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Abstract Persistent changes in the diameter of retinal blood
vessels may indicate some chronic eye diseases. Computer-
assisted change observation attempts may become challeng-
ing due to the emergence of interfering pathologies around
blood vessels in retinal fundus images. The end result is
lower sensitivity to thin vessels for certain computerized
detection methods. Quite recently, multi-scale line detec-
tion method proved to be worthy for improved sensitiv-
ity towards lower-caliber vessels detection. This happens
largely due to its adaptive property that responds more to
the longevity patterns than width of a given vessel. How-
ever, the method suffers from the lack of a better aggre-
gation process for individual line detectors. This paper in-
vestigates a scenario that introduces a supervised General-
ized Gaussian mixture (GGM) classifier as a robust solu-
tion for the aggregate process. The classifier is built with
class-conditional probability density functions as a logistic
function of linear mixtures. To boost the classifier’s perfor-
mance, the weighted scale images are modeled as Gaus-
sian mixtures. The classifier is trained with weighted im-
ages modeled on a Gaussian Mixture. The net effect is in-
creased sensitivity for small vessels. The classifier’s per-
formance has been tested with three commonly available
datasets: DRIVE, SATRE, and CHASEDB1. The results of
the proposed method (with an accuracy of 96%,96.1% and
95% on DRIVE, STARE, and CHASEDB1, respectively)
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demonstrate its competitiveness against the state-of-the-art
methods and its reliability for vessel segmentation.

1 Introduction

The contraction and expansion of blood vessels, particu-
larly in small arteries, enable organs to adjust their own
blood flow to meet the metabolic requirements of the tis-
sue. Though variation in blood vessel diameter is part of
the natural control of blood flow in healthy subjects [1], the
sustained changes may indicate the presence of pathologies.
The pathologies like micro-aneurysm, exudate, make it dif-
ficult to analyze blood vessels around the foveal avascular
zone (FAZ) region. Tracking Vessel diameter changes for a
longer period of time is therefore of interest to better under-
stand the regulation of blood flow [2,3] and are helpful in
prediction, diagnosis or progression of certain diseases like
Diabetic Retinopathy, Glaucoma and leakages [4–7]. There
are a number of different modalities to observe blood ves-
sels such as Computer Tomography (CT) scans, Magnetic
Resonance Imaging (MRI), X-rays, and Fundus Photogra-
phy (used here) [8,9].

In the clinical setting, fundus retinal images are acquired
as color images composed of red, green and blue channels.
The inverted green channel is then generally selected for fur-
ther processing as its gray-scale representation as it provides
the highest background vessel contrast among other chan-
nels. Vessels appear with higher intensity levels (white) and
the background region with low intensity (black).

Retinal image analysis plays an important role in diag-
nosing eye-related diseases, the largest of which is Diabetic
Retinopathy. Diabetic patients are more suspectable to de-
velop eye diseases such as cataracts and glaucoma in the
longer run, however, the impact on the retina is the most
threatening that can ultimately lead to vision loss. Diabetic
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Retinopathy (DR) damages retinal vessels.
The emphasis of a computerized retinal analysis sys-

tem is on the automatic extraction of the vasculature. In
literature, there are two types of automated segmentation
techniques:supervisedandunsupervisedtechniques. Super-
vised techniques are the ones where segmentation algorithm
learns from labeled data; once the classifier has learned
from the data, the process of segmentation can be applied
to the test data. On the contrary, unsupervised techniques
operate without any learning schemes. Instead, they learn
to segment based on certain rules developed due to domain
knowledge. In general, the supervised methods always pro-
vide better performance over those of unsupervised ones.
However, supervised methods are in need of training data
which is often not available in case of screening programs
and large population-based studies. Furthermore, the super-
vised method lacks the necessary generalization to reduce
the mismatch in performance when dealing with unknown
test data.

