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ABSTRACT 

Scaling up the results on catalyst deactivation to industrial operations, where transport phenomena 

are of significance, is often not straightforward. The operations of industrial reactors are judiciously 

focused on the dynamics of the deactivation along the axial length of the reactors, which are generally 

known approximately. Processes of strong energy release or fast chemical kinetics, such as oxidation 

reactions, cracking, etc., are associated with a deactivation where the time characteristics of the flow 

and transports are of magnitudes of the deactivation time-on-stream. Local deactivation of the 

preferential oxidation of CO was investigated by three-dimensional modelling of flow, mass and heat 

transfers inside a packed-bed reactor and validated by near-infrared tomography. The profiles of 

deactivation were sensitive to the rates of deactivation, heat transfer by dispersion and intra-particle 

mass transfer. At pore scale of the packing, pronounced deactivation was revealed near the wall due 

to a preferential flow circulation. The deactivation progressed at the exteriors of the catalytic particles, 

particularly over the regions in contact with the convective flow. Unlike the mass dispersion, the heat 

dispersion promoted the deactivation by shifting the moving waves of deactivation upstream, leading 

to asymmetrical maps inside the catalytic particles. 
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1. Introduction 

Catalyst deactivation is a common issue that leads to a decrease in productivity and deviations from 

normal operations of industrial processes. Process shutdown and catalyst replacement cost several 

billions of pounds per year worldwide, raising the need to develop more knowledge on the 

deactivation of catalysts at various scales of time and space. [1-3] Industrial packed-bed reactors 

(PBRs) are traditionally designed with physical access to averaged activity but with reduced access 

to local activity while reactions are taking place. The operations are consequently designed with 

oversized approximations to deal with uncertainties.  

One approach that is gaining recognition to control the deactivation is by modelling the transport 

phenomena inside the PBR. This is true with ongoing developments of computational tools, which 

are allowing simulations of the three-dimensional (3D) geometries of hundreds of discrete packed 

pellets to be performed, imitating, to a reasonable extent, actual laboratory experiments. [4] These 

simulations, which are still insufficiently mature to simulate an industrial scale PBR, provide 

knowledge that would not be reached by the one-dimensional (1D) and two-dimensional (2D) models. 

It is important, however, to validate this knowledge by experimental insights into the PBR.  

The simulation of catalyst deactivation in PBRs has been recurrently developed by coupling a model 

of the transport phenomena and functions of activity generated from experimental observations. 

Castillo-Araiza investigated the deactivation of mixed-oxide catalysts inside an industrial PBR for 

the partial oxidation of hydrocarbons. [5] The deactivation model of a sigmoidal profile along the 

axial length of the PBR confirmed the trends of the temperature and yield of the oxidation at transient 

operations. Wehinger et al. [6] developed a 3D model by coupling the rates of chemical kinetics and 

transports of momentum, mass and heat inside a PBR for the dry-reforming of methane over a 

rhodium-based catalyst. The 3D model generated a PBR of about one hundred spherical particles 

using the discrete element method (DEM) and allowed 3D visualization of regions with catalyst 

deactivation by carbon deposition. Likewise, Lopes et al. [7] developed a 3D and two-phase flow 



model of a fluid catalytic cracking reactor. The trends of velocity, temperature and species produced 

non-uniform coke deposition over catalyst surfaces, underlining the importance of using the 3D 

modelling approach. This was particularly true at the entrance zone, where gradients of momentum 

and temperature were observed. Wang et al. [8] observed a uniform distribution of activity in a plate 

reactor for methanol steam-reforming. This reactor was reported to achieve higher performances than 

that of a PBR of a similar scale and this was explained by the reduced local spots of hot and cold 

zones. Quasi-isothermal operations were achieved when the catalyst was judiciously distributed in 

the PBR. Cheng et al. [9] reported an empirical model for prediction of the dynamic behaviours of 

species and deactivation by using experimental information on the temperature profiles along the 

axial length of a PBR. Similarly, Anastasov [10] described the deactivation in a PBR for the oxidation 

of o-xylene by observing the temperature trends along the axial length of the bed. The experimental 

data were fitted to a 2D model and allowed predictions of hot zones of high deactivation rates.  

This series of works tested the uniformity of activity inside the reactors by placing multiple sensors 

at discrete locations of the PBR. This approach gives reliable trends of the activity profile but is time-

consuming and likely to disturb the packing structure. Essentially, this approach gives a limited 

number of sampling zones which result in less certain gradients of temperature and species. A second 

approach relies on spatially resolved techniques. These techniques, being non-invasive, are looking 

promising in their application to gas–solid PBRs, where the signals retrieved from the gaseous phase 

are generally weak. Hofmann et al. [11] examined the deactivation in a wash-coated honeycomb 

monolith using a combination of transmission electron microscopy and X-ray absorption/diffraction 

spectroscopy at various spatial scales. The inhomogeneity of the catalytic coating was demonstrated 

to play a critical role in the development of local deactivation. The deactivation by coke deposits 

inside the straight channels of the H-ZSM-5 zeolite catalyst was confirmed by Devaraj et al. [12] 

using atom probe tomography, and by Chunga et al. [13] using a combination of in situ UV–vis and 

confocal fluorescence micro-spectroscopy techniques. Sanchez et al. [14] imaged the coke location 

at subnanometer scale of Pt−Re/γ-Al2O3 catalyst by using corrected scanning transmission electron 



microscopy and enhanced energy dispersive X-ray spectroscopy.  A technique based on 2D planar 

diffuse-reflectance near-infrared (NIR) imaging was developed by Aiouache et al. [15] to assess the 

activity of catalysts. A combination of high-throughput thermal imaging, spectroscopic imaging and 

principles of combinatorial chemistry allowed screening activity in a library of catalysts. Catalyst 

activity by thermal mapping was validated by mapping the surface hydroxyl overtones, as a tracing 

species, on cerium oxide catalyst during the steam-reforming of methane. The 2D technique was then 

extended to optical tomography for a semi-opaque packed bed adsorber of water vapour and PBR of 

hydrogen isotopic exchange process. [16-18]. NIR optical tomography has emerged in the recent 

years owing to developments in the laser technology for the telecommunication sector and imaging 

sensors of 2D array detectors, allowing the technique to be operated at spatiotemporal resolutions of 

sub-millimetres and sub-seconds. The principle of the technique consists of a plane that is illuminated, 

and the attenuated light is captured by 2D array detectors such as CCD cameras. Application of NIR 

imaging to gas-solid catalytic reactors emerged after sufficient maturity of comparative methods such 

as Raman imaging and IR imaging due to the penetration depth in scattering media that cannot be 

achieved in the mid-IR which encounters strong absorption. These applications of tomography 

offered simultaneous access to 3D spatial distributions of species and temperature, as illustrated in 

Appendix A1. Optical tomography was demonstrated to be a promising tool to access data on a region 

of interest, including mass dispersion, and validate existing models of flow in low AR packed beds.  

This achievement was made possible owing to recent developments in laser design, multispectral 

imaging and non-linear algebraic reconstructions. [18] Whereas current tomography needs only a 

single run, time resolution throughout the process is still essential, since catalyst deactivation varies 

widely depending on the time-on-stream of the deactivation system being monitored.  

The present work aims to investigate dynamics of local profiles of activity in a PBR subject to rapid 

deactivations. A rapid deactivation, typically, drives time-on-stream characteristics that are of 

magnitudes of the transport time. To reach this aim, spatially resolved NIR tomography and 3D 

computational fluid dynamics (CFD) modelling, through a discrete packing, are employed. The 



dynamic behaviour of local deactivation of preferential oxidation (PROX) of CO is investigated. The 

2D planar NIR technique is extended to 3D diffuse tomography, where the distributions of water 

vapour (H2OV) flow are mapped, to access the results of interactions between catalyst activity and 

transport phenomena. The 2D planar technique provided valuable insights into the surface activity 

but did not entirely describe the process that occurred inside the PBR. By replacing the broadband 

light source with a fine bandwidth tuneable laser, NIR tomographic measurements of gaseous flow 

can be monitored by diffuse transmittance. A system for visualisation of the cross-sectional profiles 

of gaseous species, temperature and packing deactivation under dynamic conditions is developed. In 

the following sections, the kinetic model of the PROX of CO over Fe-Pt/γ-Al2O3 catalyst subject to 

deactivation is first investigated, as this information is missing for the dedicated catalyst. The mixed 

Fe-Pt catalyst over γ-Al2O3 was selected because it was reported to exhibit a reduced coverage of 

adsorbed CO intermediates, and by inference less deactivation than the single Pt/γ-Al2O3 catalyst, 

leading to a promising performance of the PROX at moderate temperatures (~ less than 473 K). [19-

21] NIR tomography tests are then introduced for the PROX of CO and distribution maps of the 

species (herein H2OV) and temperature are retrieved and the underlying rates of fluid flow, mass and 

heat transports under catalyst deactivation are deduced. The 3D model is then developed and validated 

by results from the NIR tomography. A sensitivity analysis on the impacts of the flow, mass and heat 

transports on the local dynamics of deactivation is discussed. 

