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Abstract We propose Human Pose Models that repre-
sent RGB and depth images of human poses indepen-
dent of clothing textures, backgrounds, lighting con-
ditions, body shapes and camera viewpoints. Learning
such universal models requires training images where all
factors are varied for every human pose. Capturing such
data is prohibitively expensive. Therefore, we develop
a framework for synthesizing the training data. First,
we learn representative human poses from a large cor-
pus of real motion captured human skeleton data. Next,
we fit synthetic 3D humans with di↵erent body shapes
to each pose and render each from 180 camera view-
points while randomly varying the clothing textures,
background and lighting. Generative Adversarial Net-
works are employed to minimize the gap between syn-
thetic and real image distributions. CNN models are
then learned that transfer human poses to a shared
high-level invariant space. The learned CNN models
are then used as invariant feature extractors from real
RGB and depth frames of human action videos and
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the temporal variations are modelled by Fourier Tem-
poral Pyramid. Finally, linear SVM is used for classifi-
cation. Experiments on three benchmark human action
datasets show that our algorithm outperforms existing
methods by significant margins for RGB only and RGB-
D action recognition.
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1 Introduction

Human action recognition has many applications in se-
curity, surveillance, sports analysis, human computer
interaction and video retrieval. However, automatic hu-
man action recognition algorithms are still challenged
by noises due to action irrelevant factors such as chang-
ing camera viewpoints, clothing textures, body shapes,
backgrounds and illumination conditions. In this pa-
per, we address these challenges to perform robust hu-
man action recognition in conventional RGB videos and
RGB-D videos obtained from range sensors.

A human action can be defined as a collection of
sequentially organized human poses where the action is
encoded in the way the human pose transitions from one
pose to the other. However, for action classification, a
human pose must be represented in a way that is invari-
ant to the above conditions. Since some human poses
are common between multiple actions and the space
of possible human poses is much smaller compared to
that of possible human actions, we first model the hu-
man pose independently and then model the actions as
the temporal variations between human poses.

To suppress action irrelevant information in videos,
many techniques use dense trajectories (Gupta et al,
2014; Wang et al, 2011, 2013a; Wang and Schmid, 2013)
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Fig. 1 Block diagram of the proposed synthetic RGB data generation. Representative human poses are learned from CMU
MoCap skeleton database and a 3D human model is fitted to each skeleton. Four di↵erent 3D human body shapes are used.
Clothing textures are randomly selected from a choice of 262 textures for shirts and 183 for trousers. Each model is placed in
a random background that is either a 2D scene image, or a 360o spherical HDR image. We use 360o spherical HDR images
obtained from Google Images. We use illumination from three random intensity lamps and render from 180 camera viewpoints
to generate RGB training images with known pose labels. The shown final image is without further refinement with GAN.

or Hanklets (Li et al, 2012) which encode only the tem-
poral cues that are essential for action classification.
Such methods have shown good performance for hu-
man action recognition in conventional videos. How-
ever, they are still sensitive to viewpoint variations and
do not fully exploit the appearance (human pose) in-
formation. Dense trajectories are also noisy and contain
self occlusion artefacts.

While appearance is an important cue for action
recognition, human poses appear very di↵erently from
di↵erent camera viewpoints. Research e↵orts have been
made to model these variations. For example, synthetic
2D human poses from many viewpoints and their tran-
sitions were used for action recognition in (Lv and Neva-
tia, 2007). However, 3D viewpoint variations cannot
be modelled accurately using 2D human poses. Spatio-
temporal 3D occupancy grids built from multiple view-
points were used in (Weinland et al, 2007) to achieve
view-invariant action recognition. However, occupancy
grids rely on silhouettes which are noisy in real videos.
In this paper, we use full 3D human models to learn a
representation of the human pose that is not only in-
variant to viewpoint but also to other action irrelevant
factors such as background, clothing and illumination.

Our contributions can be summarized as follows.
Firstly, we propose a method for generating RGB and
Depth images of human poses using Computer Graphics
and Generative Adversarial Network (GAN) training.
We learn representative human poses by clustering real
human joint/skeleton data obtained with motion cap-
ture technology (CMU MoCap database1). Each repre-
sentative pose skeleton is fitted with synthetic 3D hu-
man models and then placed in random scenes, given
di↵erent clothes, illuminated from multiple directions
and rendered from 180 camera viewpoints to gener-
ate RGB and depth images of the human poses with
known labels. Figure 1 illustrates the proposed RGB

1 http://mocap.cs.cmu.edu

data generation pipeline. Depth images are generated
in a similar way except that they are devoid of texture
and background. We employ GANs to minimize the gap
between the distributions of synthetic and real images.
Although used as an essential component of network
training in this work, the proposed synthetic data gen-
eration technique is generic and can be used to produce
large amount of synthetic human poses for deep learn-
ing in general.

Secondly, we propose Human Pose Models (HPM)
that are Convolutional Neural Networks and transfer
human poses to a shared high level invariant space. The
HPMs are trained with the images that are refined with
GAN and learn to map input (RGB or Depth) images
to one of the representative human poses irrespective of
the camera viewpoint clothing, human body size, back-
ground and lighting conditions. The layers prior to the
Softmax label in the CNNs serve as high-level invari-
ant human pose representations. Lastly, we propose to
temporally model the invariant human pose features
with the Fourier Temporal Pyramid and use SVM for
classification. The proposed methods work together to
achieve robust RGB-D human action recognition under
the modeled variations.

Experiments on three benchmark human action datasets
show that our method outperforms existing state-of-
the-art for action recognition in conventional RGB videos
as well as RGB-D videos obtained from depth sensors.
For cross-view evaluation protocol, the proposed method
improves RGB-D human action recognition accuracies
by 15.4%, 11.9% and 8.4% on the UWA3D-II (Rah-
mani et al, 2016), NUCLA (Wang et al, 2014) and
NTU (Shahroudy et al, 2016a) datasets respectively.
For cross-subject evaluation protocol, the proposed method
improves recognition accuracy by 6.0% for the NTU
dataset. Our method also improves RGB-only human
action recognition accuracy by 9% for the UWA3D-II
dataset.
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This work is an extension of (Rahmani and Mian,
2016) where only depth image based human pose model
and action recognition results were presented. How-
ever, depth images are almost always accompanied with
RGB images. Therefore, we present the following ex-
tensions: (1) We present a method2 for synthesizing re-
alistic RGB human pose images containing variations
in clothing textures, background, lighting conditions
and more variations in body shapes. This method can
also synthesize depth images more e�ciently compared
to (Rahmani and Mian, 2016). (2) We adopt Gener-
ative Adversarial Networks (GANs) to refine the syn-
thetic RGB images and depth images so as to reduce
their distribution gaps from real images and achieve im-
proved accuracy. (3) We present a Human Pose Model
HPMRGB for human action recognition in conventional
RGB videos which has wider applications. The pro-
posed HPMRGB achieves state-of-the-art human action
recognition accuracy in conventional RGB videos. (4)
We re-train the depth model HPM3D using GoogleNet
(Szegedy et al, 2015) architecture which performs sim-
ilar to the AlexNet (Krizhevsky et al, 2012) model in
(Rahmani and Mian, 2016) but with four times smaller
feature dimensionality. (5) We perform additional ex-
periments on the largest RGB-D human action dataset
(NTU (Shahroudy et al, 2016a)) and report state-of-
the-art results for action recognition in RGB videos and
RGB-D videos in the cross-view and cross-subject set-
tings. From here on, we refer to the Human Pose Models
as HPMRGB and HPM3D for RGB and depth modalities
respectively.

2 Related Work

2.1 Multi-view Action Recognition

Viewpoint variation is a major challenge in robust
action recognition. Thus, the existing literature has seen
multiple attempts of addressing multi-view action recog-
nition. The closest work to our method is the key pose
matching technique proposed by Lv and Nevatia (2007).
In their approach, actions are modelled as series of syn-
thetic 2D human poses rendered from many viewpoints
and the transition between the synthetic poses is repre-
sented by an Action Net graph. However, the rendered
images are not realistic as they do not model variations
in clothing, background and lighting as in our case.
Moreover, our method directly learns features from the
rendered images rather than hand-crafted features.

Another closely related work to our method is the
3D exemplars for action recognition proposed by Wein-

2 The code for this method will be made public.

land et al (2007). In their framework, actions are mod-
elled with 3D occupancy grids built from multiple view-
points. The learned 3D exemplars are then used to
produce 2D images that are compared to the obser-
vations during recognition. This method essentially re-
lies on silhouettes which may not be reliably extracted
from the test videos especially under challenging back-
ground/lighting conditions.

