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ABSTRACT
With the advancement of deep learning based speech recognition
technology, an increasing number of cloud-aided automatic voice as-
sistant applications, such as Google Home, Amazon Echo, and cloud
AI services, such as IBM Watson, are emerging in our daily life. In
a typical usage scenario, after keyword activation, the user’s voice
will be recorded and submitted to the cloud for automatic speech
recognition (ASR) and then further action(s) might be triggered
depending on the user’s command(s). However, recent researches
show that the deep learning based systems could be easily attacked
by adversarial examples. Subsequently, the ASR systems are found
being vulnerable to audio adversarial examples. Unfortunately, very
few works about defending audio adversarial attack are known in
the literature. Constructing a generic and robust defense mecha-
nism to resolve this issue remains an open problem. In this work,
we propose several proactive defense mechanisms against targeted
audio adversarial examples in the ASR systems via code modula-
tion and audio compression. We then show the effectiveness of
the proposed strategies through extensive evaluation on natural
dataset.
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1 INTRODUCTION
Automatic Speech Recognition (ASR) technology aims at convert-
ing the phrases or words spoken by human into text. During the
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past years, cloud-aided ASR technology has been successfully com-
mercialized and gradually moving from the laboratory to our daily
life, especially in the areas of smart home. The related applications,
such as Apple’s Siri, Google Home, and Amazon Echo, have been
adopted to millions of end users. In a typical usage scenario, after
keyword activation, the user’s voice will be recorded and submitted
to the cloud for speech recognition and then further action(s) might
be triggered depending on the user’s command(s).

Meanwhile, an increasing number of cloud AI outsourcing ser-
vices are emerging to facilitate computationally limited devices.
Backed by Google machine learning techniques and Google Cloud
Platform, Google Cloud Speech-to-Text [13] and Dialogflow [15]
provide API to developers, and enable real-time audio processing.
Another Speech to Text system fromAccessWatson services on IBM
Cloud has been used in various applications, such as customer self-
service virtual assistant to speed-up customer response. Moreover,
Speechmatics [46] offers cloud-based service for multiple language
ASR even in a noisy environment.

In common practice, to solve the problem of the cumbersome
multistep exercise including hand-engineered processing when
building ASR systems, end-to-end learning is adopted to simplify
the sophisticated pipelines and supersede these processing stages
by using deep learning technologies [1, 43]. However, recent re-
searches show that these deep learning-driven systems are vul-
nerable to adversarial attacks [49]. In those attacks, the attackers
maliciously inject tailor-made small perturbations into the source
data, which cannot be detected by human recognition, while they
are able to compromise the integrity of the decisions made by the
deep learning systems or algorithms.

In the literature, the concerns of adversarial examples have been
raised not only in a broad range of image processing tasks, such as
image classification [4, 20, 28, 38, 48], semantic segmentation [3, 19],
human pose estimation [11], and object detection [52], but also in
reinforcement learning agent [5]. Moreover, adversarial attacks are
also emerged in the audio processing domain recently [2, 10, 12].
More specifically, the malicious attackers can construct targeted
and/or untargeted audio adversarial examples to launch adversarial
attacks against ASR systems, which draws a widely public attention
to the security problems caused by these types of attacks.

These kinds of attacks can be classified by the goals and phases.
In terms of the attacking goals, the malicious attackers can cause
the deep learning algorithms to make wrong decisions based on
their wishes, that’s the so-called targeted attacks, whereas, the
untargeted attacks mean that the decisions can be anything but the
normal one. As for the attacking phase, there are two broad types
including the evasion attacks [20, 49] and data poisoning attacks
[32, 33, 51]. Evasion attacks are commenced during the deploying
phase, where attackers query the algorithms by adding crafted
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noise in the input data. A classical evasion attack [18, 38] is that
the attacker alters the STOP sign, which is still a STOP sign from
human perceptional perspective, but recognised as a SPEED sign
by the recognition system of autonomous vehicle, this may lead to
serious traffic accidents and even life-threatening matters. Another
kind is data poisoning attacks which mainly happen during the
training phase, since it’s obvious that the real world interacted
with the deep learning algorithms is continuously changing, the
applications based on deep learning algorithms should be never-
ending learning and continual [35] or life-long learning [29, 45].
The attackers can take advantages of this situation by injecting
wrong data in the training data to make the algorithms do error
modeling. As an example, Tay bot developed by Microsoft learned
from the people during interaction and made offensive or racist
statements [40].