 

2. Materials and methods 

2.1. Near-infrared imaging tests 

The design of experiments for the NIR tomography study was similar to the one cited in previous 

works, where the details on the experimental setup, procedure and validation of the results were 

discussed.[17-19] An integral PBR was filled with 3.5 g of 0.5% Fe-1% Pt/γ-Al2O3 catalyst. The 

catalyst was prepared by incipient wetness impregnation of γ-Al2O3 with a solution of platinic 



chloride hexahydrate and iron nitrate. The PBR included two concentric tubes made of fused silica 

as shown in Figure 1. The inner tube was larger than that used previously (12 mm internal diameter 

and 39 mm length). The 5 mm thick annulus between the inner and outer tubes was designed to reach 

operations under adiabatic conditions by reducing the pressure of 10-6 mmHg with a diffusion pump. 

Pressure drop inside the PBR was measured by a differential pressure transducer (142PC02D, 

Sensortechnics GmbH). In addition, a humidity sensor (Exo Terra Digital Hygrometer, accuracy 2% 

at relative humidity >10%) was placed at the exit of the experimental setup. The gaseous phase 

temperature was measured by two thermocouples placed at the front and exit of the PBR. 

The insights into the PBR by NIR tomography were run for a PBR of an AR of 13 and particle size 

of 0.850–1.000 mm. A typical run of deactivation was carried out at the inlet temperature of 413 K, 

feed flow rate of 670 cm3 (NTP)∙min-1 (i.e. weight-hourly space velocity of 11485 cm3 ∙ gcat
-1∙ h-1) and 

feed mixture composition of 1.1 mol% CO, 2.5 mol% O2, 1.7 mol% H2, and N2 as carrier gas. Once 

a steady state was reached, the concentration of CO was step-increased to 1.4 mol% and the gases 

were analysed at the exit of the PBR by mass spectrometry at regular time-on-stream intervals.  

Tomographic analysis was performed by collecting projected images from parallel beams that crossed 

the PBR at various angles. The NIR laser source (Santec TSL-510, modulating ranges from 1340 to 

1440 nm) and the NIR detector camera (Mosir 950) were rotated by a servomotor around the PBR. 

The laser beam, which was first polarised, was collimated by a series of mirrors and cylindrical lenses 

to shape a rectangular sheet beam. A MATLAB-based code that relied on the adaptive algebraic 

reconstruction technique was developed to run the tomographic reconstructions of projected images 

(see Appendix A1). [18] The absorption coefficient of H2OV across the packing was calibrated by 

using a squared quartz cell, which was partially filled with Fe-Pt/γ-Al2O3 catalyst. The laser source 

was tuned to the spectral absorption line of H2OV at 1380.685 nm and the spectrum, which was free 

of scattering, located in the section above the packing, was validated by comparison with the Hitran 

database, [22] reaching an average deviation in the light transmittance of 0.4 mol% at 1% H2OV and 



corresponding to average deviations of H2OV composition and temperature of 11.1% and 9.3% at a 

spatial resolution of sub-millimetres (i.e. 0.15 x 0.056 mm2). [16] 

2.2. Kinetic tests 

The kinetic tests were carried out under differential flow (i.e. mass of catalyst 0.18 g, average pore 

size 3.5 nm, porosity 21% and surface area 218 m2 g-1) to ensure low conversions of CO and quasi-

isothermal operations. A small size of catalytic particles (i.e. 0.25 mm or AR of 48) was used to 

reduce the impact of mass and heat transfer limitations on the kinetic model.  These limitations were 

later validated by using a smaller size of particles (i.e. 0.05 mm), as reported in section 3.1.1. The 

concentration of CO and temperature were varied from 0.5 to 1.1 mol% and from 413 to 473 K, 

respectively. Once steady-state conditions were reached, the concentration of CO was increased to 

1.4 mol% at the stoichiometric concentration of H2 in the feed. Before starting the experiments, the 

catalyst was reduced at 500 K for 2 hours under 1.0 mol% H2 in N2. 

 

3. Results and discussions 

 

3.1. Kinetics of the PROX of CO 

 

The PROX of CO was selected as the model-reaction for the kinetic study of the deactivation 

dynamics. This reaction is typically carried out under dynamic operations (i.e. the fuel cells, 

automotive exhaust gases) [23-24] and is subject to catalyst deactivation due to the non-equilibrium 

of the surface coverage of CO, leading to critical effects on the performance and stability of the 

reactor. The oxidation reactions of CO (reaction 1) and H2 (reaction 2) are associated with the reverse 

water-gas-shift (r-WGS) reaction (reaction 3), particularly at high temperature, reducing thus the 

conversion of CO. [25, 26]  

CO+1/2 O2 →CO2                       ∆Hr,298
o
C= -283 kJ/mol                                                       (1) 



H2+1/2 O2 → H2O                      ∆Hr,298
o
C = -288 kJ/mol                                                       (2) 

H2 + CO2 ↔CO +H2O               ∆Hr,298
o
C = 41 kJ/mol                                                           (3) 

3.1.1. Mass and heat transfer limitations study  

The potential gradients of concentration and temperature inside and outside the catalyst would lead 

to slow transfer rates of species and heat, affecting the results of the intrinsic kinetics. The limitation 

of transfer rates was investigated for two particle sizes of 250 µm (AR of 48) and 50 µm (AR of 240). 

The Weisz and Prater (W–P) criterion (Equation A.2.1) and Mears criterion (Equation A.2.2) were 

used to assess the relative effect of internal and external mass transfer limitations, respectively, as 

illustrated in Appendix A2. The existence of gradients of temperature inside the particles and in the 

film surrounding the particles, and relevant impacts on the model of kinetics, were assessed by the 

criteria of Damköhler numbers of the 4th order Dai,(IV) (Equation A.2.5) and 3rd order Dai,(III) (Equation 

A.2.6), respectively. These numbers measure the relevance of radial heat transfer limitations only 

when the axial one was assumed negligible for the size of particles used. [27]  

Figure 2 (a) shows profiles of the W–P and Mears factors with temperature for the two particle sizes 

of 250 µm and 50 µm. The smaller size shows negligible resistance to mass transfer inside and outside 

the catalyst, while the larger size catalyst shows some internal resistance at temperatures higher than 

480 K and external resistance at temperatures higher than 490 K, in agreement with the results of 

Kim et al. [27] and Ouyang et al. [28] Figure 2 (b) shows profiles of Dai,(IV) and Dai,(III) with 

temperature for the two sizes of particles.  No resistance to heat transfer is observed in the profile of 

the smaller size, but some resistance to external heat transfer is visible at temperatures higher than 

480 K, in agreement with the results of Ouyang et al. [28], validating the use of the particle size of 

250 µm for the kinetics study. 

 

3.1.2. Mechanism and kinetic profiles 

 



The mechanism of the PROX of CO over noble catalysts such as platinum is known to include 

phenomena of multiple steady states (i.e. low and high reactive states) through an ignition and 

extinction hysteresis. [24] The low reactive state is dominated by the CO adsorption, particularly at 

low temperatures and high CO concentrations. During the low reactive state, O2 exhibits a lower 

initial sticking coefficient than CO on platinum, and the surface of the catalyst is mainly covered by 

CO. The surface CO inhibits the adsorption of oxygen and hydrogen, inducing an ignition path. In 

contrast, the high reactive state is caused by a partial coverage of the dissociated oxygen and 

hydrogen, particularly at low CO concentrations and high temperatures. Hence, the extinction of 

PROX by CO is regarded as a deactivation that is a function of the surface coverage of CO and 

temperature. Figure 3 (a) shows steady-state profiles of the conversion of CO and selectivity to CO2, 

as defined by Equation 4. 

2

2

2 2

CO
CO

CO H

r
S

r r
=

+
                                                                                                          (4) 

Herein, 𝑟𝑟𝐶𝐶𝐶𝐶2 and 𝑟𝑟𝐻𝐻2  are the rates of CO and H2, respectively. Figure 3 (a) confirms the general 

observations of the kinetics of the PROX of CO with the temperature at a high reactive state and 

steady-state conditions. The oxidation of CO (Equation 1) was more competitive than the oxidation 

of H2 (Equation 2) at low temperature only (less than the light-off temperature ~403 K). Figures 3 

(b1 and b2) show transient profiles of the conversion of CO and selectivity towards the low reactive 

state, with time-on-stream and temperature, ranging from 403 to 473 K. The CO oxidation rate 

decreased rapidly with time-on-stream, while the selectivity kept approximately constant values. At 

low temperatures, H2OV formation was limited but not negligible, demonstrating coverage of the 

surface of the catalyst by CO and some hydrogen and oxygen. The CO2 production was promoted 

after the light-off owing to the support from H2, agreeing with the mechanism reported by 

Sirijaruphan et al.[18] and Amphlett et al. [29] (i.e. catalytic active sites covered preferentially by CO 

before light-off and H2 after the light-off, promoting CO oxidation via hydroxyl intermediates). The 

stability in CO2 selectivity suggests that the bimetallic Fe-Pt catalyst exhibited sufficient sites, making 



the adsorption ability of H2 and O2 competitive with the adsorption of CO. The heat transfer limitation 

study in section 3.1.1 has shown the non-relevance of the heat transfer resistance in the BPR of the 

particle size of 50 μm (AR of 240) while some transfer limitation was observed at temperatures higher 

than 470 K for the particle size of 250 μm (AR of 48). The sensitivity of the PROX performance to 

temperature brings attention to the thermal management as discussed in section 3.4.  