Though monumental work has been reported for super-
vised and unsupervised retinal vessel extraction, the low-
contrast vessels are still being elusive. The focus of the re-
search presented in this paper is to capture low-contrast nar-
row vessels with a supervised method that can work with a
limited labeled dataset, leading to an improved accuracy of
the vascular segmentation process. To achieve this, a Gen-
eralized Gaussian mixture (GGM) classifier is proposed as
an appropriate solution to the aggregation problem encoun-
tered in multi-scale line detection methodology. The appli-
cation of this supervised detector is not limited to vessels
detection only, it can be used in other applications such as
line detection in visual tracking [10–15] as well.

This paper is organized as follows. In Section 2, re-
lated work is presented. In Section 3 proposed method is
described. Section 4 discusses the experimental results fol-
lowed by the last section of the conclusion.

2 Related Work
A number of successful computer-assisted analysis reported
in the literature with the goal of separatingvesselfrom
non-vesselregions. However, both the visual inspection and
objective assessment of the classification appears to have
some performance gaps. The largest hindrance is the in-
ability of the automatic method to capture some of the
thinnest vessels that are barely perceivable even by the
keen human observers. A recently introduced line detec-
tor provides an improved sensitivity towards thin vessels
[16] due to its peculiar one-pixel-wide line shape. The ac-
tion of line detectors follows a difference equation of the
form: R(x, y;W )=max0≤θπIa(x, y;W, θ) − Ii(x, y;W ),

whereIi(x, y;W ) is the average value calculated with an
isotropicW × W local window surrounding the pixel, and
Ia(x, y;W, θ) is anisotropic average computed with pixels
directly under the line of lengthW , centered at pixel in

a specified directionθ. In their basic format, the length is
kept same as that of window sizeW . The line detectors
were later generalized in [17], by allowing the flexibility of
changing line length within a large window size, and thus
result in, what they claimed as a multi-scale line detector.A
popular supervised method is a morphology-based detector
that is used with a Gaussian mixture model to classify some
hard-to-detect pixels in [18]. Khanet. al. [9] applied scale-
normalized detector for vessels. This method can detect ves-
sels regardless of their sizes. Soomroet. al.[6] proposed an
ICA-based enhancement technique for retinal vessels seg-
mentation. The low and varying contrast problem has been
tackled using Independent Component Analysis (ICA).

In addition to the Gaussian Mixture model approach,
some other popular supervised methods including Neural
networks (NN) have been rigorously applied in the recent
past to the retinal vessel segmentation problem [19]. Per-
tinent to mention is the NN method presented in [20],
where classifier trained on one dataset, later tested on un-
seen images of another dataset provided fairly accurate re-
sults in terms of area under the receiver operating curves
(AUC). Recent studies have investigated deep neural net-
works (DNN) for retinal vessel segmentation [21–23]. Fuet.
al. [24] utilize the fully convolutional neural network (CNN)
to generate a vessel probability map. For providing the
long-range interactions between pixels and discriminative
vessel probability map Conditional Random Fields (CRFs)
are used. These neural network methods though provided
much-needed accuracy, their generalized abilities are criti-
cally limited when used with small sized data. Therefore,
we opted to use the generalized Gaussian model (GGM), for
its better generalization property for small data sets, in this
work.

3 Proposed Method
A multi-scale line detector for a given image operates
by creating a series of scaled images asSL(x, y;L) =

max0 ≤ θ ≤ πSL(x, y;L, θ), whereL = Li, ..., Lf . The
need for adopting the multi-scale methodology arises due to
the observation that basic line detectors produce unwanted
shadows in proximity to strong vessels. However, with a
multi-scale framework the new issue of aggregation appears.
One straightforward way is to arithmetically average images
obtained at various scaleS(x, y;L) to get the final output,
G(x, y) = 1

n

∑Lf

L=Li
SL(x, y;L), wheren represents the

count of scaled responses, an idea suggested in [17]. Aggre-
gate response computed in this way deals fairly well with
two prominent problems associated with the response of
line detectors. First is the dominance of background noise
due to small-scale line detectors, and the second is the pres-
ence of shadows in proximity to strong vessels in large-scale
responses. However, scaled images are computed incurring
different precision errors, and thus should be weighted dif-
ferently based on their noise profile. Later on, in a subse-
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quent research, the authors [25] floated an idea ofweighted
linear combinationinstead of a simple addition to mitigate
unequal contribution issues with individual line detectors,
that is,f(x, y) = 1