Most known defense strategies against adversarial examples
mainly focus on image processing, however, those types of strate-
gies cannot be directly applied to audio processing. The main dif-
ference between audio and image processing is rate of statistical
redundancies. Audio data shows much more repetitions than im-
ages, which makes techniques non-portable from one context to
another. As a practical example, consider a 16-bit coded WAC au-
dio for example, the range of the sample values is [−32768, 32767].
Comparing with the pixel value range of the image [0, 255], the
former one is 256 times wider than the latter one, which signifi-
cantly increases the difficulty of detecting the adversarial attacks.
Unfortunately, with regard to the defense strategies against au-
dio adversarial examples in cloud-aided ASR systems, very few
progress has been made. We here ask the following challenging
question:

Is it possible to introduce a proactive defense
mechanism that can be integrated with the off-
the-shelf cloud-aided ASR systems to protect them
from being abused by the potential audio adver-
sarial examples?

We very much expect an affirmative answer because we need to
ensure that the robustness of those cloud-aided ASR systems to
enable their wide adoption in security critical applications.

Our contributions. In this work, we, for the very first time, study
the proactive defense strategies for the cloud-aided ASR systems
against audio adversarial examples. The defense strategy is indepen-
dent of the protected cloud-aided ASR systems, which means that
our proposed defense mechanism can be readily deployed to protect
extensive off-the-shelf audio processing systems. Furthermore, the
structure of the protected cloud-aided ASR systems needn’t to be
modified. We summarize our main contributions as follows:
• We initiate the study of proactive defense strategy tomitigate
the risk of adversarial examples in cloud-aided ASR systems.
In particular, we propose the world’s first proactive defense
mechanism to protect existing cloud-aidedASR systems from
adversarial attacks. The proposed protection mechanism
can be deployed on existing systems and run as an online
watchdog to detect and defend with little computational
overhead.
• This work also studies and formulates the properties of au-
dio adversarial examples and security model of a defense

strategy, enabling us to directly measure the effectiveness
and efficiency of the defense approaches.
• With evaluated by a natural dataset, the effectiveness of
our proposed defense approach is measured by the recogni-
tion time, the edit distance of the transcribed text and the
difference of the processing audio. To the best of our knowl-
edge, this is the first study aiming at mitigating the effects
of adversarial attacks on cloud-aided ASR systems.

Organisation. The rest of this article is organized as follows. Prob-
lem statement of audio adversarial examples, security model, and
adversarial attack are presented in Section 2. Next, the proposed
active transformation defense approach is described in Section 3,
followed by the experimental analysis based on a real-world radio
dataset. In Section 5, we review the related work about generating
and defending adversarial examples. Finally, we draw our conclu-
sion and discuss future research directions.

2 PROBLEM STATEMENT
2.1 Audio Adversarial Examples
Before giving the definitions about generating audio adversarial
examples against ASR systems as described in [10], we will make a
succinct introduction of the recognition process of the ASR systems
[23], which helps the readers understand the attack process and our
defense strategy. Considering R is the set of all the audio samples
in the input domain space, X is a single frame of the input audio
in R, Y is the range of the recognition results, such as the a to z
characters, the space and the special ϵ of the output domain O. A
normal neural network in ASR systems is to return a probability
distribution over O, based on the input sequences, which can be
insulted as a function f : R → [0, 1] |Y | . Relatively, f (·) means
a probability distribution over the characters of every frame. To
get the probability distribution of all the phrases, Connectionist
temporal classification (CTC) [21] is applied to train the ASR sys-
tems without knowing the alignment between the input and output
sequences, by minimizing the CTC loss:

CTC-Loss( f (x ),p) = − log Pr[p | f (x )]

where Pr(p | f (x )) stands for the probability of a given phrase p over
the distribution y = f (x ).