Li et al (2012) proposed Hankelet which is a view-
point invariant representation that captures the dy-
namic properties of short tracklets. Hanklets do not
carry any spatial information and their viewpoint in-
variant properties are limited. Very early attempts for
view invariant human action recognition include the fol-
lowing methods. Yilmaz and Shah (2005) proposed ac-
tion sketch, an action representation that is a sequence
of the 2D contours of an action in the x, y, t space-time.
Such a representation is not completely viewpoint in-
variant. Parameswaran and Chellappa (2006) used 2D
projections of 3D human motion capture data as well
on manually segmented real image sequences to per-
form viewpoint robust action recognition. Rao et al
(2002) used the spatio-temporal 2D trajectory curva-
tures as a compact representation for view-invariant ac-
tion recognition. However, the same action can result in
very di↵erent 2D trajectories when observed from dif-
ferent viewpoints. Weinland et al (2006) proposed Mo-
tion History Volumes (MHV) as a viewpoint invariant
representation for human actions. MHVs are aligned
and matched using Fourier Transform. This method re-
quires multiple calibrated and background-subtracted
video cameras which is only possible in controlled en-
vironments.

View knowledge transfer methods transfer features
of di↵erent viewpoints to a space where they can be
directly matched to achieve viewpoint invariant action
recognition. Early methods in this category learned sim-
ilar features between di↵erent viewpoints. For example,
Farhadi and Tabrizi (2008) represented actions with
histograms of silhouettes and optical flow and learned
features with maximum margin clustering that are sim-
ilar in di↵erent views. Source views are then trans-
ferred to the target view before matching. Given suf-
ficient multiview training instances, it was shown later
that a hash code with shared values can be learned
(Farhadi et al, 2009). Gopalan et al (2011) used do-
main adaptation for view transfer. Liu et al (2011)
used a bipartite graph to model two view-dependent
vocabularies and applied bipartite graph partitioning
to co-cluster two vocabularies into visual-word clus-
ters called bilingual-words that bridge the semantic gap
across view-dependent vocabularies. More recently, Li
and Zickler (2012) proposed the idea of virtual views
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that connect action descriptors from one view to those
extracted from another view. Virtual views are learned
through linear transformations of the action descrip-
tors. Zhang et al (2013) proposed the idea of continu-
ous virtual path that connects actions from two di↵er-
ent views. Points on the virtual path are virtual views
obtained by linear transformations of the action de-
scriptors. They proposed a virtual view kernel to com-
pute similarity between two infinite-dimensional fea-
tures that are concatenations of the virtual view de-
scriptors leading to kernelized classifiers. Zheng and
Jiang (2013) learned a view-invariant sparse represen-
tation for cross-view action recognition. Rahmani and
Mian (2015) proposed a non-linear knowledge transfer
model that mapped dense trajectory action descriptors
to canonical views. However, this method does not ex-
ploit the appearance/shape features. Kerola et al (2017)
used spatio-temporal key points (STKP) and skeletons
to represent an action as a temporal sequence of graphs,
and then applied the spectral graph wavelet transform
to create the action descriptors for cross-view action
recognition.

2.2 Deep Learning in Action Recognition

Deep learning has been widely adopted for robust
action recognition, either in the form of end-to-end train-
able frameworks, or hybridized with conventional ap-
proaches. Simonyan and Zisserman (2014) and Feicht-
enhofer et al (2016) proposed two stream CNN archi-
tectures using appearance and optical flow to perform
action recognition.Wang et al (2015) proposed a two
stream structure to combine hand crafting features and
deep learned features. They used trajectory pooling for
one stream and deep learning for the second and com-
bined the features from the two streams to form trajectory-
pooled deep-convolutional descriptors. Nevertheless, the
method did not explicitly address viewpoint variations.
Pfister et al (2015) proposed a CNN architecture to
estimate human poses. Their architecture directly re-
gresses pose heat maps and combines them with optical
flow. This architecture relies on neighbouring frames for
pose estimations. Ji et al (2013) proposed a 3D Convo-
lutional Neural Network (3D-CNN) for human action
recognition. They used a set of hard-wired kernels to
generate multiple information channels corresponding
to the gray pixel values, (x, y) gradients, and (x, y) op-
tical flow from seven input frames. This was followed by
three convolution layers whose parameters were learned
through back propagation. The 3D-CNN model did not
explicitly address invariance to viewpoint or other fac-
tors.

Wang et al (2016b) proposed joint trajectory maps,
projections of 3D skeleton sequences to multiple 2D

images, for human action recognition. Karpathy et al
(2014) suggested a multi-resolution foveated architec-
ture for speeding up CNN training for action recogni-
tion in large scale videos. Varol et al (2017a) proposed
long-term temporal convolutions (LTC) and showed that
LTC-CNN models with increased temporal extents im-
prove action recognition accuracy. Tran et al (2015)
treated videos as cubes and performed convolutions and
pooling with 3D kernels. Recent methods (Li et al, 2016;
Zhu et al, 2016; Wang and Hoai, 2016; Zhang et al, 2016;
Su et al, 2016; Wang et al, 2016a) emphasize on action
recognition in large scale videos where the background
context is also taken into account.

Shahroudy et al (2016b) divided the actions into
body parts and proposed a multimodal-multipart learn-
ing method to represent their dynamics and appear-
ances. They selected the discriminative body parts by
integrating a part selection process into the learning
and proposed a hierarchical mixed norm to apply spar-
sity between the parts, for group feature selection. This
method is based on depth and skeleton data and uses
LOP (local occupancy patterns) and HON4D (histogram
of oriented 4D normals) as features. Yu et al (2016) pro-
posed a Structure Preserving Projection (SPP) to rep-
resent RGB-D video data fusion. They described the
gradient fields of RGB and depth data with a new Lo-
cal Flux Feature (LFF), and then fused the LFFs from
RGB and depth channels. With structure-preserving
projection, the pairwise structure and bipartite graph
structure are preserved when fusing RGB and depth
information into a Hamming space, which benefits the
general action recognition.

Huang et al (2016) incorporated the Lie group struc-
ture into deep learning, to transform high-dimensional
Lie group trajectory into temporally aligned Lie group
features for skeleton-based action recognition. The in-
corporated learning structure generalizes the traditional
neural network model to non-Euclidean Lie groups. Luo
et al (2017) proposed to use Recurrent Neural Network
based Encoder-Decoder framework to learn video repre-
sentation in capturing motion dependencies. The learn-
ing process is unsupervised and it focuses on encoding
the sequence of atomic 3D flows in consecutive frames.

Jia et al (2014a) proposed a latent tensor trans-
fer learning method to transfer knowledge from the
source RGB-D dataset to the target RGB only dataset
such that the missing depth information in the tar-
get dataset can be compensated. The learned 3D ge-
ometric information is then coupled with RGB data
in a cross-modality regularization framework to align
them. However, to learn the latent depth information
for RGB data, a RGB-D source dataset is required to
perform the transfer learning, and for di↵erent source
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datasets, the learned information may not be consis-
tent which could a↵ect the final performance. Kong
and Fu (2017) proposed max-margin heterogeneous in-
formation machine (MMHIM) to fuse RGB and depth
features. The histograms of oriented gradients (HOG)
and histograms of optical flow (HOF) descriptors are
projected into independent shared and private feature
spaces, and the features are represented in matrix forms
to build a low-rank bilinear model for the classification.
This method utilizes the cross-modality and private in-
formation, which are also de-noised before the final clas-
sification.

2.3 Synthetic Data Generation

The impracticality of careful data annotation at large
scales has led researchers to also seek e�cient ways of
synthesizing large datasets for robust action recogni-
tion. Varol et al (2017b) recently proposed SURREAL
to synthesize human images for the task of body seg-
mentation and depth estimation. The generated dataset
includes RGB images, together with depth maps and
body parts segmentation information. They then learned
a CNN model from the synthetic dataset, and then con-
duct pixel-wise classification for the real RGB pose im-
ages. This method made e↵orts in diversifying the syn-
thetic data, however, it didn’t address the distribution
gap between synthetic and real images. Moreover, this
method only performs human body segmentation and
depth estimation.

Our survey shows that none of the existing tech-
niques explicitly learn invariant features through a train-
ing dataset that varies all irrelevant factors for the same
human pose. This is partly because such training data
is very di�cult and expensive to generate. We resolve
this problem by developing a method to generate such
data synthetically. The proposed data generation tech-
nique is a major contribution of this work that can syn-
thesize large amount of data for training data-hungry
deep network models. By easily introducing a variety
of action irrelevant variations in the synthetic data, it
is possible to learn e↵ective models that can extract in-
variant information. In this work, we propose Human
Pose Models for extracting such information from both
RGB and depth images.

3 Generating Synthetic Training Data

The proposed synthetic data generation steps are ex-
plained in the following subsections. Unless specified,
the steps are shared by RGB and depth data genera-
tion.

