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Assessing the biting behaviour of malaria vectors plays an integral role in understanding the 24 

dynamics of malaria transmission in a region. Biting times and preference for biting indoors or 25 

outdoors varies among mosquito species and across regions. These behaviours may also change 26 

over time in response to vector control measures such as long-lasting insecticidal nets (LLINs). 27 

Data on these parameters can provide the sites and times at which different interventions would be 28 

effective for vector control. This study assessed the biting patterns of malaria vectors in Chikwawa 29 

district,  southern Malawi. 30 

 The study was conducted during the dry and wet seasons in 2016 and 2017, respectively. In 31 

each season, mosquitoes were collected indoors and outdoors for 24 nights in six houses per night 32 

using the human landing catch. Volunteers were organized into six teams of two individuals, 33 

whereby three teams collected mosquitoes indoors and the other three collected mosquitoes 34 

outdoors each night, and the teams were rotated among twelve houses. All data were analyzed 35 

using Poisson log-linear models. 36 

 The most abundant species were Anopheles gambiae sensu lato (primarily An. arabiensis) 37 

and An. funestus s.l. (exclusively An. funestus s.s.). During the dry season, the biting activity of An. 38 

gambiaes.l. was constant outdoors across the categorized hours (18:00 h to 08:45 h), but highest 39 

in the late evening hours (21:00 h to 23:45 h) during the wet season. The biting activity of An. 40 

funestus s.l. was highest in the late evening hours (21:00 h to 23:45 h) during the dry season and 41 

in the late night hours (03:00 h to 05:45 h) during the wet season. Whereas the number of An. 42 

funestuss.l. biting was constant (P = 0.662) in both seasons, that of An. gambiaes.l. was higher 43 

during the wet season than in the dry season (P = 0.001). Anopheles gambiae s.l. was more likely 44 

to bite outdoors than indoors in both seasons. During the wet season, An. funestus s.l. was more 45 

likely to bite indoors than outdoors but during the dry season, the bites were similar both indoors 46 

and outdoors. 47 

 The biting activity that occurred in the early and late evening hours, both indoors and outdoors 48 

coincides with the times at which individuals may still be awake and physically active, and therefore 49 



unprotected by LLINs. Additionally, a substantial number of anopheline bites occurred outdoors. 50 

These findings imply that LLINs would only provide partial protection from malaria vectors, which 51 

would affect malaria transmission in this area. Therefore, protection against bites by malaria 52 

mosquitoes in the early and late evening hours is essential and can be achieved by designing 53 

interventions that reduce vector-host contacts during this period. 54 

 55 
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Highlights  57 

 Anopheles arabiensiswas more likely to bite outdoors than indoors in our study 58 

 Anopheles funestusbiting occurred predominantly indoors 59 

 Humans are at risk of being bitten by malaria mosquitoes before going to bed in the 60 

evening 61 

 Outdoor-biting anophelines constitute a considerable risk of malaria transmission 62 

1. Introduction 63 

Vector control remains the most effective measure to prevent malaria transmission (WHO 2006, 64 

2017, 2018). The most common methods of malaria vector control in the last 20 years have been 65 

the use of indoor residual spraying (IRS), conventional insecticide-treated nets and long-lasting 66 

insecticidal nets (LLINs). These methods provide protection against mosquitoes that bite and rest 67 

indoors. The effectiveness of LLINs and IRS in reducing malaria vectors relies on the ability of the 68 

vectors coming into contact with the insecticides applied either on the nets or on the inner walls of 69 

houses (Killeen and Moore 2012). However, some malaria vector species bite outdoors at least as 70 

often as indoors (White et al. 1974, Joshi et al. 1975, Highton et al. 1979, Fornadel et al. 2010, 71 

Kenea et al. 2016, Kenea et al. 2017). Additionally, prolonged use of LLINs may lead to changes in 72 

the biting preferences of malaria vectors from indoors to outdoors (Reddy et al. 2011, Russell et al. 73 



2011, Padonou et al. 2012, Meyers et al. 2016). In both cases, the vectors biting outdoors are less 74 

vulnerable to the insecticides applied indoors (LLINs and IRS), and outdoor biting can sustain or 75 

enhance the risk of malaria transmission (Gillies 1964, Antonio-Nkondjio et al. 2006, Killeen et al. 76 

2013, Mwangangi et al. 2013, Killeen 2014).  77 

Besides biting location in relation to indoors or outdoors, knowledge about the peak biting times of 78 

malaria vectors is also critical for understanding the impact of LLIN use in a given region. It is evident 79 

that the biting behaviour of malaria vectors varies across regions (Pates and Curtis 2005). Thus, 80 

there is a need for assessing the biting behaviour of malaria vectors to assess the risk of malaria 81 

transmission in a given region. Historically, the highest biting activity of primary malaria vectors in 82 

