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Abstract 
It is widely understood by telecom operators and industry analysts that bandwidth demand is 

increasing dramatically, year on year, with typical growth figures of 50% for Internet-based traffic [5]. 

This trend means that the consumers will have both a wide variety of devices attaching to their 

networks and a range of high bandwidth service requirements. The corresponding impact is the effect 

on the traffic engineered network (often referred to as the “transport network”) to ensure that the 

current rate of growth of network traffic is supported and meets predicted future demands.  

As traffic demands increase and newer services continuously arise, novel network elements are 

needed to provide more flexibility, scalability, resilience, and adaptability to today’s transport 

network. The transport network provides transparent traffic engineered communication of user, 

application, and device traffic between attached clients (software and hardware) and establishing and 

maintaining point-to-point or point-to-multipoint connections. 

The research documented in this thesis was based on three initial research questions posed while 

performing research at British Telecom research labs and investigating control of transport networks 

of future transport networks: 

1. How can we meet Internet bandwidth growth yet minimise network costs? 

2. Which enabling network technologies might be leveraged to control network layers and 

functions cooperatively, instead of separated network layer and technology control? 

3. Is it possible to utilise both centralised and distributed control mechanisms for automation 

and traffic optimisation? 

This thesis aims to provide the classification, motivation, invention, and evolution of a next generation 

control framework for transport networks, and special consideration of delivering broadcast video 

traffic to UK subscribers. The document outlines pertinent telecoms technology and current art, how 

requirements I gathered, and research I conducted, and by which the transport control framework 

functional components are identified and selected, and by which method the architecture was 

implemented and applied to key research projects requiring next generation control capabilities, both 

at British Telecom and the wider research community.  

Finally, in the closing chapters, the thesis outlines the next steps for ongoing research and 

development of the transport network framework and key areas for further study.   
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PhD Thesis Structure  
The following section outlines how my contributing publications are applied in relevant sections of 

this Alternative Format PhD Thesis.  

Chapter 1: Introduction  

Next generation transport networks are an open subject with a very fast innovation pace. This initial 

chapter thesis outlines transport architecture design, legacy control architectures and the existing 

technologies that are used for deploying and operating transport networks. It outlines two new areas 

of enabling technologies, namely: Software Defined Networks (SDN) and Network Functions 

Virtualisation (NFV), and their relevance to traffic engineered communication networks, often 

referred to as “transport networks”.   

Contributing publications: 

• D. King, “Recent Progress in Routing Standardization”, UK Network Operators Forum (UKNOF 

23), October 2012. 

• D. King, “Network Functions Virtualisation: The New Frontier of Telecoms Innovation”, Multi-

Service Networking, Science & Technology Facilities Council, Abingdon, UK, July 2013. 

Chapter 2: Background 

The chapter examines the history of transport service management and how new requirements for 

Cloud services and advance mobile networks present new challenges for transport network operators. 

This chapter outlines the investigation process, and interviews with leading transport infrastructure 

operators led to several significant challenges being identified for network architecture and transport 

service management.  

Contributing publications: 

• V. Lopez, D. King, et al., "Adaptive network manager: Coordinating operations in flex-grid 

networks", IEEE 15th International Conference on Transparent Optical Networks (ICTON), 

Cartagena, July 2013.  

• D. King, “Unification of Formal and De Facto Standards for Abstraction and Autonomic Control 

of the Transport Network”, Layer123 SDN & NFV World Congress, Dusseldorf, Germany, 

October 2013.  

Chapter 3: Current Control Architectures 

The selection and development of key control plane functions must address the requirements 

outlined in the previous chapter. This chapter reviewed existing control techniques, strengths, and 

weaknesses, which outlined the need for infrastructure control flexibility.  

Contributing publications: 

• D. King, "Architecting SDN for Optical Access Networks”, European Conference on Optical 

Communication (ECOC), September 2014.  

• A. Farrel, D. King, “The Role of PCE in an SDN World (Keynote)”, European Workshop on SDN 

(EWSDN), September 2014.  
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Chapter 4: Transport Network Control Framework Design 

This chapter reflects the design methodology, findings, and detailed analysis of requirements from the 

interviews and information gathering from industry leaders and technology innovators at leading 

telecom organisations, operating some of the largest telecom transport networks in the world.  

Contributing publications: 

• D. King, A. Lord, "SDN-based elastic and adaptive optical transport network: findings and 

future research”, WDM & Next Generation Optical Networking, June 2015.  

• D. King, A. Farrel, N. Georgalas, “The role of SDN and NFV for flexible optical networks: Status, 

Challenges and Opportunities, IEEE Transparent Optical Networks (ICTON), July 2015.  

Chapter 5: Framework for Application-Based Network Operations (ABNO) 

This chapter outlines a framework and method of control entitled: Application-Based Network 

Operations (ABNO). It highlights the key control functional components of ABNO, and how this 

framework and the functional components may be developed and deployed.  

Contributing publications: 

• D. King, A. Farrel, “RFC7491: A PCE-Based Architecture for Application-Based Network 

Operations”, Internet Engineering Task Force (IETF), March 2015.  

• D. King (Editor), V. Lopez, O, Gonzalez de Dios, R. Casellas, N. Georgalas, A. Farrel, “Elastic 

Optical Networks Architectures, Technologies, and Control: Application-Based Network 

Operations (ABNO)”, Springer Publishing, 2016.    

Chapter 6: ABNO Framework Implementation and Testing 

The ABNO framework has been adopted and applied by numerous European and International 

research projects, including but not limited to FP7 IDEALIST, FP7 OFERTIE, FP7 DISCUS, FP7 CONTENT, 

EPSRC TOUCAN, STREP STRAUSS, H2020 ACINO, and most recently the H2020 METRO-HAUL project. 

This chapter highlights how ABNO was applied and implemented across some of these projects.   

Contributing publications: 

• R. Casellas, D. King, et al., "A control plane architecture for multi-domain elastic optical 

networks: the view of the IDEALIST project," in IEEE Communications Magazine, August 

2016. 

• C. Rotsos D. King, D, Hutchison, et al., “Network service orchestration standardization: A 

technology survey”, Elsevier Computer Standards & Interfaces, Volume 54, November 2017.  

Chapter 7: Conclusions and Areas for Further Research 

Finally, this PhD Thesis summarises my conclusions and outlines important areas for further 

investigation and research.   

• D. King, C. Rotsos, I. Busi, F. Zhang and N. Georgalas, "Transport Northbound Interface: The 

need for Specification and Standards coordination," 2017 International Conference on Optical 

Network Design and Modeling (ONDM), Budapest, 2017 

• J. Ellerton, D. King, D, Hutchison, et al., "Prospects for Software Defined Networking and 

Network Function Virtualisation in Media and Broadcast," SMPTE 2015 Annual Technical 
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The scope of this PhD Thesis 
This Alternative Format PhD Thesis proposes and develops a control framework for traffic engineered 

communication networks; these are referred to as “transport networks. Traditionally, the transport 

network was managed using a monolithic management architecture, comprising of an umbrella 

Network Management System (NMS), with Element Management System per technology domain. 

Often requiring large teams of specialist technology experts.   

More recently, Software Defined Networking (SDN) introduced separation of control and forwarding, 

coupled with (logically) centralised control, reducing the complexity and skills required for deployment 

of networking infrastructure.    

 

Figure 1 Open Networking Foundation generalised SDN Architecture 

The following architecture demonstrates the Application-Based Network Operations (ABNO) Control 

Layer (developed during my PhD project), on the left side of the future transport network 

architecture.  

 

Figure 2 Application-Based Network Operations (ABNO) Control Layer 

The research outlined in this thesis began with a review of current art on optical transport network 

control, documenting key objectives for control of next generation optical networks, an analysis of 

control plane technologies and a thorough set of interviews with key technologists and network 

architects at some of the world’s largest network operators.  

The culmination of this research and thesis is the Application-Based Network Operations (ABNO) 

Framework, now an IETF-based Internet Standard (RFC7491). ABNO was developed by the researcher 

and author of this thesis, and incudes contributions from leading vendors and network operators from 

around the world. ABNO was then developed further within a number of European projects, in some 

cases with the direct input of this thesis author.     
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Thesis Glossary 
A list of the abbreviations used in this document is as follows:  

3GPP Third Generation Partnership Project 
5G PPP 5G Infrastructure Public Private Partnership 
ABNO Application Based Network Operations 
ACTN Abstraction and Control of Traffic-Engineered Networks  
API Application Programming Interface 
ASON Automatically Switched Optical Networks 
BBF Broadband Forum 
BBU Base Band Unit 
BER Bit Error Rate 

BSS Business Support System 
BVT Bandwidth Variable Transceivers 
CAGR Compound Annual Growth Rate 
CDB Core Engine Database 
CDN Content Delivery Network 
CLI Command Line Interface 
CN Core Network 
CNC Customer Network Controller 
CO Central Office 
CoS Class of Service 
CP Control Plane 
CPE Customer Premises Equipment 

DP Data Plane 
DWDM Dense Wavelength Division Multiplexing 
EON Elastic Optical Network 
EPC Evolved Packet Core 
ETSI European Telecommunications Standards Institute 

FEC Forward Error Correction 
GMPLS Generalized Multi-Protocol Label Switching 
gNMI gRPC Network Management Interface 
gRPC Google's Remote Procedure Call 
IaaS Infrastructure-as-a-Service 
IETF Internet Engineering Task Force 
IoE Internet of Everything 

IoT Internet of Things 
IPFIX Internet Protocol Flow Information Export 
IT Information Technology 
JSON JavaScript Object Notation 
L2VPN Layer2 VPN 
L3VPN Layer3 VPN 
LSP Label Switched Path 
ML Machine Learning 
MP Management Plane 
MPLS Multi-Protocol Label Switching 
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MPLS-TP MPLS Transport Profile 

NBI North-Bound Interface 
NE Network Element 
NFV Network Function Virtualisation 
NFVI, NFV-I NFV Infrastructure 
NFVO, NFV-O Network Function Virtualisation Orchestrator 
NMS Network Management System 
OF OpenFlow 
ONF Open Networking Foundation 
OSS Operations and Support System 
OSS Open Source Software 
PaaS Platform-as-a-Service 
PCE Path Computation Element 

PNF Physical Network Function 
PoC Proof-of-Concept 
QoE Quality of Experience 
QoS Quality of Service 
REST Representational State Transfer 
ROADM Reconfigurable Optical Add Drop Multiplexer 
RPC Remote Procedure Call 
SaaS Software-as-as-Service 
SBI South Bound Interface 
SDN Software-Defined Networking 
SDO Standards Defining Organization 
SNMP Simple Network Management Protocol 

TAPI Transport API 
TED Traffic Engineering Database 
T-SDN Transport-SDN 
VIM Virtual Infrastructure Manager 
VM Virtual Machine 
VNF Virtualised Network Function 
VNT Virtual Network Topology 
VPLS Virtual Private LAN Service 
VPN Virtual Private Network 
WAN Wide Area Network 
WDM Wavelength Division Multiplexing 
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1. Introduction  
This chapter outlines the core communication technology used to provide core capacity for Internet-

based services. It outlines the current packet transport technology, which is underpinned by optical 

transport network infrastructures. The rate of Internet growth is exponential and greater bandwidth, 

at faster data rates and significantly, reduced operational costs and complexity will be required.  

1.1 Internet Packet Transport 
Current Internet infrastructure includes various types of connectivity structures and representations 

between connected topologies [1]. The Internet topology should be considered at varying abstraction 

levels, i.e., IP interface, router, subnetwork, areas, and Autonomous System (AS) levels [2]. The current 

Internet architecture involves a great number of technologies impacting the Internet, many of these 

technologies are underpinned by packet services carried over Multiprotocol Label Switching (MPLS) 

[3]. A significant and mature technology widely deployed for differentiated services, load balancing 

reasons, resilience, and traffic engineering purposes. 

1.2 The Role of Optical Transport Networks for the Internet 
To provider high-bitrate connectivity for packet transport, Optical Transport Networks (OTN) are 

routinely used [4]. OTNs are a set of optical network elements connected by optical fibre links, able 

to provide the functionality of communication and transport, multiplexing, switching, supervision, 

and protection of optical channels carrying client signals, which are typically purely photonic. 

1.3 Internet Bandwidth Drivers  
All agree that Cloud, 5G and Internet of Everything (IoE) services will have a significant traffic impact 

on existing networks, including types, volume, and dynamicity, all the while being transmitted at 

unprecedented rates. To facilitate emerging Internet traffic requirements, the optical transport 

network should become more responsive to the traffic changes as well as to operate more efficiently. 

Key enablers include, Software Defined Networking (SDN) and Network Function Virtualisation (NFV), 

combined they promised to increase transport network flexibility and automation.  

A survey conducted by Forrester Consulting on behalf of Juniper Network, January 2014 [5] highlights 

network bandwidth, performance, reliability, automation/programmability as being key demands 

from customers for DC interactions. A summary of requirements is shown in Figure 3 (Network 

Features Required by Cloud Customers) below. 