n

∑Lf

L=Li
wLS(x, y;L), wherewL is the

weight assigned to a scaled response due to line detector of
lengthL. However, the author fell short of specifying a sys-
tematic method to compute these weights, ad-hoc weights
in the form of increasing index were used in their work.
We proposed the use of weights that are inversely related
to noise variance of a given scaled image in this work.

This paper presents a semi-supervised weighted multi-
scale line detector, where supervision is performed for the
aggregation of multi-scale line detector outputs for weight
learning. A small amount of labeled data is found adequate
to train the model to capture the distribution of the data and
later the model can be easily generalized by the inclusion of
new test images. The lower amount of supervision, required
only at the multi-scale aggregation stage, makes the pro-
posed method much more attractive for screening programs
used in large population studies, where there is a scarcity of
labeled data. Fig. 1 shows the block diagram of the proposed
method.

3.1 Supervised weighted multi-scale line detector
Fundus camera provides color retinal images, in the form
of three basic channels, red, green, and blue. We specifi-
cally worked with green channel only, whose inverted im-
age is used as a gray-scale representation, where vessels
have the white intensity and the non-vessel region is pre-
dominate of black color. The reason for choosing the green
channel is the factor that it provides the highest contrast for
the blood vessels among other channels [26]. By varying
line lengthsL within a large window sizeW , a series of
line detectors masks, from small to large, are generated. The
line masks are then convolved with the input to produce a
series of scaled imagesS(x, y;L). Now sincen images of
the same input are available, then smoothing can be accom-
plished without blurring excessively byarithmetic averag-

ing as. G(x, y) = 1
n

n∑

k=1

S(x, y : k). However, due to the

difference in intensity dynamic range associated with each
of the scale images, they have to be first standardized to
have zero mean and unit variance and then added pixel-wise.
This addition results in lesser noise and clearer vessel tree
structure, that can later be converted to binary output with
an appropriate threshold to results in the white foreground
for vessels and black background for rest of the image. The
multi-scale line detection framework was found to provide
an improved classification as compared other detectors [17].
The Fig. 2 shows the scale-3 and scale-13 images for a test
image, related to a publicly available DRIVE database. The
histograms of the vessel and the non-vessel region are de-
picted due to the availability of ground truth for the test im-

ages. We clearly see a large overlap in their histogram, mak-
ing it difficult to find a threshold. However, the encouraging
sign is that both classes depict normal distribution behavior,
that can later be used to the advantage of adopting a stable
Generalized Gaussian modeling (GGM) approach for both
classes.

The performance of multi-scale line detection for reti-
nal images can be improved by making use of labeled
training set, resulting in supervised classification. Towards
that end, a retinal image is thought of made with two
classes, the vessel class (foreground) and the non-vessel
class (background). Each classC1(vessels) and C2 (non-
vessels), is in turn represented aslogistic functionof lin-
ear combination of scale imagesSL(x, y), known as predic-
tors. Specifically, for the case of vessel class, it is described
asC1 = 1

1+exp−(β0+β1S1+β2S2+···+βnSn) The parameter set
β0, β1, β2, · · · , βn is computed using Expected Minimiza-
tion with maximum likelihood function for the labeled train-
ing set belonging only to the vessel class. In case of linear
regression, the closed-form solution for the optimal param-
eters can be found. However, this is not the case for logis-
tic regression, where some iterative fitting procedure is in-
corporated that needs good convergence properties. As our
scaled images show normal distribution for both classes, the
convergence of training method is achieved with fewer it-
eration steps. For assessing a test image pixel to be one of
the two opposite classes, the vessels or non-vessels,Bayes
rule is applied, which isP (Ci|v) = p(v/Ci)P (Ci)

p(v) , where
p(v/Ci) is the class-conditional probability density func-
tion, P (Ci) is the prior probability of classCi, andp(v) is
the probability density function of v (sometimes called evi-
dence). The class-conditional probabilities, also referred to
as likelihood, are represented as linear combination of Gaus-
sian functions:

p(v|Ci) =
1

1 + exp−(β0+β1p(v|S1,Ci)+β2p(v|S2,Ci)+···+βnp(v|Sn,Ci))

