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Universal hypotrochoidic law for random matrices with cyclic correlations
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The celebrated elliptic law describes the distribution of eigenvalues of random matrices with correlations
between off-diagonal pairs of elements, having applications to a wide range of physical and biological systems.
Here, we investigate the generalization of this law to random matrices exhibiting higher-order cyclic correlations
between k tuples of matrix entries. We show that the eigenvalue spectrum in this ensemble is bounded by a
hypotrochoid curve with k-fold rotational symmetry. This hypotrochoid law applies to full matrices as well as
sparse ones, and thereby holds with remarkable universality. We further extend our analysis to matrices and
graphs with competing cycle motifs, which are described more generally by polytrochoid spectral boundaries.
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Determining the eigenvalue spectra of large random matri-
ces is a rich theoretical problem [1] with many applications in
fields as diverse as telecommunications [2], quantum physics
[3], ecology [4,5], and economics [6]. A key result in this field
is the elliptic law [7], which states that in the limit of large
matrix size the eigenvalues for random matrices with correla-
tions between symmetric pairs of entries are confined within
an ellipse in the complex plane. This result originating from
over 30 years ago still drives scientific developments today,
in both mathematical theory [8–12] as well as applications
[5,13].

As the applications of random matrix theory have diversi-
fied, so too have the ensembles under study. Existing gener-
alizations of the elliptic law fall broadly into three categories.
There is a large body of theoretical work concerning random
matrix ensembles defined by potential functions, where the
quadratic case recovers the elliptic law, but more complicated
potentials produce interesting spectral distributions (see, e.g.,
[14,15]). Alternatively, for some applications it is necessary
to impose a system-level structure such as modularity (see,
e.g., [16]), often by addition or multiplication with another
matrix (see [17,18] for methods and rigorous mathematical
results). Lastly, growing interest in the study of complex
networks has led many authors to consider sparse ensembles
containing many zero matrix elements, where the location of
the nonzero elements encodes the adjacency matrix of some
directed graph (or digraph), and can have striking eigenvalue
distributions [19,20] (see [21] for a recent topical review). In
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none of these directions of work has the problem of high-order
correlations been fully and directly addressed. This is not
for lack of interest. Multiparty interactions in dense systems
are important in biological applications such as ecology [22],
stabilization of microbial communities [23], or gene-gene
interactions [24] and can provide valuable engineering in-
sights into machine learning [25,26] and control theory [27].
Moreover, most of the sparse random matrix literature hinges
on the assumption of a treelike interaction structure; it remains
a long-standing and important problem to allow the relaxation
of this assumption, inducing higher-order correlations.

Here, we investigate the generalization of the elliptic law
to ensembles, both dense and sparse, featuring higher-order
correlations. In the case that there is a single dominant cor-
relation order k, we find that the spectrum is bounded by a
hypotrochoid curve (i.e., the path of a point located on a small
wheel that rolls inside a larger wheel) with k-fold rotational
symmetry (see Fig. 1 for an illustration). Surprisingly, we
thereby recover the spectral boundary of a highly structured
system, a sparse regular digraph [19,20], but in a much more
general and universal context. Extending this result further to
the case where more than one correlation order is present, we
find a more general family of polytrochoid boundary curves
described by multiple linked gears [28].

Dense matrices. We study (N × N )-dimensional non-
Hermitian matrices with real or complex entries indepen-
dently drawn from a distribution with zero mean and bounded
variance. For any of such matrix M, the density μ(z) of com-
plex eigenvalues z can be obtained from a Green’s function of
the form [17,29,30]

G(z, z∗) =
(

z1 − M iλ1

iλ1 z∗1 − M†

)−1

≡
(

G11 G12

G21 G22

)
, (1)
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FIG. 1. Hypotrochoid curves (black lines) bounding the eigen-
value spectra (blue dots) of random matrices with higher-order
correlations. Left: a dense N × N random matrix M with TrM5/N =
0.075 and other correlations negligible. Right: a random digraph in
which each node appears in exactly two directed cycles of length
three, with no other edges. In both cases N = 1000. The large and
small red circles respectively show the fixed and rotating wheels
describing the hypotrochoid curve.

