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Abstract

OFDMA is a popular coding scheme for mobile wireless communi-
cations. In OFDMA, one must allocate the available resources (band-
width and power) dynamically, as user requests arrive and depart in
a stochastic manner. Several exact and heuristic methods exist to do
this, but they all perform poorly in the “over-loaded” case, in which the
user demand is close to or exceeds the system capacity. To address this
case, we present a dynamic local search heuristic. A particular feature
of our heuristic is that it takes fairness into consideration. Simulations
on realistic data show that our heuristic is fast enough to be used in
real-time, and consistently delivers allocations of good quality.

Keywords: stochastic dynamic optimisation, local search, OFDMA
systems, mobile wireless communications.

1 Introduction

In modern mobile wireless communication systems, the base stations often
use a coding scheme called Orthogonal Frequency-Division Multiple Access
or OFDMA (see, e.g., [3]). In OFDMA, there are a number of transmission
channels, called subcarriers. At any given point in time, there is a set of
users with known demands. Each subcarrier must be assigned to only one
user, but a user may be assigned to more than one subcarrier. The data
rate for each subcarrier is a nonlinear function of the power allocated to it,
and there is a limited amount of power available.

There are actually many different optimisation problems associated with
OFDMA systems, with various objective functions, side-constraints and
planning horizons (see, e.g., [2, 9–14, 17, 19–21, 23–30]). Most of them have
been shown to be NP-hard [5, 15,16].
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In our earlier paper [12], we considered a relatively simple problem, in
which the set of users is treated as fixed. The problem is to allocate the power
to the subcarriers, and the subcarriers to the users, in order to maximise the
overall data rate, subject to satisfying the demand of each user. We called
this the joint subcarrier and power allocation problem with rate constraints
(SPARC), and presented an exact algorithm for it.

Now, let M be the maximum data rate achieveable by the system (in
megabits per second, Mb/s), and let D be the total demand (again in Mb/s).
When D/M ≤ 0.93, the algorithm in [12] is very fast, taking only a fraction
of a second. On the other hand, when D/M > 0.93, the algorithm becomes
unacceptably slow, sometimes taking minutes to find a feasible solution (or
prove infeasibility).

In this paper, we address the high-demand case. More precisely, let
D(t) denote the demand at time t. We are concerned with the situation in
which D(t)/M regularly exceeds 0.93. In this case, we say that the system
is overloaded. It turns out that a very different approach is needed for the
overloaded case. This is for several reasons:

1. At certain points in time, the system may not have the capacity to
satisfy all of the users.

2. Thus, we may need to be content with only partially satisfying the
users at certain times.

3. This in turn means that we must ensure that users are treated in a
manner that is perceived to be fair.

4. Since an exact approach is likely to be too slow, we must use a heuristic
approach.

5. To be of practical use, the heuristic must be able to re-optimise quickly,
as users arrive and depart. (Equivalently, it must be suitable for a
stochastic dynamic optimisation problem rather than a static one.)

To address these considerations, we devise a heuristic, based on the so-
lution of a single small convex program, followed by the periodic application
of local search. The neighbourhoods are specially designed so that we can
search them within a fraction of a second. Extensive simulations on realistic
data indicate that the heuristic is fast enough to be used in real-time, and
consistently delivers allocations of very good quality (according to various
quality measures).

We remark that our heuristic is most appropriate for so-called non-delay-
constrained traffic (such as emails and file requests), for which occasional
delays are acceptable. For delay-constrained traffic (such as phone calls and
live video), our heuristic may be less useful. (See Tao et al. [25] for more on
these two kinds of traffic.)
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The paper is structured as follows. Section 2 contains a brief literature
review. Section 3 describes the new problem in detail, and Section 4 de-
scribes the heuristic itself. The computational results are given in Section 5
and some final remarks are made in Section 6.

Throughout the paper, we let I denote the set of subcarriers. Each sub-
carrier i ∈ I has a known bandwidth Bi (measured in MHz) and a known
noise power Ni (in watts). The set of users at time t is denoted by J(t).
The demand of user j ∈ J(t), in Mb/s, is denoted by dj . The total demand
at time t is denoted by D(t). That is, D(t) =

∑
j∈J(t) dj . When we are

considering only a single time period, we drop the index t and just write J
and D, respectively. The amount of power available, in watts, is denoted by
P . We assume that the demand process is stationary, so that the expected
value of D(t) is constant over time. Borrowing from queueing theory par-
lance, we call the expected value of D(t)/M the traffic intensity and denote
it by ρ.

2 Literature Review

As mentioned in the introduction, there is by now an extensive literature on
optimisation in OFDMA systems. For the sake of brevity, we review here
only a few works of direct relevance.