, wherep(v|Sj , Ci) is the Gaussian distribution andβj are
the parameters to be estimated from labeled training set.
Once trained, the class-conditional probabilities along with
priors are used to find the posterior probability for a given
test pixel to be in a vessel class.

Due to large number of pixels, in our all experiments,
two million pixel within FOV are randomly chosen to train
the classifiers. For the GGM classifier, the number of pre-
dictors is same as that of scaled image count for model-
ing both vessel and non-vessel classes. The convergence
while choosing parameters was fast, within a couple of it-
erations. GGM supervised classification is also tested with
weighted scale images. Admitting the fact that scale images
contribute less noise as we move towards larger scales, as
shown in Fig.2(b), scale images are first weighted with the
inverse of their noise variances and then fed for logistic re-
gression modeling, resulting in a different set of parameters
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Fig. 1 Block diagram of the proposed method. Dotted blocks/lines are for training purposes, and blocks/lines are for testing purposes.

(a) (b)

(c)
Fig. 2 The Fig shows on the left two scale images, one due to line detector of scale 3, and other for scale-13. Also, depicted the vessel and
non-vessel histogram, showing large overlap for both images. The graph on right is the depiction of fact that scale images have noise variance that
decreases with scale Graph.

for GGM classifier. The testing procedure is also used with
the weighted scale images of the test image. We refer to this
scheme as supervised classification with weights.

The output of the classifier is a posterior probability im-
age for the given test input image. The next task is to find a

threshold to convert it into a binary image. Though we see a
clear improvement in the sense that the overlap area between
two classes is reduces as a result of supervised classifica-
tion, the minimum overlapping is still there. To clear this
minimum overlap, a threshold strategy has to be adopted
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with some heuristics. To find an appropriate threshold to
pick thin vessels, one way is to adopt a Shannon-entropy
based threshold scheme. The first thresholdT1 is calculated
by finding the maximum of Shannon entropy curve, and all
the pixels of the image above that threshold are clipped to
that threshold value. Now another Shannon entropy curve
is found for this clipped image and we compute the second
thresholdT2. All the pixels below that threshold are clipped
to that value. The doubled-clipped image is now presented
for the third time to Shannon entropy curve, and third thresh-
old T3 is obtained, which is our final threshold that can be
used for producing all binary results. It was found in our test
results, that the entropy-scheme is severally effected with
non-uniform illumination present in an image. Therefore,
we inclined to adopt a morphological technique with hys-
teresis, as described in next section.

4 Thresholding using Hysteresis
Thresholding techniques are based on image characteristics
i.e. image space region. The multilevel image is converted
into a binary image by thresholding. Thresholding is usually
categorized into two types: local thresholding and global
thresholding. Fixed threshold (T) approach refers to global
thresholding and variable threshold approach is called local
thresholding. The global thresholding is likely to flop in case
of uneven illumination of background.

There are a couple of issues with a single threshold.
First, single threshold takes into account intensity with no
regard to connectivity among pixels. Therefore, there is no
guarantee that the process will provide contiguous areas.
Second, changes in illumination across the scene may cause
the single threshold to miss some parts of the vessels being
darker. Third, a single threshold is quite sensitive; changing
threshold value by even a small amount can have a large im-
pact on the binary output. Therefore, a need arises to add
flexibility to a single threshold.