In terms of the attacking procedure, following the work in [10],
targeted adversarial examples are considered in this article. Firstly,
we define N = x |x ∈ R, in this definition, x occurs naturally with
regard to the ASR systems. We limit the scope of x to study the
manifold of the input domain, as stated in [26]. Considering the
space of R is much larger than N, we can formalize R → N ∪ ⊥,
where ⊥ represents that the input of x is unlikely to be judged from
the data generation process of R. The manifold of input space is
one of the issues that needs clarifying, the challenge is to determine
whether there are differences between the natural audio examples
and the audio adversarial examples. Additionally, we follow Carlini
and Wagner’s work, choosing the Mozilla Common Voice dataset
as the natural dataset for audio recognition.

An audio adversarial example x ′ have three definitions in our
discussion:



Defending Adversarial Attacks on Cloud-aided Automatic Speech Recognition Systems SCC ’19, July 8, 2019, Auckland, New Zealand

(1) The perturbation of x ′ and x should be imperceptible to hu-
man, which can be quantified using the distortion in Decibels
(dB), as the opposite idea against the pointless adversarial
fooling examples in [6, 37].

(2) x ′ must be assigned by the neural network with a specific
label chosen by the adversary, not the type of untargeted
adversarial examples. As stated in [10], the untargeted audio
adversarial examples are not usually so interesting and do
little help to the adversary.

(3) x ′ should follow these two constraints: f (x ′) , f (x ) and x ∈
R\N, f (x ′) , f (x ), which point out that when ASR systems
make a wrong decision given a nature input sample, this
source of error is not considered as the so called adversarial
example, since no system is perfect. If this is the case, then the
attacker needs to find out all the natural examples which can
lead to system error through brute force search. That will be
a very time-consuming and laborious collection task, which
requires the annotation of all natural samples by human.
Therefore, we have introduced the constrain of f (x ′) , f (x )
to limit the countermeasures causing errors. Only artificial
modifications can be used to deceive the system rather than
a natural sample.

2.2 Security Model
We assume that the attacker knows everything of the ASR systems
that he wishes to attack, which can be called white box attack. The
knowledge of the attacker contains the model structure, parameters,
and the training procedure, excluding the defense approach df . In
this type of attack, the attackers are allowed to have the maximum
power, which is considered as the most taken situation in prior
works [20, 25, 38]. The adversary transcripts the given audio wave-
form x to x ′, by constructing x ′ = x + σ , additionally, x ′ sounds
similar to x but f (x ′) = y.

What’s more, the defense strategy in our secure system knows
nothing about how the adversary generates the audio adversarial
examples. More specifically, we give a system security definition
as follows: A defense strategy against the adversarial attack is to
construct a filter which destructs the robustness of audio adversar-
ial examples. We define the original radio waveform is a random
variable c with probability distribution of Pc , the attacking process
is a function defined over c , and Pa stands for the probability distri-
bution of all perturbations produced during the attack. Besides, we
formalize the defense process as Pa → Pf , by generating the prob-
ability distribution Pf of all the adversarial examples after defense
reconstructing. This defense strategy is to make the reconstruc-
tion probability distribution Pf similar to the original probability
distribution Pc .

2.3 Adversarial Attack
In this section, we briefly introduce the adversarial attack presented
in [10]. At first, the attacking process is to solve the formulation:

minimize dBx (δ )

subject to f (x + δ ) = t

x + δ ∈ [−M,M]

Figure 1: Adversarial audio examples and corresponding
perturbation.

where M is the maximum representable value (215 used in this
article). By clipping the value of δ , the constraint can be handled.
To solve non-linearity difficulty of f (x + δ ) = t , the non-trivial loss
function constructing, and the l∞ distortion metric, the authors
applied the trick ofC&W attack, and initially solve the formulation:

minimize |δ |22 + c · l (x + δ , t )

subject to dBx (δ ) ≤ τ

x + δ ∈ [−M,M]

where c is a hyperparameter that balances the length and deceiving
effect, the bound δ is defined to have distortion at most τ , and τ is
initialized to some sufficiently large constant.

The loss function is the CTC loss:

l (x + δ , t ) = CTC-Loss(x + δ , t )

By reducing τ and resuming minimization until no solution δ∗

can be found, the optimization results with the minimum distortion
are returned, with satisfying the box constraints to be a valid audio.

Normally, for a fixed audio waveform x , the adversarial attack is
to find the minimum perturbation δ that is small enough in length
and can deceive the ASR systems at the same time.