Fig. 2 Samples from the 339 representative human poses
learned from the CMU MoCap skeleton data

3.1 Learning Representative Human Poses

Since the space of possible human poses is extremely
large, we learn a finite number of representative human
poses in a way that is not biased by irrelevant factors
such as body shapes, appearances, camera viewpoints,
illumination and backgrounds. Therefore, we learn the
representative poses from 3D human joints (skeletons),
because each skeleton can be fitted with 3D human
models of any size/shape. The CMUMoCap database is
ideal for this purpose because it contains joint locations
of real humans performing di↵erent actions resulting in
a large number of di↵erent poses. This data consists of
over 2500 motion sequences and over 200,000 human
poses. We randomly sample 50,000 frames as the pose
candidates and cluster them with HDBSCAN algorithm
(McInnes et al, 2017) using the skeletal distance func-
tion (Shakhnarovich, 2005)

D(✓1, ✓2) = max
ijL

X

d2x,y,z

| ✓id,1 � ✓jd,2 | (1)

where ✓1 and ✓2 are the x, y, z joint locations of two
skeletons, and L denotes the total number of joints in
CMUMoCap skeleton.. By setting the minimum cluster
size to 20, the HDBSCAN algorithm outputs 339 clus-
ters and we choose the pose with highest HDBSCAN
score in each cluster to form the representative human
poses. Figure 2 shows a few of the learned representa-
tive human poses.

3.2 Generating 3D Human Models

The 339 representative human pose skeletons are fitted
with full 3D human models. We use the open source
MakeHuman3 software to generate 3D human models
because it has three attractive properties. Firstly, the
3D human models created by MakeHuman contain in-
formation for fitting the model to the MoCap skeletons

3 http://www.makehuman.org
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Fig. 3 3D human (male, heavy male, female, child) models
generated with the MakeHuman software. 3D mesh and sam-
ple clothing by the MakeHuman software are also shown for
each model.

to adopt that pose. Secondly, it is possible to vary the
body shape, proportion and gender properties to model
di↵erent shape humans. Figure 3 shows the four hu-
man body shapes we used in our experiments. Thirdly,
MakeHuman allows for selecting some common cloth-
ing types as shown in Figure 3. Although, the MakeHu-
man o↵ers limited textures for the clothing, we write a
Python script to apply many di↵erent types of clothing
textures obtained from the Internet.

3.3 Fitting 3D Human Models to MoCap Skeletons

MakeHuman generates 3D human models in the same
canonical pose as shown in Figure 3. We use the open
source Blender4 software to fit the 3D human models to
the 339 representative human pose skeletons. Blender
loads the 3D human model and re-targets its rigs to the
selected MoCap skeleton. As a result, the 3D human
model adopts the pose of the skeleton and we get the
representative human poses as full 3D human models
with di↵erent clothing types and body shapes. Clothing
textures are varied later.

3.4 Multiview Rendering to Generate RGB Images

We place each 3D human model (with a representative
pose) in di↵erent backgrounds and lighting conditions
using Blender. In the following, we explain how di↵er-
ent types of variations were introduced in the rendered
images.

Camera Viewpoint: We place 180 virtual cameras on
a hemisphere over the 3D human model to render RGB
images. These cameras are 12 degrees apart along the
latitude and longitude and each camera points to the
center of the 3D human model. Figure 4 illustrates the
virtual cameras positioned around a 3D human model
where no background has been added yet to make the
cameras obvious. Figure 5 shows a few images rendered

4 http://www.blender.org

Fig. 4 Each 3D human model is rendered from 180 camera
viewpoints on a hemisphere. All cameras point to the center
of the human model

Fig. 5 Human pose images rendered from multiple viewpoints

from multiple viewpoints after adding the background
and lighting.

Background and Lighting:We incorporate additional
rich appearance variations in the background and light-
ing conditions to synthesize images that are as realis-
tic as possible. Background variation is performed in
two modes. One, we download thousands of 2D indoor
scenes from Google Images and randomly select one as
Blender background during image rendering. Two, we
download 360o spherical High Dynamic Range Images
(HDRI) from Google Images and use them as the en-
vironmental background in Blender. In the latter case,
when rendering images from di↵erent viewpoints, the
background changes accordingly. Figure 5 shows some
illustrations. It is also possible to incorporate 3D back-
ground layout in our method using Blender. Interaction
between 3D human pose and surroundings can result
in further improving the images. However, it requires
the laborious task of 3D modelling of all items in a
given scene, which also results in computational over-
head. From the perspective of data augmentation for
learning deep models, the proposed pipeline considers
both the image quality and data generation e�ciency.
Our method is able to e�ciently incorporate large vari-
ations of multiple factors in the generated data, includ-
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Fig. 6 We use 262 textures for shirts and 183 for the
trousers/shorts. The clothing textures of the human models
are varied randomly through a Python script in Blender

Fig. 7 Synthetic RGB images where variations are introduced
in (a) human pose, (b) background and clothing texture, (c)
body shapes and (d) lighting conditions

ing poses, viewpoints, backgrounds, textures and illu-
minations. In total, we use 2000 di↵erent backgrounds
that are mostly indoor scenes, building lobbies with
natural lighting and a few outdoor natural scenes. We
place three lamps at di↵erent locations in the scene and
randomly change their energy to achieve lighting vari-
ations.

Clothing Texture: Clothing texture is varied by as-
signing di↵erent textures, downloaded from Google Im-
ages, to the clothing of the 3D human models. In total,
we used 262 di↵erent textures of shirts and 183 tex-
tures for trousers/shorts to generate our training data.
Figure 6 shows some of the clothing textures we used
and Figure 7 shows some rendered images containing
all types of variations.

3.5 Multiview Rendering to Generate Depth Images

Depth images simply record the distance of the human
from the camera without any background, texture or
lighting variation. Therefore, we only vary the cam-
era viewpoint, clothing types (not textures) and body
shapes when synthesizing depth images. The virtual
cameras are deployed in a similar way to the RGB image
rendering. Figure 8 shows some depth images rendered
from di↵erent viewpoints. In the Blender rendering en-
vironment, the bounding box of the human model is
recorded as a group of vertices, which can be converted
to an xy bounding box around the human in the ren-
dered image coordinates. This bounding box is used to
crop the human in the rendered depth images as well
as RGB images. The cropped images are used to learn
the Human Pose Models.

3.6 E�ciency of Synthetic Data Generation

To automate the data generation, we implemented a
Python script5 in Blender on a 3.4GHz machine with
32GB RAM. The script runs six separate processing
threads and on the average, generates six synthetic pose
images per second. Note that this is an o↵-line process
and can be further parallelized since each image is ren-
dered independently. Moreover, the script can be im-
plemented on the cloud for e�ciency without the need
to upload any training data. The training data is only
required for learning the model and can be deleted af-
terwards. For each of the 339 representative poses, we
generate images from all 180 viewpoints while applying
a random set of other variations (clothing, background,
body shape and lighting). In total, about 700,000 syn-
thetic RGB and depth images are generated to train
the proposed HPMRGB and HPM3D.

4 Synthetic Data Refinement with GANs

The synthetic images are labelled with 339 di↵erent
human poses and cover common variations that occur
in real data. They can be used to learn Human Pose
Models that transfer human poses to a high level view-
invariant space. However, it is likely that the synthetic
images are sampled from a distribution which is dif-
ferent from the distribution of real images. Given this
distribution gap, the Human Pose Models learned from
synthetic images may not generalize well to real images.
Therefore, before learning the models, we minimize the
gap between the distributions. For this purpose, we

5 The data synthesis script will be made public.
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Fig. 8 Depth human pose images rendered from multiple
viewpoints. The first row of the figure illustrates horizon-
tal viewpoint change, and the second row illustrates vertical
viewpoint change. Color coding is used for depth image in
this figure for better visuality.

adopt the simulated and unsupervised learning frame-
work (SimGAN) (Shrivastava et al, 2016) proposed by
Shrivastava et al.. This framework uses an adversarial
network structure similar to the Generative Adversar-
ial Network (GAN) (Goodfellow et al, 2014), but the
learning process is based on synthetic images, instead
of random noises as in the original GAN method. The
SimGAN framework learns two competing networks, re-
finer R✓(x) and discriminator D�(x̃, y), where x is syn-
thetic image, y is unlabelled real image, x̃ = R✓(x) is
refined image. In SimGAN implementation, the refiner
R✓(x) is a fully convolutional neural network without
striding or pooling, and the discriminator D�(x̃, y) is
a ConvNet whose last layer outputs the probability of
the sample being a refined image. The loss function of
these two networks are defined as LR(✓) and LD(�)
(Shrivastava et al, 2016)

LR(✓)=�
X

i

log(1�D�(R✓(xi)))+�kR✓(xi)�xik1, (2)

LD(�) = �
X

i

log(D�(x̃i))�
X

j

log(1�D�(yj)), (3)

where xi is the ith synthetic image, x̃i is its correspond-
ing refined image, yj is the jth real image, k.k1 is `1
norm, and � 2 [0, 1] is the regularization factor.

5 Learning the Human Pose Models

Every image in our synthetic data has a label corre-
sponding to one of the 339 representative human poses.
For a given human pose, the label remains the same
irrespective of the camera viewpoint, clothing texture,
body shape, background and lighting conditions. We
learn CNN models that map the rendered images to
their respective human pose labels. We learn HPMRGB

and HPM3D for RGB and depth images independently
and test three popular CNN architectures, i.e. AlexNet

(Krizhevsky et al, 2012), GoogLeNet (Szegedy et al,
2015), and ResNet-50 (He et al, 2016a), to find the most
optimal architecture through controlled experiments.
These CNN architectures performed well in the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2012, 2014, and 2015 respectively, and come with in-
creasing number of layers. We fine tune the ILSVRC
pre-trained models using our synthetic data and com-
pare their performance on human action recognition.