In this paper, a band of thresholds, as implied byhystere-
sis threshold process, are used. Hysteresis threshold consis-
tently outperforms single threshold techniques [27] and is
now a de facto standard in Canny edge detection [28]. The
process is used for linking strong points with weak points
caring vessel path tracing. A popular way to implement hys-
teresis threshold is via morphological operation(opening-
by-reconstruction). It enables the objects (vessels) to be
exactly restored to their original shape initiated with seed
points. The method requires two images, known as a marker
(A) and mask (M). A mask is a binary image that provides
boundaries for the growing process to stop. It is obtained
from the combined output by using thresholdTL. Whereas
the marker image contains seed points and is found as a re-
sult of thresholdTH . By defining a3×3 structuring element
B for connectivity, the growing procedure can be described
by iteratively applying

An+1 = (An ⊕B) ∩M

and ultimately stopping whenAn+1 = An. Here⊕ is the
exclusive-OR operation and∩ is an intersection operation.

The binary output images obtained through hysteresis
threshold method are having tiny holes inside vessel tree
structures with some breaks at the junction points. To fill
the gaps, the morphologicaldilation process is adopted. Di-
lation is one of the two basic operators in the field of math-
ematical morphology. The basic impact of the operator on
a binary image is to gradually enlarge the boundaries of re-
gions of foreground pixels (i.e. white pixels, typically).Thus
areas of foreground pixels grow in size while holes within
those regions become smaller.The dilation operator takes
two pieces of data as inputs. The first is the image which is
to be dilated. The second is a set of coordinate points known
as a Structuring Element. It is this structuring element that
determines the precise effect of the dilation on the input im-
age. However, not to disturb the tree structure, a small linear
structuring element, on the tune of only 3 pixels long, is uti-
lized. First, four3 × 3 templates of structuring element are
created to go along 0 degrees, 45 degrees, 90 degrees, and
135 degrees. Then, the binary image is dilated with all the
four templates, to produce four dilated images correspond-
ing to four unique directions. Here, we take the help of Kas
and Witkin [29] method to generate a reliable directional
field, which produces directional imageθ(x, y) for the input
binary image. The directional image values are quantized to
only four directions to match with template directions. Next,
based on directional image quantized values, we pick the ap-
propriate dilated image values to form a new image, called
final binary image, as shown in Fig. 3(c).

5 Result and Discussion
The proposed modeling is evaluated on three publicly avail-
able databases DRIVE, STARE and CHASEDB1. The
DRIVE database provides 40 retinal images with their
ground truth data. The first twenty images are used as train-
ing set and the rest as testing set for producing the objective
assessment. STARE data set contains 20 images and there is
no separate training and test set available. In literature two
techniques random sample and leave-one-out are available
[30]. In this paper leave-one-out technique is used for train-
ing [31], in which each image is tested using a trained model
on the other 19 images. The CHASEDB1 data set contains
28 images. First 20 images are used for training and last 8
images are used for testing.

The performance is quantified by comparing a seg-
mented output image with its corresponding golden-truth
image (a manually segmented image) available at the
database. Three parameters, sensitivity, specificity, andac-
curacy, are calculated for measuring the performance. Four
measures are required for the calculation of these three pa-
rameters. These four measures are true positive (TP), true
negative (TN), false positive (FP) and false negative (FN).
The TP represents the number of vessels correctly identified
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(a) (b)

(c)

Fig. 3 a) Marker Image. b) Mask Image. c) Final binary result.

while TN represents the number of non-vessels correctly
identified. The FP represents the number of non-vessels
wrongly identified as vessels while FN represents the num-
ber of vessels wrongly identified as non-vessels.

The accuracy can be defined as sum of correctly identi-
fied vessels and non-vessels to the sum of total number of
pixels,

Accuracy =
TP + TN

TP + FP + TN + FN
.

The ratio of correctly identified vessels and the total
number of vessel is called sensitivity,

Sensitivity =
TP

TP + FN
.

The ratio of correctly detected vessels and total number of
non-vessels is called specificity,

Specificity =
TN

TN + FP
.

For visual inspection, the Fig. 4 provides the images for
multi-scale line detection, supervised multi-scale, and super-
vised multi-scale with weights. The supervised classification
shows more sensitivity to thin vessels.