where z∗ denotes complex conjugation and M† the adjoint; for
a real matrix this is just the transpose. Thereby

μ(z) = 1

π

∂g11

∂z∗ ,

g(z, z∗) = lim
λ→0+

(
Tr G11 Tr G12

Tr G21 Tr G22

)
≡

(
g11 g12

g21 g22

)
. (2)

For a random matrix M, the ensemble-averaged density μ(z)
therefore follows from g(z, z∗).

This can be used to derive the elliptic law of random ma-
trices in the large N limit, which serves as useful preparation.
Let us expand

G = Z−1
∞∑

�=0

(MZ−1)� (3)

into a geometric series, where

Z = Z ⊗ 1, Z =
(

z iλ
iλ z∗

)
, M =

(
M 0
0 M†

)
. (4)

When we perform the averaging, only certain products of
matrix elements Mnm survive. These can be organized into
groups of terms whose number scales differently in the matrix
dimension N . In particular, there will be many terms where
we can pair Mnm with (M†)mn to yield a finite average. If no
further correlations are present the leading order is

G = Z−1 + Z−1MGMG, (5)

where the lines denote a pair of matrices that are averaged.
This factorization of the average is called the noncrossing or
planar approximation. It enjoys a large degree of universality
based on combinatorial arguments, going much beyond the
case of Gaussian statistics where the indicated pairings repre-
sent Wick contractions, which are embodied in the framework
of free probability [30].

The elliptic law is derived straightforwardly from the ex-
pression above. Carrying out the average of the M matrices,
taking the partial trace on both sides, and rearranging for Z ,

one obtains

Z = N/g +
(

τ 2
2 g11 σ 2g12

σ 2g21 τ 2
2 g22

)
. (6)

Comparing terms in the off-diagonal in this equation (and
noting the constraints ḡ11 = ḡ∗

22 and g12 = g21 > 0), we find
two possible solutions: (i) either g12 = 0, or (ii) |ḡ11|2 − ḡ2

12 =
N/σ 2. The first of these yields ḡ11 proportional to z and
therefore holds only outside of the support of the spectrum.
Examining the diagonal elements of (6) in the case (ii) we
obtain

z = σ 2g∗
11 + τ 2

2 g11, (7)

which must be solved together with the constraint that |ḡ11|2 −
N/σ 2 > 0. The boundary of the spectrum is therefore found
by determining the values of z for which |ḡ11|2 = N/σ 2; in
the present case one finds an ellipse with foci ±2τ2

√
N . Inside

the support, one can solve (7) to determine g11 and apply (2)
to find that the spectral density μ(z) is uniform.

To generalize these results to ensembles with high-order
correlations where TrMk/N is a fixed parameter, we reinter-
pret the Hermitian contributions of weight τ2 in the elliptic
law as correlations of order k = 2. Introducing correlations
of general order k, we pick up additional contributions corre-
sponding to contractions

G = Z−1 +
∑

k

Z−1(MG)k−1MG, (8)

where k matrices are combined by the indicated lines. Our
results will show that these contributions give rise to a notable
departure from the universal elliptic law, and therefore consti-
tute the relevant perturbations beyond established theory. We
assume for now that there is just a single extra term of these,
of fixed k and with weight τk . This gives

Z = N/g +
(

τ k
k gk−1

11 σ 2g12

σ 2g21 τ k
k gk−1

22

)
(9)

and results, inside the spectrum, in the equations

z = σ 2g∗
11 + τ k

k gk−1
11 ,

g2
12 = |g11|2 − N/σ 2. (10)

The boundary of the support is therefore determined by the
condition |g11|2 = N/σ 2. In the large N limit we choose the
scalings σ 2 = N−1, τ k

k = ρkN1−k to balance the contribution
of terms in Eq. (10). With the parametrization g11 = Neiϕ ,
which we insert into Eq. (10), the boundary curve then be-
comes

zb(ϕ) = e−iϕ + ρkei(k−1)ϕ. (11)

This equation is precisely the complex parametrization of a
hypotrochoid curve in which the small and large wheels have
radii in a ratio of 1 : (k − 1). In Fig. 2 we illustrate this result
numerically for various values of k and ρk; see [31] for the
matrix generation algorithm.