Africa was reported to occur indoors from midnight to late night hours (Fontenille et al. 1990, Githeko 83 

et al. 1996, Fontenille et al. 1997), and therefore, the use of bed nets gained interest because people 84 

sleeping under LLINs would be protected from most potentially infectious bites. Furthermore, these 85 

late-night biting mosquitoes would experience high mortality from the insecticide on the net, 86 

reducing vector populations. More recently, shifts in the peak biting times of malaria vectors have 87 

been reported following large-scale use of LLINs. For example, in Benin, the peak biting time of An. 88 

funestus populations shifted from 02:00 h to the early morning hours (05:00 h) (Moiroux et al. 2012), 89 

and in Senegal the peak biting time of An. funestus was observed in the later morning hours (07:00 90 

h to 11:00 h) (Sougoufara et al. 2014). In Tanzania, the biting activity of An. arabiensis and An. 91 

funestus s.s. was in the early night hours (20:00 h to 23:00 h) (Russell et al. 2011). These regions 92 

had high LLIN coverage, suggesting that the malaria vectors sought hosts at times when people 93 

were not protected by LLINs. 94 

The most direct and favoured method of estimating malaria transmission entomologically is the 95 

human landing catch (HLC) (Lines et al. 1991, Service 1993, Davis et al. 1995, Beier 1998, Kline 96 

2006, Govella et al. 2010, Lima et al. 2014). The HLC estimates the peak biting times for vectors,  97 

the vectors’ indoor/outdoor biting preferences and the number of infectious bites that a single 98 

individual can receive per unit time (Charlwood and Graves 1987, Bockarie et al. 1996, Mboera 99 



2005, Pates and Curtis 2005, Oyewole et al. 2007, Bayoh et al. 2014, Sougoufara et al. 2014). Data 100 

on these parameters can provide the times at which different interventions would be effective for 101 

vector control. In Malawi, the main malaria vectors are An. gambiae sensu stricto (s.s.), An. 102 

arabiensis and An. funestus (Spiers et al. 2002, Mzilahowa et al. 2012), but little is known about the 103 

biting behaviour of these vectors in the country. This study assessed the vectors’ indoor/outdoor 104 

biting preferences and the peaks in their biting activities. 105 

 106 

2.  Methods 107 

2.1. Study site 108 

The study was conducted in two neighbouring villages, Mwalija (-15.96, 34.78) and Njereza (-15.96, 109 

34.77), in Chikwawa District, southern Malawi. The villages are along the low-lying regions that are 110 

categorized as hot, wet and humid with high rates of malaria transmission (Kazembe et al. 2006, 111 

Kabaghe et al. 2018). Most houses are made of sun-dried or fire-baked bricks with grass-thatched 112 

or corrugated iron-sheet roofs. Residents of this region engage mostly in subsistence farming with 113 

maize and millet as main crops. The National Malaria Control Programme implemented IRS in 114 

Chikwawa District in 2010 and 2012 with alphacypermethrin, and mass distributionsof LLINs 115 

wereconducted in 2012 and April 2016. 116 

2.2. Selection of households 117 

The two villages in this study were part of a cluster-randomised control trial assessing the effects of 118 

larval source management and house improvement on malaria transmission (McCann et al. 2017). 119 

The villages fell under the control arms of the trial (i.e. no larval source management or house 120 

improvement were implemented in these two villages).  121 



Inclusion criteria were applied to ensure a degree of uniformity across the houses and these were: 122 

houses with grass thatched roofs and open eaves, that were ≥25m apart and ≥ 100m away from 123 

any mosquito breeding habitat. Houses that were participating in other mosquito sampling efforts at 124 

the time of the current study as part of the cluster-randomised trial referenced above were excluded 125 

from the current study. A complete list of households in the two villages was used to randomly select 126 

twelve households for the study. 127 

2.3. Mosquito sampling 128 

Mosquito sampling was done during the early months of the dry season (May-June 2016) and 129 

following the peak of the rainy season (March-April 2017) using the HLC method (Fig. 1). In each 130 

season, the sampling was conducted for 24 nights in 6 of the 12 houses each night. The same 131 

houses were used in both seasons. Human volunteers from the study houses were organized into 132 

six teams of two individuals. A pair of individuals collected mosquitoes in six houses each night, 133 

whereby three teams of HLC volunteers collected mosquitoes indoors, and the other three teams 134 

collected mosquitoes outdoors. The collections were from 17:00 h to 09:45 h and were divided into 135 

two shifts. The first volunteer in each team sampled mosquitoes from 17:00 h to 01:45 h and the 136 

second volunteer sampled from 02:00 h to 09:45 h. Each volunteer was provided with a headlight, 137 

wristwatch, pencil, mouth aspirator and mosquito holding containers. Prior to the study, all 138 

volunteers were trained in the HLC technique. The volunteers sat on stools exposing the lower part 139 

of their legs and collected mosquitoes that landed on their legs. The mosquitoes were placed in 140 

holding cups that had been pre-labeled with the house number, hour of collection and location 141 