3 COUNTERMEASURE DESIGN
The adversarial attacks may change the specific statistics of the in-
put audio waveform to fool the ASR systems, in fact, the adversarial
perturbation has a specific structure, as shown in Fig.1.

We design a proactive defense mechanism to recover the struc-
ture of the original input and remove the perturbations, then in-
vestigate whether these changes can eliminate the impact of the
adversarial attacks. As shown in Fig.2, we construct a filter and a
detector. The audio, as an input will be processed by two compo-
nents simultaneously. The first one is the ASR system, the output
recognition result will be sent to the detector. The second part is
the filter that will process the audio firstly and send the audio to
ASR system. After that, the detector gets two types of recognition
results, it will calculate the difference between these two recog-
nition results. Once the difference is larger than the predefined
threshold, the detector will alarm and classify the input audio as
an adversarial example. If the difference is below the threshold, the
input sample will be marked as a clean one, then the output text
recognised by ASR systems will be sent to the user.

The detector catches the suspicious input examples bymeasuring
the difference of the original audio waveform and the processed
one. Once the difference is higher than the threshold chosen by



SCC ’19, July 8, 2019, Auckland, New Zealand Jiajie Zhang, Bingsheng Zhang, and Bingcheng Zhang

Proactive Defense Mechanism 

Fi
lte

r

Adversarial examples 

Filtered Audio Signal

Output text

De
te

ct
or

Alert

Figure 2: The proposed proactive defense mechanism.

the user of the defense system, filter is activated to mitigate the
adversarial attack. After filtering the adversarial audios, they are
directly recognised by the server-aided ASR system. In terms of
filter, we propose two categories of transformation technologies as
a pre-processing step before running the server-aided ASR system:
(i). Code Modulation, (ii). Audio Compression.

3.1 Code Modulation
Code Modulation is divided into two parts in our work. Firstly,
we remove the heading of the input radio waveform, and apply
the G.729 [42] narrow-band vocoder-based audio data compres-
sion algorithm to compress the processed radio into bits. Secondly,
pulse-code modulation (PCM) [16] is used to reconstruct the au-
dio waveform based on the bits with adding the aforementioned
heading.

G.729 is an audio coding algorithm defined by ITU Telecom-
munication Standardization Sector (ITU-T), with a frame length
of 10 milliseconds and 25 ms point-to-point delay. G.729 is based
on the Code-Excited Linear Prediction (CELP) mode and applies
CS-ACELP (Conjugate-Structure Algebraic Code Excited Linear
Prediction) to encode the audio at a baud rate of 8 Kbps, which is
almost always used for Voice over IP (VoIP) with low bandwidth
requirements.

PCM is a method for digitally representing sampled analog sig-
nals. It is a standard form of digital audio in computers, compact
discs, digital phones, and other digital audio applications. In the
PCM stream, the amplitude of the analog signal is sampled at regu-
lar intervals. Each sample is quantized to the nearest value within
the digital step range, and expresses a good reproduction of the
perceptual quality of the original uncompressed audio. On this ac-
count, the amount of data required to represent the audio signal
recorded as PCM is tremendously reduced.

3.2 Audio Compression
To provide resilience to attack in the study of image adversarial
examples, the authors in [14, 17, 22] explored systematic JPEG
compression as a pre-processing step. Their method significantly

reduces adversarial perturbation. For the reason that adversarial at-
tacks are deployed by introducing adversarial perturbations which
are beyond human psychovisual awareness, we apply audio com-
pression as one of the active transformation approaches to remove
the artifacts in the adversarial examples.

As for audio compression, MP3 has been one of the most popular
and trusted audio compression standards. A core principle behind
MP3 compression is the lossy data compression, which encodes
data using inaccurate approximations and partially discarded data.
This type of technology can greatly reduce the file size compared to
uncompressed audio. MP3 compression records the residual audio
information in a space-saving manner by reducing (or approaching)
the accuracy of certain sound components considered to exceed the
hearing capabilities of human. This approach is commonly referred
to as perceptual coding or psychoacoustic modeling, which reduces
the storage space without perceptible difference.