Note that (although hard to determine from Fig. 2), for k >

2 the density of eigenvalues inside the hypotrochoid support
is in fact not uniform; in general, solutions to Eq. (10) do not
have the property that ∂ ḡ11/∂z∗ is constant. This distribution
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FIG. 2. Hypotrochoid curves (black lines) bounding the eigen-
value spectra (blue dots) of random matrices with correlations
TrMk = Nρk .

is, however, universal in the sense that it is determined entirely
by the parameters σ 2 and ρk , and other properties of the
distribution of matrix elements are unimportant. We will now
explore to what extent this universality extends to sparse
matrices.

Sparse digraphs. Square matrices can be seen as an alterna-
tive representation of weighted digraphs, where the entry Mnm

corresponds to the weight of the edge going from node n to
node m. This implies that for large dense graphs with random
weights we can obtain the eigenvalues of their adjacency
matrix by the previous methods. However, it is well known
that sparsity can change the eigenvalue distribution substan-
tially [32–34]. Surprisingly, the hypotrochoidic law (11) also
applies to highly structured sparse systems. Randomly gen-
erated digraphs in which each node belongs to exactly d
directed cycles of length k were studied in [19,20], where it
was shown that the adjacency matrices of these graphs have
hypotrochoidic spectra in the limit of large network size.

This result extends further to disordered directed random
graph ensembles. In the Supplemental Material [31] we apply
effective medium approximation (EMA) [35] to derive the
following hypotrochoidic law for the spectral boundary of
cyclic random digraphs:

zb(ϕ) = 1

t
e−iϕ + d̂t k−1ei(k−1)ϕ, (12)

where k is the length of cycles, d̂ is the (degree biased) number
of cycles per node [31], and t is the unique positive real
solution of (d̂ − 1)t2k − d̂t2 + 1 = 0. The EMA is technically
valid in the case 1 � d̂ � N ; however, numerical simulations
show excellent agreement down to relatively small values of
d̂ (see Fig. 3). For fixed node degrees it is exact.

To understand how both sparse and dense cyclic ensembles
share the same universal behavior, we explore the asymptotic
behavior of Eq. (12) as d̂ → ∞. For a direct comparison we
rescale the adjacency matrix of the graph by d̂−1/2, which
corresponds to the factor σ = N−1/2 that we used before and
that normalizes rows and columns. The previous result (12)
for k = 3 then reads

zb(ϕ) = d̂−1/2t−1e−iϕ − (d̂1/2 − d̂−1/2)t2e2iϕ (13)

(a)

(b)

FIG. 3. Hypotrochoid curves (black lines) bounding the eigen-
value spectra (blue dots) of sparse random digraphs composed of
k cycles. In (a) the networks were generated to have nodes with
fixed in-degree and out-degree, here d = 2; in (b) nodes are assigned
to cycles uniformly randomly, resulting in Poisson distributions for
both in-degree and out-degree, with the mean degree being 〈d〉 = 8
in this case (for Poisson graphs d̂ = 〈d〉). Note the similarity of
(b) with the plots presented in Fig. 2.

with t being the same as in Eq. (12). We note that for large d̂ ,
t ∼ d̂−1/2, so that we recover the support (11) for full matrices
with an effective parameter ρ3 ∼ d̂−1/2.