 

 

Figure 3 Network Features Required by Cloud Customers [5] 



 

17 
 

Almost three quarters of the customers interviewed for the usage of private cloud confirmed they 

would use such inter-connection services (see Figure 4 - Desire for Interconnection of Private and 

Public Cloud) with the public cloud, while about 73% of the customers said they needed to adjust the 

underlying network for their inter-cloud service (see Figure 5 – Necessary Network Adjustment for 

Cloud Services).  

 

Figure 4 Desire for Interconnection of Private and Public Cloud [5] 

 

 

Figure 5 Necessary Network Adjustment for Cloud Services [5] 

Given the existing and growing customer profiles, connection and traffic assurance considerations, 

the research objective was to develop a much more efficient method for operating optical transport 

network infrastructure capable of end-to-end connection management, without increasing control 

and management complexity. This includes minimising the deployment of new protocols in the 

network and reusing existing protocol knowledge where possible.  

• Improve flexibility and optical transport services  

• Leverage TE at the network edge  

• Guarantee constraint optimisations  

• Establish traffic differentiation without deploying complex overlay technologies  
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• Slice available network capacity for Assured Traffic according to Cloud application priority  

• Dynamically reallocate bandwidth in the event of oversubscription and ensure that assured 

traffic is always prioritised. 

1.4 Traditional Transport Network Design  
Traditionally, an operator may use dedicated physical links or complex distributed control plane 

mechanisms such as Multiprotocol Label Switching Traffic Engineering (MPLS-TE) to meet the 

customer and service requirements highlighted in [6]. However, MPLS-TE tunnels separate traffic 

logically; therefore, traffic across different tunnels may use shared, or dedicated, underlying physical 

links [2]; meaning that the assurance effect is always non-determined as the logical links inherit the 

underlying physical link properties.  

Methods to eliminate MPLS-TE, and other overlay and tunnelling technologies, dependency on 

underlying link attributes and map dedicated physical links to logical links, thus providing assured 

traffic (with guaranteed attributes, including committed bandwidth, total latency, controlled jitter, 

and explicit network paths) is possible, but such solutions tend to waste large amounts of valuable link 

resources since the volume of assured traffic, and the normal traffic will vary based on network 

conditions.  

 

Figure 6 Packet and Optical Transport Network Architecture  

With the inception of Software Defined Networking (SDN) and the capability to provide centralised 

control of resources and using programmatic flow-based technology, like OpenFlow [8], offers an 

alternative method for traffic assurance objectives described previously.  

In this document we will discuss how using SDN-based network principles, it is feasible that specific 

traffic types may be separated; enabling general traffic to be controlled using the traditional 

distributed routing protocol, and the assured traffic is controlled and influenced by the centralised 

controller.  

Several technology approaches exist for introducing SDN and related technologies into the network 

to accomplish the objectives. The complete solution is to use green-field engineering, centralised 

controllers with OpenFlow-based forwarding technology, which distributes entire flow tables to every 

network device on the traffic path. However, such solutions are viable in theory but not always 
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applicable in practice, especially within the existing WAN environments of large operator 

environments, due to existing router deployments and large numbers of deployed nodes and links.  

Increasingly traffic engineering is used in transport networks; a traffic-engineered network will use 

multiple mechanisms to facilitate the split of the data plane and control plane [9]. They also have a 

range of management and provisioning protocols to configure and activate traffic engineered network 

resources [10]. These mechanisms represent key technologies for enabling more efficient networking. 

However, a significant limiting factor of traffic engineering is the skills and time required to design and 

deploy.  

Actual deployment of MPLS-TE relies on offline methods, typically using forecasted traffic demands. 

Operational tools do not react to real-time traffic changes caused by BGP reroutes, diurnal traffic 

variations, catastrophic failures, or network attacks [11].  

1.5 Legacy Network Control 
The connectionless Internet, running of TE-based MPLS services, represents an example of a significant 

network determinism problem [12]. Vast numbers of administrative regions loosely tied with 

interconnections that are constantly changing as traffic patterns fluctuate and failures occur. Inherent 

weaknesses exist some methods exist to minimise these; the Internet is federated with distributed 

control, where individual nodes participate together to exchange reachability information to develop 

a localised view of a consistent, loop-free network using IP forwarding. The Internet IP forwarding 

paradigm, where routes and reachability information are exchanged that later results in data plane 

paths being programmed, is often sub-optimal and prone to traffic congestion, packet loss and delay, 

so clearly this approach is not suitable for our end-to-end traffic assurance objectives.  

As Internet evolution continued, the trend was that the integrated voice, video, and data should be 

transported using a converged IP of an MPLS core network. By combining the use of the differentiated 

services (DiffServ) and MPLS forwarding, operators can deliver a guaranteed quality of service (QoS) 

[12]. Again, significantly, offline planning is required, and operational tools are not capable of 

responding to real-time traffic changes or demands. 

As network technology evolved and the concepts of SDN were established as applicable for core 

Internet invented (logically centralised control, separation of control and forwarding, and network 

programmability), addressing the weaknesses of a federated and distributed IP network. It is much 

easier to pursue an objective for end-to-end traffic assurance using a centralised management 

environment with fine-grained control of the forwarding elements. 

One early proposal simplifying network hardware, while improving the flexibility of network control 

using MPLS and centralised control platforms – based on the principles of SDN – was “Fabric” [13]. 

The authors proposed a network “fabric” based on MPLS, and subsequent labels and encapsulation, 

it uses the egress edge switch to encode the path that packets must follow to be delivered to the 

destination host or server. The ingress switches are managed by an “Edge Controller” [13] which 

would compute the path of the end-to-end services.   

The Fabric proposal mentioned above differed significantly from current Internet forwarding 

architecture, outlined in Figure 7 (Current Control and Forwarding Decision Logic) and discussed 

below.  
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Figure 7 Current Control and Forwarding Decision Logic 

Overtime it was identified that TE-based MPLS services often met scaling limitations, these included: 

• Network Management: How many connections may an NMS process actually process? 

• Protocol Overhead: operating large numbers of connections and subsequent protocols may 

overload the control plane; 

• Node Resources: Depending on the number of connections there are additional memory, 

and CPU requirements for deploying distributed control planes; 

• Service Setup Time: Based on the size, numbers of links and nodes, and overall complexity of 

the network, there will be a linear degradation of connection setup times, especially when 

optimising multiple path constraints.  

1.5.1 Multi-Domain and Multi-Technology  
In general, a domain is defined as “any collection of network elements within a common sphere of 

address management or path computational responsibility.”  Often, these examples would include 

Interior Gateway Protocol (IGPs) areas and Autonomous Systems (ASes).   

In the context of this document, and next generation transport networks, a particularly important 

example of a domain is an optical network technology environment. These networks do not tend to 

interoperable between optical venders, as each manufacturer will have a flavour of optical interface 

and control technique. Thus, we often must consider transport networks are considered multi-

domain and multi-technology.  

1.5.2 Intra-domain Connectivity  
For “intra-domain” connectivity the control plane establishes the network path via routing protocol 

participation by creating a local rule set used to create the forwarding table entries. The data plane is 

then programmed to forward traffic between incoming and outgoing ports on a node. The foundation 

of the current Internet (IP) control plane model is to use an Interior Gateway Protocol (IGP), this IGP 

may be in the form of a link-state protocol such as Open Shortest Path First (OSPF) [14], or the even 

older Intermediate-System-to-Intermediate-System (ISIS) [15], which is still the de facto the de facto 

standard for large service provider backbone networks. Either OSPF or ISIS will provide a method to 

establish layer-3 reachability between a connected, acyclic graph of IP forwarding elements.  

Layer-3 network reachability information primarily concerns itself with the reachability of a 

destination IP prefix. In our network, layer-3 is used to segment or stitch together layer-2 domains to 

overcome layer-2 scaling problems for end-to-end services that interconnect data centres. The routing 



 

21 
 

table contains the next hop and destination layer-3 addresses and the outgoing interface(s) associated 

with them.  

Although control plane logic can define certain traffic rules, for priority treatment of specific traffic for 

which a high quality of service for differentiated services, however, it is occasionally not possible to 

guarantee service attributes such as minimum bandwidth, overall latency, and acceptable application 

jitter, due to the fact traffic forwarding is based on the reachability of network addresses. 

It is important for a future control plane framework to be agnostic to the underlying connectivity 

technology and reachability information, as these schemes will generally evolve, and various methods 

of address abstraction may be applied.  

1.5.3 Inter-domain Connectivity  
For “inter-domain” connectivity additional control plane mechanisms are required. The predominant 

inter-domain routing technology is the Board Gateway Protocol (BGP) [16]. Currently, BGP is the 

predominant protocol for intra-domain Internet routing. Facilitating connectivity between different 

Autonomous Systems (ASs), often requiring manual policy control of which transit paths to take to 

destination ASes. The decision tune the BGP configurations to express policies, reflecting how the AS 

connects to others, to meet operator business requirements is very much a manual process [17] 

requiring expert BGP engineers and knowledge.  

Within the control plane, the computation to create BGP flow rules are defined, typically via manually 

defined policies using a command line (CLI) to the router or switch. An abstraction of a BGP routing 

instance is provided below in figure 8 (Abstracted BGP control plane).  

 

 

 

Figure 8 Abstracted BGP Control Plane [20] 

The BGP control plane uses various procedures and messages to exchange Network Layer Reachability 

Information (NLRI) with participating routers and switches to create a network graph, reflecting the 

desired inter-domain routing policy, i.e., “best path”, to a specific AS, or set of ASes.  

1.5.4 End-to-End Transport Signaling  
In addition to the routing processes and protocols described previously, a Resource Reservation 

Protocol (RSVP) [18] may be used for end-to-end connectivity management. In a transport network 

RSVP-TE is used to establish MPLS transport connections (LSPs), when there are traffic engineering 

requirements, such as minimise cost, include or exclude specific links, nodes or existing services, 
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maximise the use of links with the most available bandwidth (Least Loaded Routing - LLR, furthermore 

it was adapted to include the ability to control a wide-variety optical network technologies. 

It may be considered that RSVP-TE is akin to source routing where the ingress node determines the 

complete path through the network, overtime this path computation responsibility was delegated to 

complex NMS platforms, or network design teams. 

An RSVP-enabled network would enable Internet applications to be assigned differing qualities of 

service (QoS) for application data flows; this would allow different applications to be assigned path 

resources to meet the divergent performance requirements of different application types. In the 

transport network, RSVP-TE [19] may be used. Thus, allowing the establishment of MPLS connections 

and taking into consideration constraint parameters such as available bandwidth and explicit hops, 

providing deterministic control, and forwarding guarantees for bandwidth or latency sensitive 

applications.   

To effectively manage network resources, and establish connections using signaling, operators would 

typically build large planning teams, in the case of British Telecom when they deployed MPLS-TE in 

2004 they had to build out a 300-person planning time and recruit key MPLS-TE experts from around 

the work.  

1.5.5 End-to-End Transport Example – BT Media and Broadcast   
In 2005 British Telecom (BT) Media and Broadcast built one of the most advanced networks using 

MPLS-TE (RSVP-TE) [20]. The BT MPLS network (“Common Network Platform” - CNP) formed their 

basis of a multi-service platform. An initial use case was to transport real-time broadcast television 

traffic for the British Broadcasting Company (BBC). Their platform formed the first phase of a new 

generation strategic IP/MPLS-based national infrastructure, one of the first of its type in the World to 

carry real-time broadcast video traffic. The CNP topology is shown in figure 9 (British Telecom CNP 

Topology [19]) below. 

 

Figure 9 British Telecom CNP Topology [19] 
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More recently, the obvious benefits of the MPLS-TE concepts led to the development of “generalised” 

extensions to MPLS-TE, this is known as Generalized MPLS (GMPLS) [21]. GMPLS is an extension to 

MPLS designed to support optical wavelength management, but instead of using an explicit label to 

distinguish an LSP at each router, some optical physical property (typically wavelength grid identifier) 

of the received data connection is used to deduce which LSP is used. A key benefit of GMPLS is that it 

can be used to establish LSPs for various underlining transport types, including packet, Time Division 

Multiplexing (TDM) and Wave Division Multiplexing (WDM) based services. Using either a TDM and 

WDM example, the LSP traffic is switched based on a non-stop data-stream and not switched per 

single packet, stop, look-up, forward, principle. Thus, providing an extremely efficient implementation 

in the data plane with zero per-packet lookups, making GMPLS highly suitable for converged high 

bandwidth networks, including BTs CNP.  

The Generalized Multi-Protocol Label Switching (GMPLS) architecture Error! Reference source not 

found. comprises of: 

• A link/neighbour discovery/verification protocol, such as the Link Management Protocol 

(LMP) [22] or Link Layer Distribution protocol (LLDP) that allows neighbouring nodes part 

of the control plane adjacency to associate data plane adjacencies (e.g. fibre links), 

correlate identifiers and to assure compatible capabilities; 

• Routing protocols. The Open Shortest Path First (OSPF) protocol specification describes 

the characteristics of nodes and links, so the state and capabilities of the resources are 

distributed and updated to all nodes, knowing which resources are in use, out of service, 

or available; 

• A signaling protocol. The ReSerVation Protocol with Traffic Engineering extensions (RSVP-

TE) is used to set up Label Switched Paths (LSPs). RSVP-TE messages specify the path of 

the LSP, request specific capacity on the path, and report back the exact allocated network 

resources to support the LSP. 