4 IMPLEMENTATION AND EVALUATION
In this section, we perform four experiments to evaluate the ef-
ficiency and the properties of the active transformation defense
strategy described in Section 3, against the audio adversarial at-
tacks stated in [10] with a natural dataset: the Common Voice [36].
As described in our security model, the adversary is considered to
access the model architecture of the ASR systems and parameters,
but unknown to the specific defense strategy.

4.1 Experimental Setup
In our experiment, we choose the cv-invalid-dev sub-dataset of
the Common Voice as the natural audios, which contains 4076
samples. We firstly adopt the adversarial attacks methods released
by Carlini to generate the audio adversarial examples based on
CTC loss, followed by the experimental setting in [10]. It should be
emphasized that, when setting the length of the adversarial target,
we should consider about the Mel-Frequecny Cepstrum (MFC) used
in the processing of reducing the input dimensionality. Because
the radio waveform are split into 50 frames per second, which
relatively limits the maximum density of a audio waveform at 50
characters per second. In this work, the target translation sentence
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Table 1: The precision measurements of proposed defense
approach in different thresholds setting.

Defense Approach Threshold FNR FPR
Code Modulation 0.4375 0.0462 0.0002

MP3 Compression 64Kb/s 0.3556 0.1069 0.0002
MP3 Compression 96Kb/s 0.4219 0.0494 0.0002
MP3 Compression 128Kb/s 0.4219 0.0509 0.0002

(the recognition results of generated audio adversarial examples) is
fixed with 64 bytes during the whole experiment, and finally we get
4070 adversarial radio waveforms (discard 6 failed audio adversarial
examples).

According to the aforementioned security model defined in Sec-
tion 3, the security definition of the protected system is related
to the reconstruction probability distribution Pf and the original
probability distribution Pc , we measure the correlation in terms of
Minkowski Distance, Signal-Noise Ratio (SNR), and edit distance.

The Minkowski distance is a metric in the norm vector space
which generalizes a wide range of distances such as the Hamming
distance, the Euclidean distance, the geometric distance, and the
normalized harmonic distance. To measure the Minkowski distance
of dimension n, we construct a mapping dm : Rn × Rn 7→ R, such
that:

dm (A,B) = *
,

1
n

n∑
i=1
|ai − bi |

λ+
-

1/λ

(1)

where ai and bi are the ith elements of the sets A and B, λ is a
variable parameter such that λ ∈ (−∞,+∞). In particular, if λ = 1,
the Minkowski distance is precisely the Hamming distance; λ = 2
stands for the Euclidean distance; when λ → ∞, the Minkowski
distance can be considered as Chebyshev distance. We mainly con-
sider the Chebyshev distance measurement in our experiment to
evaluate the distance among the original audios, the adversarial
audios and the transformed audios after filtrating relatively.

SNR is often used in science and engineering to compare the
level of desired signal and the background noise, which stands for
the ratio of signal power to noise power. Normally, when the ratio
is greater than 1:1 (or higher than 0 dB), it means that there are
more signals than noise. In our work, we use the difference between
two audios to verify the performance of proposed machnism. SNR
is defined as:

SNR(dB) = 10 log10

(
Psignal

Padv

)
= 10 log10

*.
,

A2
signal

A2
adv

+/
-

(2)

where Psiдnal is the power of signal, Padv is the power of adver-
sarial perturbation, Asiдnal is the amplitude of signal, and Aadv is
the amplitude of adversarial perturbation.

In the standard approach to ASR systems, given the acoustic
information A, the optimization goal is to find the sentence hy-
pothesis that maximizes the posterior probability P (W |A) of the
word sequenceW . However, the general difficulty of measuring
performance is that the recognized word sequence may be of differ-
ent length than the reference word sequence (presumably correct).
For this reason, the distance metrics like Euclidean distance are
no longer applicable to quantify the mutual relationship of two

Table 2: SNR and Chebyshev distance evaluation.