The same connection indeed appears when we compare the
definition of the quantities σ2 and ρτ from the traces of M. By
applying the noncrossing approximation to the full matrix we
find

lim
N→∞

1

N
Tr M3l = 1

2n + 1

(
3l

l

)
ρ l

3, (14)

lim
N→∞

1

N
Tr (MM†)l = 1

l

(
2l

l

)
, (15)

while carrying out the corresponding combinatorics for the
graphs gives

lim
N→∞

1

N
Tr M3l = A(3)(l, d̂ )d̂−3l/2, (16)

lim
N→∞

1

N
Tr (MM†)l = A(2)(l, d̂ )d̂−l , (17)

which we express in terms of the number of self-returning
walks of length 2l from the root of an infinite k-regular tree:

A(m)(l, d̂ ) = d̂

l

l−1∑
j=0

(
ml

j

)
(l − j)(d̂ − 1) j . (18)

Asymptotically for large d̂ , A(m)(l, d̂ ) = d̂ l

l

( ml
l−1

) =
d̂ l

ml−l+1

(ml
l

)
, so that both expressions again match up for

ρ3 ∼ d̂−1/2. It is worth mentioning that the traces of M, which
can be computed explicitly, relate to asymptotic spectral
statistics in the so-called “trace formulas” which are relevant
in random matrix theory [36] as well as in semiclassical
physics [37,38]. These observations lend further support to
our conclusion that the cycle structure captures the essential
universal features of the eigenvalue distribution beyond the
elliptic law.
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FIG. 4. Polytrochoid curve (black line) bounding the eigenvalue
spectrum (blue dots) of a sparse regular random digraph composed
of 3-cycles and 4-cycles, with each node appearing in four of each. In
this case the curve is traced by the dot marked on the smaller wheel,
which makes three turns around the larger wheel while the larger
wheel makes one turn around the origin, in the opposite direction.

Polytrochoid spectra. Starting from Eq. (8), our approach
generalizes to matrices with correlations of multiple orders,
leading to a boundary curve

zb(ϕ) = e−iϕ +
∑

k

ρkei(k−1)ϕ. (19)

The curve described by this equation is an example of the very
general polytrochoid family. For the particular case of two
competing correlation orders, the curve is described by tracing
the path of a point in a wheel rotating around a larger wheel,
which itself is rotating in the opposite direction around the
origin. Adding further correlation orders would correspond
to the addition of more linked wheels with the same drawing
procedure.

Polytrochoid spectral boundaries are also found in digraphs
with mixed cycle lengths, where each vertex connects to dk k
cycles of weight wk (see [31] for a derivation in the case of
two competing cycle motifs). In the limit of large degrees, we
obtain the explicit formula

z

d̄
= e−iϕ + d1

(w1

d̄

)k1

ei(k1−1)ϕ + d2

(w2

d̄

)k2

ei(k2−1)ϕ, (20)

where d̄ =
√

d1w
2
1 + d2w

2
2 . Figure 4 shows a numerical illus-

tration of this result, which is in excellent agreement with our
derivations for relatively large degrees.

Discussion. We have shown that high-order correlations
in the entries of a random matrix give a surprising and even
beautiful shape to its eigenvalues, with the boundary given by
a hypotrochoid, generalizing the classical result from Girko
[7]. Furthermore, we have uncovered a remarkable degree
of universality of this result by connecting it to the known

case of regular graphs with cyclic motifs [19], and studied
the relationship between both cases. Our derivations are in
excellent agreement with numerical results.

Our results have a simple interpretation in terms of systems
theory. A feedback loop is a classical control theory tool to
enhance or dampen certain frequencies. A cycle of length k
where the product of the edge weights is w is a feedback loop
with delay k and weight w, therefore a graph with abundance
of cycles of length k with positive feedback would resonate
at a frequency 1

k . On the spectral side, the presence of large
positive correlations of order k leads to dominant eigenvalues
(or poles, in control theory terms) with phases 2π j

k for j < k.
This interpretation can also be used in the other direction.