1.5.6 End-to-End Transport Path Computation 
A key aspect is determining what path an LSP should follow. This function can be performed externally 

(the path is supplied to the control plane) or delegated to the control plane. In either case, the 

computation can be complex. A method for computing end-to-end paths automatically, without the 

need for highly skilled engineers, was proposed called the Path Computation Element (PCE) [23]. The 

PCE is a functional component that can be queried using the Path Computation Element 

Communication Protocol (PCEP) [24], recently extended to allow the network to delegate control of 

an LSP to a PCE and allow a PCE to direct the establishment of new LSPs (becoming an active PCE) [25] 

& [26].  

1.5.7 Transport Technology Evolution 
As the GMPLS and PCE architecture and protocol suite continues to develop new extensions were 

introduced for a range of new high-bandwidth optical transport types. Until recently, the large 

available optical; spectrum provided by optical fiber was expected to offer significantly more 

bandwidth than required but exponential growth in consumer Internet bandwidth, IoE, Machine-2-

Machine (M2M) and Industry 3.0 and beyond, put significant pressure on maximising fibre resources. 

Adding more capacity to an existing fiber was a simple matter of adding additional wavelengths, 

making use of the fact that at low enough power levels, multiple waves can be supported on the same 

fibre. Telecoms research for transport networks has now focused on two related areas; firstly, how to 
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manage the spectrum more effectively, and secondly how to fill the spectrum up as much as possible 

with light signals. 

British Telecom has been at the forefront of transport network research for its network requirements 

[27], including the use of Wavelength Switched Optical Networks (WSONs) [28]. More recently BT has 

been developing Variable Bitrate DWDM (Dense Wave Division Multiplexing) Transponders (VBT) 

called “Flexi-Grid” [29], allowing the slicing optical transport lambdas into bandwidth amounts based 

on specific user and application demands. This technology is highly anticipated to be of great benefit 

to BTs networks and services.  

1.5.8 Network Planning 
In a legacy network the process of network optimisation is a gradual network planning process, 

where the following process is assumed:  

• the Network Management System (NMS) managing the core network, implementing fault, 

configuration, administration, performance, and security (FCAPS) functions;  

• a Planning Department administrating the planning process, i.e. analysing the network 

performance and finding bottlenecks, receiving potential clients’ needs, evaluating network 

extensions and new architecture; 

• an inventory database containing all equipment already installed in the network, regardless 

they are in operation or not;  

• an Engineering Department, performing actions related to equipment installation and setup; 

• network planning tool in charge of computing solutions for each migration step. Since 

several sub-problems related to network reconfiguration, planning, and dimensioning. 

 

Figure 10 Legacy Network Optimisation 

This planning process meant that optimisation of resources might take days, weeks or even months.   

1.6 A Need to Redefine Network Control 
To support the required dynamicity and flexibility highlighted previously, a new control architecture 

will be required, providing integration of a wide range of transport technologies. These will have to be 

controlled using automation schemes and programmability features that will enable disaggregation 

and virtualisation concepts, the coordination of which will be supported by a purposely designed 

control plane. This new control plane will be dynamically adapted to meet specific service 

requirements, exploiting the data plane resource based on relevant data monitoring and heuristic 
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schemes. The control plane will also be responsible for provisioning, not just existing networks, and it 

needs to support future 5G and Internet of Everything (IoE) applications and ensure the required end-

to-end traffic performance and Quality of Experience (QoE) levels for emerging services. Therefore, 

an evolved control plane will have to leverage the well-established distributed control and signalling 

methods while utilising emerging SDN, and NFV paradigms, somehow unifying the exploit the benefits 

of a unified system. 

1.6.1 A Question of Scale 
A key requirement for future transport networks will be a control framework that is capable of 

scaling in large multi-domain and multi-technology environments. Whereas traditionally distributed 

control plane nodes have practical limitations for topology and service state, due to their physical 

memory and CPU limitations. A centralised control plane that is running in a data center would have 

a significant amount of general compute and storage that could be added to a virtual machine 

running the centralised controller. Capable of scaling up, by increasing memory footprint and adding 

logical CPUs as the number of nodes, links and services increase.  

1.6.2 Network Control Objectives 
An operator must integrate multiple IP technologies allowing network infrastructure to deliver a 

variety of services to support the different characteristics and dynamic demands of high bandwidth 

Internet and Cloud applications. In addition to the end-to-end assurance objective, there is an 

increasing demand to maximise network resources, provide efficient and responsive service paths and 

setup, facilitate connections on demand and well-within specific time periods, seconds, minutes or 

hours, when required. Consider that these goals differ greatly from the established methodology,  

where services in the network are created in response to CLI commands driven by humans directly, 

and using a wide variety of Operational Support Systems (OSS), and where networks are typically over-

provisioned to ensure minimal traffic loss, even at peak traffic periods.  

Our adoption of SDN and specifically a logically centralised controller principle provided the 

cornerstone for our objective to have traffic assurance, more efficient network usage and provide a 

foundation for further service innovation in the future. We use the term logically centralised to signify 

that network control may appear focused in a single entity, independent of its possible 

implementation in distributed form. The centralised control principle states that resources can be 

used more efficiently when viewed from a global perspective. A network controller would have to be 

developed so that it combined several technology components, mechanisms, and procedures. These 

included: 

• Application and OSS requests for network resource availability information and existing 

connectivity; 

• Discovering and disseminating network resource information;  

• An analysis of traffic applications, and their mapping to underlying network resources;  

• Management and coordination of-of path computation request, computation and response;  

• Storing existing resource information, provisioning and reserving network resources;  

• Overall verification of connection and resource setup. 

The network controller would also need to be capable of orchestrating resources that span several 

subordinate domains (Data Center, WAN and Access) and in cooperation with other entities, and 

thereby offer resource efficiency when setting up end-to-end services and overall operation of 

network resources used to provide those end-to-end services.  
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Other reasons for adopting a logically centralised control architecture include scale, optimisation of 

information exchange and minimisation of propagation delay. Given constraints of not being able to 

deploy green-field networks, it is necessary that a controller co-exists with both native IP forwarding 

technologies, non-native SDN traffic engineered technology (MPLS-TE), and flow-based technologies 

(including OpenFlow). 

The 2015 SIGCOMM paper: “Central Control over Distributed Routing” [30] proposed a solution for 

influencing the IGP protocol’s decision via introducing pseudo fake nodes into the network. Although 

the proposal is sound and may be validated via lab simulations, there are significant issues for 

deploying the proposal into an actual live network because of the topological changes to the entire 

network and inability to troubleshoot network connectivity problems via a centralised point.  

Other methods of proposing centralised a control architecture that utilises the traditional routing 

protocols and procedures include the Routing Control Platform (RCP) described in [31]. The RCP acts 

very similarly to a BGP Route Reflector [32] solution that is deployed widely within current networks. 

By using the BGP protocol to influence the decision of the BGP path selection algorithm. Originally the 

RR was developed to negate the need for a logical full-mesh requirement of Internal Border Gateway 

Protocol (I-BGP).  RR acts as a central point for I-BGP sessions, allowing for multiple BGP routers to 

peer with a central router (the RR) acting as a route reflector server, removing the need to for other 

I-BGP members to peer with every other router in a full mesh. However, although useful (for to 

address mesh N-squared problems) the RR cannot build dynamic, dedicated paths for the assured 

traffic, and the potential to resize existing paths (i.e., connection bandwidth elasticity).  

One key design objective of a platform to manage end-to-end traffic assured services is to forward 

packets through a core network that is IP-enabled, but that has no support for MPLS forwarding. A 

further requirement is that the network should be able to traffic engineer that traffic is sending 

specific flows down predictable paths and reserving the resources on those paths for just those flows, 

without requiring the deployment of MPLS-TE.  

At the same time, the core network needs to able to operate as a normal IP network in other respects. 

That is, it must be able to continue to forward IP packets for other traffic and flows that are not part 

of the Cloud connectivity services or offering bulk connectivity between data centre sites.  

Typically a core network must operate normal interior routing protocols (OSPF or IS-IS) as well as 

external routing (BGP), and it must enable normal IP forwarding on some of the interfaces in the 

network while other interfaces may be reserved for assured flows. Furthermore, the interface 

resources may be partitioned so that there are reserved resources for assured flows while another IP 

forwarding can continue as the best effort service. 

1.7. Leveraging Telecommunications Innovation using Software Defined Networking 

and Network Function Virtualisation 
Although SDN technologies and architecture are well known, “NFV” is a relatively recent technological 

phenomenon that has the potential to disrupt the telecommunications industry, its entire hardware 

and software supply chain and ultimately its approach to servicing both commercial and domestic 

consumers around the globe. The development of this new virtualisation technology, which does not 

yet exist, is initially championed in a collaboratively produced white paper, co-published in October 

2012 (NFV White paper, 2012) by 13 of the world’s largest telecommunications network operators 

(‘operators’). The head of Network Evolution Innovation at British Telecom stated that NFV is “likely 

to dramatically change the telecom landscape and industry over the next 2-5 years innovative 

methods to build and manage networks, spawning a new wave of industry-wide innovation”.   
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1.7.1 SDN for Flexible Transport NFV 
Software Defined Networking (SDN) will underpin a dynamic, flexible, cost-effective, and elastic, 

making it valuable for the high-bandwidth, dynamic nature of emerging Internet applications. The ONF 

architecture proposal decoupled network control and forwarding functions. A significant step in 

enabling network state management to be used for the direct programming and the forwarding 

infrastructure, whilst also capable of being abstracted for applications and network services. Thus, the 

ONF’s OpenFlow (OF) protocol [8] was a foundational element for building SDN architecture: 

• Directly programmable 

o Network control is directly programmable because it is decoupled from forwarding 

functions 

• Agility 

o Abstracting control from forwarding lets administrators dynamically adjust network-

wide traffic flow to meet changing needs 

• Centrally managed 

o Network intelligence is (logically) centralised in software-based SDN controllers that 

maintain a global view of the network, which appears to applications and policy 

engines as a single, logical switch 

• Programmatically configured 

o SDN lets network managers configure, manage, secure, and optimise network 

resources very quickly via dynamic, automated SDN programs, which they can write 

themselves because the programs do not depend on proprietary software 

• Open standards-based and vendor-neutral 

o When implemented through open standards, SDN simplifies network design and 

operation because instructions are provided by SDN controllers instead of multiple, 

vendor-specific devices and protocols. 

The central challenges and use cases facing operators, including BT, are identified in the NFV white 

paper (operator written problem statement of current network infrastructure) [33]. Additionally, the 

NFV Use Cases document (which use cases should be supported by NFV) [34] provides key objectives, 

including increasing network operating costs, greater physical space and power requirements, and 

longer deployment times associated with any network growth or increase in functions.  These 

challenges are attributed to the lock-in effect of having multiple layers of proprietary hardware, 

operated with proprietary software, and the need for physical installations each time new functions, 

increased capacity or technology developments require it.  Within the operators’ competitive 

environment, where technological innovation means ever-shortening lifecycles for hardware and a 

need to deploy services faster, the costs of running a hardware-dependent network are increasing 

significantly.   

A key goal proposed by BT and the other NFV proponents is to remove proprietary hardware from 

every point in the network where it is possible to do so, replacing it with software running on 

commodity hardware located in a small number of centralised data centres. 

In the first paragraph of the NFV white paper [33], the operator-authors assert that the status quo is 

constraining innovation, increasing costs, and leading to ever increasing demands for space, power 

and physical installations that delay the deployment of new network functions. Acting together, the 

world’s largest operators aim to define a new structure for their industry that allows them to 

collectively specify the use of commodity hardware (high volume, low-cost servers) to facilitate the 
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growth of an open ecosystem of many more large and small software providers who can create 

software-based network functions that sit on these servers.   

The NFV concept being specifically promoted is to support software-based network functions as 

described in figure 11 (“Vision for Network Functions Virtualisation”) below.    

 

Figure 11 Vision for Network Functions Virtualisation 

BT Builds large complex transport network infrastructure so being able to virtualise (via software) 

fixed and proprietary optical transport devices, would be highly beneficial. By combining NFV and 

three key aspects of SDN, would yield numerous benefits for BT networks and services.  

The key concepts of SDN are outlined in figure 12 (“Open Networking Foundation SDN Architecture 

[35]”) below.  

