

To quantify the fitness of the model from the previous section,
we compute the following χ2 discrepancy given model parameters
and observations:

χ2
n(α,a,b) =

n∑
i=1

[
yx,i − ȳ(xx,i)
σy(xx,i)

]2. (6)

As described in the previous section, α is the parameter of the ȳ(x)
function, and a and b are the parameters of the σy(x) function. If
the model quantitatively describes cluster mis-centering correctly,
and the values of α, a and b are accurate, χ2

n(α,a,b) will appear to
be drawn from a chi-squared distribution, χ2(n), with the degree of
freedom, n, matching the number of {yx, xx} observations. This chi-
squared distribution is known as the posterior predictive density for
the χ2 discrepancy.

We perform Bayesian posterior predictive assessment on the
fitness of the model following the process in Gelman et al. (1996);
Meng (1994). The process includes calculating a posterior predic-
tive p−value (PPP value) which is the classical p−value averaged
over the posterior model parameter distribution. With the posterior
distribution of α, a and b sampled with the Monte Carlo Markov
Chain (MCMC) method, the procedure goes as follows:

(i) Take one set of α, a and b from the MCMC posterior con-
straints, donated as α j, a j and b j.

(ii) Calculate the χ2 discrepancy for α j, a j and b j, denoted as
χ2

j .
(iii) Repeat the process for each set of α, a and b values from

the MCMC posterior chain.
(iv) For each χ2

j , randomly draw a value, q j, from a standard

χ2(n) distribution. For the posterior set of {χ2
j ,q j}, record the frac-

tion of χ2
j ≥ q j as Pb1, and the frequency of χ2

j ≤ q j as Pb2. We use
a two sided p−value definition, that Pb = min(Pb1,Pb2) as the PPP
value.

We compute the posterior χ2 discrepancy given X-ray {yx, xx}

observations shown in Figure 8. The posterior χ2 discrepancy val-
ues are expected to occupy a highly-probable interval of a chi-
squared distribution χ2(n) (posterior predictive density), with the
degree of freedom n matching the number of {yx, xx} observations
from X-ray peak centers. This appears to be the case for both the
SDSS and DES X-ray redMaPPer sample. The Bayesian posterior
predictive P values (PPP values) are 0.18 and 0.50 respectively for
the SDSS and DES X-ray redMaPPer samples. Both of the PPP

3 Two from each of the SDSS and DES Y1 samples.
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Figure 8. The shift in richness when the richness is estimated at the X-ray centers rather than the redMaPPer centers (1st column). The lambda VS centering
offset models derived from the redMaPPer catalog are shown as blue solid and dashed lines. Posterior predictive checks (2nd column) show that the richness
shifts estimated at the X-ray centers adhere to the models derived from the redMaPPer catalog (see Section 4.2 for details).

values are above a 0.025 model rejection threshold, indicating con-
sistency between the constrained models and the offsets derived
with X-ray peak centers.

We also compute the posterior χ2 discrepancy for the origi-
nal {yi}, {xi} observations that are used to constrain the model. The
distributions of {χ2

j } are shown as the gray shaded histogram in
Figure 6, along with the probability density of a chi-squared dis-
tribution, χ2(n), for comparison. The distribution of {χ2

j } is in good

accordance with the expected χ2(n) distribution, for both the SDSS
and DES redMaPPer samples, indicating the goodness of the fit and
tightness of the model parameter constraints. The PPP values for
the SDSS and DES samples are 0.50 and 0.49 respectively, match-
ing the expectation of a well-posited model.

Note that when deriving the model, the available redMaP-
Per catalogs already have imperfect center selections. According
to the previous section, the majority (∼70%) of the clusters in
the redMaPPer catalog are correctly selected. We have attempted
to select clusters with a higher centering probability (using the
redMaPPer Pcen quantity), but the samples selected on Pcen dis-
play a hint of performing slightly worse in the validation test with
X-ray data. Because of a concern that this Pcen selection may have
biased the cluster sample, and that the selection still cannot ensure
a 100% well centered subsample, we do not apply the selection in
this paper and emphasize on our derived model passing the val-
idation test with X-ray data. In the future, it would be desirable
to quantify the richness offset model with X-ray centered richness
when larger X-ray redMaPPer clusters become available.