(indoors or outdoors). The volunteers collected mosquitoes for 45 min. and had a 15 min. break 142 

within every hour. A research nurse screened the volunteers for malaria on a weekly basisusing a 143 

malariarapid diagnostic test (mRDT; SDBioline malaria Ag Pf HRP-2; Standard Diagnostics Inc, 144 

Korea). Additionally, all volunteers were provided with doxycycline daily as malaria prophylaxis from 145 

one week before the start of the study to one week after the end of the study.  146 



Spot checks were conducted on random days and at random times by the research team and 147 

members from a local community watch group. Likewise, sporadic phone calls were made to 148 

volunteers’ team leaders to check whether there were any challenges.  149 

2.4. Identification of mosquitoes and detection of Plasmodium falciparum DNA. 150 

In the laboratory, all mosquitoes were identified morphologically using the protocol by Gillies and 151 

Coetzee (1987). All anophelines were classified as An. gambiae s.l., An. funestus s.l. or An. 152 

tenebrous. There was no further classification of the culicines beyond the subfamily level. 153 

Females from the An. gambiae species complex and the An. funestus species group were further 154 

identified to species level using polymerase chain reaction (PCR) (Scott et al. 1993, Koekemoer 155 

et al. 2002, Cohuet et al. 2003), respectively. For the An. gambiae species complex, the PCR 156 

included species-specific primers for An. gambiae s.s., An. arabiensis, and An. quadriannulatus. 157 

For the An. funestus species group, the PCR included species-specific primers for An. funestus 158 

s.s., An. vandeeni, An. rivulorum, An. rivulorum-like, An. parensis, and An. leesoni. The heads 159 

and thoraces of all female An. gambiae s.l. and An. funestus s.l. were tested for the presence of 160 

P. falciparum DNA using real-time polymerase chain reaction (RT-PCR) (Perandin et al. 161 

2004)with a Ct value ≤ 37.0 as the cut-off for P. falciparum positive. 162 

2.5. Data analysis 163 

Assuming the Poisson distribution for the count of mosquitoes and applying the log link function to 164 

the Poisson rate parameter, generalized linear models were fitted to assess differences: a) in the 165 

biting times of mosquitoes, b) in vectors’ indoor/outdoor biting preference and c) in the abundance 166 

of mosquitoes between seasons. Generalized estimating equations were used to account for 167 

repeated measures by house. Each of the differences was assessed in a separate model for each 168 

taxonomic group and, subsequently, for the pooled counts of all malaria vectors. The cooking 169 

locations, number of people that slept in the house during the night of data collection, use of bed-170 



net and kind of livestock that stayed within 20m of the house during the night of data collection were 171 

included as covariates in each of the models. Door and roof types were not included in the analysis 172 

because all the doors were made of wood and all roofs were grass-thatched. Cooking locations 173 

included: inside the house, on the veranda, outside the house but within 2m, and outdoors at more 174 

than 2m from the house. Livestock categories were comprised of cattle, goats, and chickens. As 175 

the human volunteers worked for 45 min within every hour, the average bites by mosquitoes were 176 

divided by 0.75 to obtain the hourly catch rate. The hourly bites were further categorized as early 177 

evening (18:00 h to 20:45 h), late evening (21:00 h to 23:45 h), early night (24:00 h to 02:45 h), late 178 

night (03:00 h to 05:45 h) and early morning (06:00 h to 08:45 h). Hourly collections at 17:00 h 179 

to17:45 h and at 09:00 h to 09:45 h were low and were not considered in the analysis with the 180 

categorical hours. All data were analysed using SPSS Version 20.0. Entomological inoculations 181 

rates (EIRs) were estimated by pooling all the catches in all the locations (indoors and outdoors) 182 

and calculating the average bites. The averages were divided by 0.75 as earlier explained. This 183 

was then multiplied by the sporozoite rate that was estimated using RT-PCR. 184 

 185 

3. Results 186 

3.1. Abundance of mosquitoes 187 

3.1. 1. Abundance of mosquitoes during the dry season 188 

Combined across all locations, a total of 1,032 mosquitoes was collected during the dry season. Of 189 

these, 25 were males (2 anophelines indoors and 4 outdoors; 11 culicines indoors and 8 outdoors) 190 