 

 

Figure 12 Open Networking Foundation SDN Architecture [35] 

Three key concepts of SDN that could be combined with NFV are: 

1. Separation of Control and Forwarding: this would allow application requests from connection 

deployment, allowing configuration and management of network state to be transparent from 

the users, but remains responsive to the application or service; 
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2. Network Abstraction: a process of applying the policy to a set of information about a traffic 

engineered network to produce selective information that represents the potential ability to 

connect across the network.  The process of abstraction presents the connectivity graph in a 

way that is independent of the underlying network technologies, capabilities, and topology so 

that the graph can be used to plan and deliver uniform network services; 

 

3. Automatic Allocation and Coordination of Resources: by orchestrating requests across 

multiple technology layers to provide end-to-end services, regardless of whether the 

networks use SDN or not. 

As networks evolve, the need to provide support for distinct services, separated service orchestration, 

and resource abstraction have emerged as key requirements for operators.  Capable of supporting 

multiple applications and services, while meeting exponential bandwidth demands.  
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2. Background 
The “data plane” (which is also referred to as the user plane, forwarding plane, carrier plane or bearer 

plane) is the node component that carries user traffic. Generally, there are three basic components of 

a telecommunications architecture: data plane, control plane and management plane. Typically, the 

control plane and management plane concurrently interact with the data plane, which forwards the 

traffic that the network exists to carry. 

There are multiple data plane technologies using a wide variety of physical interface types. The data 

plane receives and sends packets from the interface and processes them as required based on the 

transport protocol method, delivering, modifying, or dropping as appropriate. 

The “control plane” is the software that controls devices in the network, including switching devices, 

routers. It typically maintains a real-time view of a “network”. The control plane should react to 

changes in the network state, and recover from limited failures, without specific human intervention.  

The control plane also creates a view of the network state of the network nodes and interfaces and 

provides a set of useful abstractions for an end-to-end service, hence the notion of network 

“connections”. 

2.1. Evolution of Network Control Architecture 

2.1.1 Role of Management Systems in Networks 
The advent of network management became prominent for the supporting SONET and SDH based 

transport systems. Historically, the transport system was based on manual checks and by performing 

various measurement tests often requiring onsite visits. A key feature of an SDH based transport 

system was the use of a dedicated management channel for carrying network management data, 

including configuration, performance, and alarms.  

The term Element Management Systems (EMS) was defined with key interfaces into network devices 

to provide information to and from the transport node, as well as configuration of the systems itself. 

The EMS performed the functions of Fault Management, Configuration Management, Accounting 

Management, Performance Management and Security Management, known as “FCAPS” functions.  

Typically, an EMS would manage one or more of a specific (vendor or technology) type of Network 

Element (NE). To facilitate management of the traffic between NEs, the EMS communicates upward 

to a higher-level component, the Network Management Systems (NMS, this was defined in 

Telecommunications Management Network (TMN), layered model. The EMS provides the foundation 

to implement TMN Operations Support System (OSS) architecture, which enabled operators to meet 

service activation needs for rapid deployment of new services, with defined quality of service (QoS) 

requirements. The Tele Management Forum (TMF) common object request broker architecture 

(CORBA). At the time this EMS to NMS interface represented a new era in OSS interoperability and 

overall network control.  

2.2. Network Control Functions 
A central principle of SDN is the separation of a network forwarding and control planes. By separating 

these functions, a set of specific advantages regarding centralised or distributed programmatic 

control. Firstly, there is a potential economic advantage by using commodity hardware rather than 

proprietary specific hardware. Secondly, remove the need for a fully distributed control plane with 

capability often requiring senior engineering experience to deploy and operate, with a wide range of 

features, which are very often underutilised. Thirdly, the ability to consolidate in one or a few places 
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what a considerably complex piece of OSS software is often to configure and control network 

resources.  

 

Figure 13 Conventional Router Architecture for Control Decisions 

Typically, the network operator has followed a prescribed path for a hardware upgrade to 

circumnavigate the networking scaling issues. This requires the operator to consider the node 

forwarding performance versus price-to-performance numbers to pick just the right time to 

participate in an upgrade. Conversely, as network topologies increase the complexity of the control 

plane and scalability will also need consideration.   

The Internet represents an example of a significant scaling problem — comprising of vast numbers of 

administrative regions loosely tied with the interconnections constantly changing as traffic patterns 

fluctuate and failures occur. Therefore, to address the control paradigm, the Internet was designed 

accordingly. Its structure was federated, where individual nodes participate together to distribute 

reachability information to develop a localised view of a consistent, loop-free network using IP 

forwarding. The Internet forwarding paradigm, where routes and reachability information is 

exchanged that later results in data plane paths being programmed to realise those paths, however, 

paths are often sub-optimal and prone to traffic congestion, so clearly this approach has weaknesses 

which might be addressed using a centralised approach. 

As network technology evolved and the concepts of SDN were invented (centralised control, 

separation of control and forwarding, and network programmability), the cycle of growth and scaling 

management and upgrade in the control plane to accommodate scale, was a clear objective. It is much 

easier to pursue solutions for a centralised management environment controlling distributed, but 

simple, forwarding elements.  

2.3. Control Plane  
The control plane facilitates resource discovery and reachability and builds the network link and node 

map. Control plane functions include: participation routing protocols processes but are path control 

elements. This establishes the local rule set used to create the forwarding table entries, interpreted 

by the data plane, to forward traffic between incoming and outgoing ports on a node. 

The main functionalities that the control plane provides include: 
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Provisioning (set up and tear down) of connections: The control plane automatically configures all 

necessary devices to create a connection between two (or more) points in the network. The process 

by which the control plane configures different elements to set up a connection is known as signalling. 

Restoration: Upon a failure in some element of the EON, a connection may no longer be able to meet 

the necessary QoS required for the transmitted service. In this case, through the restoration process, 

the configuration of the network is changed so that the connection satisfies the desired quality again. 

The restoration process usually implies a change over the “physical” path of a connection. 

Automatic network element discovery: The control plane automatically discovers which elements are 

present in the network. 

Routing: The control plane automatically builds a topological view of the network; it discovers the 

connections among network elements and keep the information up to date. Based on this discovery, 

a topological graph comprised of nodes and edges is built as an abstracted view of the topology. Also, 

traffic engineering (TE) information (e.g., available spectrum and the shared risk link group 

information of a link representing a fibre) is also added to the graph.  

Path Computation: using a network graph, traffic engineering capabilities of both edges (e.g., 

availability of spectrum) and vertexes, i.e., connectivity matrix between incoming/outgoing edges), 

the path of service is computed. Constraints (e.g., Shared Risk Group (SRLG)) and optimisation 

objectives, such as cost, can be applied to the computation. 

The typical transport network will use control plane architecture based on GMPLS [1] and PCE based, 

and we will investigate its details in this chapter. This architecture relies on distributed communication 

between control elements and occasionally, between control elements and a central element such as 

in the network with the Path Computation Element (PCE) [6] and Software Defined Networks (SDN) 

[27], both of which requires communications between all configurable elements and a centralised 

controller. 

The foundation of the current IP control plane model is to use an Interior Gateway Protocol (IGP). This 

normally is in the form of a link-state protocol such as Open Shortest Path First (OSPF) or Intermediate-

System-to-Intermediate-System (ISIS). The IGP will establish layer three reachability between a 

connected, acyclic graph of IP forwarding elements. 
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Figure 14 Relationship of Control and Data (Forwarding) Plane 

Layer-3 network reachability information primarily concerns itself with the reachability of a 

destination IP prefix. In all modern uses, layer three is used to segment or stitch together layer two 

domains to overcome layer-2 scaling problems. Traditionally, the routing table contains a list of 

destination layer-3 addresses and the outgoing interface(s) associated with them. Control plane logic 

can define certain traffic rules, for priority treatment of specific traffic for which a high quality of 

service is defined known as differentiated services. Forwarding focuses on the reachability of network 

addresses.  

The role of the control plane includes: 

• Network topology discovery (resource discovery) 

• Signaling, routing, address assignment 

• Connection set-up/tear-down 

• Connection protection/restoration 

• Path Computation & Traffic engineering 

A few downsides of current control plane technology are the fact they are generally distributed. This 

requires significant memory and CPU overhead for each device, to implement the necessary 

protocol mechanisms and procedures, which include: neighbour discovery, keep-alive mechanisms, 

both internal and external routing protocols. Furthermore, a significant amount of expert knowledge 

is also required to configure and deploy distributed control plane technology.    

2.3.1 Distributed versus Centralised Control 
A control plane needs to address common functions like addressing, automatic topology discovery, 

network abstraction, path computation, and connection provisioning, as stated earlier. For this 

research and the overall controller design, the continued use of a control plane fulfilled the 

requirements of reusing IP technology and automatic end-to-end provisioning and rerouting of 

connections, while supporting different levels of quality of service.  

From a high-level perspective and as any software system that automates tasks and processes, the 

functions of a control plane can, may be distributed or centralised.  
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This dichotomy applies not only from a functional perspective but also from a resource allocation 

perspective. Both models were viable in our controller design; both have their strengths and 

weaknesses and must be extended to meet the emerging requirements. Thus, the selection of a 

centralised or distributed control plane is conditioned by diverse aspects, such as the desired 

functions, flexibility and extensibility, availability, etc., as well as by more concrete aspects such as the 

inherent constraints of the application and service.  

Table 1 Analysis of Control Plane Architecture 

Architecture Features Strengths Weaknesses 

Centralised • Global view of network 
resources 

• Vendor and technology 
data plane agnostic 

• No need for node control 
plane intelligence or state 

• New southbound APIs can be 
supported directly from the 
centralised controller 

• May not reflect rapid state 
changes in distributed 
network notes 

• Service setup scalability in 
large networks 

• Single point of failure    

Distributed • Highly-available by design 
as no single-point-of-
failure 

• Policies can be applied 
locally at the node level 

• Significantly better scalability 

• Easier to implement 
protection mechanisms at 
local node interfaces  

• No global network resource 
view 

• Computational resources for 
control plane actions required 
locally 

Hierarchical • An overall global 
abstracted view of 
network resources 

• Capable of integrating new 
lower-layer technologies 

• Scalable  

• Delegates technology specific 
control to child controllers. 

• The top-level controller may 
still represent a single point of 
failure 

• System complexity is 
increased 

 

2.4. Management Plane  
The Management Plane interacts directly with the control plane and data plane; it provides 

management functions. It has several responsibilities, including configuration management and 

applying policy. It also provides Fault Management, Performance Management, Accounting, and 

Security Management functions.  

In their early deployments, optical transport networks were inherently managed, deployed in a single 

administrative domain, and locked to a single vendor hardware solution (i.e., arranged into vendor 

islands). Such small and mid-sized networks, regarding some nodes, were relatively homogeneous, 

thus reducing interoperability issues. A single, vendor-specific Network Management System (NMS) 

was deployed, being responsible for the management of the optical network, tailored to the 

underlying hardware, and using proprietary interfaces and extensions.  

Those systems were perceived as closed, bundled together as a whole, and with a limited set of 

functionalities that were dependent on a given release. The provisioning of a network connectivity 

service involved manual processes, where a service activation or modification could involve human 

intervention, with a user requesting the service provider, which was then manually planning and 

configuring the route and resources in the network to support the service. 

Several challenges motivated the evolution towards the control plane. First, network operators have 

continuously specified requirements to reduce operational costs, while ensuring that the network still 

meets the requirements of the supported services. Second, the manual, long-lasting processes 

associated with NMS-based networks did not seem adapted for the dynamic provisioning of services 

with recovery and Quality of Service (QoS). In short, the introduction of a dynamic control plane was 

justified, from an operational perspective, for the automation of certain tasks, freeing the operator 
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from the burden of manually managing and configuring individual nodes, leading to significant cost 

reductions.  

In this context, the introduction of a control plane aims at fulfilling the requirements of fast and 

automatic end-to-end provisioning and re-routing of flexi-grid connections, while supporting different 

levels of quality of service. Regardless, of the actual technology, a control plane needs to address 

common functions like addressing, automatic topology discovery, network abstraction, path 

computation, and connection provisioning, as stated earlier in this chapter. From a high-level 

perspective, and as any software system that automates tasks and processes, the functions of a 

control plane can, from a simplistic point of view, be distributed or centralised, although we will later 

see that this separation is becoming blurry. This dichotomy applies not only from a functional 

perspective but also from a resource allocation perspective. Both models are viable; both have their 

strengths and weaknesses, and both are being extended to address the new requirements associated 

to the emerging optical technologies, such as flexible spectrum allocation, efficient co-routed 

connection setup and configuration of related optical parameters.  

 

 

Figure 15 Example of GMPLS-controlled Optical Transport Network 

The network elements participating in distributed control plane environment exchange the 

accumulated advertisements from other nodes in a state database (e.g., OSPF database) and run a 

Dijkstra (shortest path) algorithm to establish a reachability graph of best paths to destinations. This 

process uses a distributed flooding algorithm within the IGP protocol procedure to propagate 

attachment information, thus, all nodes speaking an IGP protocol in the domain remain connected to 

each other (directly or indirectly) and participate with timely reachability information and establish a 

network topology, that reports change in connectivity in the event of failure. A key aspect is thus 

convergence, which is the time it takes from when a network element introduces a change in 

reachability of a destination due to a network. A variety of methods exist in various IGP mechanisms 

and procedures to address scaling of the control plane state (memory and CPU) in the network, both 

for physical and logical design.  