Defense Approach Metric adv_advcode orig_adv orig_advcode orig_origcode

Code Modulation SNR -2.8007 21.3578 -2.798 -2.798
M_dis_∞ 16.326 0.945 16.382 16.386

MP3 Compression 64Kb/s SNR -2.799 18.582 -2.796 -2.796
M_dis_∞ 16.306 1.489 16.361 16.371

MP3 Compression 96Kb/s SNR -2.798 20.866 -2.796 -2.796
M_dis_∞ 16.310 1.026 16.365 16.373

MP3 Compression 128Kb/s SNR -2.798 21.213 -2.796 -2.795
M_dis_∞ 16.310 0.973 16.365 16.372

word sequences. The commonly used performance metric in ASR
systems is edit distancesWE (W ,R) between a hypothesisW and
the reference string R.WE (W ,R) is defined as the number of sub-
stitutions, deletions, and insertions relative to R in the alignment
of two strings, which minimizes the weighted combination of these
types of errors. In this article, to more fully measure our defensive
performance, we choose Levenshtein distance and the Word error
rate (WER) which is derived from the Levenshtein distance as the
measurements.

4.2 Overall Performance
In this section, we mainly evaluate the proposed defense approach
and explore the properties of audio adversarial examples against
ASR systems. To be specific, the performance is evaluated by two
metrics: (1) the difference between the original audio waveform, the
adversarial audio waveform, and the audio waveform after defense.
(2) the efficiency of the proposed mechanism. We compare the two
proposed approaches, code modulation and MP3 compression, and
calculate the average results for all the audio sampls. For MP3 com-
pression, we set three different compression rates, namely 64Kb/s ,
96Kb/s , and 128Kb/s .

Our proposed defense mechanism adopts thresholding to detect
the adversarial attack. It counts an audio as an adversarial example
if the difference between the original recognition result and the
result after filtering is above a threshold, and vice versa. Fig.5 shows
the performance of the proposed detection mechanism in terms
of ROC curve. To maximise the detection efficiency, we predefine
a threshold for each defense approach, and calculate the related
False Negative Rate (FNR) and False Positive Rate (FPR), the related
precision measurements results are shown in Table.1.

To measure the impact of defense approachs on audios, we com-
pare the differences of audios before and after processing, based on
Minkowski distance (Chebyshev distance) and SNR. As shown in
Table.2, we list four kinds of comparing groups, the adv_advcode
stands for the adversarial audio and the adversarial audio after
defense as the first normal reference group, the orig_adv is the
group of original audio and the adversarial audio, the orig_advcode
means the original radio and the adversarial audio after defense,
the last group called orig_origcode, is original audio and original
audio after defense as the second normal reference group. These
two normal reference groups are designed to measure that how the
proposed defense strategy influences normal audios, considering
that our filter in the mechanism will filter all the input audios, we
need to make sure the clean sample won’t be influenced by our
mechanism.
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Figure 3: The edit distance of the recognition sentences for attacking and defense. The first three columns are MP3 compres-
sion, the number behind (64, 96, and 128) is the compression ratio, and the last column is the code modulation.

The Chebyshev distance shows interesting properties of audio
adversarial examples in Table.2. In these four defense approaches,
the distances in group orig_adv are the smallest comparing with
other groups. Considering about the reason, in the adversarial at-
tacks against ASR systems, the goal of the adversary is to construct
the most similar but fooled examples to mislead the system, as
defined in Section 2. Therefore, the defense aims at increasing this
difference, while being clipped to the normal scope, according the
values in the normal reference groups, which can be proved by the
distances for orig_advcode group.

As for the SNR evaluation, the group of orig_adv shows the high-
est values, which means that the noise in the adversarial examples
is still obvious; whereas, after being processed by the defense ap-
proaches, the differences of SNR values between the original audio

and the adversarial audio are much smaller and even closed to the
nonmoral reference groups.

A direct way to quantify the defense efficiency is to measure the
recognition effect by the protected ASR systems. Thereby, we send
the audio adversarial examples and the reconstructed audio exam-
ples after defense as the inputs to Deep Speech, and then compare
the edit distance of the recognition sentences. Visual distribution
of the edit distance between the two groups, original-adversarial
group (original audio waveform and adversarial audio waveform)
and original-adversarial_ED (original audio waveform and adver-
sarial audio waveform after defense), is illustrated in Fig.3. In this
part, two kinds of measurements are deployed, Levenshtein distance
and WER edit distance.
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Figure 4: The defense effectiveness evaluated with the recog-
nition time and processing-recognition time (for defense).