and 1007 were females. Of the 1007 females, 917 (91%) were culicines (400 indoors, 517 191 

outdoors), 43 (4.3%) were An. tenebrosus (25 indoors, 18 outdoors) and 47 (4.7%) were malaria 192 

vector species. Of the 47 malaria vectors, 22 (46.8%) were An. gambiae s.l. (5 indoors and 17 193 

outdoors) and 25 (53.2%) were An. funestus s.l. (16 indoors and 9 outdoors; Table 1). Of the 21 194 



malaria vectors caught indoors, 14 were identified by PCR as An. arabiensis (n=4) and An. funestus 195 

s.s. (n=10). DNA of seven of the twenty-one malaria vectors caught indoors failed to amplify (6 An. 196 

funestus s.l. and 1 An. gambiae s.l.). Of the 26 caught outdoors, 23 were identified by PCR as An. 197 

arabiensis (n=13), An. gambiae s.s. (n=1) and An. funestus s.s. (n=9). DNA of three of the twenty-198 

six vectors caught outdoors failed to amplify (3 An. gambiae s.l.).  199 

Of the 47 malaria vectors tested for the presence of P. falciparum DNA, only one was positive for 200 

P. falciparum (An. funestus s.s.). The sporozoite rate was 2.1% and the EIR was 3.4 infectious 201 

bites/person /year 202 

3.1.2. Abundance of mosquitoes during the wet season. 203 

Combined across all locations, a total of 1,408 mosquitoes was collected during the wet season. Of 204 

these, 18 were males (1 male anopheline outdoors, 10 culicines indoors and 7 outdoors) and 1390 205 

were females. Of the 1,390 females, 1289 (92.7%) were culicines (568 indoors, 721 outdoors), 10 206 

(1%) were An. tenebrosus (1 indoors, 9 outdoors) and 91 (6.5%) were malaria vector species. Of 207 

the 91 malaria vectors, 69 (75.8%) were An. gambiae s.l. (25 indoors and 44 outdoors) and 22 208 

(24.2%) were An. funestus s.l. (17 indoors and 5 outdoors; Table 1). Of the 42 caught indoors, 40 209 

were identified by PCR as An. arabiensis (n=18), An. gambiae s.s. (n=6) and An. funestus s.s. 210 

(n=16). DNA of two of the forty-two malaria vectors caught indoors failed to amplify (1 An. funestus 211 

s.l. and 1 An. gambiae s.l.). Of the 49 outdoor malaria vectors, 46 were identified by PCR as An. 212 

arabiensis (n=36), An. gambiae s.s. (n=4), An. funestus s.s. (n=5) and a hybrid of An. arabiensis 213 

and An. gambiae s.s. (n=1). DNA of three of the forty-nine vectors caught outdoors failed to amplify 214 

(3 An. gambiae s.l.). 215 

Of the 91 malaria vectors tested for the presence of P. falciparum DNA, 4 were positive for P. 216 

falciparum (3 An. funestus s.s. and 1 An. gambiae s.s.). The sporozoite rate was 4.4% and the EIR 217 

was 13.5 infectious bites/person/year  218 



The abundance of female An. gambiae s.l. was lower in the dry season than in the wet season (Risk 219 

ratio (RR) = 0.32, 95% confidence intervals (CI) = [0.20-0.52], P = 0.001) but that of female An. 220 

funestus s.l. did not differ between the two seasons (RR = 1.06, CI = [0.56-2.06], P = 0.854).  221 

3.2. Biting times of mosquitoes 222 

During the dry season, the indoor and outdoor biting by malaria vectors (combined across all 223 

species) exhibited bi-modal and uni-modal peaks, respectively. For the indoor biting, the first peak 224 

was observed between 21:00 h to 21:45 h and the second peak was at 23:00 h to 23:45 h. For the 225 

outdoor biting, the peak was observed between 20:00 h to 20:45 h (Fig.2). Considering each 226 

species complex/group separately, the biting activity of An. gambiae s.l. was lower indoors than 227 

outdoors (RR = 0.29, CI = [0.11-0.80], P= 0.016). The biting activity of An. gambiae s.l., outdoors, 228 

was constant across all the categorized hours (18:00 h to 08:45 h) (P ≥ 0.05). Whereas there was 229 

no biting activity observed in the early morning hours, indoors, for An. gambiae s.l., the biting rates 230 

of this species were constant from the late evening hours to the late night hours (21:00 h to 05:45 231 

h)  (P ≥ 0.05) (Fig. 3A). Anopheles funestus s.l. biting rates did not differ between indoors and 232 

outdoors in the dry season (RR = 1.78, CI = [0.79-4.02], P = 0.167). The biting rate of An. funestus 233 

s.l. indoors was highest during the late evening hours (21:00 h to 23:45 h) but absent in the early 234 

morning hours. The outdoor biting rates of this species were constant from 18:00 h to 05:45 h (P ≥ 235 