2.5. Control Elements for Operating Transport Networks 
The Generalized Multi-Protocol Label Switching (GMPLS) architecture [6] and protocol [21] was 

defined within the IETF Common Control and Measurement Plane Working Group (CCAMP WG), as an 

extension of the MPLS specification. The GMPLS architecture provides control plane procedures for 

automated provisioning of network connectivity services with functions for Traffic Engineering (TE) 

and network resource management. GMPLS also supports specific recovery procedures to retrieve the 
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correct functioning of the transport network when a resource failure involving an established 

connection is detected [36].  

The main requirements needed in a recovery procedure include: 

• notification of the failure 

• fault isolation,  

• reestablishment of the faulty connections.  

This latter reconfiguration action may be implemented using two different mechanisms: 

• Protection: when the recovery paths are pre-planned, pre-computed, pre-signalled and pre-

committed; 

• Restoration: when the recovery paths can be either pre-planned or dynamically allocated, but 

on-demand additional signaling is always needed to establish the restoration path. 

The GMPLS architecture was developed to support a variety of traffic engineered transport switching 

technologies; these included:  packet, Layer-2, Time Division Multiplexing (TDM), WDM and DWDM 

fibre and emerging wavelength switching technologies). Extensions in the GMPLS framework, 

signaling (RSVP-TE) and routing (OSPF-TE) protocols were developed to support specific technologies 

like Wavelength Switched Optical Networks (WSON), G.709 Optical Transport Networks (OTN) [37, 38] 

and Flexi-Grid Networks are currently under specification and discussion in the IETF. More recently, 

techniques to manage Multi-Layer and Multi-Region Networks (MLN-MRN), have been proposed [39]. 

This is because transport networks are more complicated and often comprised of multiple types of 

data plane forwarding, or multiple transport layers, all under managed using a single instance of the 

GMPLS control plane - early implementations exist of a centralised GMPLS control plane, but generally 

GMPLS is used in a distributed manner.   

2.5.1. Path Computation  
A fundamental aspect of GMPLS routing is the path computation process. To this purpose, the IETF 

PCE WG defines architectures and protocols for path computation. Path computation manages 

aspects related to finding a physical route between two network nodes, commonly referred to as 

endpoints. Path computation is a functional component of a control plane, invoked for (dynamic) 

provisioning, re-routing, restoration, as well as advanced use cases such as overall optimisation, 

adaptive network planning or, in the case of DWDM flexi-grid networks, spectrum de-fragmentation. 

The Path Computation Element (PCE) framework in [23] outlines two main components: the Path 

Computation Client (PCC) and a Path Computation Element (PCE). Consider the PCC is the initiator of 

a path computation request, while the PCE is responsible for computing the end-to-end network 

paths, using a set of constraints and objective functions that may be minimised, maximised, include 

or exclude.  

The PCE will operate looking at topology and Traffic Engineering (TE) information, via a Traffic 

Engineering Database (TED), for network domain it is responsible for. Extensions to the PCE exist for 

end-to-end inter-domain path computations, which are then performed through the cooperation of 

multiple PCEs.  

The Internet Engineering Task Force (IETF) PCE WG specifies different models for inter-PCE 

cooperation in multi-domain scenarios. Firstly, the “crankback”-based Backward-Recursive PCE-based 

Computation (BRPC) procedure follows a peer-to-peer approach [40]. Alternatively, a hierarchical 

model specified in [41] called Hierarchical PCE (H-PCE) introduces the concepts of a “Parent” and a 
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“Child” PCEs: the parent PCE oversees the coordination of an end-to-end path computation operation. 

This would be based on abstracted views of the transit inter-domain topologies, provided by the 

cooperating with child PCEs (i.e., the management entities responsible for the internal transit domain 

path computation. 

The PCE communication Protocol (PCEP) is the protocol regulating the interaction between PCC and 

PCE, or between different PCEs. It is initially defined in [24] and extended in several RFCs and IETF 

Drafts in support of advanced features, including point-to-multipoint services (such as video) [42], and 

Global Concurrent Optimization [43] to defragment resources, and network path computation in MLN-

MRN environments [44]. 

The two main PCE models for computing end-to-end transport paths have been defined and 

standardised for multi-domain computation: BRPC and hierarchical PCE. The next two subsections 

provide a brief overview of both types of path computation. 

2.5.1.1 Backwards Recursive Path Computation 

The multiple PCE computation models, where different PCEs cooperate to compute the end-to-end 

path in multi-domain scenarios, allows limiting the flooding scope within each domain. Following this 

approach, each PCE has visibility only on the topology of its domain, and inter-domain flooding or 

neighbour domain knowledge is not required or generally available. For network scalability, a single 

PCE does nor have visibility of other domains, and therefore unable to compute a path that crosses 

any transit domain. It must communicate with other PCEs in order to obtain intra-domain path 

segments that can be combined to provide an end-to-end path, or an engineer must manually stitch 

together a path, which often takes days to design.   

The current Backward Recursive PCE-based Computation (BRPC) mechanism is typically used to 

automate inter-domain transport paths across a predetermined sequence of transport domains, that 

must be identified by the operator.  

2.5.1.2 Hierarchical PCE 

The hierarchical PCE model is a more recent method for the multi-domain path computation problem 

that the BRPC mechanism described above solves. One of the earliest heuristics and procedures for 

inter-PCE cooperation, facilitating calculation of an optimum end-to-end path without operator 

engineers having to define which transit domains should be used, i.e., requiring a-priori known domain 

path. This model is defined in and is characterised by a hierarchical relationship between domains, 

each of them controlled by an H-PCE (or “Parent”, also known as the broker PCE, with domain topology 

knowledge and policy rules for domain transport.  

2.5.1.3 Impact of PCE within Software Defined Networks 

SDN Is emerging as an extensible and programmable open way of operating networks. Its main 

concept is the decoupling of forwarding and control functions, centralising network intelligence and 

state information while providing to the upper layers an abstracted and vendor independent view of 

network state and available resources through well-defined or documented open Application 

Programming Interfaces (APIs). Compared to prior technologies, SDN allows network providers to 

build more scalable, agile and easily manageable networks. This resource abstraction, via a software 

layer, of the physical network facilitates “network programmable” resources.  

If we agree SDN supports programmability of the network path by decoupling the data plane and 

allowing the removal of a distributed control plane (previously required on all forwarding nodes), 

which are currently integrated vertically in most network equipment’s. Separation of control plane 

and data plane functions, then SDN becomes the underlying principle of heterogeneous technologies 
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for a variety of transport types (e.g. optical layer, carrier Ethernet, and other traffic engineered 

technologies) and administrative regions.  

SDN can abstract the heterogeneous transport technologies employed in the data plane and represent 

them in a unified way, under the umbrella of a centralised control plane. Well documented open 

standards, vendor and technology agnostic protocols and procedures will be needed for the SDN 

controller to communicate with a wide range of devices (“open” or proprietary hardware), in the data 

plane. These requirements established OpenFlow [8] as the de facto protocol for early SDN 

deployments.  

In this context, the PCE architectures natively offer a solution to decouple the path computation from 

the forwarding plane, also providing an open standard protocol instead of using OpenFlow. This opens 

wide opportunities for integration of PCE in an SDN controller pre-imbued with a diverse set of control 

plane path computation and traffic engineering capabilities even beyond its original MPLS/GMPLS 

scope, with SDN. On the one hand, PCE can offload path computations to dedicated engines/elements 

with the aim of assisting SDN controllers for their base services, while natively providing mechanisms 

and procedures for cooperation among diverse PCEs in multi-domain transport scenarios [46]. The 

integration of PCE within SDN allows operators to utilise well-defined and well-documented routing 

and traffic engineering algorithms developed in the scope of PCE for SDN purposes, thus not wasting 

solid expertise and knowledge (e.g. from network operators) in the PCE area. These PCE models are 

discussed in “A Survey on the Contributions of Software-Defined Networking to Traffic Engineering” 

[47]. 

Numerous PCE and SDN integration models exist, and depending on the specific needs and PCE 

capabilities available: path setup for point-to-point services, multipoint or point-to-multipoint. While 

a stateless, stateful, or active stateful PCE may be an external application of the SDN controller, it 

would utilise LSP information exchanged through a dedicated set of controller northbound APIs. A 

stateful PCE with LSP initiation (based on application demands or in response to changing network 

conditions) this capability itself becomes itself a kind of controller application. Moreover, a PCE might 

be used to manage SDN resources for network virtualisation. 

In summary, the PCE is an extremely powerful functional component with three key architectures, a 

wide variety of applications and use cases. It also has an extensive set of well-standardised extensions 

developed by the IETF. Therefore, it is likely to play a key role in the development of transport network 

control platforms for future networks.   

2.5.2. Service Provisioning 
This would include the node and interface configuration, specifically known as service provisioning — 

the setup and teardown of connections. The control element would automatically configure the 

required hops between the source and destination nodes required to create a connection between 

two (or point to multi-point) points in the network. The procedure and protocols used via the 

controller to configure different elements to set up a connection are known as either distribute via 

the signalling mechanisms available (such as RSVP-TE) or directly using a flow provision process (such 

as OpenFlow). 

2.5.3. OAM and Performance Monitoring 
Operations, Administration, and Maintenance (OAM) [48] is often used as a general term to describe 

a collection of tools for fault detection and isolation, and for performance measurement. Many OAM 

tools and capabilities have been defined for various technology layers. 
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OAM tools may, and quite often do, work in conjunction with a control plane and management plane.  

OAM provides analytics via instrumentation protocols and tools. These enable measurement and 

monitoring the data plane, nowadays OAM is known as “network telemetry”. Often OAM tools are 

used to record control-plane functions, and to initialise OAM sessions and to exchange various 

parameters.  Specific OAM tools would communicate with the management plane to identify 

problems, raise alarms, and respond to requests activated by the management plane (as well as by 

the control plane) and triggered from high-layer OSS, e.g., to locate and localise problems, and initiate 

performance measurement of an optical segment, or end-to-end service. The role of OAM activity was 

typically performed by dedicated teams and engineers, and support systems.    

2.5.4. Control Plane architecture evolution 
In their early deployments, optical transport networks were inherently managed, deployed in a single 

administrative domain, and locked to a single vendor hardware solution (i.e., arranged into vendor 

islands). Such small and mid-sized networks, regarding some nodes, were relatively homogeneous, 

thus reducing interoperability issues. A single, vendor-specific Network Management System (NMS) 

was deployed, being responsible for the management of the optical network, tailored to the 

underlying hardware, and using proprietary interfaces and extensions.  

Those systems were perceived as closed, bundled together as a whole, and with a limited set of 

functionalities that were dependent on a given release. The provisioning of a network connectivity 

service involved manual processes, where a service activation or modification could involve human 

intervention, with a user requesting the service provider, which was then manually planning and 

configuring the route and resources in the network to support the service. 

Several challenges motivated the evolution towards the control plane. First, network operators 

continuously have specific requirements to reduce operational costs, while ensuring that the network 

still meets the requirements of the supported services. Second, the manual, long-lasting processes 

associated with NMS-based networks did not seem adapted for the dynamic provisioning of services 

with recovery and QoS. In short, the introduction of a dynamic control plane was justified, from an 

operational perspective, for the automation of certain tasks, freeing the operator from the burden of 

manually managing and configuring individual nodes, leading to significant cost reductions.  

In this context, the introduction of a control plane aims at fulfilling the requirements of fast and 

automatic end-to-end provisioning and re-routing of flexi-grid connections, while supporting different 

levels of quality of service. Regardless, of the actual technology, a control plane needs to address 

common functions like addressing, automatic topology discovery, network abstraction, path 

computation, and connection provisioning, as stated earlier in this chapter. From a high-level 

perspective, and as any software system that automates tasks and processes, the functions of a 

control plane can, from a simplistic point of view, be distributed or centralised, although we will later 

see that this separation is becoming blurry. This dichotomy applies not only from a functional 

perspective but also from a resource allocation perspective. Both models are viable; both have their 

strengths and weaknesses, and both are being extended to address the new requirements associated 

to those above emerging optical technologies, such as flexible spectrum allocation, efficient co-routed 

connection setup and configuration of related optical parameters. The selection of a centralised or 

distributed control plane is conditioned by diverse aspects. This choice may include the desired 

functions, flexibility and extensibility, availability, etc., as well as by more concrete aspects such as the 

inherent constraints of the optical technology (e.g., the need to account for physical impairments 

which are collected from monitoring systems and not standardized), already installed deployments, 

and actual network size and scalability.  
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For example, the Internet represents an example of a significant scaling problem. Vast numbers of 

administrative regions are loosely tied with the interconnections constantly changing as traffic 

patterns fluctuate and failures occur. To address the Internet control paradigm was designed to be 

distributed.  On the other hand, SDH/Optical core transport networks, while geographically spanning 

national or continental regions, are still relatively small in size /number of elements when compared 

to IP networks, and are commonly under the control of a single entity or operator. Services offered 

were relatively stable, characterised by long holding times, coupled to slow traffic dynamics, and 

service provisioning delays of the order of days/ weeks were acceptable. Such deployments models 

were, arguably, best addressed with a centralised control paradigm. 