3.1.3. Kinetic model 

The kinetic models that express changes in reaction rates along with the reactive states of the PROX 

include the power law, surface Eley–Rideal or surface Langmuir–Hinshelwood (LH) mechanisms, 

with conflicting results on the impacts of CO2 and H2OV, as inhibiting or activating agents, on the 

rates of the PROX. [29-30] In the particular case of oxygen-rich feed, a zero-th order for oxygen and 

a positive order for CO were cited, with the latter order tending to increase to the first-order at high 

temperature. The power law model was cited for a selected range of operating temperatures and 

reactant concentrations and was therefore selected (Equations 5–7). [29] Some kinetic models 

expressed the hysteresis and associated extinguishing or igniting effects on the multiple states by 

adding a variable sticking probability function of a sigmoidal shape to the LH kinetic type. Herein, 

the deactivation behaviour is expressed by the model proposed by Jaree et al. [31] using a separate 

deactivation rate model (Equation 8). The separation of the deactivation behaviour from the main 

kinetic model allowed the investigation of a sensitivity analysis of the deactivation model to rates of 

mass and thermal transports in section 3.4. Since the inhibition of kinetics of reactions (1-3) was 

caused by CO adsorption only, the same activity term was assumed for each kinetics. Following the 

first-order in coverage mechanisms by Engel and Ertl, [32] Amphlett et al. [29] and Choi et al. [30] 

a power law kinetic model, which was associated with the three reactions and deactivation, is 

expressed by Equations 5–7.  

21 1 CO Or a k c c=                                                                                                                 (5)  

2 22 2 H Or a k c c=                                                                                                                 (6) 
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The kinetics of catalyst deactivation was modelled by a power law expression relevant to self-

deactivation by CO, assuming a negligible effect between the rate of reaction and reduction of the 

number of active sites for oxygen and hydrogen by the CO coverage.[33,34] 

CO
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dCOdd cRT
EAck

dt
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−==−= exp                                                                               (8) 

Ed and Ad are the activation energy and the pre-exponential Arrhenius factor of the deactivation rate, 

respectively. c is the concentration of species and Kc is the equilibrium constant of the r-WGS 

reaction. 

A differential flow model was adopted to meet the requirements of reduced thermal resistance and 

pseudo-isothermal operations as expressed by Equation 9: 

𝑑𝑑𝑐𝑐𝑖𝑖
𝑑𝑑𝑑𝑑

= ∑ 𝑟𝑟𝑗𝑗𝑗𝑗3
𝑗𝑗=1                                                                                                                 (9) 

rj is the stoichiometric rate of reaction j as expressed by Equations 5–8. The method of regression 

relied on changing the initial concentration of the feed and temperature while the composition of the 

species at the exit of the reactor was fitted to the model. Relevant sums of squares of residuals were 

minimised by the non-linear least squares method and the kinetic parameters were adjusted by the 

Marquardt approach. The trends of the model in terms of conversion and selectivity at a high reactive 

state in Figure 3 (a) and towards the low reactive state in Figures 3 (b1, b2) reasonably confirm its 

validity. The Arrhenius plots of rate constants, as illustrated in Figure 4, show higher activation 

energy of hydrogen oxidation than that of CO, demonstrating the impact of temperature on the 

relevance of H2 oxidation in the PROX. The activation energy of H2 oxidation and r-WGS are within 

the range of reported values, [25,29,30] whereas that obtained for CO oxidation – of 50216 J/mol – 

is lower than those reported for the case of a single CO oxidation, probably due to a weakening effect 

of Pt–alumina interactions with surface CO by hydroxylation via H2 oxidation, leading to a facilitation 



of the light-off at lower temperatures. [35] The rate constant of r-WGS is found to be comparatively 

small, reducing its contribution to the PROX of CO within the operating range. Accordingly, this 

result agrees with that obtained by Montreuil et al. [36] who found the activation energy of H2 

oxidation to be slightly higher than that of CO on Pt catalyst. 

 

3.2. Mapping the PROX by NIR tomography 

NIR tomography has been used to investigate the spatial profiles of temperature and species inside 

the PBR, with or without catalytic reactions. This helped to understand the phenomena of mass and 

heat transfers between the core and near-the-wall regions of PBRs of low AR. [16-18] Herein, the 

dynamic deactivation of the Fe-Pt/γ-Al2O3 catalyst during the PROX of CO was followed by 

screening the spatial maps of H2OV produced via hydrogen oxidation and potentially the r-WGS 

reaction. It was not possible to observe other species, as their optical absorption coefficients are of 

two to three magnitudes lower than those of H2OV in the NIR range.  

The inlet temperature and CO composition were initially set to 413 K and 1.1 mol% respectively, in 

order to run the PROX at a sufficiently high reactive state. This state was held for 30 minutes at 

steady-state condition and the composition of CO was then step-increased to 1.4 mol%, allowing the 

self-inhibition of the PROX by CO to occur and progressively yielding the low reactive state. Self-

inhibition by CO was associated with sufficient temperature gradients, allowing visual distinction to 

be made between the local hot and cold zones by NIR tomography. 

The deactivation was expressed in terms of catalytic activity a, which states the acting condition of a 

catalyst at a given time-on-stream of the reaction. Activity was defined as the ratio of the reaction 

rate at a given time-on-stream to that of a non-deactivated catalyst. Herein, activity was approximated 

by the ratio of H2OV concentration at a given time-on-stream 𝑐𝑐𝐻𝐻2𝐶𝐶 to that produced by a fresh (non-

deactivated) catalyst 𝑐𝑐𝐻𝐻2𝐶𝐶,𝑓𝑓, as expressed by Equation 10. The fresh catalyst corresponds to a non-

deactivated catalyst at the high reactive state.  
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=                                                                                                                       (10) 

Figures 5 (a1–a3) show the profiles of the axial section maps of H2OV, from the bottom to the top of 

the PBR at 30 min, 60 min and 90 min, respectively. Figures 5 (b1–b3) and (c1–c3) illustrate relevant 

circumferentially averaged maps of H2OV concentration and temperature, respectively. More detailed 

cross-sections of the concentration of H2OV are found in the movie mov1, added as supplementary 

material. The generation of H2OV was not homogeneous in the PBR, as shown in Figures 5 (a1) and 

(b1). The flows of high and low concentrations of H2OV are differentiated by preferential channelling, 

as a result of the complex interplay between the rates of fluid flow, the transport phenomena of heat 

and mass, and chemical kinetics.[18]  

Although some hot regions are visible at the centre of the PBR, the temperature distribution, which 

is represented by the circumferentially averaged maps in Figure 5 (c1), had a lesser correlation with 

the concentration of H2OV and presented a more uniform distribution. This was partially due to the 

exothermicity of the PROX process and inefficient transport of the generated heat by the flowing 

fluid of a low thermal inertia, particularly near the wall. The ignition took place at 13 mm from the 

inlet and was driven by oxidation of the unreacted CO and H2, into CO2 and H2OV respectively, 

downstream of the PBR. More explicitly, the increased oxidation rates generated sufficient heat to 

promote more CO desorption, increasing the rate of oxidation of H2 into H2OV.  

The NIR tomography allowed the discrimination of colder zones, particularly those close to the wall 

where a higher axial velocity, less mixing, and thus convective dispersion dominated. The hot zones 

were in the core packing area and started from catalyst particles that were not in contact with the wall, 

and progressively moved towards the wall of the PBR. The cooler areas would reflect a uniform 

velocity along both the axial and particularly the radial directions, whereas the warmer ones would 

reflect reduced flow and energy transfer. The weak distribution of energy was then the result of 

maldistribution and/or preferential channelling of the flow, in addition to heat and mass transports, 

and chemical kinetics under inhibition by catalyst deactivation.  



Figures 5 (b2, b3) and (c2, c3) show circumferentially averaged maps of H2OV and temperature at 

time-on-stream of the PROX at 60 and 90 min respectively. Both the H2OV production and 

temperature decreased with time-on-stream in most of the regions. In some regions, particularly 

where the flow channelling took place, a larger decrease in H2OV was observed, driven by improved 

mixing. Local deactivation in terms of activity (i.e. Equation 10) provided additional information on 

regions where interactions of the rates of flow, mass and heat transfers took place. Figure 6s (a–c) 

show distribution maps of deactivation at 30, 60, and 90 min, respectively. More deactivation 

occurred towards the centre of the bed and was progressively expanding outwards with the time-on-

stream. The deactivation was also prominent in regions of the bed where the flow channelling was 

pronounced. The spatial distribution of deactivation is seen reproduced in terms of H2OV maps. 