Consider a single subcarrier i ∈ I. The classical Shannon-Hartley theo-
rem [22] states that, if we allocate p watts of power to subcarrier i, then the
maximum possible data rata achievable via subcarrier i, in bits per second,
is

fi(p) = Bi log2

(
1 +

p

Ni

)
.

We remark that this function is concave (over the domain R+).
Now consider the case of multiple subcarriers, and recall that M denotes

the maximum data rate achievable by the system. One can compute M
quickly by solving the following NLP:

max

{∑
i∈I

fi(pij) :
∑
i∈I

pi ≤ P, p ∈ R|I|+

}
. (1)

This NLP can be solved quickly using a method called water filling (see,
e.g., [1, 3, 4]).

Now we recall the formulation of the SPARC presented in [12]. This
formulation considers only a single time period. For each i ∈ I and j ∈ J ,
let xij be a binary variable, taking the value 1 if and only if subcarrier i
is assigned to user j, and let pij be a continuous variable, taking the value
zero if xij = 0, but otherwise representing the amount of power supplied
to subcarrier i. The SPARC is then formulated as the following mixed 0-1
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convex program:

max
∑

i∈I
∑

j∈J fi(pij)

s.t.
∑

i∈I
∑

j∈J pij ≤ P (2)∑
i∈I fi(pij) ≥ dj (j ∈ J) (3)∑

j∈J xij ≤ 1 (i ∈ I) (4)

pij ≤ Pxij (i ∈ I, j ∈ J) (5)

pij ∈ R+ (i ∈ I, j ∈ J)

xij ∈ {0, 1} (i ∈ I, j ∈ J).

The constraint (2) imposes the limit on the total available power. The
constraints (3) ensure quality of service (QoS). The constraints (4) ensure
that each subcarrier is allocated to at most one user. The constraints (5),
which are the variable upper bounds, ensure that xij takes the value 1 if
pij > 0. The remaining constraints are self-explanatory.

As mentioned in the introduction, the algorithm in [12] works well when
D/M ≤ 0.93, but is slow otherwise. Moreover, when 0.93 < D/M ≤ 1, there
is a chance that the SPARC is infeasible. We conclude that the approach
in [12] is suitable only when (a) the user demands are more-or-less static,
and/or (b) D(t)/M rarely exceeds 0.93.

Finally, we mention that there is a stream of literature on fairness in
multi-user communications systems (see, e.g., [2, 6–8, 17–19, 23, 24, 26]). As
mentioned above, fairness will be relevant to us because, when the traffic
intensity is high, we may not be able to satisfy the demands of all users.

3 A Stochastic Dynamic Version of the SPARC

It turns out that some thought is needed before one can formally define a
stochastic dynamic version of the SPARC. In particular, one must consider
(i) what constitutes an instance of the problem, and (ii) which function is
to be optimised. These issues are covered in the following two subsections.

3.1 Instance data

As in the standard SPARC, we assume that the set of subcarriers I is fixed,
and that we are given the bandwidths Bi, noise powers Ni, and power limit
P . (In real-life systems, the Ni may fluctuate a little over time. Our ap-
proach can be extended to cover that case, but we do not give details, for
brevity.) As for the users, we make the following assumptions:

• User arrivals are Markovian with known average rate λ (per second).

• The durations of the user requests are i.i.d., with known probability
distribution and known mean t̄ (in seconds).
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• The user demands follow a known probability distribution with known
mean d̄ (in Mb/s).

One can check that, at steady-state, the expected number of users is λ t̄
and the expected total user demand is D̄ = λ t̄ d̄. For the traffic intensity,
we have ρ = D̄/M . In our preliminary experiments, we found that ρ is a
reasonably reliable measure of the difficulty of an instance. (Other obvious
potential drivers of difficulty are the variances of the user durations and user
demands, but we did not find these to be so important in our simulations.)

3.2 Objective function

Some thought also needs to be paid to the objective function. In particular,
one must address the issue of fairness mentioned in the introduction.

Now, let us temporarily consider the static case, in which all user de-

mands are known. Let p ∈ R|I| |J |+ be a fixed power allocation. For each
user j ∈ J , we define the user rate rj =

∑
i∈I fi(pij) and the satisfaction

sj = rj/dj . Then, the demand of a user is met if and only if the satisfaction
is at least one. A natural objective is then to maximise the mean of the sj .

Unfortunately, the use of this “max-mean” objective can lead to very
unfair solutions when the user demands have a wide range.