0.05) (Fig. 3B). 236 

During the wet season, the indoor and outdoor biting by malaria vectors (combined across all 237 

species) exhibited uni-modal peaks. The highest activity of indoor biting was from 02:00 h to 04:00 238 

h and that of outdoor biting was at 21:00 h (Fig. 2). Similar to the dry season, the biting activity of 239 

An. gambiae s.l. in the wet season was lower indoors than outdoors (RR = 0.57, CI = [0.35-0.93], P 240 

= 0.024). Outdoors, the peak biting time of An. gambiae s.l. occurred in the late evening hours 241 

(21:00 h to 23:45 h) and this biting activity was higher than that observed in the early evening hours 242 



(P = 0.001), early night hours (P = 0.037) and late night hours (P = 0.001). The indoor biting rates 243 

of An. gambiae s.l. in the wet season were constant from 18:00 h to 05:45 h (P ≥ 0.05) (Fig. 3A). 244 

Anopheles funestus s.l. was more likely to bite indoors than outdoors in the wet season (RR= 3.4, 245 

CI = [1.25-9.22], P = 0.016). The peak biting time of An. funestus indoors in the wet season was in 246 

the late night hours (03:00 h to 05:45 h) and was similar to the biting activity that was observed in 247 

the early night hours (P = 0.317) but different from the biting activities in the early evening hours (P 248 

= 0.021) and in the late evening hours (P = 0.021). The outdoor biting rates of An. funestus s.l. were 249 

constant from 21:00 h to 05:45 h (P ≥ 0.05) (Fig. 3B).  250 

The biting activity of female culicines was lower in the dry season than in the wet season (RR = 251 

0.65, CI = [0.60-0.71], P = 0.001). Indoor culicine biting rates were lower than the outdoor biting 252 

rates in the dry (RR = 0.85, CI = [0.74-0.97], P = 0.014) and wet (RR = 0.8, CI = [0.72-0.89], P = 253 

0.001) seasons (Fig. 4).  254 

The number of people that slept in the house each night, bed net use, cooking locations, presence 255 

of cattle, goats and chicken did not influence the biting activity of An. gambiae s.l. indoors or 256 

outdoors, during both seasons. This was the same for An. funestus s.l.with the exception that the 257 

presence of chickens was positively associated with the biting activity of this species (Table 2). 258 

 259 

4. Discussion 260 

The malaria vectors identified in this study were An. gambiae s.l. (primarily An. arabiensis) and An. 261 

funestus s.l. (exclusively An. funestus s.s.). Whereas the density of An. funestus s.s. was constant 262 

in both seasons of this study, the density of An. gambiae s.l. was higher in the wet season than in 263 

the dry season. In the dry season, the biting activity of An. gambiae s.l. was constant across the 264 

categorized hours, outdoors, but highest in the late evening hours (21:00 h to 23:45 h) during the 265 

wet season. During the dry season, the biting activity of An. funestus s.s. was highest in the late 266 



evening hours, while in the wet season, the peak biting activity of this species was in the late night 267 

hours (03:00 h to 05:45 h). Furthermore, An. arabiensis was more likely to bite outdoors than indoors 268 

in both seasons, though some biting by this species also occurred indoors. 269 

Previous studies in this region of Malawi conducted in the early 2000s identified three species of 270 

malaria vectors: An. funestus s.s., An. gambiae s.s. and An. arabiensis (Spiers et al. 2002, 271 

Mzilahowa et al. 2012). The current study identified these same three species, but An. gambiae s.s. 272 

accounted for only 2% and 10% of the malaria vectors collected in the dry and wet seasons, 273 

respectively. This low density of An. gambiae s.s. relative to that of An. arabiensis and An. funestus 274 

s.s. agrees with other recent studies in this area (Kabaghe et al. 2018) and warrants further 275 

investigation. Generally, similar to the present findings, the densities of malaria vectors in this region 276 

have been low with An. arabiensis accounting for a sporozoite rate of 5.4% (Kabaghe et al. 2018). 277 

The biting activity by An. tenebrosus in both seasons was surprising, as little is known about this 278 

species. This species has not been incriminated as a malaria vector (Gillies and De Meillon 1968), 279 

though it is closely related to An. coustani (Gillies and Coetzee 1987). However, in Tanzania, An. 280 

tenebrosus was reported with infective larvae of Dirofilaria immitis (Gillies and Coetzee 1987), and 281 

therefore,  it may be a species of medical importance.   282 

Currently, An. arabiensis and An. funestus s.s. may be considered the primary malaria vectors n 283 

southern Malawi. Furthermore, the density of An. gambiae s.l. was higher during the wet season 284 

than in the dry season, while that of An. funestus s.l. was constant in both seasons, similar to 285 

previous studies from Mozambique, Malawi and Tanzania (Mendis et al. 2000, Mzilahowa et al. 286 