While the need for a control plane does not seem to present significant opposition, the choice of the 

technology is still debatable. From a historical perspective, the evolution of the control plane for 

optical networks started augmenting NMS based networks with a distributed control plane, based on 

the ASON (Automatically Switched Optical Networks) [49] architecture with Generalized Multi-

Protocol Label Switching GMPLS suite of protocols, as detailed next. Recently, the application of 

Software Defined Networking (SDN) principles to the control of optical networks are presented as a 

means to enable the programmability of the underlying network (in any case, the formal separation 

of the data and control planes is a key concept in optical network control). To some extent, there is 

an analogy between a transport network SDN control architecture and a legacy centralised NMS 

(umbrella system for transport specific EMSes), although the former insists on using modern system 

architectures, open and standard interfaces, and flexible and modular software development. 

2.5.5. Distributed Control 
In a distributed control plane model each network node has the necessary logic (a control plane entity) 

to communicate with other network nodes (with logic components). These logic components combine 

resource discovery, reachability, signaling and often connection, or link management, functions.  

Each distributed node is responsible for the dissemination of resources under its control (e.g., its links) 

so the network view is built cooperatively. Once a connection between needs is required, a service 

setup is requested. The ingress node is typically responsible for the path computation function based 

on the topology obtained and for triggering the signaling process by which resources are reserved for 

the connection setup. Note there is no central authority that coordinates the network operation in a 

distributed control plane environment. 

In this setting, the control plane is implemented by a set of cooperating entities (control plane 

controllers) that execute processes that communicate. Control plane functions such as topology 

management, path computation or signaling are distributed (for the first one, each node disseminates 

the topological elements that are directly under its control, and the IGP routing protocol enables the 

construction of a unified view of the network topology. Path computation is carried out by the ingress 

node of the connection and signaling is distributed along the nodes involved in the path). The 

protocols ensure the coordination and synchronisation functions, autonomously (although commonly, 

the provisioning of a new service is done upon request from an NMS). 

The reference architecture is defined by the ITU-T, named ASON enabling dynamic control of an 

optical network, automating the resource and connection management. ASON relies on the GMPLS 

set of protocols defined by the IETF (with minor variations). In short, the ASON/GMPLS architecture 

defines the transport, control and management planes. In particular, the control plane is responsible 

for the actual resource and connection control and consists of Optical Connection Controllers (OCC), 

interconnected via Network to Network Interfaces (NNIs) for network topology and resource 

discovery, routing, signaling, and connection setup and release (with recovery). The Management 
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Plane is responsible for managing and configuring the control plane and fault management, 

performance management, accounting and security.  

Within ASON the main involved processes are the Connection Controller (CC) and the Routing 

Controller (RC), and optionally a path computation component. A data communication network, based 

on IP control channels (IPCC) to allow the exchange of control messages between GMPLS controllers, 

is also required, which can be deployed in-band or out-of-band (including, for example, a dedicated 

and separated physical network). A GMPLS-enabled node (both control and hardware) is named Label 

Switched Router (LSR). Each GMPLS controller manages the state of all the connections (i.e., Label 

Switched Path - LSPs) originated, terminated or passing-through a node, stored in the LSP Database 

(LSPDB), and maintains its network state information (topology and resources), collected in a local 

Traffic Engineering Database (TED) repository. 

The network elements participating in distributed control plane environment exchange the 

accumulated advertisements from other nodes in a state database (e.g. OSPF database) and run a 

Dijkstra (shortest path) algorithm to establish a reachability graph of best paths to destinations. This 

process uses a distributed flooding algorithm within the IGP protocol procedure to propagate 

attachment information, thus, all nodes speaking a particular IGP protocol in the domain remain 

connected to each other (directly or indirectly) and participate with timely reachability information 

and establish a network topology, that reports change in connectivity in the event of failure. A key 

aspect is thus convergence, which is the time it takes from when a network element introduces a 

change in reachability of a destination due to a network change, such as a failure. A variety of methods 

exist in various IGP mechanisms and procedures to address scaling of the control plane state (memory 

and CPU) in the network, both for physical and logical design.  

2.5.6. Centralised Control 
In a centralised control plane, a controller interacts with the nodes directly, the logic (and topology) 

remains in the controller, addressing the complexity and cost of distributed control planes. While this 

architecture simplifies the implementation of the control logic, it has scalability limitations as the size 

and dynamics of the network increase.  

A central control architecture is conceptually simpler, a single point of deployment of policies and 

business logic, easier to deploy, and requires less state synchronisation. It may also present a 

bottleneck or single point of failure, with latent fault-tolerance issues.  

Network functions requiring local knowledge (dynamic restoration, fast rerouting) are harder to 

achieve in a centralised model, where a distributed model is potentially faster (capable of responding 

to local knowledge) and more robust and mature, although implementations usually need to conform 

to a wider set of protocols. 

In an SDN centralised controlled network, a single entity, usually called controller, is responsible for 

the control plane functions, commonly using open and standard protocols, such as those defined by 

the SDN architectures and protocols, e.g. OpenFlow protocol (OF/OFP). The controller performs path 

computation and service provisioning and proceeds to configure the forwarding and switching 

behaviour of the nodes. A centralised control plane provides a method for programmatic control of 

network resources and simplification of control plane process. Deployment and operation of 

connections require interaction with control points to establish the forwarding rules for specific traffic. 

These are not recent innovations, separation of the control and data planes occurred with the 

development of ForCES [50, 51] and Generalized Switch Management Protocol (GSMP) [52] many 

years ago.  
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By deploying the control plane intelligence in the controller, resources allocated in hardware nodes 

for control plane functions are reduced significantly. Moreover, such solutions involve deploying 

hardware (computational and storage) in a centralised location which is orders of magnitude more 

powerful than individual controllers are. Although a centralised controller does not seem significantly 

different from an NMS, it is worth noting aspects such as the automation of processes, and 

programmability, as well as the use of open interfaces and standard architectures, terminology, 

models, and protocols. Note that a logically centralised controller may, itself, be implemented as a 

distributed system, while appearing, programmatically, as a single entity.  

Finally, a key conclusion is that any transport network controller must be forwarding technology 

agnostic, capable of computing and programming a wide variety of existing and future transport 

technologies.  

2.5.7. Selecting a Distributed or Centralised Control Plane? 
In a distributed control approach, individual nodes participate together to distribute reachability 

information in order to develop a localised view of a consistent, loop-free network. Routes and 

reachability information is exchanged that later results in data plane paths being programmed to 

realise those paths, however, paths are often sub-optimal and prone to traffic congestion, so clearly 

this approach has weaknesses which might be addressed using a centralised approach. Mainly, a 

distributed control plane is affected by the latencies in the propagation and synchronisation of data. 

Changes occurring at a given network element need to be propagated, and the transitory may affect 

network performance. 

On the other hand, in a distributed model, each node element is mainly self-sustained. There is no 

bottleneck or single point of failure, such as an SDN controller, and is the model that seems most 

appropriate when there is no central authority, and functional elements need to cooperate. Each node 

can survive failures at other nodes as long as the network remains connected. 

The benefits of a centralised model are lower capital and operational cost, involving, in the case of a 

control plane, minimal control plane hardware and software at each node, while enabling 

computational scaling at the controller location. A centralised controller may be easier to implement, 

given the tight coupling of components, and the less stringent requirements of internal interfaces not 

subject to interoperability issues. It simplifies automation and management, enables network 

programmability, and it is less subject to latencies and out-of-date information due to the need of 

synchronising entities. It provides more flexibility, a single point of extension for operators’ policies 

and customisations, and improved security. There is less control plane overhead, and arguably, 

network security is increased, with less complexity and greater control over potential risk areas. The 

downside is that centralised elements are always points of failure. 

The control plane (definition of routing and traffic engineering policy) remains a significant operational 

task in Transport SDN, and control of resources via centralised platform would provide a global 

network view and efficient use of resources. However, any changes to physical optical network 

parameters would need to be reflected the central controller quickly, or it may suffer from scalability 

problems and compute paths on outdated information. 

Distributed control planes adapt quickly to changing conditions so provide high survivability, fast 

recovery and would maintain accurate state accuracy, utilising protocol methods that advertise state 

changes (such as link or node failures), and advertising reachability to specific networks. However, 

there is a need to have better configuration management, a clear separation of configuration and 

operational data for the network slicing objectives outline earlier in the document while enabling high-
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level constructs more adapted to future transport services and supporting network-wide transactions 

such as concurrent global optimisations. 

The question of which is best, distributed, or centralised, when designing control planes is no longer 

clear cut. The design considerations should now include how we might blend control plane 

architectures and principles for optimal transport network operation and utilise the best of distributed 

and centralised control plane methodologies. Clearly, there are benefits of using a distributed control 

plane for resource discovery and recovering from local failures, and then global network resource 

optimisations might then be performed by a centralised control plane residing in a transport 

controller. The centralised controller may also manage end-to-end connection setup, especially when 

services traverse multi-domain and multi-technology environments.   

2.5.8. Hybrid Control plane models 
Given the current trends and evolutions of control plane architectures, it seems too simplistic to tag a 

control plane as distributed or centralised. Control plane architectures are evolving towards hybrid 

control- plane models, in which some elements may be centralised and some elements may be 

distributed, sometimes following the mantra “distribute when you can, centralise when you must”. 

Even if a given control plane entity is centralised, it can be logically centralised, where a system is 

implemented regarding the composition of functional components that appear as one. A given 

function can be centralised in a given domain (e.g. the path computation function can be centralised 

in a Path Computation Element (PCE) assuming a single PCE per domain deployment model, but the 

same function can be distributed amongst several children PCE in Hierarchical PCE (H-PCE) 

architecture [53] within a multi-domain scenario. 

New use cases, such as remote data centre interconnection, highlight the need for multi-domain 

service provisioning and heterogeneous CP interworking, potentially requiring an overarching control 

(see figure 16 – “Overarching Control of Heterogeneous Technologies”).  

Additionally, network operators aim at addressing the joint control and allocation of network and IT 

resources (e.g. networking, computing, and storage resources), or the joint optimisation of different 

network segments, such as access, aggregation, and core. The adaptation of one control model to the 

other or more advanced interworking requiring the definition of common models (e.g. a subset of 

attributes for network elements) and coordination and orchestration functions. Such orchestrator 

may, in turn, be (logically or physically) centralised while delegating specific functions, to subsystems 

that may be distributed (such as the provisioning of connectivity delegated to a GMPLS control plane).  
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Figure 16 Overarching Control of Heterogeneous Technologies 

We should mention that the adoption of new computing and interworking models, and concepts, such 

as those of server consolidation, host virtualisation or Network Function Virtualisation (NFV), are 

challenging common approaches and existing practice: for example, a GMPLS control plane could be 

run as a Virtual Network Function running in a data centre, for legacy purposes, in which a distributed 

system could run on a centralised physical infrastructure. 

The control plane (definition of routing and traffic engineering policy) remains a significant operational 

task in Transport SDN, and control of resources via centralised platform would provide a global 

network view and efficient use of resources. However, any changes to physical optical network 

parameters would need to be reflected the central controller quickly, or it may suffer from scalability 

problems and compute paths on outdated information. 

Distributed control planes adapt quickly to changing conditions so provide high survivability, fast 

recovery and would maintain accurate state accuracy. However, there is a need to have better 

configuration management, a clear separation of configuration and operational data for the network 

slicing objectives outline earlier in the document while enabling high-level constructs more adapted 

to 5G services and supporting network-wide transactions such as global concurrent optimisations. 

Therefore, as discussed earlier it is not a question of which is best, distributed, or centralised control? 

The question is how we might blend control plane architectures and principles for optimal transport 

utilising features that could be implemented on a central component per domain, or globally on a 

super-controller or parent controller, as well as a capability that is delegated locally. 
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3. Transport Network Control Framework Design 
In this chapter, we outline the requirements gathering, documentation, design and development of a 

next generation transport network control framework. This framework was developed by conducting 

extensive and detailed interviews within British Telecom and with other key operator architects and 

technology decision makers. These interviews highlighted the key requirements and objectives faces 

by some of the largest network operators in the world.  

The requirements gathering was conducted over a one-year period, from 2012 to mid-2013. There are 

extensive records available as surveys were conducted as interviews and encoded in NVivo for 

analysis.   

3.1 Requirements Gathering 
The following table outlines the series of interviews conducting during this initial PhD research for 

requirements gathering and network strategy.  

Table 2 Schedule of Research Interviews Related to NFV & SDN Architecture Development 

Interview 

No. 