5.1 Extracting Features from Real Videos

To extract features from real videos, the region con-
taining the human is first cropped from each frame
and then the cropped region is resized to match the
input of the network. The cropped-resized regions from
each frame are passed individually through the learned
Human Pose Model (HPMRGB for RGB frames, and
HPM3D for depth frames), and a layer prior to the
labels is used as invariant representation of the hu-
man pose. Specifically, we use fc7 layer for AlexNet,
pool5/7x7 s1 layer for GoogLeNet and pool5 for ResNet-
50. This representation is unique, compact, invariant to
the irrelevant factors and has the added advantage that
it aligns the features between multiple images. While
the pixels of one image may not correspond to the pixels
of another image, the individual variables of the CNN
features are aligned. Therefore, we can perform tempo-
ral analysis along the individual variables.

6 Temporal Representation and Classification

For temporal representation, we use the Fourier Tempo-
ral Pyramid (FTP) (Wang et al, 2013b) on the features
extracted from the video frames. Temporal represen-
tation for HPM3D and HPMRGB features is done in a
similar way and explained in general in the next para-
graph.

Let V i
t denote the t-th frame of i-th video, t =

1, 2, . . . , f where f is the total number of frames. Take
HPM with GoogleNet structure as an example, denote
the pool5/7x7 s1 layer activations of frame V i

t as Ai
t 2

R1024⇥1 and the frame-wise pose features of the i-th
video as Ai = [Ai

1, A
i
2, . . . , A

i
f ]

T . FTP is applied on Ai

for temporal encoding using a pyramid of three levels
where Ai is divided in half at each level giving 1+2+4 =
7 feature groups. Short Fourier Transform is applied to
each feature group, and the first four low-frequency co-
e�cients (i.e. 4 ⇥ 7 = 28) are used to form a spatio-
temporal action descriptor Bi 2 R1024⇥28. Finally, Bi

is stretched to Di 2 R1⇥28672 to get the final spatio-
temporal representation of the i-th video. When the
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dimension of frame-wise pose feature changes, the di-
mension of spatio-temporal descriptor changes accord-
ingly, for example, Bi 2 R4096⇥28 for AlexNet, and
Bi 2 R2048⇥28 for ResNet-50.

Note that the FTP encodes the temporal variations
of the RGB action videos in the HPMRGB feature space.
The video frames are first aligned in the Ai

t HPMRGB

feature space which makes it possible to preserve the
spatial location of the features while temporal encoding
with FTP. On the other hand, dense trajectories model
temporal variations in the pixel space (of RGB videos)
where pixels corresponding to the human body pose are
not aligned. This is the main reason why dense trajec-
tory features are encoded with Bag of Visual Words
(BoVW) which facilitates direct matching of dense tra-
jectory features from two videos. However, this process
discards the spatial locations of the trajectories. Thus,
similar trajectories from di↵erent locations in the frame
will vote to the same bin in BoVW feature.

An advantage of performing temporal encoding in
di↵erent feature spaces is that the features are non-
redundant. Thus our HPMRGB and dense trajectories
capture complementary information. Although dense
trajectories cannot capture the appearance information,
they are somewhat robust to viewpoint changes as shown
in (Rahmani et al, 2017). Therefore, we augment our
HPMRGB features with dense trajectory features before
performing classification. We use the improved dense
trajectories (iDT) (Wang and Schmid, 2013) implemen-
tation which provides additional features such as HOG
(Dalal and Triggs, 2005), HOF and MBH (Dalal et al,
2006). However, we only use the trajectory part and dis-
card HOG/HOF/MBH features for two reasons. Firstly,
unlike our HPMs, HOG/HOF/MBH features are not
view-invariant. Secondly, our HPMs already encode the
appearance information. We use the NKTM (Rahmani
and Mian, 2015) codebook to encode the trajectory fea-
tures and denote the encoded BoVW as Di 2 R2000 for
video V i.

We use SVM (Fan et al, 2008) for classification and
report results in three settings i.e. RGB, depth and
RGB-D. In the RGB setting, we represent the HPMRGB

features temporally encoded with FTP and then com-
bine them with the trajectory BoVW features since
both types of features can be extracted from RGB videos.
In the depth setting, we represent the HPM3D features
with FTP but do not combine trajectory features be-
cause trajectories cannot be reliably extracted from the
depth videos. In the RGB-D setting, we combine the
FTP features from both HPM models with the trajec-
tory BoVW features.

Fig. 9 Sample frames from the UWA3D Multiview Activity
II dataset (Rahmani et al, 2016)

7 Implementation

7.1 GAN Refinement Implementation

For synthetic data refinement with GAN, we modify
the Tensorflow implementation6 of SimGAN to make
it suitable for our synthetic RGB images. For the re-
finer network, we extend the input data channel from
1 to 3. The input images are first convolved with 7
⇥ 7 filters and then converted into 64 feature maps.
The 64-channel feature maps are passed through mul-
tiple ResNet blocks. The setting of ResNet blocks and
the structure of discriminator network are the same as
(Shrivastava et al, 2016).

To get benchmark distribution for the synthetic im-
ages, we randomly select 100,000 unlabelled real im-
ages from the NTU RGB+D Human Activity Dataset
(Shahroudy et al, 2016a). Each image is cropped to get
the human body as the region of interest and then re-
sized to 224 ⇥ 224. Through adversarial learning, Sim-
GAN framework (Shrivastava et al, 2016) will force the
distribution of synthetic images to approach this bench-
mark distribution. Although, we use samples from the
NTU RGB+D Human Activity Dataset as benchmark
to train the SimGAN network, this is not mandatory
as any other dataset containing real human images can
be used. This is because the SimGAN learning is an
unsupervised process, which means no action labels are
required. Our experiments in later sections also illus-
trate that the performance improvement gained from
GAN-refinement has no dependence on the type of real
images used for SimGAN learning.
7.2 HPM Training Implementation

We implement HPMRGB and HPM3D training with
three popular CNN architectures, i.e. AlexNet (Krizhevsky
et al, 2012), GoogLeNet (Szegedy et al, 2015), and
ResNet-50 (He et al, 2016a). The three pre-trained mod-
els have a last fully connected layer with 1000 neurons.

6 https://github.com/carpedm20/



10 Jian Liu et al.

For fine tuning, we replace the last layer with a 339
neuron layer representing the number of classes in our
synthetic human pose dataset. All synthetic images are
cropped to include only the human body and then re-
sized to 256⇥256 pixels. During training, these images
are re-cropped to the required input dimension for the
specific network with default data augmentation, and
are also mirrored with a probability of 0.5. We use the
synthetic pose images from 162 randomly selected cam-
era viewpoints for training, and the images from the
remaining 18 cameras for validation.

The Ca↵e library (Jia et al, 2014b) is used to learn
the proposed HPMRGB and HPM3D models. The initial
learning rate of the model was set to 0.01 for the last
fully-connected layers and 0.001 for all other layers. We
used a batch size of 100 and trained the model for 3
epochs. We decreased the learning rate by a factor of
10 after every epoch. Training was done using a single
NVIDIA Tesla K-40 GPU.
8 Experiments

8.1 Datasets

Experiments are performed in the following three bench-
mark datasets for cross-view human action recognition.

8.1.1 UWA3D Multiview Activity-II Dataset

Figure 9 shows sample frames from this dataset. The
dataset (Rahmani et al, 2016) consists of 30 human ac-
tions performed by 10 subjects and recorded from 4
di↵erent viewpoints at di↵erent times using the Kinect
v1 sensor. The 30 actions are: (1) one hand waving,
(2) one hand punching, (3) two hands waving, (4) two
hands punching, (5) sitting down, (6) standing up, (7)
vibrating, (8) falling down, (9) holding chest, (10) hold-
ing head, (11) holding back, (12) walking, (13) irreg-
ular walking, (14) lying down, (15) turning around,
(16) drinking, (17) phone answering, (18) bending, (19)
jumping jack, (20) running, (21) picking up, (22) putting
down, (23) kicking, (24) jumping, (25) dancing, (26)
moping floor, (27) sneezing, (28) sitting down (chair),
(29) squatting, and (30) coughing. The four viewpoints
are: (a) front, (b) left, (c) right, (d) top.

This dataset is challenging because of the large num-
ber of action classes and because the actions are not
recorded simultaneously leading to intra-action di↵er-
ences besides viewpoint variations. The dataset also
contains self-occlusions and human-object interactions
in some videos.

We follow the protocol of (Rahmani et al, 2016)
where videos from two views are used for training and
the videos from the remaining views are individually

Fig. 10 Sample frames from the Northwestern-UCLA Multi-
view Action dataset (Wang et al, 2014)

used for testing leading to 12 di↵erent cross-view com-
binations in this evaluation protocol.