2012, Finda et al. 2018), and highlighting the different impacts of seasonality on the abundance of 287 

different mosquito species. In the case of An. gambiae s.l. and An. funestus s.s., this difference may 288 

reflect differences in the preferred larval habitats of each species. While An. funestus s.s. typically 289 

inhabits more permanent water bodies during its immature stages, An. gambiae s.l. is able to use 290 



the more temporary larval habitats that occur more often in the wet season (Gimnig et al. 2001, 291 

Mutuku et al. 2009). 292 

Anopheles arabiensis was more likely to bite outdoors than indoors in this study, both in the dry and 293 

wet season. This species is considered as a dominant malaria vector in neighbouring southern 294 

Zambia (Kent et al. 2007, Fornadel et al. 2010) and has been associated with outdoor biting in other 295 

regions  (Mendis et al. 2000, Tirados et al. 2006, Geissbühler et al. 2007, Oyewole et al. 2007, 296 

Russell et al. 2011). The biting densities of An. funestus s.s. were higher indoors than outdoors in 297 

the wet season, confirming that this species is predominantly endophagic (Awolola et al. 2003, 298 

Antonio-Nkondjio et al. 2006, Mwangangi et al. 2013). However, in the dry season, there was no 299 

difference between the indoor and outdoor biting densities of An. funestus s.s. In other regions, 300 

outdoor biting has been associated with the relative availability of hosts outdoors, when they were 301 

sleeping in the courtyards or on the verandas of their houses (Faye et al. 1997). Although the current 302 

study did not quantify host availability, some people in the region sleep outdoors during the dry 303 

season because of higher temperatures as compared to the wet season. During the rainy season, 304 

most people in this region sleep indoors, when many are protected by LLINs. Their exposure to 305 

mosquito bites would, therefore, occur mostly at times when they are outdoors in the early evening 306 

hours. In this context, outdoor biting activities by both An. arabiensis and An. funestus s.s. are 307 

important factors to consider when selecting and planning malaria control interventions. Because 308 

LLINs and IRS target indoor biting vectors, there is a need for additional tools that can provide 309 

protection against outdoor biting (Govella and Ferguson 2012, Russell et al. 2013, Killeen et al. 310 

2016). 311 

Studies prior to the large-scale introduction of bed nets in Africa found that the major malaria 312 

vectors, An, gambiae s.s., An. arabiensis and An. funestus, are nocturnal with peak biting activity 313 

occurring in the late night hours (usually from 23:00 h or 24:00 h to 06:00 h) (Fontenille et al. 1990, 314 

Githeko et al. 1996, Fontenille et al. 1997, Pates and Curtis 2005). We refer to this biting as the 315 



historic biting time of malaria vectors. These historic biting times coincide with hours that people are 316 

usually asleep, which is integral to the effectiveness of LLINs to protect sleepers from infectious 317 

bites by malaria vectors. However, some studies have found peak biting activity of malaria vectors 318 

outside of these historic biting times. For example, the peak biting activity of An. arabiensis in 319 

Ethiopia was reported in the early evening hours (19:00 h to 20:00 h), both before and after the 320 

implementation of LLINs (Yohannes et al. 2005, Yohannes and Boelee 2012). Such variation in the 321 

historic biting times may be explained by regional differences. More recently, in some regions the 322 

peak biting times of malaria vectors have been observed outside of the historic biting times, with 323 

biting in the early evening (Reddy et al. 2011, Russell et al. 2011) or morning hours (Reddy et al. 324 

2011, Moiroux et al. 2012, Sougoufara et al. 2014). Most of these studies lack data on the biting 325 

times of malaria vectors in their specific study sites before the implementation of LLINs (Reddy et 326 

al. 2011, Sougoufara et al. 2014) but the high levels of reported LLIN use support the hypothesis 327 

that it is possible for malaria vector populations to shift peak biting times to avoid LLINs. In the 328 

present study, the biting activities of An. gambiae s.l. in the early and late evening hours in the dry 329 

and wet season, respectively, and An. funestus s.l. in the dry season, also differ from the historic 330 

biting times of malaria vectors but are similar to results from studies in Ethiopia (Yohannes and 331 