Matrices and graphs are useful models to represent the interac-
tions between elements, and our results show that random ma-
trix theory can account for intricate multielement interactions.
That is, the stability and resonance properties of complex
systems with interconnected feedback loops can be studied
by converting the loops into graph cycles and then applying
our results in random matrix theory. For example, designing
large networked systems such as the Internet or power grids
is a challenging problem due to the amount of feedback
loops present [39,40]. Likewise, biological regulatory systems
[41–43] include many intertwined feedback loops that render
their analysis difficult. In all those examples, their stability
and dynamical properties can be studied through the spectrum
of their adjacency matrix, which can be difficult to estimate.
However, finding frequent cycles and their corresponding de-
lays is typically easier [44–46], meaning that we can leverage
the simplicity of finding cycles to obtain rigorous results on
the stability of those systems. We hope that the techniques
and results presented here may inspire new developments in
these fields.

Finally, the system theory interpretation also provides
relevant theoretical insights and questions. For instance, the
effects of negative correlations, which in systems theory
corresponds to a rotation of the poles, is also explained by
Eqs. (11) and (12). On the other hand, the combination of
cycles with positive and negative feedbacks for the same
length is not fully covered by our method: in the case of a full
matrix or a dense digraph, the positive and negative feedbacks
appear in a single connected graph and thus cancel each
other—meaning that Eqs. (11) and (12) remain valid—but in
very sparse digraphs the presence of many finite-size isolated
subgraphs implies that there are components dominated by
either positive or negative feedback, and thus the effective
medium approximation does not hold.

Acknowledgments. This work was supported by the
Royal Society (T.R.) and EPSRC (H.S.) via Grant No.
EP/P010180/1. The authors are grateful to Izaak Neri for
highlighting important prior work on sparse networks with
cycles.

[1] G. W. Anderson, A. Guionnet, and O. Zeitouni, An Introduction
to Random Matrices, Cambridge Studies in Advanced Mathe-
matics (Cambridge University Press, Cambridge, UK, 2009).

[2] A. M. Tulino and S. Verdú, Found. Trends Commun. Inf.
Theory 1, 1 (2004).

[3] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys.
Rep. 299, 189 (1998).

[4] R. M. May, Nature (London) 238, 413 (1972).
[5] S. Allesina and S. Tang, Nature (London) 483, 205

(2012).

010302-4

https://doi.org/10.1561/0100000001
https://doi.org/10.1561/0100000001
https://doi.org/10.1561/0100000001
https://doi.org/10.1561/0100000001
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1016/S0370-1573(97)00088-4
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/nature10832
https://doi.org/10.1038/nature10832
https://doi.org/10.1038/nature10832
https://doi.org/10.1038/nature10832


UNIVERSAL HYPOTROCHOIDIC LAW FOR RANDOM … PHYSICAL REVIEW E 100, 010302(R) (2019)

[6] B. Rosenow, in APS March Meeting Abstracts (2000),
p. P5.004.

[7] V. Girko, Theory Probab. Appl. 30, 677 (1986).
[8] T. Tao, V. Vu, and M. Krishnapur, Ann. Probab. 38, 2023

(2010).
[9] F. Götze, A. Naumov, and A. Tikhomirov, Random Matrices:

Theory Appl. 4, 1550006 (2015).
[10] H. H. Nguyen and S. O’Rourke, Int. Math. Res. Notices 2015,

7620 (2014).
[11] G. Marinello and M. P. Pato, J. Phys. A: Math. Theor. 51,

375003 (2018).
[12] N. Alexeev and A. Tikhomirov, J. Theor. Prob. 30, 1170 (2017).
[13] P. V. Aceituno, Y. Gang, and Y.-Y. Liu, arXiv:1707.02469.
[14] P. Elbau and G. Felder, Commun. Math. Phys. 259, 433 (2005).
[15] P. M. Bleher and A. B. Kuijlaars, Adv. Math. 230, 1272 (2012).
[16] J. Grilli, T. Rogers, and S. Allesina, Nat. Commun. 7, 12031

(2016).
[17] T. Rogers, J. Math. Phys. 51, 093304 (2010).
[18] C. Bordenave, Electron. Commun. Probab. 16, 104 (2011).
[19] F. L. Metz, I. Neri, and D. Bollé, Phys. Rev. E 84, 055101(R)

(2011).
[20] D. Bollé, F. L. Metz, and I. Neri, in Spectral Analysis, Differ-

ential Equations and Mathematical Physics: A Festschrift in
Honor of Fritz Gesztesy’s 60th Birthday, edited by H. Holden,
B. Simon, and G. Teschl (American Mathematical Society,
Providence, 2013), pp. 35–58.