Profiles of the 1D circumferentially and radially averaged H2OV concentration and activity are shown 

in Figures 7 (a) and (b), respectively. The profiles of activity in Figure 7 (b) were extended to 120 

min of time-on-stream and show a travelling wave towards the downstream of the PBR. The 

maximum drops of activity with reference to inlet activity of the PBR were about 3, 9, and 22 % at 

60, 90 and 120 minutes respectively. These drops were not discriminated in Figure 6 (a), 

demonstrating the valuable information obtained by the spatial averaging, including propagation of 

deactivation in the PBR. This will help validation of the 3D model and understanding of the interplay 

between the rates of the flow and the transport of heat and mass under deactivation conditions. 

Overall, the results of the NIR imaging confirmed the existence of distinct rates of propagation of 

heat and mass along the PBR. The increase in CO at the front of the reaction zone resulted in 

interference of the two waves, temperature increase and catalyst deactivation. 

 

3.3. Validation of spatially resolved deactivation profiles and sensitivity analysis by 3D modelling 

A coupled model of the transport, kinetics of the PROX of CO and deactivation of the catalyst was 

used to assess local activity. The program code used expressions of a model under dynamics 

operations and included four differential equations, which included models of continuity, thermal and 



mass balances, the kinetics and the deactivation. The model was validated and then extended to a 

parametric study of the effect of relevant parameters on local activity along the PBR, including: (1) 

the activation energy of the catalyst deactivation rate, (2) the concentration of catalyst in the PBR and 

(3) the feed flow rate, and by inference the dispersion rate; and (4) the intra-particle mass transfer 

rate.  

Previous works that applied 3D modelling and deactivation used a slow deactivation model of 

sufficiently large time-on-stream compared to the residence time in the PBR. [6,37] Jaree et al. [38] 

reported that deviations could exist between the predictions of heterogeneous models and 

homogeneous models for PBRs, particularly at low flow regimes of limited heat and mass transfer 

rates. Herein, the deactivation in the PBR is investigated by a 3D heterogeneous model under a 

reaction time that is comparable with the deactivation time. 

3.3.1. Packing generation by DEM 

The 3D heterogenous model relied on building a cylindrical PBR containing discrete spherical 

particles. The particles were assembled by 3D DEM and the conditions were set to match those 

used for the NIR tomography. A PBR of 10 mm internal diameter, which included two sections of 

17.5 mm and 5 mm lengths, was built by packing 2031 spherical particles of 1 mm size (i.e. AR of 

10). The shorter section of the PBR was added to ensure the development of flow free of an entrance 

effect. The particle flow code PFC3D (Itasca, Ltd.) was used to write a DEM code in the 

embedded FISH programming language and generate a randomly structured packing. Several 

variables of both the wall and the particles (i.e. stiffness, density and friction coefficients) were 

processed to reach a suitable compaction of the particles, as illustrated in Table 2. The DEM code 

was set to calculate the positions, momentum, spins and trajectories of the particles and their 

interactions, whilst the PBR was populated with the particles, to reach a truly random structure. The 

code followed an iterative method to calculate the position of each particle until reaching a limit of 

stability of settlement (i.e. the overall force on each particle was set to be less than 10-7 N).  The 



output of the DEM simulation was a matrix of data in Cartesian coordinates that located the position 

of the centre of each generated particle.  The matrix was rendered in CAD format and exported to 

the CFD package.  

 

3.3.2. Porosity validation 

The structure of the PBR was validated by comparing its porosity with literature models.[39, 40] The 

volume of the packing (i.e. 3D matrix) was discretised into elements of volume by using the domain 

index implemented in the CFD package. The discretisation by 3D unstructured meshing, as shown in 

Figure 8, used tetrahedral cells of a maximum spatial resolution of 25 elements per particle diameter. 

The contact points between the particles released skewed elements which were reduced by shrinking 

the size of particles by about 0.5%. [41] Setting a higher shrinkage, while computationally time-

consuming, did not produce more refined results because the small clearance between the particles 

was associated with a considerable pressure loss. The elements of volume, which were defined by the 

length of the edge, the thickness of the boundary layer at particle-to-fluid or wall-to-fluid, the size 

and rate of expansion of the elements, were constantly refined at particle-to-particle and particle-to-

wall contact points until reaching results of pressure drops free of mesh size (see sections 3.3.3 and 

3.3.4). These elements were then allocated values of zero and one for the inter-particle space and 

occupied space, respectively. A space resolution of 0.04 x 0.04 x 0.04 mm3 was found satisfactory to 

observe the variation of local porosity φ3D at reduced distortions, particularly in the regions of low 

meshing resolution. Thus, the 3D volumetric data were reduced into a 2D surface porosity map φ2D, 

1D line porosity φ1D and overall porosity φave by averaging along the angular coordinate (Equation 

11), radial coordinate (Equation 12) and axial coordinate (Equation 13), respectively, allowing the 

prediction of flow patterns at multiple dimensions in space and access to data which would not be 

observed through the 3D structure.  
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where r, h and θ are the cylindrical coordinates of porosity. The results of the 2D surface map, 1D 

radial distribution and overall porosity values are shown in Figures 9 (a) and (b), respectively.  The 

profile of the porosity map in Figure 9 (a) shows periodic distributions along the radial direction, 

with larger values near the wall and progressively damped towards the central axis. While limited 

data on local porosity were available in the regions close to the central axis for 2D averaging, these 

changes revealed a non-homogeneous distribution with some loose structure near the central axis as 

shown in Figure 9 (b). The 1D line of Figure 9 (b) follows the general trends of porosity for low AR 

PBRs (i.e. clear damping towards the central axis) and shows average deviations of ~6.1 and 1.1 % 

from the models by Giese et al. [39] and Zou et al. [40], respectively. This deviation was attributed 

to the remediation of skewed contact points of particles and uncertainty in offsetting the porosity at 

the top layer of the randomly settled particles in the PBR.  

 

3.3.3.  Model description 

The 1D pseudo-homogeneous model by Jensen and Ray [41] for oxidation of CO was extended to a 

3D heterogeneous model for the PROX, which included momentum, heat and mass balances in the 

PBR. The model was then validated by comparison with the data from NIR tomography. The flow 

was assumed to be laminar and the PBR was operated under adiabatic conditions. The temperature-

dependent physical properties (i.e. density, viscosity, diffusivity, thermal conductivity and thermal 

capacity) relevant to both the gaseous and the catalytic phases were approximated by empirical 

functions as reported in Table 1. The Navier–Stokes equation for momentum balance, and the 



continuity equation for the mass conservation, including both the pressure and viscous forces, are 

expressed by Equations 14 and 15, respectively. 
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                                         (14)  

0g uρ ∇ ⋅ =                                                                                                                       (15)  

where ρg is the density of the gaseous phase, p is the static pressure, µ is the dynamic viscosity, u is 

the velocity vector and I denotes the identity matrix. Atmospheric pressure at the exit, fixed velocity 

at the inlet, and no-slip conditions at the solid–gas contact points were assumed. The modules of the 

transport of diluted species and heat transfer in fluids of the COMSOL user-interface were set under 

transient operations. The mass balance model for the gaseous phase included mass transfer by both 

diffusion and convection (Equation 16), whereas the mass transfer model for the catalytic phase 

combined the diffusion and the catalytic reaction in the catalytic particles (Equation 17).  
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The model of diffusivity in the solid phase Di,s included the textural parameters according to models 

of non-structured porous networks and was estimated according to Equations 18 (a-c), by considering 

both Knudsen Di
K and bulk solid types of diffusion Di

b.  
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The diffusivity values of H2O, H2, CO, CO2 and O2 species in the gaseous phase Di,g were 

approximated to the molecular diffusivity of these species due to the low concentrations used, Mi is 

the molecular weight, rp is the average pore radius and εs and τs are the textural parameters of catalytic 

particles in terms of porosity and tortuosity respectively. 

The analogous heat balance model included thermal transfers by both conduction and convection in 

the gaseous phase (Equation 19) and by conduction in the catalytic phase (Equation 20). This was 

later coupled to the heat source by the chemical reactions. 
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where Cpg and Cps are the heat capacity of the gaseous and solid phases, respectively, kg and ks are the 

thermal conductivity of the gaseous and solid phases, respectively, rji and ∆Hr,ji are the stoichiometric 

rate and the heat generated by reaction j, respectively, as expressed by Equations 5–7.  The values of 

the physical properties are assembled in Table 1.  