8.1.2 Northwestern-UCLA Multiview Dataset

This dataset (Wang et al, 2014) contains RGB-D videos
captured simultaneously from three di↵erent viewpoints
with the Kinect v1 sensor. Figure 10 shows sample
frames of this dataset from the three viewpoints. The
dataset contains RGB-D videos of 10 subjects perform-
ing 10 actions: (1) pick up with one hand, (2) pick up
with two hands, (3) drop trash, (4) walk around, (5) sit
down, (6) stand up, (7) donning, (8) do�ng, (9) throw,
and (10) carry. The three viewpoints are: (a) left, (b)
front, and (c) right. This dataset is very challenging be-
cause many actions share the same “walking” pattern
before and after the actual action is performed. More-
over, some actions such as “pick up with on hand” and
“pick up with two hands” are hard to distinguish from
di↵erent viewpoints.

We use videos captured from two views for training
and the third view for testing making three possible
cross-view combinations.

8.1.3 NTU RGB+D Human Activity Dataset

The NTU RGB+DHuman Activity Dataset (Shahroudy
et al, 2016a) is a large-scale RGB+D dataset for hu-
man activity analysis. This dataset was collected with
the Kinect v2 sensor and includes 56,880 action samples
each for RGB videos, depth videos, skeleton sequences
and infra-red videos. We only use the RGB and depth
parts of the dataset. There are 40 human subjects per-
forming 60 types of actions including 50 single person
actions and 10 two-person interactions. Three sensors
were used to capture data simultaneously from three
horizontal angles: �45�, 0�, 45�, and every action per-
former performed the action twice, facing the left or
right sensor respectively. Moreover, the height of sen-
sors and their distance to the action performer were
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Fig. 11 RGB and depth sample frames from the NTU
RGB+D Human Activity Dataset (Shahroudy et al, 2016a).
Three sensors C-1, C-2 and C-3 are used to record this
dataset. The left group of images in this figure shows the
actions recorded with the performer facing the sensor C-3,
and the right group of images are recorded when the action
performer faces the sensor C-2

further adjusted to get more viewpoint variations. The
NTU RGB+D dataset is the largest and most complex
cross-view action dataset of its kind to date. Figure 11
shows RGB and depth sample frames in NTU RGB+D
dataset.

We follow the standard evaluation protocol proposed
in (Shahroudy et al, 2016a), which includes cross-subject
and cross-view evaluations. For cross-subject protocol,
40 subjects are split into training and testing groups,
and each group consists of 20 subjects. For cross-view
protocol, the videos captured by sensor C-2 and C-3 are
used as training samples, and the videos captured by
sensor C-1 are used as testing samples.

8.2 Ablation Study

We first use raw synthetic images to train HPMRGB

and HPM3D for the three di↵erent CNN architectures
(AlexNet, GoogLeNet, and ResNet-50), and compare
their performance on the UWA and NUCLA datasets.
The best performing architecture is then selected and
re-trained on the GAN-refined synthetic images. Next,
we compare the HPM models trained on raw synthetic
images to those trained on the GAN refined synthetic
images. Finally, we perform comprehensive experiments
to compare our proposed models trained on GAN re-
fined synthetic images to existing methods on all three
datasets.
8.2.1 HPM Performance with Di↵erent Architectures

We determine the best CNN architecture that max-
imizes generalization power of HPMRGB and HPM3D

for RGB and depth images respectively. We use the raw

Network Layer Dimension HPMRGB HPM3D

UWA3D Multiview Activity-II

AlexNet fc7 4096 61.2 72.1
ResNet-50 pool5 2048 65.4 74.0
GoogLeNet pool5 1024 64.7 74.1

Northwestern-UCLA Multiview

AlexNet fc7 4096 69.9 78.7
ResNet-50 pool5 2048 75.7 77.3
GoogLeNet pool5 1024 76.4 79.8

Table 1 Comparison of feature dimensionality and action
recognition accuracy(%) for HPMRGB and HPM3D trained
using di↵erent network architectures

synthetic pose images to fine tune AlexNet, GoogLeNet,
and ResNet-50, and then test them on the UWA and
NUCLA datasets. Since the trained model is to be used
as a frame-wise feature extractor for action recogni-
tion, we take recognition accuracy and feature dimen-
sionality both into account. Table 1 compares the av-
erage results on all possible cross-view combinations
for the two datasets. The results show that for RGB
videos, GoogLeNet and ResNet-50 perform much bet-
ter than AlexNet. GoogLeNet also performs the best
for depth videos and has the smallest feature dimen-
sionality. Therefore, we select GoogLeNet as the net-
work architecture for both HPMRGB and HPM3D in
the remaining experiments.

8.2.2 Qualitative Analysis of GAN Refined Images

We compare the real images, raw synthetic images,
and GAN-refined synthetic images, to analyse the e↵ect
of GAN refinement on our synthetic RGB and depth
human pose datasets.

Figure 12 compares the real, raw synthetic and GAN-
refined synthetic RGB images. One obvious di↵erence
between real and synthetic RGB images is that the syn-
thetic ones are sharper and have more detail than the
real images. This is because the synthetic images are
generated under ideal conditions and the absence of re-
alistic image noises makes them di↵erent from real im-
ages. However, with GAN learning, the refined RGB im-
ages lose some of the details (i.e. they are not as sharp)
and become more realistic. The last row of Figure 12
shows the di↵erence between the raw and refined syn-
thetic images. Notice that the major di↵erences (bright
pixels) are at the locations of the humans and especially
at their boundaries whereas the backgrounds have min-
imal di↵erences (dark pixels). The reason for this is that
the synthetic images are created using synthetic 3D
human models but real background images i.e. rather
than building Blender scene models (walls, floors, fur-
nitures, etc.) from scratch, we used real background
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Fig. 12 Comparing real, raw synthetic and GAN-refined
synthetic RGB images. Last row shows the di↵erence be-
tween raw and GAN-refined synthetic images. Since the back-
grounds used are already real, di↵erences are mostly on the
synthetic human body especially at their edges

images for e�ciency and diversity of data. Moreover,
the Blender lighting function causes shading variation
on the human models only, and the shading e↵ects of
backgrounds always remain the same. All these factors
make the human model stand out of the background.
On the other hand, the human subjects are perfectly
blended with the background in the real images. The
GAN refinement removes such di↵erences in synthetic
images and makes the human models blend into the
background. Especially, the bright human boundaries
(last row) shows that the GAN refinement process is
able to sense and remove the di↵erence between human
model and background images.

Figure 13 shows a similar comparison for depth im-
ages. The most obvious di↵erence between real and
synthetic depth images is the noise along the bound-
ary. The edges in the real depth images are not smooth
whereas they are very smooth in the synthetic depth im-
ages. Other di↵erences are not so obvious to the naked
eye but nevertheless, these di↵erences might limit the
generalization ability of the Human Pose Model learned
from synthetic images. The third row of Fig. 13 shows
the refined synthetic depth images and the last column
shows the di↵erence between the images in more detail.
Thus the GAN refinement successfully learns to model
boundary noise and other non-obvious di↵erences of
real images and applies them to the synthetic depth
maps narrowing down their distribution gap.

In next section, we will show quantitative results in-
dicating that the Human Pose Models learned from the
GAN refined synthetic images outperform those that
are learned from raw synthetic images.

Fig. 13 Comparing real, raw synthetic and GAN-refined syn-
thetic depth images

Training Data HPMRGB HPM3D

UWA3D Multiview Activity-II

Raw synthetic images 64.7 73.8
GAN-refined synthetic images 68.0 74.8

Northwestern-UCLA Multiview

Raw synthetic images 76.4 78.4
GAN-refined synthetic images 77.8 79.7

Table 2 Comparison of action recognition accuracy (%) for
GoogLeNet based HPMRGB and HPM3D when trained on
raw synthetic images and GAN-refined synthetic images

8.2.3 Quantitative Analysis of GAN Refinement

We quantitatively compare the e↵ect of GAN-refinement
using the UWA and NUCLA datasets by comparing the
action recognition accuracies when the HPMRGB and
HPM3D are fine tuned once on raw synthetic images
and once on GAN-refined synthetic images.

Table 2 shows the average accuracies for all cross-
view combinations on the respective datasets. We can
see that the HPMRGB fine tuned on the GAN-refined
synthetic RGB images achieves 3.3% and 1.4% improve-
ment over the one fine tuned with raw synthetic images
on the UWA and NUCLA datasets respectively. For
HPM3D, GAN-refined synthetic data also improves the
recognition accuracy for the two datasets by 1% and
1.3% respectively. The improvements are achieved be-
cause the distribution gap between synthetic and real
images is narrowed by GAN refinement.