[21] F. L. Metz, I. Neri, and T. Rogers, J. Phys. A: Math. Theor.
(2019), doi:10.1088/1751-8121/ab1ce0.

[22] J. M. Levine, J. Bascompte, P. B. Adler, and S. Allesina, Nature
(London) 546, 56 (2017).

[23] X. Guo and J. Q. Boedicker, PLOS Comput. Biol. 12, e1005079
(2016).

[24] M.-H. Wang, C. Fiocchi, X. Zhu, S. Ripke, M. I. Kamboh, N.
Rebert, R. H. Duerr, and J.-P. Achkar, Hum. Genet. 133, 547
(2014).

[25] T. J. Sejnowski, in Neural Networks for Computing, edited by J.
S. Denker, AIP Conf. Proc. No. 151 (AIP, Melville, NY, 1986),
pp. 398–403.

[26] L. Personnaz, I. Guyon, and G. Dreyfus, Europhys. Lett. 4, 863
(1987).

[27] J. Doyle and G. Stein, IEEE Trans. Automat. Contr. 26, 4
(1981).

[28] See, for example, G. M. Barrett, Rotary hydraulic motor, US
Patent No. 3037488A (1962).

[29] J. Feinberg and A. Zee, Nucl. Phys. B 501, 643 (1997).
[30] R. A. Janik, W. Nörenberg, M. A. Nowak, G. Papp, and I.

Zahed, Phys. Rev. E 60, 2699 (1999).
[31] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.100.010302 for details on the matrix gener-
ation algorithm, background on the elliptic law and the cavity
method, the limiting behavior of digraphs with a high degree,
and the derivation of the spectral density for graphs with two
competing cycle motifs. This includes Refs. [47–49].

[32] G. Semerjian and L. F. Cugliandolo, J. Phys. A 35, 4837
(2002).

[33] G. Biroli and R. Monasson, J. Phys. A 32, L255 (1999).
[34] T. Rogers and I. P. Castillo, Phys. Rev. E 79, 012101 (2009).
[35] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, and A. N.

Samukhin, Phys. Rev. E 68, 046109 (2003).
[36] F. Haake, M. Kus, H.-J. Sommers, H. Schomerus, and K.

Zyczkowski, J. Phys. A 29, 3641 (1996).
[37] F. Haake, Quantum Signatures of Chaos (Springer Science &

Business Media, Berlin, 2013), Vol. 54.
[38] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics

(Springer Science & Business Media, Berlin, 2013), Vol. 1.
[39] P. Fairley, IEEE Spectr. 41, 28 (2004).
[40] S. H. Low, F. Paganini, and J. C. Doyle, IEEE Control Syst.

Mag. 22, 28 (2002).
[41] R. Thomas, D. Thieffry, and M. Kaufman, Bull. Math. Biol. 57,

247 (1995).
[42] A. Becskei and L. Serrano, Nature (London) 405, 590 (2000).
[43] M. Csete and J. Doyle, Trends Biotechnol. 22, 446 (2004).
[44] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, Science 298, 824 (2002).
[45] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, Nat. Genet.

31, 64 (2002).
[46] F. A. López, P. Barucca, M. Fekom, and A. C. C. Coolen,

J. Phys. A 51, 085101 (2018).
[47] J. T. Chalker and B. Mehlig, Phys. Rev. Lett. 81, 3367

(1998).
[48] H. Schomerus, K. M. Frahm, M. Patra, and C. W. J. Beenakker,

Physica A 278, 469 (2000).
[49] T. Rogers, C. P. Vicente, K. Takeda, and I. P. Castillo, J. Phys.