The discretisation into finite elements allowed integration of the governing equations via sets of 

difference equations by using the generalized minimal residual method with the Geometric Multigrid 

preconditioner algorithm. This algorithm approximated the solution by using the vector in a Krylov 

subspace at reduced residual (i.e. satisfactory convergence with relative tolerance of 0.01%). The 

built-in meshing module of Comsol was used and the Adaptative Mesh Refinement procedure 

allowed shapes of the elements to be dominated by tetrahedral domains and triangular surfaces. The 

impact of size of the elements on the viscous forces, particularly at the contact points of particles, 

was validated by carrying out by a mesh convergence test, monitoring the pressure values at three 



arbitrary locations and using the Grid Convergence Index (GCI) as described in Appendix A3. A 

solution, irrespective of mesh size, was reached when the GCI was below 4.2%. [44] The mesh 

refinement was extended to concentration of species until a relative deviation of less than 4.3% was 

reached. The computation was carried out first for modelling fluid flow at steady-state operations 

(Equations 14 and 15) and the results were used as initial values for computation of the heat and mass 

transfer model at transient operations. Initially, the PROX was set at a high reactive steady state and 

then the deactivation process was switched on when the CO concentration was step-increased, 

causing transient profiles of temperature, concentration and catalyst activity. In the following, an 

analysis of both local activity and temperature was carried out after the increase in CO concentration. 

It is followed by a parametric study on the effects of the activation energy of the deactivation rate 

constant, the concentration of catalyst, diffusivity of the reactive species inside the gaseous phase and 

catalyst on the local deactivation. The simulation was carried out using COMSOL Multiphysics 5.2.a 

and a 512 GB RAM computer server. 

 

3.3.4. Flow profiles and validation 

 

The flow profile in the PBR was assessed by comparing the pressure drops ΔP in the PBR (Equation 

21) predicted by the model with those from literature models, which are known to be suitable for low 

AR PBRs, including the Ergun, Zhavoronkov and Reichelt models. [45] 

∆𝑃𝑃 = ∆𝑝𝑝
𝐿𝐿

𝑑𝑑
𝜌𝜌𝑔𝑔𝑢𝑢𝑠𝑠2

                                                                                                                      (21) 

where d is the particle diameter, us is the superficial velocity and L is the length of the bed. The profile 

of pressure drops with the flow in terms of the Reynolds number in Figure 10 (a) shows agreement 

with the Reichelt model, particularly at a high flow regime. The axial section map of velocity at 

conditions similar to the experimental tests of deactivation in Figure 10 (b) shows an increase in 

local velocity of up to 10 times the inlet velocity in some particular zones between the particles, but 

does not enable the observation of the overall distribution of the velocity over the PBR. The 



circumferentially averaged velocity, however, as shown in Figure 10 (c), shows periodic variations 

along the PBR, creating a flow of a tortuous nature between the particles, and confirms the profiles 

of porosity in section 3.3.2. The velocity trends released some by-pass circulation of the flow near 

the wall due to high porosity in this zone. The zones of efficient mixing were observed through the 

radial flow in Figure 10 (d1), where there is pronounced flow in regions close to the wall of the PBR, 

particularly around the particles as shown in Figure 10 (d2). Other zones at contact points of the 

particles exhibited small flows, revealing flow with a stagnancy behaviour. 

 

3.3.5. Effect of increase in CO concentration on local deactivation 

Similar to the profiles of the conversion of CO and temperature obtained by NIR tomography (Figures 

5–7), those computed by the modelling show reaction zones between the light-off temperature and 

the maximum temperature. At the front of the reaction zone, the temperature increased to the adiabatic 

value, whereas downstream zones exhibited high temperature waves up to 30 min before decreasing 

due to the deactivation and cooling by flow dispersion.  Figures 11 (a1-c1) illustrate profiles of the 

axial cross-line at 1 mm from the centre of the PBR of temperature, activity and conversion of CO, 

respectively, at various times-on-stream. The relevant axial cross-section maps at a single time-on-

stream (i.e. 120 min) are shown in Figures 11 (a2-c2). Figure 11 (a1) shows that the front of the 

reaction zone, at approximately 10 % of the full temperature rise, took place about 6 mm from the 

inlet of the reactor and then progressively moved towards the downstream of the reactor.  

The deactivation is reflected by inhibition of the PROX. Distinct thermal and local activity profiles 

at various locations of the PBR were released. The sectional map of temperature in Figure 11 (a2) 

shows hot spot zones of insufficient mixing (non-uniform axial and/or radial velocities), such as those 

in the centre of the PBR. As the reaction progressed towards deactivation, the bed cooled down, 

particularly at the centre of the packing (not shown). The cross-lines of local activity in Figure 11 

(b1) followed similar trends to the temperature as relevant waves propagated towards the exit of the 

PBR. Intra-particle deactivation was homogeneous at the front of the reaction zone but was notably 



heterogeneous in the core of the reaction zone. The unreacted CO, as illustrated in Figure 11 (c1), 

shows trends of decrease that reproduce those of the temperature, but the values of the gradient of 

CO concentration in the reaction zone were higher than those observed by NIR tomography. CO 

reacted more with surface oxygen as it entered the catalytic zone, potentially very present in this zone, 

to release temperature waves having a positive effect on the rates of H2 oxidation. 

The 3D views and cross-sectional maps of activity in Figures 12 (a1 and a2), respectively, and 

temperature in Figures 12 (b1 and b2), respectively, are shown along with detailed descriptions of 

activity in the supplementary materials (i.e. mov2 and mov3). The cross-sectional maps of activity in 

Figures 12 (a1, a2), positioned 15 mm from the inlet, show the activity being affected in the thin 

zones surrounding the particles. In these zones, distinct regions of lower conversions of CO than those 

in the interior of the particles are visualised (see Figure 11 (c)).  More deactivation occurred in 

regions near the wall of the PBR, where high velocity and porosity took place as discussed in sections 

3.3.2 and 3.3.4. The higher velocity near the wall promoted local thermal dispersion by advection – 

as illustrated by the lower temperature trends near the wall in Figures 12 (b1, b2) – and, by inference, 

local deactivation. Additionally, the dynamics of deactivation are observed at inter-particle (packing 

pores) and intra-particle pores, and both produced asymmetrical trends of activity. These trends were 

probably due to distinct dispersion rates by advection surrounding the particles (i.e. higher interstitial 

velocity values and thus dispersion rates at the front sides of the particles). This is an interesting 

finding, since the heterogeneous rates could be subject to thermal expansion and contraction and 

further catalyst attritions or temperature runaways (i.e. beyond the objectives of this work). Overall, 

both the 1D axial profiles and cross-sectional 2D profiles of activity obtained by 3D modelling 

reasonably reproduced the trends obtained by NIR tomography in Figures 5 and 6. 

These results of mass dispersion validated the finding of section 3.3.4 on inefficient mixing in the 

centre of the bed and circulatory flow near the wall. The 3D model offered spatially resolved data of 

temperature and species distributions inside the PBR and efficiently discriminated between zones of 



distinct mixing, allowing the use of the model to predict the behaviours of the PBRs subject to 

deactivation. 

 

3.4. Sensitivity analysis 

The interactions of the heat and mass transports with the PROX under deactivation were investigated 

in terms of the relative relevance of rates of deactivation, the kinetics of the PROX, and mass and 

heat transports. 

3.4.1. Influence of the activation energy of deactivation rate constant on local deactivation 

The relevance of the deactivation rate during the PROX under deactivation was investigated by 

changing the activation energy of the deactivation rate constant Ed under conditions that were similar 

to those in section 3.3.4. Figures 13 (a1, a2) show cross-line profiles of activity and temperature along 

the axial length of the PBR. The activity decreased at the front inlet of the PBR when the activation 

energy was decreased. As the front of the PBR was progressively less active, the decrease in activity 

propagated to the reaction zone through a moving wave. The lower values of activation energy 

accelerated the rate of deactivation and inhibited the PROX reaction, and thus less energy was 

released, which in turn inhibited the deactivation, as shown by the rise of activity downstream of the 

PBR. Greater deactivation occurred in the regions of high temperature rise, as shown in Figure 13 

(a2). At the end of the PBR, profiles of increased activity are observed as the temperature reached the 

adiabatic rise. 

3.4.2. Influence of mass of catalyst on local deactivation 

The relevance of the chemical kinetics of the PROX under deactivation was investigated by changing 

the mass of the catalyst and constant flow residence time. The mass of catalyst was varied by random 

dilution of the catalytic packing using non-catalytic γ-Al2O3 particles of similar properties to the 

catalytic γ-Al2O3. Figure 13 (b1) shows the axial profiles of deactivation along the PBR for three 



catalyst concentrations and conditions similar to those in section 3.3.4. At low concentration, the 

reaction zone covered a large area of the PBR and was associated with a reduced deactivation. At 

high values of catalyst concentration, the activity decreased in regions of high temperature rise and 

then increased downstream as the temperature reached the adiabatic rise, as shown in in Figure 13 

(b2). 

3.4.3. Influence of mass and thermal diffusivities of the carrier gas on local deactivation 

The relevance of the local flow of dispersion during the PROX under deactivation was investigated 

by changing the mass and thermal diffusivities of the reactive mixture. The diffusivities were 

approximated to those of the carrier gas due to high dilutions of the reactive mixture. The simulation 

was first set to conditions that were similar to those in section 3.3.4 and then the nitrogen gas carrier 

was replaced by helium gas. The mass and the thermal diffusivities increased by about three and five 

times, respectively, as illustrated in Table 1, when the PROX was run using helium gas. The 

deactivation took place close to the inlet in the case of helium, as shown in Figure 13 (c), by stretching 

the reaction zone and thus moving the deactivation wave towards the inlet. 