Recall that the real images used as a benchmark
distribution for GAN refinement are neither from UWA
nor NUCLA dataset. We impose no dependence on the
type of real images used for SimGAN learning, because
it is an unsupervised process and no pose labels are re-
quired. In the remaining experiments, we use HPMRGB

and HPM3D fine tuned with GAN refined synthetic im-
ages for comparison with other techniques.
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Training Data HPMRGB HPM3D HPMRGB+HPM3D

UWA3D Multiview Activity-II

1st camera circle 65.5 74.4 75.5
3rd camera circle 64.9 72.3 74.3
5th camera circle 64.3 71.4 73.9
Full dataset 68.0 74.8 77.4

Northwestern-UCLA Multiview

1st camera circle 75.1 77.6 78.5
3rd camera circle 73.0 76.8 78.3
5th camera circle 71.5 75.3 75.6
Full dataset 77.8 79.7 81.1

Table 3 Comparison of action recognition accuracy (%) for
HPMRGB, HPM3D trained on di↵erent subset of synthetic
images.

8.2.4 Advantage of Hemispherical Sampling

As shown in Figure 4, we sample 3D human models with
180 virtual cameras deployed in a hemisphere around
the models. The hemispherical sampling provides com-
prehensive viewpoint variations to help HPMs in recog-
nizing multiview actions. To analyze the e↵ectiveness of
hemispherical sampling, we also performed experiments
by sub-sampling the hemisphere using three circles of
fixed heights. Starting from the bottom, we selected
the first, third, and fifth circle of cameras in Figure 4,
and individually trained three HPMs using the resulting
data. We compare performance of the resulting HPMs
on RGB, Depth and RGB+Dmodalities in Table 3. The
models are evaluated on UWA3D and NUCLA datasets,
and compared with the original HPM that is trained us-
ing the full synthetic dataset. The results demonstrate
that data from the lower circles result in higher model
performance. However, data from the full hemishpere
provides the best performance.

8.3 Evaluation and Comparison

8.3.1 Comparison on the UWA3D Multiview-II
Dataset

Table 4 compares our method with existing state-of-
the-art. The proposed HPMRGB alone achieves 68.0%
average recognition accuracy for RGB videos, which
is higher than the nearest RGB-only competitor R-
NKTM (Rahmani et al, 2017), and for 8 out the 12
train-test combinations, our proposed HPMRGB fea-
tures provide significant improvement in accuracy. This
shows that the invariant features learned by the pro-
posed HPMRGB are e↵ective.

Combining HPMRGB and dense trajectory features
(Traj) gives a significant improvement in accuracy. It

improves the RGB recognition accuracy to 76.4%, which
is 9% higher than the nearest RGB competitor. It is
also higher than the depth only method HPM3D. This
shows that our method exploits the complementary in-
formation between the two modes of spatio-temporal
representation, and enhances the recognition accuracy
especially when there are large viewpoint variations.
State-of-the-art RGB-D action recognition accuracy of
82.8% on UWA dataset is achieved when we combine
HPMRGB, HPM3D and dense trajectory features.

Table 4 mentions the best results of the existing
method taken directly from the literature, except for
C3D, LRCN and JOULE. For C3D and LRCN (and
C3D†, LRCN†), we fine-tuned the original models us-
ing the target dataset. For JOULE, we used the author
recommended parameter values with the public code.
Unless mentioned otherwise, the results of the existing
methods in the remaining article also follow the same
convention. Notice that, the deep learning based exist-
ing methods achieve their best performance after fine
tuning with the target datasets. In contrast, HPMs are
not fine tuned to any dataset once their training on the
proposed synthetic data is completed. These models are
used out-of-the-box for the test data. These settings
hold for all the experiments conducted in this work. In-
deed, fine tuning HPMs on datasets leads to further
improvements in the results. For instance, HPMRGB

achieves 68.9% accuracy with fine tuning on UWA3D
dataset. A 0.6% improvement was also observed for NU-
CLA dataset. However, the results reported in the Ta-
bles do not take advantage of fine tuning to emphaize
the generalization power of HPMs trained on the pro-
posed synthetic data.

Our data generation technique endows HPMs with
inherent robustness to viewpoint variations along ro-
bustness to changes in background, texture and cloth-
ing etc. The baseline methods lack in these aspects
which is one of the reasons for the improvement achieved
by our approach over those methods. Note that, HPMs
are unique in the sense that they model individual hu-
man poses in frames instead of actions. Therefore, our
synthetic data generation method, which is an essential
part of HPM training, also focuses on generating human
pose frames. One interesting enhancement of our data
generation technique is to produce synthetic videos in-
stead. We can then analyze the performance gain of
(video-based) baseline methods trained with our syn-
thetic data. To explore this direction, we extended our
technique to generate synthetic videos and applied it
to C3D (Tran et al, 2015) and LRCN (Donahue et al,
2015) methods as follows.

For transparency, we selected all ‘atomic’ action se-
quences from CMU MoCap. Each of these sequences
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Method Data V 3
1,2 V 4

1,2 V 2
1,3 V 4

1,3 V 2
1,4 V 3

1,4 V 1
2,3 V 4

2,3 V 1
2,4 V 3

2,4 V 1
3,4 V 2

3,4 Mean

Baseline

DVV (Li and Zickler, 2012) Depth 35.4 33.1 30.3 40.0 31.7 30.9 30.0 36.2 31.1 32.5 40.6 32.0 33.7
Action Tube (Gkioxari and Malik, 2015) RGB 49.1 18.2 39.6 17.8 35.1 39.0 52.0 15.2 47.2 44.6 49.1 36.9 37.0
CVP (Zhang et al, 2013) Depth 36.0 34.7 35.0 43.5 33.9 35.2 40.4 36.3 36.3 38.0 40.6 37.7 37.3
LRCN (Donahue et al, 2015) RGB 53.9 20.6 43.6 18.6 37.2 43.6 56.0 20.0 50.5 44.8 53.3 41.6 40.3
AOG (Wang et al, 2014) RGB 47.3 39.7 43.0 30.5 35.0 42.2 50.7 28.6 51.0 43.2 51.6 44.2 42.3
LRCN† (Wang et al, 2014) RGB 55.2 31.5 50.0 30.7 33.5 39.2 52.8 31.5 55.4 47.8 56.1 42.5 43.8
Hankelets (Li et al, 2012) RGB 46.0 51.5 50.2 59.8 41.9 48.1 66.6 51.3 61.3 38.4 57.8 48.9 51.8
2-stream (Simonyan and Zisserman, 2014) RGB 63.0 47.1 55.8 60.6 53.4 54.2 66.0 50.9 65.3 55.5 68.0 51.9 57.6
JOULE (Hu et al, 2015) RGB-D 54.3 71.6 43.5 68.9 52.7 58.8 72.4 58.3 78.7 37.1 80.6 45.0 60.2
DT (Wang et al, 2011) RGB 57.1 59.9 54.1 60.6 61.2 60.8 71.0 59.5 68.4 51.1 69.5 51.5 60.4
C3D (Tran et al, 2015) RGB 59.5 59.6 56.6 64.0 59.5 60.8 71.7 60.0 69.5 53.5 67.1 50.4 61.0
nCTE (Gupta et al, 2014) RGB 55.6 60.6 56.7 62.5 61.9 60.4 69.9 56.1 70.3 54.9 71.7 54.1 61.2
C3D† (Tran et al, 2015) RGB 62.7 57.3 59.2 68.0 63.2 64.6 71.0 54.7 68.8 52.6 74.3 62.8 63.3
NKTM (Rahmani and Mian, 2015) RGB 60.1 61.3 57.1 65.1 61.6 66.8 70.6 59.5 73.2 59.3 72.5 54.5 63.5
R-NKTM (Rahmani et al, 2017) RGB 64.9 67.7 61.2 68.4 64.9 70.1 73.6 66.5 73.6 60.8 75.5 61.2 67.4

Proposed

HPMRGB RGB 72.4 73.4 64.3 71.9 50.8 62.3 69.9 61.8 75.5 69.4 78.4 66.2 68.0
HPMRGB+Traj RGB 81.0 78.3 72.9 76.8 67.7 75.7 79.9 67.0 85.1 77.2 85.5 69.9 76.4
HPM3D Depth 80.2 80.1 75.6 78.7 59.0 69.0 72.1 65.2 84.8 79.1 82.5 71.1 74.8
HPMRGB+HPM3D RGB-D 79.9 83.9 76.3 84.6 61.3 71.3 77.0 68.9 85.1 78.7 87.0 74.8 77.4
HPMRGB+HPM3D+Traj RGB-D 85.8 89.9 79.3 85.4 74.4 78.0 83.3 73.0 91.1 82.1 90.3 80.5 82.8

Table 4 Action recognition accuracy (%) on the UWA3D Multiview-II dataset. V 3
1,2 means that view 1 and 2 were used for

training and view 3 alone was used for testing. The symbol † indicates that the original model was fine-tuned with our synthetic
data before applying the testing protocol. The mentioned results are taken directly from the literature, except for C3D, LRCN
and JOULE. For C3D and LRCN (and C3D†, LRCN†), we fine-tuned the original models using the target datasets. For JOULE,
we used the authors recommended parameter settings with public code that resulted in the best performance.

presents a single action, which also serves as the la-
bel of the video clip. To generate synthetic videos, the
frames in the training clips were processed according
to the procedure described in Section 3 and 4 with the
following major di↵erences. (1) No clustering was per-
formed to learn representative poses because it was not
required. (2) The parameters (i.e. camera viewpoints,
clothing etc.) were kept the same within a single syn-
thetic video but di↵erent random settings were adopted
for each video. The size of the generated synthetic data
was matched to our “pose” synthetic data. We took
the original C3D model (Tran et al, 2015) that is pre-
trained on the large scale dataset Sports-1M (Karpathy
et al, 2014) and the original LRCN model that is pre-
trained on UCF-101 (Soomro et al, 2012) and fine-tuned
these models using our synthetic videos. The fine-tuned
models were then employed under the used protocol.