5 IMPLICATIONS FOR DES CLUSTER COSMOLOGY

5.1 Mis-Centering Model in DES Cluster Weak Lensing
Analysis

In DES stacked cluster lensing studies, the cluster lensing signals
are fitted to an analytic model to determine cluster mass and con-
centration. To summarize, McClintock et al. (2019) adopts the fol-
lowing method to correct for mis-centering:

Σ(r|M,c) = ρΣcent(r|M,c) + (1−ρ)Σmiscent(r|M,c) (7)

In the above equations, Σ(r|M,c) is the cluster mass profile model
with mass M and concentration c. Σcent(r|M,c) denotes the mass
profile model for well-centered clusters, while Σmiscent(r|M,c) is
the mass profile model for mis-centered clusters. The mis-centered
profile is averaged over the angle, θ, and magnitude, R, of the radial
vector to the correct center,

Σmiscent(~r|M,c) =Σcent(~r + ~R|M,c),

Σmiscent(r|M,c) =
1

2π

∫
dθdRPmiscent(R)

Σcent(
√

r2 + R2 + 2rRcos(θ)|M,c).

(8)

The distribution for the magnitude of the radial offset R, is
Pmiscent(R), which is described by a parameter τ. The model does
not account for the offset between central galaxies and X-ray peaks
because halos are assumed to be centered on a massive dark matter
substructure hosting a central galaxy. Based on the analyses car-
ried out in this study and a companion SDSS redMaPPer center-
ing study of a complete sample with Swift observations in von der
Linden et al. (2018), McClintock et al. (2019) adopted the prior
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Figure 9. We explore how inaccurate knowledge of the mis-centering model
parameters affects the accuracy of cluster mass and concentration estima-
tions in cluster lensing studies. A fiducial mass profile is created using the
prescription in McClintock et al. 2018 with a fiducial set of mis-centering
parameters. Through comparing to the fiducial mass profile, the best fit mass
and concentrations are estimated for different assumed values of the mis-
centering model parameters, ρ and τ. We find that the mass estimation is
robust under inaccurate assumptions of ρ, but susceptible to inaccuracy in
τ. The concentration parameter, on the contrary, is more susceptible to the
inaccuracy of ρ than τ. The vertical lines indicate parameter ranges compa-
rable to those in McClintock et al. 2018.

ρ = 0.75 ± 0.08 and τ = 0.17 ± 0.04. These values are consistent
with the Chandra DES constraints presented in Section 3, but also
encompass the results of the SDSS samples presented in this paper
and in von der Linden et al. (2018).

5.2 Sensitivity of Cluster Mass Estimation to the
Mis-centering Model

We determine the sensitivity of the mass calibration to variations in
the values of the mis-centering parameters. To do so, we create a
fiducial mass profile and analyze how much the measured masses
deviate from the truth if the mis-centering model is inaccurate. Fol-
lowing the recipe in McClintock et al. (2019), the fiducial mass
profile model combines a NFW profile and a two-halo model of
M200m = 1014 M�, concentration of 5 and Rλ = 1 Mpc. We compute
the mis-centered lensing signal by adopting fiducial values ρ= 0.68
and τ = 0.15. We fit this synthetic weak lensing data with a mini-
mum χ2 method assuming a range of values for both ρ and τ, and
measure the bias of the best fit mass and concentration as a func-
tion of these two parameters. The fitting process is restricted to the
0.2 to 30 Mpc radius range as in the DES Y1 weak lensing study
(McClintock et al. 2019) and the profile measurement uncertainty
is assumed to be due to shape nose only, and therefore scales with
radius as r−1.

Figure 9 shows the best fit mass and concentration parameters
as a function of ρ and τ. We find that the best-fit mass is insensi-

tive to the assumed ρ value, whereas the recovered concentration
is biased. Allowing the concentration parameter to vary effectively
decouples the recovered mass from ρ. By contrast, variations in τ
have a non-negligible impact on the best-fit mass. Uncertainties in
τ at a level of ±0.04, comparable to the constraint in this paper,
results in a mass uncertainty of ±0.015 dex4.