The first line with blue circles shows the difference between the
original audio waveform and the adversarial audio, and the second
line is the difference between the original audio waveform and the
adversarial audio after defense, both measured by the Levenshtein
distance. WER edit distance is evaluated in the third and fourth line
with the green circles, the former one is the original audio waveform
and the adversarial audio, and the latter one is the original audio
waveform and the adversarial audio after defense. For both edit
distance metrics, the smaller sizes of the circles reflect that our
defense approach is much more efficient.

As mentioned before, defense effectiveness is also important
when discussing the security problems especially in commercial
use. Taking an example of security checking in the airport, the
setting of the checkpoint is to increase the security of the airport,
but it cannot cause pressure on the normal passage for passengers
when guaranteeing the safety of the passenger. Consistent with
this situation, we compare the recognition processing time for four
types, original audio waveform, adversarial audio waveform and the
whole defense and recognition time, the results are shown in Fig.4.
We calculate the average time for processing the whole 4070 audio
waveforms. The results show that to some extent, the consuming
time for defense including the transmitting and recognition just a
little longer than recognising the original and adversarial examples,
this is reasonable and can be acceptable.

5 RELATEDWORK
In the context of two intriguing properties of neural networks, a for-
mal definition of “adversarial examples” was proposed by Szegedy
et al. [49]. This was caused by the fact that the input and output
mapping of the deep neural work was largely incoherent, the mali-
cious users can make the network incorrectly classify the images
by applying some sort of subtle perturbation to maximize the pre-
diction error of the network.

Nonetheless, the work of Goodfellow et al. [20] made a state-
ment that the disturbance of neural networks was caused by their
linear characteristics instead of their nonlinearity and overfitting.
Furthermore, they proposed a method named fast gradient sign
method (FGSM) for finding similar adversarial examples x∗ in the
L∞ neighborhood of the original sample x , with the optimization
strategy of performing one step gradient update from x in the input

Figure 5: Adversarial attack detection. False Positive Rate is
the probability of adversarial audios that are identified as
clean audio samples. True Positive Rate measures the per-
centage of clean audio samples which are correctly identi-
fied.

space with a volume ϵ . However, this kind of attack was designed
to be fast but not to minimize the adversarial perturbations, which
shifted all the elements of the input and made easier to be detected
by the recently proposed defense approach defense distillation [39],
since FGSM may fail to generate successful attacks while other
iterative optimization based methods could succeed.

To make the adversarial examples more robust, Carlini and Wag-
ner presented a powerful attack against defensive distillation [9],
also known as the C&W attack, which generated adversarial exam-
ples with smaller perturbations for both targeted and untargeted
attacks for three metrics including L0, L2 and L∞, and showed
more efficient than other published attacks. Naturally, it became
the benchmark and considered as an ideal evaluation method for
potential defenses. This is exactly the attack mechanism we defend
in this article in the audio field.

Just as mentioned before, generating adversarial examples be-
comes an critical step to evaluate and improve the robustness of
machine learning technologies when dealing with the hard per-
ceptual problems. Over the past two years, many researches have
been conducted on the theoretics, application scenarios and defense
mechanisms of adversarial examples, an interesting Grundy’s game
competition situation is presented.

The empirical study of Carlini and Wagner [7] used the L2 attack
algorithm ofC&W attack to generate targeted adversarial examples
and showed that ten recent detection methods could be bypassed
by the attackers. Whereas, work in [41] locally corrupted the image
by redistributing pixel values via a process termed pixel deflection,
which enabled the effective recovery of the true class against a
variety of robust attacks. [30] represented a deselection scheme by
comparing the action distribution of the current observed frame and
the predicted frame from the action-conditioned frame prediction
module. Moreover, Shen et al. [44] proposed an effective framework
based Generative Adversarial Nets named APE-GAN to defend the
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adversarial examples, evaluated on the DenseNet40, InceptionV3
and ResNet50 for MNIST, CIFAR10 and ImageNet.

As the representative work of studying adversarial examples in
generative models, Fischer, and Song [27] applied C&W attack as
the optimization method to generate adversarial examples. They
generated adversarial examples for both targeted and untargeted
attack against variational autoencoders (VAEs) and VAEs composed
with a generative adversarial network (VAE-GANs). In their work,
they indirectly manipulated the latent representation and gener-
ated a targeted adversarial reconstruction of the input and directly
optimized against differences in source and target.