We report the results of these experiments in Ta-
ble 4 by denoting our enhancements of C3D and LRCN
as C3D† and LRCN†. The results demonstrate that our
synthetic data can improve the performance of base-
line models for multi-view action recognition. The re-
sults also ascertain that the proposed approach exploits
the proposed data very e↵ectively to achieve signifi-
cant performance improvement over the existing meth-

ods. We note that C3D and LRCN enhancements dis-
cussed above do not strictly follow the same evaluation
as HPM due to major di↵erences between the training
procedure requirements of these techniques. Neverthe-
less, the provided results clearly demonstrate that these
techniques can also benefit from the proposed synthetic
data. We provide further discussion on the role of syn-
thetic data in the overall performance of our approach
in Section 9.

8.3.2 Comparison on the Northwestern-UCLA Dataset

Table 5 shows comparative results on the NUCLA dataset.
The proposed HPMRGB alone achieves 77.8% average
accuracy which is 8.4% higher than the nearest RGB
competitor NKTM (Rahmani and Mian, 2015). HPMRGB

+Traj further improves the average accuracy to 78.5%.
Our RGB-D method (HPMRGB+HPM3D+Traj) achieves
81.3% accuracy which is the highest accuracy reported
on this dataset.

8.3.3 Comparison on the NTU RGB+D Dataset

Table 6 compares our method with existing state-of-
the-art on the NTU dataset. The proposed HPMRGB

uses RGB frames only and achieves 68.5% cross-subject
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Table 5 Action recognition accu-
racy (%) on the NUCLA Multiview
dataset. V 3

1,2 means that view 1 and
2 were used for training and view 3
was used for testing. The symbol †
indicates that the original model was
fine-tuned with our synthetic data
before applying the testing protocol.

Method Data V 3
1,2 V 2

1,3 V 1
2,3 Mean

Baseline

Hankelets (Li et al, 2012) RGB 45.2 - - -
LRCN (Donahue et al, 2015) RGB 64.0 36.2 51.7 50.6
DVV (Li and Zickler, 2012) Depth 58.5 55.2 39.3 51.0
LRCN† RGB 62.6 39.6 53.3 51.8
CVP (Zhang et al, 2013) Depth 60.6 55.8 39.5 52.0
C3D (Tran et al, 2015) RGB 71.2 53.7 54.5 59.8
AOG (Wang et al, 2014) Depth 73.3 - - -
JOULE (Hu et al, 2015) RGB-D 76.5 53.1 53.5 61.0
C3D† RGB 68.4 64.6 53.2 62.1
nCTE (Gupta et al, 2014) RGB 68.6 68.3 52.1 63.0
NKTM (Rahmani and Mian, 2015) RGB 75.8 73.3 59.1 69.4
R-NKTM (Rahmani et al, 2017) RGB 78.1 - - -

Proposed

HPMRGB RGB 91.5 69.0 73.1 77.8
HPMRGB+Traj RGB 89.3 75.2 71.0 78.5
HPM3D Depth 91.9 75.2 71.9 79.7
HPMRGB+HPM3D RGB-D 92.4 74.1 76.8 81.1
HPMRGB+HPM3D+Traj RGB-D 91.7 73.0 79.0 81.3

recognition accuracy, which is comparable to that of the
best joints-based method ST-LSTM(Liu et al, 2016)
69.2% even though joints have been estimated from
depth data and do not contain action irrelevant noises.
This demonstrates that the HPMRGB e↵ectively learns
features that are invariant to action irrelevant noises
such as background, clothing texture and lighting etc.

Comparison of RGB Results:

Note that this paper is the first to provide RGB only hu-
man action recognition results on the challenging NTU
dataset (see Table 6). Our method (HPMRGB+Traj)
outperforms all others by a significant margin while
using only RGB data in both cross-subject and cross-
view settings. In the cross-subject setting, our method
achieves 75.8% accuracy which is higher than state-
of-the-art DSSCA-SSLM (Shahroudy et al, 2017) even
though DSSCA-SSLM uses both RGB and depth data
whereas our method HPMRGB+Traj uses only RGB
data. DSSCA-SSLM does not report cross-view results
as it did not perform well in that setting (Shahroudy
et al, 2017) whereas our method achieves 83.2% ac-
curacy for the cross-view case which is 7.7% higher
than the nearest competitor ST-LSTM (Liu et al, 2016)
which uses Joints data that is estimated from depth im-
ages. In summary, our 2.5D action recognition method
outperforms existing 3D action recognition methods.

Comparison of RGB-D Results:

From Table 6, we can see that our RGB-D method
(HPMRGB+HPM3D+Traj) achieves state-of-the-art re-
sults in both cross-subject and cross-view settings out-
performing the nearest competitors by 6% and 8.4%
respectively.

8.4 Timing

Table 7 shows the computation time for the major steps
of our proposed method. Using a single core of a 3.4GHz
CPU and the Tesla K-40 GPU, the proposed RGB
(HPMRGB+Traj) and RGB-D (HPMRGB+HPM3D+Traj)
methods run at about 20 frames per second whereas the
depth only method runs at about 46 frames per second.

9 Discussion

When uncropped video frames are used to learn a neu-
ral network model, the background context is more dom-
inant as it occupies more pixels. A recent study showed
that by masking the human in the UCF-101 dataset,
a 47.4% “human” action recognition accuracy could
still be achieved which, using the same algorithm, is
only 9.5% lower than when the humans are included
(He et al, 2016b). Our HPMRGB learns human poses
rather than the background context which is important
for surveillance applications where the background is
generally static and any action can be performed in
the same background. Moreover, HPMRGB and HPM3D

are not fine tuned on any of the datasets on which
they are tested. Yet, our models outperform all ex-
isting methods by a significant margin. For applica-
tions such as robotics and video retrieval where the
background context is important, our HPM models can
be used to augment the background context. For op-
timal performance, the cropped human images must
be passed through the HPMRGB and HPM3D. How-
ever, both HPMs are robust to cropping errors as many
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Table 6 Action recognition accuracy
(%) on the NTU RGB+D Human
Activity Dataset. Our RGB only
(HPMRGB+Traj) accuracies are
higher than the nearest competitors
which use RGB-D or Joints data.
Our RGB-D method (HPMRGB+
HPM3D+Traj) outperforms all
methods by significant margins in
both settings

Cross Cross
Method Data type Subject View

Baseline

HON4D (Oreifej and Liu, 2013) Depth 30.6 7.3
SNV (Yang and Tian, 2014) Depth 31.8 13.6
HOG-2 (Ohn-Bar and Trivedi, 2013) Depth 32.4 22.3
Skeletal Quads (Evangelidis et al, 2014) Joints 38.6 41.4
Lie Group (Vemulapalli et al, 2014) Joints 50.1 52.8
Deep RNN (Shahroudy et al, 2016a) Joints 56.3 64.1
HBRNN-L (Du et al, 2015) Joints 59.1 64.0
Dynamic Skeletons (Hu et al, 2015) Joints 60.2 65.2
Deep LSTM (Shahroudy et al, 2016a) Joints 60.7 67.3
LieNet (Huang et al, 2016) Joints 61.4 67.0
P-LSTM (Shahroudy et al, 2016a) Joints 62.9 70.3
LTMD (Luo et al, 2017) Depth 66.2 -
ST-LSTM (Liu et al, 2016) Joints 69.2 77.7
DSSCA-SSLM (Shahroudy et al, 2017) RGB-D 74.9 -

Proposed

HPMRGB RGB 68.5 72.9
HPMRGB+Traj RGB 75.8 83.2
HPM3D Depth 71.5 70.5
HPMRGB+HPM3D RGB-D 75.8 78.1
HPMRGB+HPM3D+Traj RGB-D 80.9 86.1

Data HPM Feature Trajectory FTP SVM Total Rate(fps)

RGB 2.13E-02 2.78E-02 4.39E-05 2.95E-04 4.94E-02 20.2
Depth 2.13E-02 - 4.64E-05 3.32E-04 2.17E-02 46.1
RGB-D 2.13E-02 2.78E-02 4.64E-05 6.80E-04 4.98E-02 20.1

Table 7 Execution time in seconds for the proposed method

frames in the UWA dataset (especially view 4 in Fig. 9)
and the NTU dataset have cropping errors.