These results are in qualitative agreement with the results
of McClintock et al. (2019), though computed with two im-
portant methodological differences. Specifically: 1) McClintock
et al. (2019) has considered more systematic effects other than
mis-centering, including using a semi-analytic covariance matrix
(Gruen et al. 2015), and accounting for boost-factor corrections
(Varga et al. 2018). These changes will affect the relative weight-
ing of radial inner to outer scales, thereby impacting the sensitivity
of the mass posteriors to the mis-centering parameters. 2) When
constraining the richness-mass scaling relation parameters, Mc-
Clintock et al. (2019) treats the mis-centering parameters for each
richness and redshift bin as independent, which reduces the rela-
tive importance of mis-centering in their analysis. Together, these
differences reduce the sensitivity of the scaling relation amplitude
from the 0.015 dex we estimated here to 0.78%, as quoted in Mc-
Clintock et al. (2019). Nevertheless, it is clear from Figure 10 in
McClintock et al. (2019) that the mass posterior in a single bin is
largely insensitive to ρ, but is degenerate with τ, as illustrated in
our toy model analysis above.

These conclusions, however, rely on the assumption that the
cluster mass profile is not correlated with the cluster mis-centering
effect in optical data. Future cluster lensing analysis may wish
to further investigate this assumption, e.g., through examining the
cluster mass distribution in X-ray selected clusters (Das et al., pri-
vate communications).

5.3 Cluster Abundance

The λ offset caused by cluster mis-centering introduces bias and
scatter into the lambda-mass scaling relation. We study the scat-
ter increase with a test based on a N-body dark matter simulation
(Habib et al. 2016). Richnesses are prescribed to each of the sim-
ulation dark matter halos following the richness-mass relation in
Saro et al. (2015), with a richness scatter, σlnλ|M , of 25%. We per-
turb the assigned richnesses with the Chandra SDSS offset model
presented in Section 3 and the richness bias model presented in this
section, and find the richness scatter, σlnλ|M to increase by 2%.

The bias and scatter manifest themselves in the number count
of clusters selected by λ, which is a fundamental input to cluster
abundance cosmology. Mis-centering tends to lower the richness
estimation and the numbers of clusters above a richness threshold
selected by the mis-centered richnesses would be lower than those
selected by richnesses without mis-centering. The average mass
of the clusters selected by the mis-centered richnesses tend to be
higher. Testing with simulations shows that the numbers of clusters
selected by the mis-centered richnesses is lower by ∼ 2%, and the
average cluster masses increase by ∼ 0.5%. Costanzi et al. (2018)
estimates these shift to have negligible effects for SDSS and DES
Y1 cluster cosmology constraints since they are are significantly
smaller than the remaining systematic uncertainties of cluster abun-
dance and mass estimations. Nevertheless, Costanzi et al. (2018);
the DES Collaboration (2018) corrected the data vectors with the
factors listed above to account for the mis-centering effect. Future

4 0.015 dex means δlogM200m = 0.015
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cluster cosmology analysis in the coming years of DES and LSST
may wish to explicitly incorporate the mis-centering richness re-
lations as the mis-centering effect on cluster abundance becomes
more substantial compared to the statistical uncertainty.

6 CENTERING STUDY WITH XMM DATA

During the preparation of this paper, an additional sample of
redMaPPer clusters (SDSS and DES) with archival X-ray obser-
vations from the XMM-Newton space telescope became available.
As the centering analyses in this paper are optimized for Chan-
dra observations, especially the centering offset model for well-
centered clusters is optimized for Chandra PSFs, we do not attempt
to combine the XMM and Chandra observations in the modeling
processes. Rather, we use the XMM defined X-ray centers to ex-
plore the robustness of the fits presented in Section 3. The sample
selection and the XMM data analysis methods are described in Sec-
tion 6.1 and Section 6.2 describes the centering comparison results
from XMM.