Format Interviewee:  Position and Company 

1 Individual Chief Network Services Architect, British Telecom 

2 Individual Chief Data Networks Strategist, British Telecom 

3 Individual Head of Network Evolution Innovation, British Telecom 

4 Panel Head of Core Optics Research, British Telecom 

4 Panel Core Optics Research, British Telecom 

4 Panel Core Optics Research, British Telecom 

5 Individual Senior Research Officer, ETSI 

6 Individual Head of Technology Exploration, Telefonica 

7 Individual Senior Expert Standardization, Deutsche Telekom 

8 Individual Director of Network Architecture, Verizon 

9 Individual Principal Member of the Technical Staff, Verizon 

10 Individual Principal Member of the Technical Staff, Verizon 

11 Panel Technical Manager, NTT Labs   

11 Panel Senior Network Engineer, NTT Labs   

11 Panel Senior Network Engineer, NTT Labs   

11 Panel IP Engineer, NTT Labs   

12 Individual Technical Manager, KDDI 

13 Panel Technical Manager, NTT docomo 

13 Panel Engineer, NTT DoCoMo 

13 Panel Engineer, NTT DoCoMo 

14 Individual Network Architect at Colt Technology Services, Colt 

15 Individual Lead Member of Technical Staff, AT&T 

16 3rd Party Network Architect & Research Scientist, Orange  

17  3rd Party Distinguished Network Architect, AT&T 

18 Individual Technology Specialist, Telefonica 

19 Individual Technology Specialist, Telefonica 

20 Individual Member of Technical Staff, AT&T 
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3.1.1 Technical Drivers for Transport Network Innovation 
The interviews conducted highlighted that operators must balance their desire to innovate and create 

value through new services or cost savings, with an understanding of the available methods and 

technologies, and the limitations imposed on them.  Operators face a second paradox: they must 

innovate to create improved network flexibility and performance because consumers and applications 

demand it, but they must not innovate to the extent that they risk overall network control and 

stability. 

3.1.1.1 Reducing the use of Propriety Hardware Platforms 

With these twin challenges of increasing capacity demands and regulatory pressure, the need for 

operator-driven innovation is focussed on finding more cost-efficient ways of moving high volumes of 

data, and the need to address the current dependence on expensive, dedicated hardware and 

processors. A leading organisation in this search for solutions based on cheaper, generic hardware 

was British Telecom, working with Intel initially but then a growing group of other operators from 

around the world. 

“I had various discussions with colleagues going back over many years about the potential 

for generic processors to shift packets and got into various discussions as to what sort of 

packets; you know packet performance was the main parameter of interest.  We then got 

into a more detailed discussion with Intel about 2½ or 3 years ago and initiated a study for 

them which they grew into a wider set of partners.” 

Chief Data Networks Strategist, British Telecom  

The development of these exploratory collaborations between operators and a chip manufacturer was 

a significant precursor to the current move towards NFV and SDN.  In these early years, the main 

motivation was to use innovative methods for cheaper,  and more generic hardware running the latest 

Intel chips as an alternative to the costlier dedicated network hardware, running proprietary chips and 

proprietary software.  These current provisions were costly in part because the vendors could lock-in 

operators due to the lack of interoperability of their hardware, and the onus on learning and using 

proprietary software solutions from a specific vendor.   

“At the end, all of us agreed that at first, it is about reducing, well, the direct hour costs, if 

you are buying normal standard servers it is much cheaper than buying expensive dedicated 

boxes… because one of the things that organisations like mine hate are what we; you are 

always talking about vendor lock-in, you do not want to be caught by a single vendor.” 

Head of Technology Exploration, Telefonica 

This lock-in effect is a legacy of the layering that evolved since privatisations took place and the Layer 

1 vendors took an increasingly important role in R&D.  The rapid improvements in generic processors 

and their proven, cost-effective use in large data centres is a compelling alternative, assuming that 

the required performance is acceptable. 

 “thanks to Moore’s Law with respect to processor speed, and power and storage costs 

coming down, being able to take advantage of that, which you can do much more in a data 

centre environment.” 

Principal Member of the Technical Staff, Verizon 

The reasoning is that if telecommunications networks can begin to look more like data centres, with 

centralised commodity hardware managing the networks in place of distributed, specialist hardware, 

the costs of operating such networks will tumble.  
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More recently focus appears to be on developing  new commodity hardware, and  rapid reduction 

requiring proprietary hardware, for legacy equipment (that was highly specialised) equipment might 

often be junked after a certain time period, rather than being reused:  

 “[it’s] as much about decommissioning as commissioning savings.  We [currently] simply 

leave equipment at customer sites, it’s cheaper than collecting and disposing of” 

Chief Network Services Architect, British Telecom 

NFV-based functions are delivered in software form to data centres, so there is no longer a need to 

physically move an engineer and a piece of equipment to each location to install network services or 

to remove or repurpose them.  Under these new conditions, the full-life cost of hardware drops 

significantly. 

3.1.1.2 Flexibility of Virtual Network Functions 

In addition to hardware cost considerations, there are long-term service implications that the new 

NFV approach will allow.  As well as shifting the primary technological core of network infrastructures 

to data centres there would be a shift towards the use of software-based virtual network functions, 

in place of hardware reliant functions.   

“It will bring flexibility, agility and automation and a much faster time-to-market cycle, 

where the latter is something that we, as operators, lack today.” 

Network Architect & Research Scientist, Orange 

“Since it is software only, the composition or decomposition of functions allows us to be 

more flexible in responding to the marketplace.” 

Distinguished Network Architect, AT&T  

If physical infrastructure no longer needs to be installed at or near a customer’s premises when new 

telecoms functionality is required but can instead be remotely installed into servers located at a data 

centre, the benefits to both operator and customer will be significant.  

The importance of deployment speed is emphasised by BT, who use this as an important internal 

driver for change by providing a clear indication of just how much faster and more responsive they 

want to be to customer needs, through NFV: 

“One of the taglines we’ve used was ‘from 90 days to 90 seconds’ that our lead time to 

deploy a box to wherever in the world the customer premises happens to be” 

Chief Data Networks Strategist, British Telecom 

In addition to this aspect of flexibility, they also see real benefits to both operators and customers of 

being able to delay purchasing decisions. 

“There’s a real option which is being able to defer a decision on what you deployed because 

the hardware is exactly as you say, generic, so you’ve not committed to the particular 

functionality at the time you deployed the hardware.” 

Chief Data Networks Strategist, British Telecom 

Customers and operators will have the ability to select and install software-based functions at the 

time they are needed, without having to try and predict what might be needed ahead of time.  In 

addition, functionality can be scaled up, scaled down or repurposed as evolving demands deprived of 

the need to redeploy engineers or incur both the financial and the ecological cost of hardware 

decommissioning.  
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The long-term flexibility goals stated within the NFV White Paper (2012) include a desire to create a 

true software market for telecommunications functions, where smaller firms can compete with the 

very large and well-established Layer 1 players on a software-only basis.  For operators, separation of 

hardware and software eliminates the de-facto lock-in associated with proprietary hardware, and at 

the same time creates a potentially much larger, more international, and more competitive service-

based marketplace for functions software. 

When considered together these drivers for developing NFV are compelling:  To be able to save costs, 

improve service speed and flexibility, create a new market that provides greater innovation and opens 

up competition amongst suppliers to the operators, whilst enforcing interoperability of their different 

products; in sum, this looks like a kind of strategic nirvana.  However, certain challenges must be 

overcome regarding the development of the technology itself, as well as the management of the multi-

organizational collaboration that is required to achieve this new industrial vision.  These organisational 

challenges are discussed in the following sections. 

3.2 Motivation and Aims 
Previously transport networks were typically static, lacked flexibility, and required long planning times 

when deploying new services. Operators have embraced technologies that allow separation of data 

plane and control plane, distributed signaling for path setup and protection, and centralised path 

computation for service planning and traffic engineering. 

Although these technologies provide significant benefits, they do not meet the growing need for 

network programmability, automation, resource sharing, and service elasticity necessary for meeting 

operator's requirement for their virtual network operators. 

Virtual network operation may be categorised as the creation of a virtualised environment allowing 

operators to see a simplified view (via abstraction) of the underlying multi-admin/multi-vendor/multi-

technology network. It would also allow the operator to control and manage these multiple networks 

as if a single virtualised network. Another dimension of virtual network operation is associated with 

the use of the common core transport network resource by multi-tenant service networks as a way of 

providing a virtualised infrastructure, thus enabling a flexible method to offer new services and 

applications. 

3.2.1 Development of the NGN Controller Framework 
The research documented in this thesis is the culmination of five years of research by the thesis author 

and led the development of Application-Based Network Operations (ABNO) framework by the 

researcher. ABNO was firmly grounded in requirements identified by the thesis author and derived 

from leading operators who wanted to leverage the emerging field of Software Defined Networks 

(SDN) and Network Functions Virtualisation (NFV).  

3.2.2 New Generation of Transport Services 
A notable recent research project called IDEALIST (Industry-Driven Elastic and Adaptive Lambda 

Infrastructure for Service and Transport Networks) [67] and [69] have developed a control plane to 

meet the evolving requirements for managing elastic optical infrastructure. Each supported a set of 

basic functions, including i) element addressing; ii) dynamic resource discovery (e.g. local interfaces 

and device ports and capabilities); iii) automatic topology and reachability discovery and management 

(by which a control plane may discover the topology without explicit pre-configuration), iv) path 
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computation and v) actual service provisioning with recovery (protection and restoration) ensuring 

efficient resource usage 

3.2.3 Virtualisation Transport Networks 
Users demand new services that flexible and time-based (Pay As You Go billing models).  These 

services are provided to customers from the operators and service providers , and facilitate a variety 

of applications.  They offer operators new revenue generation opportunities, and these services are 

Cloud-based and have different traffic characteristics from established services. Deploying and 

operating these emerging applications using traditional network technologies and architectures is not 

feasible, and has significant network performance, resource, scalability, and elasticity (i.e., capable of 

adapting to customer and application demands) limits. 

Network virtualisation is clearly an important innovation towards providing the demands from 

customers and enabling next generation applications and services. New requirements, methods and 

capabilities for the deployment and operation of next generation transport infrastructure resources, 

may be summarised as: 

• Coordination and abstraction of underlying transport network resources to higher-layer 

applications and customers (note that higher-layer applications and customers could be           

internal users of the core transport network resource such as various service networks); 

• Multi-domain virtual network operation that facilitates multi-admin, multi-vendor, multi-

technology networks as a single virtualised network; 

• Multi-tenant virtual network operation that consolidates different network services and 

applications to allow slicing of network resources to meet specific service, application and 

customer requirements; 

• Provision of a computation scheme and virtual control capability, via a data model, to 

customers who request virtual network services (note that these customers could be service 

providers themselves. 

3.3 Framework Component Considerations 
We already identified today's networks are heterogeneous, i.e., integrate multiple technologies 

allowing network infrastructure to deliver a variety of applications, services and bandwidth to support 

the different characteristics and dynamic demands of applications.  

Increasingly, a need to make the transport network more responsive to service requests issued directly 

from the application layer and high-layer client interfaces.  It should be considered that this differs 

from the established archetypal network, where services in the network are instantiated in reply to 

business platforms, CLI commands driven by a human engineer, using a plethora of Operational 

Support Systems (OSS) components (NMS, EMS, et al.), due to the inflexible nature of traditional 

networks they are also typically over-provisioned thereby ensuring minimal traffic loss, even during 

network failure and at peak traffic periods.  

An idealised network resource controller would be based on an architecture that combines several 

technology components, mechanisms and procedures. These include: 

• Policy control of entities and applications for managing requests for network resource 

information and connections; 

• Retrieve  information on available network resources; 

• Consideration of multi-layer resources and how topologies map to underlying network 

resources; 
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• Handling of path computation requests and responses; 

• Provisioning and reserving network resources; 

• Verification of connection and resource setup. 

 
Based on the requirements discussed we must develop a control and management architecture of 

transport networks to allow network operators to manage their networks using the core principles of 

Software Defined Networks to allow high-layer applications and clients to request, reconfigure and 

optimise the network resources in near real time, and in response to fluid traffic changes and network 

failures.  

3.3.1 Network Abstraction 
A major purpose of Software Defined Networks (SDN) is to bury complexity and make service 

deployment and overall network operation simpler without invoking the management and 

provisioning software of the many manufacturers deployed in the network. Consequently, allowing 

higher-layer applications to automate requests and creation of services simpler and more direct. 

A control framework for next generation transport networks will need several technology 

components, mechanisms, and procedures to enable abstraction of underlying resources.  

At a minimum, the following requirements must be met to provide network resource abstraction:  

• Generation of a network graph, using links and nodes 

• Computation engine for optimisation of the network graph 

• Definition of objective functions, with the ability to apply link and node constraints 

• Service definitions, including flow or connection types, for end-to-end connection setup and 

management  

3.3.2 Logically Centralised Control  
We use the term “logical centralised” to signify that network control may appear focused in a single 

entity, independent of its possible implementation in distributed form. The centralised control 

principle states that resources can be used more efficiently when viewed from a global perspective.  