5.1 Comparison of performance measures with other
algorithms
Several approaches are selected for comparison, both super-
vised and unsupervised. For performance analysis three pub-
licly available databases DRIVE, STARE and CHASEDB1

are used. The results on the two data sets are shown in Ta-
ble 1 and the results of CHASEDB1 are shown in Table
2. On DRIVE datebase, proposed method’s sensitivity is
0.782 which is slightly less than Orlandoet al. [33] sensi-
tivity 0.753. While on STARE its sensitivity is 0.786 which
is slightly greater than Soomroet al. [32]sensitivity 0.785.
The sensitivity of the proposed method is higher than as
compared to other methods and is presented in Table 1 for
STARE data set.

Specificity (Sp) of the proposed method is comparable to
the state-of-art methods on these two data sets. On DRIVE
dataset, proposed method’s specificity is higher than all ex-
isting methods while on SATRE database it is slightly higher
than Soomroet al. [7] Accuracy (AC) is the mean measure-
ment of closeness to the interpreted standards. The accu-
racy of the proposed method is also better than state-of-art
methods presented in Table 1 on both data sets. On STARE
database, the accuracy of the propose method is slightly
higher than Soomroet al. [7]. On CHASE-DB1 database,
the performance of proposed method is better than other two
methods presented in Table 2. The sensitivity of the pro-
posed method is 0.7626, specificity is 0.9717 and accuracy
is 0.9507, respectively.

6 Conclusion
Several eye diseases can be diagnosed by observing varia-
tions in retinal blood vessel diameters. It is necessary to de-
tect accurate retinal vessels. Accurate detection of vessels is
a challenging task in the presence of noise and pathologies.
In the literature, many approaches are proposed to extract
retinal blood vessels. This paper provides empirical evi-
dence of improved aggregate process linked with multi-scale
line detectors using inverse-noise variances based predictors
having generalized Gaussian mixture behavior. The lower
amount of supervision required at the multi-scale aggrega-
tion makes the proposed method more suitable for screen-
ing programs and large population studies, where there is
scarcity of labelled data. Another advantage of the proposed
approach is its fast training time which is order of magni-
tude faster than the deep neural networks counterpart. The
weight learning process becomes a simplified task with the
use of GGM classifier. On the other hand, deep neural net-
work classifier has shown the ability to provide comparable
results to the GGM, but at a larger computational cost for
its training phase. The visual comparison of the approaches
provides evidence towards improved sensitivity for thin ves-
sel detection.
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Fig. 4 Coulumn one show the ground truth images. Column two shows multiscale line detection method applied on the 1st and 16th image of
DRIVE database. Column three shows proposed multiscale line detection without weights is applied on the 1st and 16th image of DRIVE database.
Column four shows proposed multiscale line detection with weights is applied on the 1st and 16th image of DRIVE database.

Table 1 Performance Analysis of Segmentation Model

DRIV E STARE

Methods Se Sp AC Se Sp AC

Unsupervised Methods
Nguyenet al. [17] - - 0.940 - - 0.932
Soomroet al. [34] 0.713 0.968 0.941 0.711 0.965 0.942
Khanet al. [35] 0.734 0.967 0.951 0.736 0.971 0.95
Soomroet al. [7] 0.753 0.976 0.943 0.784 0.981 0.961
Supervised Methods
Stealet al. [31] - - 0.946 - - 0.951
Soareset al. [36] - - 0.946 - - 0.948
Lupascuet al. [37] 0.720 - 0.959 - - -
Orlandoet al. [33] 0.785 0.967 - - - 0.951
Liskowski [22] - - 0.949 - - 0.949
Proposed Method 0.782 0.986 0.960 0.796 0.983 0.961

Table 2 Performance comparison on CHASEDB1 database

Se Sp AC
Unsupervised

Azzopardi [38] 0.7585 0.9587 0.9387
Supervised

Fraz [19] 0.7224 0.9711 0.9469
Proposed 0.7626 0.9717 0.9507
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