6.1 X-ray Data Processing

The redMaPPer–XMM joint samples (SDSS and DES) were con-
structed as follows. First, the redMaPPer centroids were compared
to the aim points of observations in the XMM public archive5.
redMaPPer clusters with centroids falling outside 13′ of an aim
point were excluded from the samples. Second, the mean and me-
dian XMM exposure time was determined within a 10′′ radius of
the redMaPPer centroid. For this we used exposure maps produced
by the XMM Cluster Survey (XCS, Lloyd-Davies et al. 2011). Any
redMaPPer clusters with mean exposure times of < 3 ks, and/or
median exposure times of < 1.5 ks, were excluded from the sam-
ples. We note that the median filter was necessary because some
clusters straddle both active and inactive regions of the field of
view (FOV), e.g. those lying close to the FOV edge. If a given
cluster was observed multiple times by XMM, only the observa-
tion with the longest exposure time, at the redMaPPer centroid,
was used in subsequent analyses. Third, the remaining redMaP-
Per cluster centroids were compared to the list of extended sources
detected using the XCS Automated Pipeline Algorithm (XAPA).
Any redMaPPer clusters lying further than 2 h−1 Mpc (assuming
the redMaPPer redshift) of such a source were excluded from the
samples. At this stage, the SDSS and DES redMaPPer–XCS sam-
ples comprised of 356 and 282 clusters respectively.

The X-ray peaks for the clusters in the redMaPPer–XMM joint
samples were then determined using a method that closely follows
that used for the Chandra analyses, as described in Section 2.3.
An initial peak location was found in the respective merged (PN,
MOS1, MOS2) XMM image, after smoothing with a σ= 50h−1 kpc
Gaussian (assuming the redMaPPer redshift). As with the Chan-
dra analysis, other sources (i.e. those assumed not to be associated
with the redMaPPer cluster) are masked out before the smoothing
takes place. For this, we use the XAPA source catalogue of point-
like sources. If there are multiple XAPA extended source within
the image, then only the one closest to the redMaPPer centroid
is left unmasked. The peak location is then the brightest pixel in
the masked, smoothed image, within a radius 1.5×Rλ of the RM
position.

5 The archive match used in this analysis was carried out on August 2018.

Figure 10. Redshift and richness distributions of the SDSS (black) and DES
(blue) redMaPPer clusters matched to archival XMM observations.

The initial peak selection was occasionally erroneous. For ex-
ample when there was a very bright point source in the XMM FOV.
Such sources “bleed” into the surrounding region of the detec-
tor, meaning that the default point source mask size was not large
enough remove them completely. Such cases were easily identi-
fied by eye using SDSS (or DES) and XMM “postage stamp” im-
ages. Most of these cases could be corrected by adjusting the size of
the point source mask, and then re-running the peak finding script.
However, for some, the point source “bleeding” was so pronounced
that the respective cluster had to be removed from the redMaPPer–
XMM joint sample. Another reason for the initial peak being erro-
neous was the mis-percolation issue described in Section 2.3. The
mis-percolation cases were also identified using eye-ball checks.
For these it was necessary to adjust the extended source mask, so
that the closest source was now masked, but the second closest was
not.

Once the second run of peak finding has been completed (and
the new peak positions have been confirmed by eye), the remaining
clusters were eye-balled again. At this stage, more redMaPPer clus-
ters were removed from the sample: i) those where the XAPA ex-
tended source is clearly not associated with the redMaPPer cluster
(i.e. it is a foreground background cluster in projection), and ii)
those where the redMaPPer central galaxy falls in an XMM chip
gap. After the various cuts described above, the SDSS–XCS and
DES–XCS samples contained 248 and 109 sources respectively.

We further apply off axis angle and SNR cuts to the XMM
samples. The SNR was determined in the same way as for the
Chandra sample i.e. within 500h−1 kpc, using 0.5 –2.0 keV XMM
images. For the XMM-SDSS sample, we require the detections S/N
to be > 6.5, and the redMaPPer centers to be within 8.5 arcmin of
the aim point (or 6.5 arcmin away from the FOV edge assuming a
15 arcmin FOV radius). For the XMM-DES sample, we again re-
quire the detections S/N to be > 6.5, but allow the redMaPPer cen-
ters to be up to 10.5 arcmin of the aim point. The FOV cuts ensure
that the corresponding redMaPPer centers are more than 500 kpc
away from the FOV edge at z = 0.1 for the SDSS sample, or at
z = 0.2 for the DES sample. The S/N cuts were imposed to match
the 6.5 S/N cuts in the Chandra analysis. With these FOV and S/N
cuts, the final SDSS and DES XMM samples contain 163 and 66
clusters respectively. Figure 10 shows their richness and mass dis-
tributions.