3.4.4. Influence of intra-particle mass transfer on local deactivation 

The high thermal conductivity of the γ-Al2O3 support did not allow noticeable gradients of 

temperature within a single particle when heat transfer limitations were investigated in section 3.1.1, 

leaving the heat transfer to be predominantly controlled by the external flow conditions in the PBR, 

particularly at temperatures higher than 480 K. This was not the case of the intra-particle 

concentration gradients, which were non-negligible at conditions of the PROX process, affecting both 

the chemical kinetics and the deactivation.  

The effect of the intra-particle mass transfer on local deactivation profiles was investigated at 

conditions similar to those that were set in section 3.3.4, except that the diffusion coefficient in the 

pores was set to one-tenth and one-hundredth of the typical value (i.e. characteristic diffusion time 

(dp2/Di,s), ranging from 0.3 to 33.3 seconds), corresponding to the conditions of alumina supports of 



microporous structure. Figure 13 (d) shows axial cross-line profiles of activity along the PBR for the 

additional two values of catalyst diffusivities. The intra-particle mass transfer affected the activity 

profiles in a similar way to that in which it affected the concentration profiles. It affected the activity 

inside the catalyst particles and the surrounding zones of distinct thin layers of deactivation, as shown 

in Figure 12 (a2). The deactivation was pronounced in the thin exterior layer over the sides of 

particles that were frontally exposed to the gas flow. The deactivation was also pronounced when 

differences in diffusivities in the solid and the gas phases were significant, as shown in Figure 13 

(d). Such trends took place because the rich presence of CO in the feed first deactivated in zones 

close to the exterior of the particles, and progressively moved inwards with the time-on-stream, as 

shown in Figure 11 (b). The high values of diffusivity, which were desired at high temperature PROX 

reactions to reduce the presence of H2OV and CO2 products inside the particles, shifted the local 

deactivation towards the inlet, as shown in Figure 13 (d). Low values of diffusivities developed pore 

resistance to CO, leading to an interesting challenge to balance between the reaction rate, deactivation 

rates and mass transports. 

3.4.5. Influence of the aspect ratio on local deactivation 

Since the structural porosity and local flow are sensitive to the confining wall in low AR PBRs, the 

deactivation was examined in a PBR of AR of 5 (i.e. particle diameter of 2 mm) at conditions that 

were similar to those in section 3.3.4, including the intra-particle diffusion time. Figure 13 (e) shows 

the axial cross-line profiles of activity along the PBR for values of AR of 5 and 10. The profiles of 

activity of the PBR of 5 released pronounced trends of deactivation which broadened towards the 

inlet, demonstrating the relevance of the thermal dispersion (as discussed in section 3.4.3) on the 

extension of the reaction zone in the PBR. Previous work [45] has shown that a PBR with an odd 

number of AR would exhibit less circulation of the flow near the wall and more distribution in the 

zones close to particle-to-particle contacts than a PBR with an even number of AR. Unlike the PBR 

of 10, the PBR of AR 5 showed more circulation at the centre of the PBR and less circulation near 



the wall, which confirms previous results and explains the relevance of dispersion to shape the trends 

of deactivation. 

 

3.5. Discussion 

Studies at laboratory scale on catalyst deactivation are of less relevance when extended to industrial 

scale operations, where transport phenomena are of significance. In addition, the operations of 

industrial reactors are reasonably focused on the dynamics of the deactivation along the axial length 

of the PBR, which are often only known approximately. Spatial trends of dynamic deactivation are 

therefore often cited in works carried out at laboratory scale, but are barely cited in the open literature. 

Typically, the deactivation takes place for a greater time-on-stream than the response from the mass 

and thermal transports. Some reactions, however, particularly those with a strong energy release 

(oxidation reactions, cracking, pyrolysis, etc.), are associated with a deactivation where the time 

characteristics of the flow and transports are of magnitudes of the deactivation time. 

A comparison between the results obtained experimentally using NIR tomography and those obtained 

by the model at conditions similar to those in section 3.3.4 is illustrated in Figure 14. Both 

experimental and model profiles of the axial activity exhibit the front of the reaction zones that took 

place at about 4 mm and 6 mm from the inlet of the PBR, respectively, and then progressively moved 

towards the exit of the PBR. These profiles are reasonably similar but the model profile predicted a 

deactivation about 12.5% higher than that obtained by NIR tomography. The trends show zones of 

less activity at the front inlet of the PBR and these zones then propagated to the reaction zone. Activity 

then increased downstream as the relevant temperature reached the temperature rise. Among the 

parameters of the sensitivity analysis to which the deactivation was significantly sensitive was the 

activation energy of the deactivation rate constant, probably due to the exponential profile of the 

relation between the activation energy of deactivation and activity. The value of the activation energy 

of deactivation was therefore varied to fit the values of activity by NIR tomography. Figure 14 shows 



a deviation of 3.1% between the experimental data and the model when the activation energy of 

deactivation was reduced by 10%.  The sources of this deviation could be caused, in addition to the 

aforementioned approximations and assumptions made for the 3D model, by the development of 

limitations of the external mass and heat transports, particularly at temperatures higher than 470 K. 

Overall, the activity decreased not only at the front inlet of the PBR but also at the bulk of the reaction 

zone when the activation energy of deactivation was decreased. This was driven by an acceleration 

of the rate of deactivation, inhibition of the PROX reaction, and reduction in the released energy, 

which in turn inhibited the deactivation.  

 

4. Conclusions 

The local deactivation inside a gas–solid PBR was investigated by 3D modelling and validated by 

experimental NIR imaging. The kinetic data for the Fe-Pt/γ-Al2O3 catalyst were obtained at dynamic 

conditions. The conversion of CO oxidation was strongly dependent on the reaction temperature and 

CO composition in the feed. The trends of temperature, including the light-off temperature and 

maximum temperature, obtained by 3D modelling were in reasonable agreement with the 

experimental data by NIR tomography. Non-uniform deactivation was investigated by a sensitivity 

analysis of the deactivation to several parameters, including the activation energy of the deactivation 

rate, mass and heat dispersion rates, intra-particle mass transfer rate and AR of the PBR. A decrease 

in either the activation energy of the deactivation rate or the concentration of catalyst increased the 

deactivation rate, inhibited the PROX rate and reduced the release of energy, which in turn inhibited 

the deactivation downstream. At pore scale of the packing, a greater deactivation occurred near the 

wall due to higher circulation of flow and dispersion for the PBR of AR of 10. Deactivation was also 

pronounced in thin layers at the exterior of the catalytic particles in contact with the flow. Unlike the 

mass dispersion rate, the heat dispersion rate promoted deactivation by shifting the wave upstream of 

the PBR, leading to asymmetrical deactivation maps inside the catalytic particles. 



Local deactivation and the underlying phenomena of mixing, mass waves and thermal waves were 

experimentally observed and quantified. The spatial resolution of NIR imaging was of importance to 

validate the results of the 3D model. Ongoing work is intended to extend the NIR tomography to mid-

infrared imaging, where species other than H2OV, such as CO, CO2, and NOX, exhibit sufficient 

extinction coefficients to be used as tracing species. 
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Symbols and abbreviations 

a: Activity [-] 

as: Surface area of catalyst particle [m2 kg-1] 

Abs : Absorbance [-] 

Ad: Arrhenius constant of deactivation rate constant [m3 mol-1s-1] 

ci: Concentration at a given time-on-stream [mol m-3] 

ci,f: Concentration  produced by a fresh catalyst (activity of unity value) [mol m-3] 

Cp: Heat capacity [J kg-1 K-1] 

c0 : Speed of light [m s-1] 

Di: Diffusivity [m2 s-1] 



Di
K : Knudsen type diffusion coefficient [m2 s-1] 

Di
b: Bulk solid type diffusion coefficient  [m2 s-1]  

Dai: Damköhler number [-] 

d : Diameter of catalyst particle 

E:  Activation energy [J mol-1] 

Ed: Activation energy of deactivation rate constant [J mol-1] 

Ei: Lower state energy [cm-1] 

ea
21: Relative error         [-] 

h : Planck’s constant [J s] 

h0 : Grid size                 [-]  

hg-s : Catalyst-gas heat transfer coefficient [W m-2 K-1] 

I: Identity matrix 

Iexit, inlet : Light intensity [W] 

k: Thermal conductivity [J s-1 m-1 K-1] 

kb : Boltzmann’s constant [J K-1] 

k1,2: Rate constant [s-1] 

k3: Rate constant [m3 mol-1s-1] 

kc: catalyst particle-gas mass transfer coefficient [m s-1] 