Boelee 2012), Mozambique and Tanzania (Mendis et al. 2000, Geissbühler et al. 2007, Russell et 332 

al. 2011). One potential explanation for the observed peak biting time could be that the temperatures 333 

are cooler in the late evening hours in this part of Malawi compared to regions closer to the equator, 334 

resulting in the activation of the mosquitoes’ host-seeking behaviour (Silver 2008). On the other 335 

hand, it could be that An. gambiae s.l. had limited access to humans at times when people are 336 

protected by LLINs as observed in other regions (Charlwood and Graves 1987, Yohannes and 337 

Boelee 2012). Regardless of the explanation, our finding of outdoor biting has implications for 338 

malaria control in the region because the biting coincides with the times at which many individuals 339 

may still be active and therefore unprotected by LLINs. While the observed biting activity of An. 340 

funestus s.l.in the early night hours during the wet season suggests that LLIN use still provides 341 



significant protection from malaria transmission, the reported levels of insecticide resistance in An. 342 

funestus populations in Malawi (Riveron et al. 2015, Mzilahowa et al. 2016) raises further concerns 343 

about the long-term effectiveness of LLINs as an intervention. 344 

The biting activity of female culicines was constant from the early evening hours to the late night 345 

hours both indoors and outdoors. These mosquitoes are a nuisance and have been implicated as 346 

vectors of other diseases. In the present study area, filariasis is prevalent (Nielsen et al. 2002, 347 

Ngwira et al. 2007) and culicine species have been reported with infective filarial larvae (Merelo-348 

Lobo et al. 2003) highlighting the need for vector control tools that can also target these mosquitoes. 349 

The use of LLINs is effective against indoor biting in the early and late night hours when many 350 

individuals are likely to be asleep. However, the observed biting in the early and the late evening 351 

hours before people would be under LLINs, both indoors and outdoors, is a major concern. Future 352 

research should incorporate the behaviour of people when assessing the biting patterns of 353 

mosquitoes (Monroe et al. 2019). Measuring the behaviour of people alongside mosquito biting 354 

behaviour would allow quantification of when and where the two behaviours actually overlap in time 355 

and space,and would provide a better understanding of the gap in protection left by current vector 356 

control tools. In addition to identifying when and where human-vector contact occurs, it is also 357 

important to understand who and why, as the proportion of people spending time indoors or 358 

outdoors varies across regions, seasons and economic and social activities (Monroe et al. 2019). 359 

Identifying these risk factors is critical for closing any gap in protection against malaria 360 

transmission.Potential complementary tools to tackle early biting both indoors and outdoorshave 361 

been highlighted by Ferguson et al. (2010) and Williams et al. (2018).  For instance, house 362 

improvement protects all individuals in a house equally. This is being assessed in a number of 363 

regions (Killeen et al. 2017b, McCann et al. 2017) as well as the use of insecticide-impregnated 364 

tubes along the eaves, which are the preferred entry points for mosquitoes (Knols et al. 2016, 365 

Sternberg et al. 2016, Oumbouke et al. 2018). The development of protective measures that divert 366 



malaria vectors from human beings to alternative hosts like cattle is important, especially for species 367 

with an opportunistic host-feeding behaviour such as An. arabiensis. However, such measures 368 

would still sustain the densities of biting malaria vectors and therefore, as suggested by Killeen et 369 

al. (2017a), the use of insecticide-treated cattle could be more effective in reducing the density of 370 

biting malaria vectors. Other complementary measures  that would reduce the densities of biting 371 

malaria vectors significantly include the use of insecticide-treated clothes (Kimani et al. 2006, Banks 372 

et al. 2014), larval source management and the ‘push-pull’ approach, which is directed at adult 373 

vectors and can be implemented either by the of use of attractive toxic sugar baits (Müller et al. 374 

2010, Beier et al. 2012) or by use of attractants and repellents in traps (Menger et al. (2014), Menger 375 

et al. 2016). 376 

  377 

5. Conclusion 378 

A considerable proportion of the biting by malaria vectors in this study, both indoors and outdoors, 379 

occurred at times in the evening when many people are likely still active and  not protected by bed 380 

nets.   This behaviour is likely to enhance malaria transmission. The development of vector control 381 

tools that can tackle the biting activity in the early and late evening hours, both indoors and outdoors, 382 

is highly recommended because the current,mostly indoor-based tools provide only partial 383 

protection against bites by malaria vectors. (Govella and Ferguson, 2012; Killeen et al., 2016; 384 

Russell et al., 2013).  385 
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Table and Figure legends 668 

Table 1: Mosquito collection during the dry and wet seasons. 669 

Table 2:  Effect of covariates on the biting activity of An. gambiae s.l. and An. funestus s.l. 670 