Further details of the redMaPPer–XMM joint sample devel-
opment, the peak measurements, the signal to noise estimation and
the individual mis-percolation cases can be found in Giles et al. (in
prep).
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Figure 11. The Rλ (Rλ = (λ/100)0.2h−1 Mpc) scaled offset distribution be-
tween the Chandra and XMM peak identifications for the same redMaPPer
clusters.

Figure 12. The Rλ (Rλ = (λ/100)0.2h−1 Mpc) scaled offset distribution be-
tween the redMaPPer centers and the X-ray emission peaks for the redMaP-
Per SDSS samples from the XMM archival observations. The distribution
can be fitted with two components – a concentrated component that rep-
resents the well centered redMaPPer clusters, and an extended component
that represents the mis-centered redMaPPer clusters. The best fit SDSS off-
set model is shown as the solid lines (black: well-centered model, red: mis-
centered model), with the shaded regions representing the uncertainties. As
a comparison, we also show the corresponding offset distribution from the
analysis with Chandra archival data (blue dashed histogram).

6.2 The XMM-Chandra and XMM-redMaPPer Offsets

A subsample of the redMaPPer clusters, 54 in the SDSS sample,
and 25 in the DES sample, are analyzed by both the XMM and
Chandra analyses. With these overlapping cases, we compare the
XMM peak measurements to those from Chandra. Figure 11 shows
the offset distribution between XMM and Chandra peak identifi-
cations for the same redMaPPer clusters, scaled by their Rλ. The
XMM and Chandra peak identifications are highly consistent: their
separations are within 0.05 Rλ for 53/54 of the overlapping SDSS
clusters, and 20/25 of the overlapping DES clusters. The separa-
tions have a wider distribution for the DES redMaPPer sample re-
flecting its higher redshift range, and hence higher X-ray peak iden-
tification uncertainties in terms of physical distances.

Given the consistency between XMM and Chandra X-ray
peak identifications, we constrain the redMaPPer centering off-
set model proposed in Section 3 with the XMM peaks. Figure 12
and 13 respectively show the offset distributions between the XMM
peaks and the redMaPPer centers for the SDSS and DES samples,
with comparisons to their corresponding Chandra offset distribu-

Figure 13. The Rλ (Rλ = (λ/100)0.2h−1 Mpc) scaled offset distribution be-
tween the redMaPPer centers and the X-ray emission peaks for the redMaP-
Per DES samples from the XMM archival observations. The distribution
can be fitted with two components – a concentrated component that rep-
resents the well centered redMaPPer clusters, and an extended component
that represents the mis-centered redMaPPer clusters. The best fit DES off-
set model is shown as the solid lines (black: well-centered model, red: mis-
centered model), with the shaded regions representing the uncertainties. As
a comparison, we also show the corresponding offset distribution from the
analysis with Chandra archival data (blue dashed histogram).

Figure 14. Centering offset parameter constraints (Equation 1) for the
XMM SDSS (gray) redMaPPer samples. 76± 6% of the SDSS redMaP-
Per clusters appear to be well centered (indicated by the ρ parameter).
For the mis-centered clusters, their mis-centering offsets is characterized
by a Gamma distribution with a characteristic offset (the τ parameter) of
0.16± 0.03 Rλ. As a comparison, we also show the corresponding model
constraints from the SDSS analysis with Chandra archival data (blue). The
prior central values adopted in DES cosmological analyses as described in
Section 5 are shown as the black dashed lines.