Example: Suppose that |J | = 2, and that the demands are 10 and 1.
Suppose that |I| = 3, and the subcarriers have data rates of 8, 2 and 1,
respectively. If we assign subcarriers 1 and 2 to user 1 and subcarrier 3 to
user 3, the mean satisfaction will be 1. But if we assign only subcarrier 1 to
user 1 and subcarriers 2 and 3 to user 3, the mean satisfaction will be 1.9.
So the second vector is preferable according to the “max-mean” criterion,
even though the first allocation completely satisfies both users. �

To avoid such unfair solutions, one could attempt to maximise the mini-
mum satisfaction instead. Unfortunately, ‘max-min’ optimisation problems
are notoriously difficult to solve, by either exact or heuristic methods, be-
cause the objective function is ‘flat’ (i.e., small changes in p may lead to no
change in the value of the objective).

After some experimentation, we discovered the following alternative ob-
jective function:

Definition 1 The “weighted harmonic mean satisfaction” (WHMS) is:

D∑
j∈J djs

−1
j

=
D∑

j∈J d
2
j/rj

.

In our experience, maximising the WHMS tends to lead to solutions that
perform very well according to the max-min criterion. Indeed, in the above
example, the first solution has a WHMS of 11/(10+1) = 1, whereas the
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second (unfair) solution has a WHSM of 11/
(
100
8 + 1

3

)
= 6/7. The following

proposition gives a partial explanation for this phenomenon.

Proposition 1 Let d ∈ R|J |+ be a demand vector and let R be a positive
constant. Consider the following two continuous optimisation problems: the
“max-min” problem

max

min
j∈J
{rj/dj} :

∑
j∈J

rj = R, rj > 0 (j ∈ J)


and the “max WHMS” problem

max

 D∑
j∈J d

2
j/rj

:
∑
j∈J

rj = R, rj > 0 (j ∈ J)

 .

These two problems have the same optimal solutions.

Proof. The solution to the max-min problem is to set rj to djR/D for all
j. This gives each user a satisfaction of R/D. Now, since D is fixed, the
max WHMS problem is equivalent to

min

∑
j∈J

d2j/rj :
∑
j∈J

rj = R, rj > 0 (j ∈ J)

 .

We solve this last problem using the method of Lagrange multipliers. We
give the constraint

∑
j∈J rj = R a Lagrange multiplier λ and consider the

Lagrangian

L(r, λ) =
∑
j∈J

d2j/rj + λ

∑
j∈J

rj −R

 .

We now have

∂L(r, λ)/∂rj = λ− d2j/r2j (j ∈ J).

Setting these partial derivatives to zero, we obtain d2j/r
2
j = λ for all j,

or, equivalently, rj =
√
λ/dj for all j. Thus, the optimal r values are

proportional to 1/dj . In other words, rj is set to djR/D for all j, just as in
the max-min solution. �

Now let us return to the stochastic dynamic case. In light of the above,
one might wish to compute a policy that maximises the expected WHMS,
where the expectation is taken over an infinite number of time periods.
Unfortunately, this looks like an extremely difficult task, especially in the
overloaded case. So, as mentioned in the introduction, we content ourselves
with a heuristic approach that updates the resource allocation in each time
period.
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4 The Heuristic

In this section, we present a heuristic for maximising the expected WHMS
when the system is overloaded.

4.1 Initial solution

Before one can apply local search, one needs an initial solution to start
from. To construct an initial solution, we use the greedy heuristic described
in Algorithm 1. During the course of the algorithm, rj is the current data
rate given to user j. The choice of the factor of

√
dj is designed to make it

more likely that channels with high data rate will be allocated to users with
high demand, yet still ensure that at least some of the demand of each user
is satisfied.

Algorithm 1: Greedy Constructive Heuristic

Input: bandwidths Bi, noise powers Ni, initial demands dj .
Solve the NLP (1) and let p∗ be the optimal solution;
Sort the channels in non-increasing order of fi(p

∗
i ) and let L be the

sorted list;
for each user j ∈ J do

Set rj := 0;
end
for each channel i in the list L do

Assign channel i to the user with the smallest value of rj/
√
dj ;

(In case of ties, assign it to the user with highest dj);
Increase rj by fi(p

∗
i );

end
Output: Initial allocation of channels to users.

4.2 Local search

To improve the initial solution, we use a straighforward local search heuristic.
This heuristic consists of two main phases, as described in Algorithms 2 and
3.