Kc: Chemical equilibrium constant [-] 

kd: Rate constant of the deactivation reaction [m3 mol-1s-1] 

l : Optical path length 



N : Number of cells [-] 

p: Static pressure  [Pa] 

P; Static pressure [m] 

Qi: Temperature-dependant partition function of water vapour [-] 

r: Reaction rate [mol m-3 s-1] 

R: Universal gas constant [J mol-1.K-1] 

rd: Reaction rate of deactivation [ s-1] 

r21 : Refinement factor [-] 

Re: Reynolds number [-] 

rp: Average pore radius 

S : Line strength of temperature-dependent transition, [cm-2 atm-1] 

Sc: Schmidt number [-] 

T: Temperature [K] 

Text : Temperature of the surrounding medium [K] 

us : fluid flow superficial velocity [m s-1] 

Vs: Volume of catalyst particle [m3] 

z: Axial coordinate of 1D model [m] 

Greek symbols 

ε: Porosity of catalyst particle [-] 

εa : absorption coefficient [m2 mol-1] 

φ : PBR porosity [-] 

µ: Dynamic molecular viscosity [Pa s] 



ρ: Density [kg m-3] 

∆HR: Enthalpy of reaction [J mol-1] 

∆V: Cell volume [m3] 

u: Velocity vector [m s-1] 

τ: : Tortuosity [-] 

λ: Wave length [nm] 

Abbreviations 

WGS: Water-gas-shift 

PBR: Packed bed reactor 

DEM: Discrete element method 

PROX: preferential oxidation  

NIR: Near-infrared 

AR: Aspect ratio of tube to particle diameters 

GCI: Grid Convergence Index 

Subscripts: 

g: gaseous phase  

s: solid phase 

Surf : surface 
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APPENDIX A1 

Light propagates through non-transparent media into ballistic, quasi-ballistic or diffuse light. The 

ballistic light follows a straight trajectory in the medium, the quasi-ballistic light carries out minor 

scattering, while the diffuse light goes through multiple scattering and directions.[16-18] The ballistic 

light therefore travels straight through a non-transparent medium and exits in a similar direction to 

that in which it entered, but constitutes typically a very small part of the light. The concentration of 

H2OV was obtained by measuring the attenuation of the light through the low scattering PBR, which 

included both absorption and some scattering and is described by the modified Beer–Lambert law.  
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where Abs is the absorbance, Iexit and Iinlet are the light intensities at the exit and the inlet of the packed 

bed, respectively, l is the optical path length, cH2O is the uneven composition of H2OV across the 

packing and εa is the absorption coefficient.  



The temperature was measured by computing the ratio, Rabs, of integral absorbance Abs1 and Abs2 for 

two temperature-dependent wave lengths λ1 and λ1.[19] 
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The values of the two integral absorbances were taken from the same interrogatory area in terms of 

concentration and path length. Rabs was then simplified to ratios of the absorption coefficient or line 

strength S(T) of temperature-dependent transition:  
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The line strength at an arbitrary temperature T is related to a reference temperature T0 as given by 

Equation (A.1.4).  
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Qi(T) is the temperature-dependent partition function of water vapour, Si(T0, λi ) is the line strength 

of the transition centred at line wavelength λi for a reference temperature T0, often taken as 296 K, h 

is Planck’s constant, c is the speed of light, k is Boltzmann’s constant and Ei is the lower state energy. 

The absorbance ratio is thus related to temperature by Equation (A.1.5).  
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The pair of lines at 1358.412 and 1380.685 nm were used for temperature measurements since they 

offered a difference in lower state energy (E2-E1) of 342 cm-1, a line strength ratio at the reference 

temperature (S1(T0)/S2(T0)) of 1.19, and were close but not overlapping each other. 

The adaptive algebraic reconstruction technique was employed for image reconstruction of both 

temperature and concentration measurements, as it offered flexibility for a reduced number of 

projections. The 3D object function f, of dimension m and N, represented an array of discrete 

unknown voxels. For a single hyperplan, integral absorbance (equation A.1.1) or integral ratio of 

absorbance (equation A.1.5) for concentration and temperature measurements, respectively, along the 

path were expressed by equation A.1.6.  

( )1
1, 2,.. .1.6M

ij i ij
w f p i N A

=
= =∑  

Where p is the integral absorbance or absorbance ratio, wij is the weighting factor, representing 

absorbance (i.e. concentration) or absorbance ratio (i,e, temperature)  of the contribution of the j-th 

voxel to the i-th measurement, N  is the total number of projection rays and M is the total number of 

voxels. The algorithm was initiated by giving an arbitrary guess for the voxel vector, projecting onto 

the first hyperplan equation and the result was projected onto the next hyperplan and so on until the 

last one. The system of algebraic equations was solved by iteration using the Kaczmarz method 

(equation A.1.7). 
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where 𝑓𝑓𝑘𝑘−1.𝑤𝑤𝑗𝑗 is the dot product and k is the iteration index. Reconstruction of cross-sectional images 

or slice matrixes was repeated for each subsequent cross-sectional matrix until 3D integral absorbance 

ratios for temperature reconstructions and integral absorbance for concentration reconstructions were 

obtained and converted to temperature and concentration using equations A.1.1 and A.1.5, 

respectively. 



APPENDIX A2 

The Weisz and Prater (W–P) criterion (Equation A.2.1) and Mears criterion (Equation A.2.2) were 

used to assess the relative effects of internal and external mass transfer limitations, respectively, on 

the chemical kinetics. A negligible mass transfer limitation takes place when the two factors in 

Equations A.2.1 and A.2.2 are satisfied.[27,28] 
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Herein, kc is the mass transfer coefficient relevant to the film surrounding a spherical particle, which 

was estimated from the model of films surrounding spheres.[46]  
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The concentration on the surface of the catalyst ci,sur was obtained by mass balance at the gas–solid 

boundary.  

( ), ,i s c s i g i surfrV k a c c= −                                                                                                       (A.2.4) 

where as and Vs are the surface area and volume of a single particle, respectively. 

The criteria of the Damköhler numbers in 4th order Dai,(IV) (Equation A.2.5) and 3rd order Dai,(III) 

(Equation A.2.6) were used to assess the relative effects of internal and external heat transfer 

limitations, respectively, on the chemical kinetics. Herein, the enthalpy of reaction ΔHrj and activation 

energy Ej are those relevant to CO oxidation in the PROX. 
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where R is the universal gas constant and hg-s is the heat transfer coefficient from the gas phase to the 

catalyst and was estimated from the model of films surrounding spheres.46   
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Re and Pr are the dimensionaless Reynolds and Prandtl numbers, respectively. The surface catalyst 

temperature Tsurf was obtained by the heat balance at the gas–solid boundary.  

( )rj i s g s s suf gH rV h a T T−∆ = −                                                                                       (A.2.8) 

 

APPENDIX A3 

Potential errors that could be associated with the CFD simulation were examined by following the 

approach given by Celik et al.,[44] ensuring that the results were free of mesh size. The representative 

grid size h0 procedure was defined as:  
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where ∆V is the cell volume and N is the number of cells. Three grid refinement factors higher than 

1.3 were used for the ultimate refinements. The apparent order m of the method was defined by 

Equations (A.3.2) to (A.3.4.) : 
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( )32 211.sgns = Θ Θ                                                                                                    (A.3.4) 

where h0,1<h0,2<h0,3, r21=h0,2/h0,1, r32=h0,3/h0,2, Θ32=u3-u2, Θ21=u2-u1. uk(k=1, 2, 3) expresses velocity 

values taken at three grid locations in the packed bed as shown in Figure A.3 and sgn is the function 



signum. Equation (A.3.3) was solved numerically for m. This was used to find the relative errors 

(Equations A.3.5 and A.3.6) and the fine grid convergence GCI (Equations A.3.7 and A.3.8) 
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Table 1. Physical properties of gaseous and packing phases* 

 Gaseous phase  

Property N2 He 

ρg [kg m-3]** 0.68 0.1 

µg [Pa s]** 2.63 x 10-5 2.89 x 10-5 

𝑘𝑘𝑔𝑔(𝑗𝑗𝑠𝑠−1𝑚𝑚−1𝐾𝐾−1)** 𝑘𝑘𝑔𝑔 = 6.0 × 10−5𝑇𝑇(℃) + 0.0247 𝑘𝑘𝑔𝑔 = 3.0 × 10−4𝑇𝑇(℃) + 0.1504 

Cpg [J kg-1 K-1]** 1021.2 5193.2 

Di-x [m2 s-1]  

(x: N2 or He)*** 

𝐷𝐷𝐻𝐻2𝐶𝐶−𝑁𝑁2 = 1.7 × 10−7𝑇𝑇(℃) − 3.3 × 10−5 
𝐷𝐷𝐻𝐻2−𝑁𝑁2 = 4.8 × 10−7𝑇𝑇(℃) − 9.9 × 10−5 

𝐷𝐷𝐶𝐶𝐶𝐶−𝑁𝑁2 = 1.5 × 10−7𝑇𝑇(℃) − 2.8 × 10−5 
𝐷𝐷𝐶𝐶𝐶𝐶2−𝑁𝑁2 = 1.1 × 10−7𝑇𝑇(℃) − 1.8 × 10−5 
𝐷𝐷𝐶𝐶2−𝑁𝑁2 = 1.5 × 10−7𝑇𝑇(℃) − 2.6 × 10−5 