tions. Figure 14, 15 and Table 4 show the model parameter con-
straints from these XMM samples. Theσ parameter in our redMaP-
Per centering offset model (Equation 1) represents the X-ray peak
offset to cluster central galaxy for well-centered clusters, which is
further smeared by X-ray peak identification uncertainty and X-
ray telescope PSFs. Since σ is in the unit of physical distance, the
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Figure 15. Centering offset parameter constraints (Equation 1) for the
XMM DES (gray) redMaPPer samples. 74 ± 10% of the DES redMaP-
Per clusters appear to be well centered (indicated by the ρ parameter).
For the mis-centered clusters, their mis-centering offsets is characterized
by a Gamma distribution with a characteristic offset (the τ parameter) of
0.20± 0.07 Rλ. As a comparison, we also show the corresponding model
constraints from the DES analysis with Chandra archival data (blue). The
prior central values adopted in DES cosmological analyses as described in
Section 5 are shown as the black dashed lines.

σ difference can be driven by the different angular resolutions of
XMM and Chandra at low redshift, and other x-ray peak identi-
fication uncertainties, and x-ray peak-galaxy center separations at
higher redshift. Hence, we do not expect this parameter to agree be-
tween XMM and Chandra, and the σ difference is especially larger
for the lower redshift SDSS redMaPPer samples. For the other two
parameters of the model, ρ and τ, which respectively represent the
well-centered fractions of redMaPPer and the centering offset of
mis-centered redMaPPer clusters, the constraints from XMM are
consistent with those from Chandra for both the SDSS and DES
redMaPPer samples within 2 standard deviations.

Notably, no selection cuts in the XMM analysis were made
to make its centering model constraints better match the Chandra
results, yet their centering offset results are consistent with each
other. We conclude that the redMaPPer mis-centering offset mod-
eling presented in this paper are robust upon investigation with
archival XMM data.

7 SUMMARY

This analysis makes use of the archival X-ray observations to con-
strain the centering performance of the redMaPPer cluster find-
ing algorithm. We calibrate the well-centered fraction of redMaP-
Per clusters for both the SDSS and DES samples with the X-ray
emission peaks. The offsets between the redMaPPer centers and X-
ray peaks are well modeled by a two component distribution, which
indicates that 69+3.5

−5.1% and 83.5+11.2
−7.5 % of the clusters are well cen-

tered in the SDSS and DES samples. The offset distribution of the
mis-centered redMaPPer clusters are modeled with a Gamma dis-
tribution, and cluster mass modeling appears to be more sensitive to

Table 4. Centering offset Parameter constraints (Equation 1) for the XMM
DES and SDSS redMaPPer samples.

ρ σ τ

Prior [0.3,1] [0.0001,0.1] [0.08,0.5]

XMM SDSS Posterior 0.781+0.055
−0.038 0.0432+0.0063

−0.0059 0.201+0.026
−0.039

XMM DES Posterior 0.815+0.059
−0.085 0.053+0.012

−0.011 0.185+0.066
−0.041

the accuracy of these mis-centering offsets than the mis-centering
fraction.

With the upcoming DES Year 3 and Year 5 data, we expect
the redMaPPer centering constraints to continue improving with ∼
2 times larger overlapping samples between DES and archival X-
ray observations, which may permit us to quantify the dependence
of the centering parameters on cluster properties, such as cluster
richness, redshift, X-ray temperature and luminosity. The current
improvement has already lowered the cluster weak lensing mass
modeling uncertainties due to mis-centering, to the extent of being
in-substantial comparing to the other modeling systematic effects.
Since mis-centering is often assumed to be uncorrelated with clus-
ter mass distributions in weak lensing analyses, with the anticipated
level of improvement, one may wish to investigate the correlations
of mis-centering with other cluster lensing systematic effects, such
as cluster mass modeling uncertainties, cluster orientatoin, triaxial-
ity and projection (McClintock et al. 2019).

The cluster richness estimates tend to be biased lower by
mis-centering. In this paper, we propose a richness bias model
to describe the effect, which is validated by X-ray centered rich-
ness measurements. The richness bias is offset dependent, low for
clusters with small mis-centering offset, but larger than 50% for
severely mis-centered clusters. Cluster cosmology studies based on
full depth DES data or LSST data should explicitly account for this
effect to avoid biased cosmological parameter inferences.

Code used in this analysis is available from
https://github.com/yyzhang/center_modeling_y1.
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