In the first phase, we take each subcarrier and check if it should be assign
it to another user. This phase can be implemented to run in only O(|I| |J |)
time. Indeed, maximising the WHMS is equivalent to minimising

∑
j∈J

d2j∑
i∈I fi(pij)

. (6)
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Algorithm 2: First Improvement Phase

Input: bandwidths Bi, noise powers Ni, demands dj ,
fixed power allocation vector p∗,
current subcarrier allocation, current data rates rj .

for each subcarrier i ∈ I do
Let k be the user to which subcarrier i is currently allocated;
for each user j ∈ J \ {k} do

if the WHMS can be improved by re-allocating i to j then
Re-allocate subcarrier i to user j;
Update rk and rj ;

end

end

end
Output: Improved subcarrier allocation.

Algorithm 3: Second Improvement Phase

Input: bandwidths Bi, noise powers Ni, demands dj ,
fixed power allocation vector p∗,
current subcarrier allocation, current data rates rj .

for each pair of subcarriers {i, i′} ⊂ I do
Let k, k′ be the users to which the subcarriers are currently
allocated;

if k 6= k′ and the WHMS can be improved by swapping the
allocation of subcarriers i and i′ then

Swap the allocation of subcarriers i and i′;
Update rk and rk′ ;

end

end
Output: Improved subcarrier allocation.
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If we take channel i and assign it to user j instead of user k, the function
(6) will increase by

d2k
rk − p∗i

−
d2k
rk

+
d2j

rj + p∗i
−
d2j
rj
.

If this is negative, then we can accept the proposed move. We can check
this in constant time for a given i and j.

In the second phase, we take pairs of subcarriers and swap the users. This
phase can be implemented to run in O

(
|I|2
)

time. Indeed, if subcarriers i
and i′ are assigned to users k and k′, respectively, and we swap the allocation,
the function (6) will increase by

d2k
rk + p∗i′ − p∗i

−
d2k
rk
−

d2k′

rk′ + p∗i − p∗i′
+
d2k′

rk′
.

4.3 Extension to the dynamic case

To adapt our heuristic to the dynamic case, we basically run the local search
heuristic periodically. Details are given in Algorithm 4. The key idea is
that, if the set of users has changed, we restore feasibility and re-optimise as
quickly as possible. In particular, we do not call Algorithms 2 and 3 more
than once in any given time period. Then, with appropriate data structures,
the time taken by the algorithm in each time period is only O(|I|2). This
limit on the running time is necessary, since, in the real system, one needs
to decide how to re-allocate the subcarriers in a fraction of a second.

5 Experiments

In this section, we report on some computational experiments that we con-
ducted. The heuristic described in the previous section was coded in Julia
v0.5 and run on an intel Core i7 3.1 GHz CPU, with 16GB of RAM, un-
der Ubuntu 16.04.1 LTS. The program calls on MOSEK 7.1 (with default
settings) to solve the initial NLP.

5.1 Test Instances

We took particular care to make our test instances as realistic as possible,
based on the IEEE 802.16 standard. With regard to subcarriers, we set
|I| ∈ {72, 180, 300}. The noise powers Ni are random numbers distributed
uniformly in the open interval (0, 10−10), and the bandwidths Bi are all set
to 2.5MHz. As for users, we assume that (a) the inter-arrival times follow
a negative exponential distribution, (b) the service times (in seconds) are
uniformly distributed in [1, 4], and (c) the demands dj are obtained by sam-
pling random numbers from a unit lognormal distribution, and multiplying
by a positive constant c. Finally, the power limit P is set to |I|/2, in watts.
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Algorithm 4: Dynamic Local Search Heuristic

Input: bandwidths Bi, noise powers Ni, initial set of users J(0),
initial demands dj , number of time periods T .

Construct an initial solution using Algorithms 1, 2 and 3;
for t = 1, . . . , T do

Let J(t) be the current set of users;
Let J− = J(t− 1) \ J(t);
if J− 6= ∅ then

for j ∈ J− do
for each subcarrier that was allocated to user j do

Re-allocate the subcarrier to an arbitrary user in J(t);
end

end

end
Let J0 be the set of users in J(t) that currently have no
subcarriers allocated to them;

if J0 6= ∅ then
Let J+ contain all users in J(t) that currently have two or
more subcarriers assigned to them;

for j ∈ J0 do
Let j+ be the user in J+ with the highest satisfaction;
Let i be a subcarrier that was allocated to user j+;
Re-allocate subcarrier i to user j;
if user j+ now has only one subcarrier then

Remove j+ from J+;
end

end

end
Re-optimise by calling Algorithms 2 and 3;

end
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Note that, if the mean arrival rate (in users per second) is λ, then the
expected number of users in the system at any given point in time is 2.5λ.
Thus, we could control the expected number of users by varying λ. For
|I| = 72, we considered three scenarios, in which the expected number of
users is 4, 6 or 8. For |I| = 180, we set the expected number of users to
10, 15 and 20. For |I| = 300, we set it 20, 30 and 40. This leads to nine
scenarios in total (see the two left-most columns in Table 1).