9.1 Comparison with existing synthetic data

One of the major contributions of this work is synthetic
data generation for robust action recognition. We note
that SURREAL (Synthetic hUmans foR REAL tasks)
(Varol et al, 2017b) is another recent method to gener-
ate synthetic action data that can be used to train the
proposed HPMs. However, there are some major di↵er-
ences between SURREAL and the proposed synthetic
data. (1) SURREAL was originally proposed for body
segmentation and depth estimation whereas our dataset
aims at modeling distinctive human poses from multi-
ple viewpoints. While both datasets provide su�cient
variations in clothing, human models, backgrounds, and
illuminations; our dataset systematically covers 180o

of view to enable viewpoint invariance, which is not
the case for SURREAL. (2) To achieve realistic view-
point variations, our dataset uses 360o spherical High
Dynamic Range Images whereas SURREAL uses the
LSUN dataset (Yu et al, 2015) for backgrounds. Hence,

our approach is more suitable for large viewpoint vari-
ations. (3) Finally, we use Generative Adversarial Net-
work to reduce the distribution gap between synthetic
and real data. Our results in Table 2 already verified
that this provides additional boost to the action recog-
nition performance.

To demonstrate the use of SURREAL with our pipe-
line and quantitatively analyze the advantages of the
proposed dataset for robust action recognition, we com-
pare the performance of our underlying approach using
the two datasets on UWA3D and NUCLA databases.
We repeated our experiments with SURREAL using
the same 339 representative poses as used by our data.
This is possible because both datasets use CMUMoCap
as the pose source. We trained HPMs with the SUR-
REAL frames using the representative poses, followed
by the same temporal encoding and classification as our
data.

Table 8 reports the mean recognition accuracies of
HPMs on UWA3D and NUCLA datasets when trained
using the SURREAL dataset and the proposed data.
The table also includes results for the most challeng-
ing viewpoints in the datasets. For UWA3D, View 4
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Method Training Data V challenge Mean

UWA3D Multiview Activity-II

HPMRGB SURREAL 61.6 67.4
HPMRGB Proposed data 69.0 68.0
HPM3D SURREAL 65.8 72.1
HPM3D Proposed data 74.7 74.8

Northwestern-UCLA Multiview

HPMRGB SURREAL 69.9 74.4
HPMRGB Proposed data 73.1 77.8
HPM3D SURREAL 68.1 77.4
HPM3D Proposed data 71.9 79.7

Table 8 Action recognition accuracy (%) for HPMRGB and
HPM3D when trained with SURREAL dataset (Varol et al,
2017b) and the proposed synthetic data. V challenge represents
the most challenging viewpoint in the multi-view test data,
i.e. View 4 for UWA3D and View 3 for NUCLA dataset.

is challenging due to the large variations in both az-
imuth and elevation angles (see Fig. 9). For NUCLA,
View 3 is particularly challenging as compared to the
other viewpoints (see Fig. 10). From the results, we can
see that the proposed data is able to achieve significant
performance gain over SURREAL for these viewpoints.
In our opinion, systematic coverage of 180o of view in
our data is the main reason behind this fact. Our data
also achieves a consistent overall gain for both RGB
and depth modalities of the test datasets.

9.2 Improvements with synthetic data

Our experiments in Section 8 demonstrate a signifi-
cant performance gain over the current state-of-the-art.
Whereas the contribution of the network architecture,
data modalities and GAN to the overall performance
is clear from the presented experiments, we further in-
vestigate the performance gain contributed by the pro-
posed synthetic data. To that end, we first compare
HPMRGB, which has been fine-tuned with the proposed
data, to the original GoogLeNet model - not fine-tuned
with our synthetic data. To ensure a fair comparison,
all the remaining steps in the proposed pipeline, in-
cluding temporal encoding and classification, are kept
exactly the same for the two cases. The first two rows
of Table 9 compare the mean recognition accuracies of
HPMRGB and GoogLeNet for UWA3D and NUCLA
datasets. These results ascertain a clear performance
gain with the proposed synthetic dataset.

The last two rows of Table 9 examine the perfor-
mance gain of two popular baseline methods when fine-
tuned on our synthetic data. Although significant, the
average improvement in the accuracies of these meth-
ods is rather small compared to that of our method on

Method Training UWA3D NUCLA

GoogLeNet without synthetic data 62.8 66.7
HPMRGB with synthetic data 68.0 77.8

C3D† with synthetic data "2.3 "2.3
LRCN† with synthetic data "3.5 "1.2

Table 9 Analysis of performance gain due to the proposed
data and method. The symbols † and " denote enhancement
of the existing techniques with our data and the improvement
in accuracy (%), respectively.

our synthetic data (first two rows). Recall that our data
generation method generates synthetic “poses” rather
than videos and we had to extend our method to gener-
ate synthetic videos for the sake of this experiment. De-
tails on synthetic video generation and training of the
baseline methods are already provided in Section 8.3.1.
From the results in Table 9, we conclude that our pro-
posed method exploits our synthetic data more e↵ec-
tively, and both the proposed method and our synthetic
data contribute significantly to the overall performance
gain.

9.3 Role of synthetic RGB data in action recognition

Although our approach deals with RGB, depth and
RGB-D data; we find it necessary to briefly discuss
the broader role of synthetic RGB data in human ac-
tion recognition. In contrast to depth videos, multiple
large scale RGB video action datasets are available to
train deep action models. Arguably, this diminishes the
need of synthetic data in this domain. However, syn-
thetic data generation methods such as ours and (Varol
et al, 2017b) are able to easily ensure a wide variety of
action irrelevant variations in the data, e.g. in cam-
era viewpoints, textures, illuminations; up to any de-
sired scale. In natural videos, such variety and scale of
variations can not be easily guaranteed even in large
scale datasets. For instance, in our experiments in Sec-
tions 8.3.1 and 8.3.2, both C3D and LRCN were origi-
nally pre-trained on large scale RGB video datasets in
Table 4 and 5, yet our RGB synthetic data was able
to boost their performance. Our synthetic data method
easily and e�ciently captures as many variations of the
exact same action as desired, a real-world analogous to
which is extremely di�cult.

We also tested the performance of our approach on
UCF-101 dataset (Soomro et al, 2012) to analyze the
potential of synthetic data and HPMs for the stan-
dard action recognition benchmarks in the RGB do-
main. UCF-101 is a popular RGB-only action dataset,
which includes video clips of 101 action classes. The ac-
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Method Human Body Motion

C3D 84.8
HPMRGB 82.5
HPMRGB† 84.6

Table 10 Action recognition accuracy (%) on the Human
Body Motion subset of UCF-101 dataset. For a transparent
analysis, the results do not include augmentation by trajec-
tory features and/or ensemble features for any of the ap-
proaches. The symbol † denotes larger (2⇥) synthetic training
data size.

tions covers 1) Human-Object Interaction, 2) Human
Body Motion, 3) Human-Human Interaction, 4) Play-
ing Musical Instruments, and 5) Sport Actions. Since
we trained our HPMs to model human poses, the ap-
pearances of human poses in the test videos are impor-
tant for a transparent analysis. Therefore, we selected
1910 videos from the dataset with 16 classes of Human
Body Motion, and classified them using the proposed
HPMs. Table 10 reports the performance of our ap-
proach along the accuracy of C3D on the same subset
for comparison. The table also reports the accuracy of
HPMRGB†, for which we used twice as many pose la-
bels and training images as used for training HPMRGB.
This improved the performance of our approach, in-
dicating the advantage of easily producible synthetic
data. Notice that, whereas the performance of HPMs
remains comparable to C3D, the latter is trained on
Millions of ‘videos’ as compared to the few hundred
thousand ‘frames’ used for training our model. More-
over, our model is nearly 7 times smaller than C3D
in size. These facts clearly demonstrate the usefulness
of the proposed method and synthetic data generation
technique for standard RGB action recognition.

10 Conclusion

We proposed Human Pose Models for human action
recognition in RGB, depth and RGB-D videos. The pro-
posed models uniquely represent human poses irrespec-
tive of the camera viewpoint, clothing textures, back-
ground and lighting conditions. We proposed a method
for synthesizing realistic RGB and depth training data
for learning such models. The proposed method learns
339 representative human poses from MoCap skeleton
data and then fits 3D human models to these skele-
tons. The human models are then rendered as RGB
and depth images from 180 camera viewpoints where
other variations such as body shapes, clothing textures,
backgrounds and lighting conditions are applied. We
adopted Generative Adversarial Networks (GAN) to re-
duce the distribution gap between the synthetic and

real images. Thus, we were able to generate millions of
realistic human pose images with known labels to train
the Human Pose Models. The trained models contain
complementary information between RGB and depth
modalities, and also show good compatibility to the
hand-crafted dense trajectory features. Experiments on
three benchmark RGB-D datasets show that our method
outperforms existing state-of-the-art on the challeng-
ing problem of cross-view and cross-person human ac-
tion recognition by significant margins. The HPMRGB,
HPM3D and Python script for generating the synthetic
data will be made public.
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