A 43, 195002 (2010).

010302-5

https://doi.org/10.1137/1130089
https://doi.org/10.1137/1130089
https://doi.org/10.1137/1130089
https://doi.org/10.1137/1130089
https://doi.org/10.1214/10-AOP534
https://doi.org/10.1214/10-AOP534
https://doi.org/10.1214/10-AOP534
https://doi.org/10.1214/10-AOP534
https://doi.org/10.1142/S2010326315500069
https://doi.org/10.1142/S2010326315500069
https://doi.org/10.1142/S2010326315500069
https://doi.org/10.1142/S2010326315500069
https://doi.org/10.1093/imrn/rnu174
https://doi.org/10.1093/imrn/rnu174
https://doi.org/10.1093/imrn/rnu174
https://doi.org/10.1093/imrn/rnu174
https://doi.org/10.1088/1751-8121/aad64f
https://doi.org/10.1088/1751-8121/aad64f
https://doi.org/10.1088/1751-8121/aad64f
https://doi.org/10.1088/1751-8121/aad64f
https://doi.org/10.1007/s10959-016-0685-5
https://doi.org/10.1007/s10959-016-0685-5
https://doi.org/10.1007/s10959-016-0685-5
https://doi.org/10.1007/s10959-016-0685-5
http://arxiv.org/abs/arXiv:1707.02469
https://doi.org/10.1007/s00220-005-1372-z
https://doi.org/10.1007/s00220-005-1372-z
https://doi.org/10.1007/s00220-005-1372-z
https://doi.org/10.1007/s00220-005-1372-z
https://doi.org/10.1016/j.aim.2012.03.021
https://doi.org/10.1016/j.aim.2012.03.021
https://doi.org/10.1016/j.aim.2012.03.021
https://doi.org/10.1016/j.aim.2012.03.021
https://doi.org/10.1038/ncomms12031
https://doi.org/10.1038/ncomms12031
https://doi.org/10.1038/ncomms12031
https://doi.org/10.1038/ncomms12031
https://doi.org/10.1063/1.3481569
https://doi.org/10.1063/1.3481569
https://doi.org/10.1063/1.3481569
https://doi.org/10.1063/1.3481569
https://doi.org/10.1214/ECP.v16-1606
https://doi.org/10.1214/ECP.v16-1606
https://doi.org/10.1214/ECP.v16-1606
https://doi.org/10.1214/ECP.v16-1606
https://doi.org/10.1103/PhysRevE.84.055101
https://doi.org/10.1103/PhysRevE.84.055101
https://doi.org/10.1103/PhysRevE.84.055101
https://doi.org/10.1103/PhysRevE.84.055101
https://doi.org/10.1088/1751-8121/ab1ce0
https://doi.org/10.1038/nature22898
https://doi.org/10.1038/nature22898
https://doi.org/10.1038/nature22898
https://doi.org/10.1038/nature22898
https://doi.org/10.1371/journal.pcbi.1005079
https://doi.org/10.1371/journal.pcbi.1005079
https://doi.org/10.1371/journal.pcbi.1005079
https://doi.org/10.1371/journal.pcbi.1005079
https://doi.org/10.1007/s00439-013-1395-z
https://doi.org/10.1007/s00439-013-1395-z
https://doi.org/10.1007/s00439-013-1395-z
https://doi.org/10.1007/s00439-013-1395-z
https://doi.org/10.1209/0295-5075/4/8/001
https://doi.org/10.1209/0295-5075/4/8/001
https://doi.org/10.1209/0295-5075/4/8/001
https://doi.org/10.1209/0295-5075/4/8/001
https://doi.org/10.1109/TAC.1981.1102555
https://doi.org/10.1109/TAC.1981.1102555
https://doi.org/10.1109/TAC.1981.1102555
https://doi.org/10.1109/TAC.1981.1102555
https://doi.org/10.1016/S0550-3213(97)00419-7