In a similar manner, by careful selection of the scaling constant c, we
could implicitly control the traffic intensity ρ. We considered four different
values for c, corresponding to setting ρ ∈ {0.90, 0.95, 1.00, 1.05}. This means
a total of 36 simulations. Each simulation was run for 1100 time periods,
where the first 100 were used to allow the system to settle into steady state.
So, we view T as being equal to 1000 in what follows.

5.2 Results

Recall that J(t) denotes the set of users at time t and sj denotes the sat-
isfaction of user j. We first considered the following three performance
measures.

• The mean-min satisfaction 1
T

∑T
t=1 minj∈J(t){sj}.

• The mean-mean satisfaction 1
T

∑T
t=1

1
|J(t)|

∑
j∈J(t) sj .

• The mean-max satisfaction 1
T

∑T
t=1 maxj∈J(t){sj}.

We will call these simply “min”, “mean” and “max” in what follows.
Table 1 shows the values taken by these three performance measures

for various values of |I| and various (expected) values of |J |, when ρ =
1. The columns headed “phase 1” concern a version of the heuristic in
which the second improvement phase was omitted. We see that the heuristic
performs remarkably well, with values close to or exceeding 1 in all cases.
Interestingly, the second improvement phase has little effect on the mean
satisfaction, but it improves the fairness of the solutions noticably. Note also
that all three performance measures improve as the number of subcarriers
increases, but worsen slightly as the expected number of users increases.

Table 2 reports the average time taken by each of our two improvement
phases (i.e., Algorithms 2 and 3) in one time period, for the same simulations
that were used for Table 1. We see that, in most scenarios, the routine is
extremely fast, taking less than 0.2 seconds. The exception is the case
|I| = 300, for which phase 2 can take up to a second. This suggests that
phase 2 may not be appropriate when one is dealing with a large base station.

Finally, we make some comments about the traffic intensity, ρ. As one
might expect, changing the value of ρ affected all three performance mea-
sures. Interestingly, in all cases we tried, the net effect was simply to mul-
tiply each number in Table 1 by approximately 1/ρ. As for running times,
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Phase 1 Phase 2

|I| |J | min mean max min mean max

4 1.111 1.132 1.154 1.132 1.132 1.135
72 6 1.055 1.094 1.133 1.090 1.094 1.105

8 1.012 1.065 1.118 1.055 1.065 1.083

10 1.021 1.047 1.074 1.047 1.047 1.049
180 15 0.983 1.025 1.067 1.023 1.025 1.034

20 0.961 1.017 1.075 1.012 1.017 1.038

20 0.986 1.019 1.053 1.019 1.019 1.021
300 30 0.960 1.012 1.065 1.009 1.012 1.029

40 0.939 1.008 1.079 1.002 1.009 1.041

Table 1: Average values of performance measures during simulation (ρ = 1)

Phase 1 Phase 2

|I| |J | min mean max min mean max

4 0.00005 0.00049 0.00207 0.00572 0.00811 0.01699
72 6 0.00005 0.00077 0.00258 0.00590 0.00897 0.01860

8 0.00005 0.00102 0.00311 0.00561 0.00898 0.01304

10 0.00014 0.00371 0.01154 0.04673 0.08529 0.12025
180 15 0.00134 0.00620 0.01530 0.07202 0.09597 0.15561

20 0.00206 0.00933 0.02383 0.08515 0.10873 0.17201

20 0.00528 0.01797 0.07447 0.30598 0.38317 0.91077
300 30 0.01075 0.03051 0.10703 0.34284 0.42251 0.96528

40 0.01781 0.04402 0.14996 0.34618 0.44667 1.09267

Table 2: Average values of running time (ρ = 1)
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varying ρ had no noticeable effect. (This is probably because the bottleneck
of the algorithm is phase 2, whose running time, O(|I|2), does not depend
on ρ.) For these reasons, and also for the sake of brevity, we do not report
detailed results for different values of ρ. In any case, the main conclusion
is that the performance of the heuristic is not very sensitive to the traffic
intensity.

6 Conclusion

In this paper, we have considered how to allocate resources in an OFDMA
system when (a) the system is overloaded (i.e., the expected demand is close
to or higher than the system capacity), and (b) users arrive and depart every
few seconds, in a stochastic manner. Since an exact approach for this case
seems to be out of the question, we have proposed a dynamic local search
heuristic. The computational results indicate that our heuristic consistently
achieves allocations that are both efficient and fair.
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