𝐷𝐷𝐻𝐻2𝐶𝐶−𝐻𝐻𝐻𝐻 = 4.7 × 10−7𝑇𝑇(℃) − 8.4 × 10−5 
𝐷𝐷𝐻𝐻2−𝐻𝐻𝐻𝐻 = 8.5 × 10−7𝑇𝑇(℃) − 1.6 × 10−4 
𝐷𝐷𝐶𝐶𝐶𝐶−𝐻𝐻𝐻𝐻 = 4.3 × 10−7𝑇𝑇(℃) − 7.5 × 10−5 
𝐷𝐷𝐶𝐶𝐶𝐶2−𝐻𝐻𝐻𝐻 = 3.8 × 10−7𝑇𝑇(℃) − 6.6 × 10−5 
𝐷𝐷𝐶𝐶2−𝐻𝐻𝐻𝐻 = 4.5 × 10−7𝑇𝑇(℃) − 7.5 × 10−5 

 Solid phase (Pt/γ-Al2O3) 

ρs [kg m-3] 1230 

εs [-] 0.21 

τs**** 2.15 [43]* 

Surface area [m2 g-1] 218 

ks (J s-1 m-1 K-1) 27 

Cps [J kg-1 K-1] 880 

 
* The physical properties of the reactive mixture were predominantly approximated to that of the 
carrier gases owing to low concentrations of the reactive species. Some properties such as density 
and viscosity were averaged over the operating temperature (i.e. 413-650 K) to reduce the 
computation time of the 3D model.  

**Data of physical properties were obtained from DIPPR models in Aspen Plus data base and then 
linearized into polynomial expressions (i.e.  coefficient of determination 𝑅𝑅2 ≥ 0.99).  

*** The model of Chapman-Enskog-Wilke-Lee was used [42]  

****Tortuosity τs was estimated by the tortuosity-porosity model of Tomadakis et al.[43] where the 
pores are assumed to be structured of overlapping cylinders. 
 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 1 Apparatus scheme: Feed controlled by mass flow controller of CO, O2, H2 and N2 and air-
actuated switching valve for CO composition change, PT: Pressure transducer, TC1= Thermocouples 
(monitoring), TC2: Thermocouples connected to programmable temperature controllers; 
Optics=details of optics are shown in Figure 3; Tuneable diode laser: Lock-in monomode connected 
to focal planar camera; Quartz packing: pre-packed bed mixer, Fe-Pt/Al2O3 packed bed= Height: 39 
mm; visible aperture by NIR camera: 1.20 x 3.9 cm2  
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Figure 2 Profiles of W-P, Mears,  Dai,(IV) and Dai,(III) factors with temperature for particle sizes of 250 
µm (AR of 48) and 50 µm (AR of 240), feed flow rate of 670 cm3 min-1 and composition: 0.5 mol% 
CO, 2.5 mol% O2, 1.7 mol% H2 and N2 as carrier gas 
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Figure 3 Profiles of conversion of CO and selectivity to CO2 with temperature at steady-state 
conditions (a), profiles of conversion with time-on-stream and temperature (b1) and profiles of 
selectivity to CO2 with time-on-stream and temperature (b2). PBR of an AR of 48 — i.e., particle 
size of 250 µm, feed flow rate of 670 cm3 min-1 and composition: 0.5-1.1 mol% at steady-state and 
increased to 1.4% CO at transient conditions, 2.5 mol% O2, 1.7 mol% H2 and N2 as carrier gas 
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Figure 4 Profiles of rate constants with temperature. PBR of an AR of 48 — i.e., particle size of 0.25 
mm, feed flow rate of 670 cm3 min-1 and composition: 0.5-1.1 mol % at steady-state and increased to 
1.4% CO at transient conditions, 2.5 mol% O2, 1.7 mol% H2 and N2 as carrier gas 
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Figure 5 Axial section maps of concentration of H2OV (a1-a3), circumferentially averaged concentration maps 
of H2OV (b1-b3) and circumferentially averaged temperature maps (c1-c3). Subscripts 1, 2 and 3 correspond to 
times-on-stream of 30, 60 and 90 min, respectively, PBR of an AR of 13 — i.e., particle size of 0.9 mm, feed 
temperature of 413 K, flow rate of 670 cm3 min-1, and composition: 1.1 mol % at steady-state and increased to 
1.4% CO at transient conditions, 2.5 mol% O2, 1.7 mol% H2 and N2 as carrier gas 
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Figure 6 Circumferentially averaged local activity maps, (a), (b) and (c) correspond to times on stream 
of 30, 60 and 90 min, respectively, PBR of an AR of 13 — i.e., particle size of 0.9 mm, feed 
temperature of 413 K, flow rate of 670 cm3 min-1, and composition: 1.1 mol% at steady-state and 
increased to 1.4 mol% CO at transient conditions, 2.5 mol% O2, 1.7 mol% H2 and N2 as carrier gas 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 7 Circumferentially and radially averaged local concentration of H2OV (a) and activity (b) for 
times on stream of 30, 60, 90 and 120 min, respectively. PBR of an AR of 13 — i.e., particle size of 
0.9 mm, feed temperature of 413 K, flow rate of 670 cm3 min-1, and composition: 1.1 mol% at steady-
state and increased to 1.4 mol% CO at transient conditions, 2.5 mol% O2, 1.7 mol% H2 and N2 as 
carrier gas 

 

 

 

 

 

 

 

0.2

0.4

0.6

0.8(t= 0, ca. fresh catalyst or
 preliminary steady-state)

t=30 min

t=60 min

t=90 min

t=30 min

t=60 min

t=90 min

(a)

(b)

t=120 min

t=120 min

5 10 15
0.2

0.4

0.6

0.8

Ac
tiv

ity
 [-

]
H

2O
V 

[m
ol

e 
%

]

Axial lenghth of the PBR [mm]



 

 

 

 

 

                                                    

 

 

 

 

 

  

                                                                                  

 

 

 

 

 

 

 

Figure 8 Elemental discretisation of catalyst particle by 3D unstructured tetrahedral cells (i.e. spatial 
resolution of 25 elements per particle diameter). 
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Figures 9 2D surface map (a) from circumferentially averaging the 3D domain index (left figure) 
and axial averaging of porosity (b)  
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Figure 10 Pressure drops (a), vertical section map of velocity (b), circumferentially averaged map of 
velocity (c), circumferentially averaged radial velocity (d1) and circumferentially and axially 
averaged radial velocity (d2) 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Profiles of axial cross-line of temperature (a1), activity (b1) and composition of CO (c1) 
along the PBR at various time-on-stream, cross-sections at 120 min of time-on-stream of temperature 
(a2), activity (b2) and composition of CO (c2), PBR of 10 mm ID, 25 mm length and AR of 10 — i.e., 
particle size of 1 mm, feed flow rate of 470 cm3 min-1 and composition: 1.1 mol%  at steady-state and 
increased to 1.4 mol% CO at transient conditions along with deactivation, 1.7 mol% H2 and N2 as 
carrier gas 
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Figure 12 3D views and cross-sectional map of activity (a1-a2) and temperature (b1-b2) at time-on-
stream of 120 min, cross-section at 15 mm from the inlet of the PBR, PBR of 10 mm ID, 25 mm 
length, particle size of 1 mm, feed flow rate of 470 cm3 min-1 and composition: 1.1 mol%  at steady-
state and increased to 1.4 mol% CO at transient conditions along with deactivation, 1.7 mol% H2 and 
N2 as carrier gas 
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Figure 13 Profiles of axial cross-line of activity and temperature along the PBR at time-on-stream of 
120 min. Effects of activation energy of deactivation rate constant on activity and temperature (a1,a2), 
dispersion of catalyst concentration on activity and temperature (b1,b2), mass and thermal diffusivity 
coefficients of carrier gas on activity (c) intra-particle mass transfer rate on activity (d) and The aspect 
ratio of bed to particle diameter on activity (e). PBR of 10 mm ID, 25 mm length, particle size of 1 
mm, feed flow rate of 470 cm3 min-1 and composition: 1.1 mol%  at steady-state and increased to 1.4 
mol% CO at transient conditions along with deactivation, 1.7 mol% H2 and N2 as carrier gas 
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Figure 14 Profiles of circumferentially and radially averaged activity by NIR tomography (blue line) 
and simulation results of axial activity at two time-on-stream and two activation energy of 
deactivation, PBR of 10 mm ID, 25 mm length and AR of 10 — i.e., particle size of 1 mm, feed flow 
rate of 470 cm3 min-1 and composition: 1.1 mol%  at steady-state and increased to 1.4 mol% CO at 
transient conditions along with deactivation, 1.7 mol% H2 and N2 as carrier gas 
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