Fig. 1: Typical house in the present study region (a) and HLC method (b) 671 

Fig 2: Mean number of bites per hour by female anophelines both indoors and outdoors 672 

during the dry and wet seasons. 673 

Fig. 3: Mean number of bites (95% CI) per category by female An. gambiae s.l. (A) and 674 

An. funestus s.l. (B) both indoors and outdoors during the dry and wet seasons. 675 



Fig 4: Mean number of bites (95% CI) per category by female culicines both indoors 676 

and outdoors during the dry and wet seasons. 677 

 678 

Table 1: Mosquito collection during the dry and wet seasons 679 

Mosquito 

collection 

   

 Indoors Outdoors Totals 

 Dry 

season 

Wet 

season 

Dry 

season 

Wet 

season 

Dry 

season 

Wet 

season 

 

No. of nights 72 72 72 72 144 144 

 

An. arabiensis 4 18 13 36 17 54 

 

An. gambiae s.s. 

 

0 

 

6 

 

1 

 

4 

 

1 

 

10 

       

An, arabiensis/An. 

gambiae s.s 

(Hybrid) 

 

0 0 0 1 0 1 

 An. gambiae s.l 

(no amplification) 

1 1 3 3 4 4 

 

       

An. funestus s.s. 

 

10 16 9 5 19 21 

An. funestus s.l 

(no amplification) 

 

6 1 0 0 6 1 

 

An. tenebrosus 25 1 18 9 43 10 

 

Female culicines 400 568 517 721 917 1289 

       

Male Anophelines 2 0 4 1 6 1 

 

Male culicines 11 10 8 7 19 17 

 
 680 

 681 

 682 



 683 

 684 

 685 

Table 2: Effect of covariates on the biting activity of An. gambiae s.l. and An. funestus s.l. 686 

 687 

Treatment Dry season Wet season 

RR 95% CI RR 95% CI  

 

An. gambiae s.l. 

 

 

 

 

 

 

  

Indoors 

Outdoors 

0.29 

Ref 

0.11-0.80 

– 

0.57 0.35-0.93 

– 

 

People that slept in the house 

the previous night 

0.86 0.61-1.21 1.05 0.83-1.32 

 

 

Mosquito control-bed-net 1.83 0.4-8.43 0.82 0.43-1.57  

Mosquito control-none Ref – Ref –  

Cooking inside the house - - 2.27 0.63-8.25  

Cooking on the veranda 0.83 0.23-2.97 1.89 0.70-5.08  

Cooking outside, within 2m of 

the house 

1.02 0.34-3.08 1.27 0.47-3.40  

Cooking outside, more than 2m 

from the house  

Ref – Ref –  



Cow 1.27 0.16-9.91 1.68 0.78-3.62  

Goat - - 1.09 0.56-2.14  

Chicken 1.77 0.66-4.8 1.19 0.71-2.01 

 

 

An. funestus s.l.      

Indoors 1.78 0.79-4.02 3.4 1.25-9.22  

Outdoors Ref – Ref –  

People that slept in the house 

the previous night 

0.47 0.30-0.74 0.57 0.32-1.02  

Mosquito control-bed-net 1.40 0.31-6.44 1.39 0.33-5.85  

Mosquito control-none Ref – Ref –  

Cooking inside the house 2.44 0.56-10.69 0.21 0.02-2.23  

Cooking on the veranda 0.63 0.12-3.41 0.48 0.15-1.55  

Cooking outside, within 2m of 

the house 

1.39 0.47-4.07 0.17 0.04-0.71  

Cooking outside, away from 2m 

of the house  

Ref – Ref –  

Cow 1.57 0.34-7.38 2.73 0.70-10.59  

Goat 0.90 0.31-2.63 0.61 0.11-3.40  

Chicken 7.42 2.61-21.11 3.85 1.43-10.34  
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 702 

 703 

Fig. 1: Typical house in the present study region (a) and HLC method (b) 704 

 705 



 706 

Fig 2: Mean number of bites per hour by female anophelines both indoors and outdoors 707 

during the dry and wet seasons. 708 
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 709 

Fig. 3: Mean number of bites (95% CI) per category by female An. gambiae s.l. (A) and 710 

An. funestus s.l. (B) both indoors and outdoors during the dry and wet seasons. 711 
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Fig 4: Mean number of bites (95% CI) per category by female culicines both indoors 714 

and outdoors during the dry and wet seasons. 715 

 716 

 

Fig 3: Indoor and outdoor biting by female culicines. Bars depict the mean 

number of bites per category by female culicines during the dry (a) and wet 

seasons (b) at various time points: early evening (1800-2045), late evening 

(2100-2345), early night (2400-0245), late night (0300-0545) and early 

morning (0600-0845). Error bars denote the 95% confidence intervals. 
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