The work in [31] explored the transferability of both targeted and
untargeted adversarial examples based on C&W attack and other
attacks, which showed that the adversarial examples generated to
evade some model could mislead other models trained for the same
work.

To defend neural network classifers against adversarial examples,
Meng and Chen [34] pointed that adding affiliated classifiers can
help the protected model classify the normal examples and adver-
sarial examples. In their work, they constructed separate detector
networks and a reformer network to learn to differentiate between
normal and adversarial examples by approximating the manifold of
normal examples. Finally moved adversarial examples towards the
manifold of normal examples, which seemed effective for correctly
classifying adversarial examples with small perturbation. Lately,
Carlini andWagner [8] stated that the MagNet and the work in [53]
were not robust to adversarial examples, and they could construct
adversarial examples that defeat these defenses with only a slight
increase in distortion based on the C&W attack.

Ensemble adversarial training presented in [50] incorporated
the disturbed inputs which were transferred from other pre-trained
models, exhibit increased robustness to the transferring adversarial
examples generated by various single-step and multi-step attacks
including C&W attack. However, this kind of defense requires a
large amount of adversarial examples to model the defense training.
Moreover, the adversarial training strategy is specific to certain
adversarial examples generating approaches. Considering about
the numerous defense approaches, it’s normal to wonder whether
a strong defense can be created by combining multiple (possibly
weak) defenses. However, the work in [24] implied that ensemble
of weak defenses is not sufficient to provide strong defense against
adversarial examples. As announced in [10, 47], there are still a
number of open research challenges in the research of adversarial
examples, including the formation mechanism and especially the
effective defense.

The aforementioned adversarial examples show us the facts that
even the simplest machine learning algorithms, including super-
vised learning, unsupervised learning and reinforcement learn-
ing, can all be attacked and perform unexpected way contrary
to the original intention of the designer. Despite the aforemen-
tioned generating approaches of adversarial examples in image
processing domain. Considering about the huge development and
wide applications of audio processing systems, such as the Google
Home and Amazon Alexa, recently, Carlini and Wagner [10] con-
structed the audio adversarial examples on Speech-to-Text systems.
They applied white-box iterative optimization-based C&W attack
to Mozilla’s implementation DeepSpeech end-to-end. They turned

any audio waveform into any target adversarial transcription with
a 100% success rate, which showed a new domain to explore the
intriguing properties of neural networks. In this article, we mainly
focus on the defense strategies against the attack in [10].

To the best of the authors’ knowledge, all the existing defense
approaches against adversarial examples mainly focus on the image
processing domain, there are few works about defending the audio
adversarial examples. Considering about the natural differences
between images and audios, especially the statistical redundancy
mentioned before, the defense strategies can’t be directly applied to
deal with the audio adversarial examples. To address this problem,
in this article, as the first attempt to mitigate the audio adversarial
examples, we propose a new defense strategy for protecting Speech-
to-Text systems against adversarial examples.

6 CONCLUSION AND FUTUREWORK
This article explored the properties of adversarial audio examples
against Cloud-aided ASR systems, and showed that primitive sig-
nal processing transformations may have the potential to defend
the adversarial perturbations. Furthermore, we proposed a uni-
versal defense against speech recognition systems, including code
modulation and audio compression. Code modulation combines
the G.729 narrow-band vocoder-based audio data compression al-
gorithm and PCM to transform and convert the audio waveform.
Audio compression reduces the residual audio information exceed
to human hearing by using MP3 compression. The experimental
results showed that our proposed defense approach achieved high
performance in terms of the difference between the audio, and the
difference between the transformation sequences and the efficiency,
based on the metrics of Minkowski distance, SNR, edit distance,
and processing time.

The proposed mechanism will inspire more work in defending
adversarial attack in audio domain. Furthermore, considering the
transferability of adversarial examples in images, the defense strat-
egy should be noticed to deal with the transferability in audio.
Additionally, studying the possible behaviors by the attackers and
extending the proposed approach to effectively resist the attacks is
very crucial, such as gray-box attack and black-box attack depend-
ing on the adversary’s knowledge about the defense approaches.
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