https://doi.org/10.1016/S0550-3213(97)00419-7
https://doi.org/10.1016/S0550-3213(97)00419-7
https://doi.org/10.1016/S0550-3213(97)00419-7
https://doi.org/10.1103/PhysRevE.60.2699
https://doi.org/10.1103/PhysRevE.60.2699
https://doi.org/10.1103/PhysRevE.60.2699
https://doi.org/10.1103/PhysRevE.60.2699
http://link.aps.org/supplemental/10.1103/PhysRevE.100.010302
https://doi.org/10.1088/0305-4470/35/23/303
https://doi.org/10.1088/0305-4470/35/23/303
https://doi.org/10.1088/0305-4470/35/23/303
https://doi.org/10.1088/0305-4470/35/23/303
https://doi.org/10.1088/0305-4470/32/24/101
https://doi.org/10.1088/0305-4470/32/24/101
https://doi.org/10.1088/0305-4470/32/24/101
https://doi.org/10.1088/0305-4470/32/24/101
https://doi.org/10.1103/PhysRevE.79.012101
https://doi.org/10.1103/PhysRevE.79.012101
https://doi.org/10.1103/PhysRevE.79.012101
https://doi.org/10.1103/PhysRevE.79.012101
https://doi.org/10.1103/PhysRevE.68.046109
https://doi.org/10.1103/PhysRevE.68.046109
https://doi.org/10.1103/PhysRevE.68.046109
https://doi.org/10.1103/PhysRevE.68.046109
https://doi.org/10.1088/0305-4470/29/13/029
https://doi.org/10.1088/0305-4470/29/13/029
https://doi.org/10.1088/0305-4470/29/13/029
https://doi.org/10.1088/0305-4470/29/13/029
https://doi.org/10.1109/MSPEC.2004.1317870
https://doi.org/10.1109/MSPEC.2004.1317870
https://doi.org/10.1109/MSPEC.2004.1317870
https://doi.org/10.1109/MSPEC.2004.1317870
https://doi.org/10.1109/37.980245
https://doi.org/10.1109/37.980245
https://doi.org/10.1109/37.980245
https://doi.org/10.1109/37.980245
https://doi.org/10.1007/BF02460618
https://doi.org/10.1007/BF02460618
https://doi.org/10.1007/BF02460618
https://doi.org/10.1007/BF02460618
https://doi.org/10.1038/35014651
https://doi.org/10.1038/35014651
https://doi.org/10.1038/35014651
https://doi.org/10.1038/35014651
https://doi.org/10.1016/j.tibtech.2004.07.007
https://doi.org/10.1016/j.tibtech.2004.07.007
https://doi.org/10.1016/j.tibtech.2004.07.007
https://doi.org/10.1016/j.tibtech.2004.07.007
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1038/ng881
https://doi.org/10.1038/ng881
https://doi.org/10.1038/ng881
https://doi.org/10.1038/ng881
https://doi.org/10.1088/1751-8121/aaa555
https://doi.org/10.1088/1751-8121/aaa555
https://doi.org/10.1088/1751-8121/aaa555
https://doi.org/10.1088/1751-8121/aaa555
https://doi.org/10.1103/PhysRevLett.81.3367
https://doi.org/10.1103/PhysRevLett.81.3367
https://doi.org/10.1103/PhysRevLett.81.3367
https://doi.org/10.1103/PhysRevLett.81.3367
https://doi.org/10.1016/S0378-4371(99)00602-0
https://doi.org/10.1016/S0378-4371(99)00602-0
https://doi.org/10.1016/S0378-4371(99)00602-0
https://doi.org/10.1016/S0378-4371(99)00602-0
https://doi.org/10.1088/1751-8113/43/19/195002
https://doi.org/10.1088/1751-8113/43/19/195002
https://doi.org/10.1088/1751-8113/43/19/195002
https://doi.org/10.1088/1751-8113/43/19/195002