A centralised SDN controller would be able to orchestrate resources that span some subordinate 

domains or in cooperation with other elements, and maximising resource efficiency when creating 

new services and overall operation of existing services and network resources. Other reasons for 

logically centralised control include scale, optimisation of information exchange and minimisation of 

propagation delay.  

Given constraints of not being able to deploy greenfield networks, in some situations, it is necessary 

that a controller co-exists with both native SDN forwarding technologies (OpenFlow) non-native SDN 

traffic engineered technology (MPLS and GMPLS).   

3.4 Application Driven Use-Cases 
Dynamic application-driven demands and the services they create specific requirements on the 

management of transport network infrastructure, these new requirements include:  

• a need for on-demand and application-specific assignment of network connectivity, which is 

reliabile 

• optimise resources (such as bandwidth) constraints in a variety of network application 

topologies (such as point-to-point connectivity 

• provide network virtualisation, also known as network slicing 
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• supporting a range of traffic engineered transport  technologies including packet (IP/MPLS) 

and optical transport networks, to Software Defined Networks (SDN) forwarding technologies, 

Additionally, to the general requirements above, a set of application-driven use cases must also be 

considered: 

• Virtual Private Network (VPN) Planning –Support and deployment of new VPN customers and 
resizing of existing customer connections across packet and optical networks; 

• Optimization of Traffic Flows – Applications with the capability to request and create overlay 
networks for communication connectivity between file sharing servers, data caching or 
mirroring, media streaming, or real-time communications; 

• Interconnection of Content Delivery Networks (CDN) and Data Centers (DC) – Establishment 
and resizing of connections across core networks and distribution networks; 

• Automated Network Coordination – Automate resource provisioning, facilitate grooming and 
grooming, bandwidth scheduling, and concurrent resource optimisation; 

• Centralised Control – Remote network components allowing coordinated programming of 
network resources through such techniques as Forwarding and Control Element Separation 
(ForCES) OpenFlow (OF); 
 

3.4.1 BT Media and Broadcast 
At British Telecom a specific network “BT Media and Broadcast”, needs significant change on the 

design, deployment and operation of broadcast and contribution video services is conducted.   

The number of media consumption devices and consumers continues to increase exponentially, 

whether to watch live television or on-demand content, the pressure on the broadcast network 

operator to deliver fast, secure, and reliable connective capacity across the contribution and 

distribution infrastructure increases. 

Although the contribution and distribution network share common technology requirements, distinct 

objectives must still be defined. Contribution networks need to support seamless, resilient 

uncompressed and real-time transmission of multi-format production content. Distribution networks 

must also scale, but to support a wide variety of low bit-rate streams, as consumer electronics 

manufacturers push 4K Smart TVs into the home, and sell High Dynamic Range-equipped TVs, creating 

consumer demand for Ultra High Definition (UHD) content to view on Internet-connected TVs. 

 

Figure 17 UHD Shipments from DIGITIMES Research 2014 
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This section provides insight into British Telecom’s Media and Broadcast organisation, and specifically 

the contribution, and distribution test laboratory efforts. The section outlines how the technology and 

economics of “Software Defined Networking” and “Network Function Virtualisation” discussions, both 

buzzwords of broadcast shows and conferences, are already impacting the way BT consider 

requirements, design and deploy network infrastructure.  

BT has multiple use cases and depending on the type and scale of Media and Broadcast customer 

application; we will see that each have a specific set of requirements and capabilities for the transport 

network, depending on the type of media transport and delivery required. We may summarise core 

requirements across most use cases: 

• Aggregation of multiple flows and formats across studio infrastructure; 

• Broadcast industry native interface support; 

• High-bandwidth connections for Content Distribution Network (CDN) video. 

 
Each broadcast or contribution flows have their formats, underpinned by the use of Serial Digital 

Interfaces (SDI). There is a Standard Definition (SD), High Definition (HD), and Ultra High Definition 

(UltraHD, which is also known as 4K), 8K is sometimes als0 required for transport. These formats are 

based on well-defined protocols based on published standards. HD-SDI can be multiple format 

streams, i.e., 1080i, 1080p, 720p, or 480p. A format type specifies the encoding, and vertical and 

horizontal resolution, quality, speed and aspect ratio, pixel aspect ratio, scanning and frame rate of 

the content.  

Moreover, there is increasing use of 4K as UltraHD, and 8K UltraHD which translates into a 

considerable increase in bandwidth consumption, and often these services are temporary, so they 

have to be placed efficiently and created and torn down automatically so not to waste transport 

network resources. This trend will only continue with further bandwidth demands based on growth in 

frame rates, colour depth, and number and quality of sound channels, only compounds the need to 

provide scalable high-capacity bit-rate services.  Additional video application requirements and future 

(expected demands) are outlined in the following sub-sections.  

3.4.1.1 Content Capture and Encoding 

In some situations, SDI must be encoded to a broad spectrum of formats for live or production content. 

One critical consideration for selecting the media format is its intended use or delivery platform, and 

the path and bandwidth required. Upon captured it may be encoded, and then forwarded across the 

network to its desired destination (production studio, content server, or even live broadcast), and 

often require some path engineering. Network functions including a production switcher, or directly 

to a production server are also often required. Typically, a Media Manager handles this decision. It is 

worth noting that in some cases, the greater the resolution of content it may have multiple outputs 

at the camera for specific uses and will need to be encoded multiple times and recompiled and 

synchronised at the router, production switcher, and encoder.  

3.4.1.2 Content Transport 

In addition to encoding, media will be ingested directly from other sources as files or flows and as 

mentioned may require encoding to traverse IP infrastructure, often from a Serial Data Transport 

Interface (SDTI) source.  

The SDTI source is a method for transmitting data packets over a Serial Digital Interface data stream. 

It has been developed to provide a variety of compressed video standards, including DV, DVCPRO, and 
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MPEG2. There are several well-defined additional standards and protocols, which allow video media 

to be encapsulated and transported across network infrastructure, including: 

• SMPTE – SD-SDI SMPTE 259M; 

• HD-SDI SMPTE 292M; 

• ETSI – ASI- TR 101 891; 

• MPEG2 – ISO/IEC 13818; 

• MPEGTS – ISO/IEC 13818-1; 

• MPEG4 – ISO/IEC 14496; 

• MPEG4 H.264 – ISO/IEC 14496-10. 

• JPEG2000 – ISO/IEC 15444-12 
 

3.4.1.3 Bandwidth, Compute & Storage 

Studio environments typical contain nodes with HD-SDI interfaces and 10Gb/s network cards. Allowing 

to receive, transmit, encode, and decode services, with centralised management.  

Both multicast and unicast may be used to distribute UHD (4K) compressed video at 2160p 50fps, 

using H.264 encoding this would require between 800Mb/s to 1.2Gb/s per service. Computing point-

to-point and multipoint-to-multipoint trees are not-trivial.  

Demands by content consumers for increased video resolution, frame rate, colour depth & sound 

channels, all add to bandwidth consumption for services. As indicated by the British Broadcasting 

Corporation (BBC), contribution network uses are requesting a move to near lossless or uncompressed 

video streams, these equate to: 

• HD 1080p 8bit 4:2:2 59.94fps uncompressed bit rate @ 3Gb/s; 

• 4K UHD 2160p 12bit 4:2:2 59.94fps uncompressed bit rate @ 10Gb/s; 

• 8K SHV 4320p 12bit 4:2:2 59.94fps uncompressed bit rate @ 48Gb/s. 
 

3.4.1.4 Studio Media IP Evolution 

Our objective is to facilitate IP Studio media production. This would require a mass migration from 

dedicated synchronous interfaces to generic IP networks. The rationale for migration to an all IP 

network, running over a high-capacity commodity-based optical infrastructure with an automated 

control platform, is extremely compelling: 

• Leverage the flexibility and operational experience of traffic engineered networks; 

• Support varying types of video, audio and data from a variety of sources and formats over 
the network with low latency, and minimal jitter; 

• Efficiently utilise network resources, resource sharing where applicable; 

• Elastic control of the network, setting up and tearing down occasional-use services, links for 
optimal cost-effectiveness. 

 
If the studio production is live or recorded, it will have different requirements and may need near-

real-time setup. Typically, scheduling, content encoding, format decisions and network path decisions 

have already been made.  

During production workflow, media files may need to be accessible to various production applications 

and processes and possibly need to move between storage locations. Normally the applications 

(hardware or software) for production workflow are dedicated and fixed and may only be used part-

time. If functions were entirely software based and could be efficiently deployed in a “just in time” 

manner and scaled accordingly, it would provide significant cost savings and flexibility. However, 
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different layers of automation to manage these applications and processes, with the capability to 

handle the file movement would also be required.  

3.4.1.5 Linear Contribution and Content Transport  

Our initial use cases for the lab were based on a linear contribution service (pre-consumer), some 

requirements for broadcast media networks. These type of content services tend to have the 

following transport requirements: 

• End-to-end Automation: the request, computation, setup, a teardown of the end-to-end 
service; 

• Initial support for 4K contributions, but capable of scaling up to 8k and 16k; 

• Integrate encoding functions, scale-out storage, durability, adaptive performance, self-
healing capabilities; 

• Supports high frame rates and other developing formats that exceed client expectations and 
requirements. 

 
The media flows are expected to be IP-based and support both live, linear TV programs and transport 

of media content files for production.  

Whereas current broadcast video IP links are based on permanent data connections via Ethernet, with 

variable data rates up to 200Mb/s compressed, or 3Gb/s uncompressed. We designed our 

infrastructure to support anything from a few 100Mb/s to 10Gb/s, based on a control architecture 

capable of evolving beyond 100Gb/s. 

3.4.1.6 British Telecom Media and Broadcast Laboratory 

BT Has built a research laboratory to explore the potential impact of SDN & NFV on networks required 

to carry high bandwidth broadcast video traffic. The layout is depicted in the figure below which shows 

our intentions to research the various aspects of building end-to-end video contribution networks. 

Video creation at HD and UHD rates produces multi-Gb/s SDI formats that require network signal 

compression and conversion into traffic engineered connections.  

For BT Media and Broadcast traditional NMS platforms lack the flexibility, they needed large network 

engineering and planning teams. Looking towards the architecture and principles defined by the 

Software Defined Networking (SDN) architecture developed and ratified by the Open Networking 

Foundation (ONF) creates a new value proposition. The core SDN architectural principles offer a 

variety of options when looking to plan, control, and manage flexible network resources both centrally 

and dynamically, that is simply not available to BT currently.  

The advent of Network Functions Virtualisation (NFV) has also provided the ability to deploy network 

functions (media encoding, storage, load balancing) for BT Media and Broadcast on virtualised 

infrastructure hosted on commodity hardware, decoupling dedicated network function from 

proprietary hardware infrastructure. Consequently, this allows network function to be instantiated 

from a common resource pool and to exploit performance predictability where dimensioning remains 

stable whatever the use of virtualised hardware resources. Emboldened with the suitable control and 

orchestration tools, these virtual and on-demand capabilities could have a significant impact on how 

telecom infrastructure is managed. 

A commodity-based optical platform comprises a combination of optical switches, amplifiers and 

fibre. The switches here are Reconfigurable Optical Add-Drop Multiplexers (ROADM) which have at 

their heart Wavelength Selective Switch (WSS) technology. Using a central controller would provide 
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the capability to compute and route wavelength channels from any input to any output fibre, on 

demand and without the current weeks of network planning by human engineers.  

In a grand design for BT Media and Broadcast, there would be the capability to manage multiple 

controllers, as BT operates multiple transport domains. These domain-specific controllers provide 

inputs to an orchestrator who has now a centralised view of all the network resources. Applications 

can take advantage of this SDN-based network orchestration, and we have demonstrated a Scheduler 

application that can request on-demand large bandwidth pipes set up at specific times and durations.  

The figure below presents our initial view of this idealised architecture and a candidate architecture 

to meet the idealised view is provided later in this document. 

 

Figure 18 British Telecom Media & Broadcast Idealised View 
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4. Framework for Application-Based Network 

Operations (ABNO) 
This chapter outlines the core network control principles required for application-based network 

operations of transport networks, discusses key control plane principles and architectures. It 

introduces the Application-Based Network Operations (ABNO) Framework [54], and how this 

framework and functional components and how they are combined for Adaptive Network Manager 

(ANM), used to address the requirements for operating next generation transport networks. 

The three tenants of SDN are programmability, the separation of the control and data planes, and the 

management of ephemeral network state in a centralised control model.   

Application-Based Network Operations (ABNO) was designed using set architectural principles 

gathered during the requirements discussion with operators for transport network evolution, and 

British Telecom research discussions, specifically for the Media and Broadcast transport network: 

1. Loose Coupling: For ease of operation and rapid, yet agile, development, and tightly 

integrate the functional components of the network controller, the use of well-defined APIs 

and protocol mechanisms must be used. 

2. Low Overhead: ensure that resource management and network control functions are not 

duplicated, reducing overall platform overhead.  

3. Modular: A modular design enables easier composition of existing features into new 

capabilities. 

4. Intelligent: Designing the framework around the Path Computation Element and Traffic 

Engineered principles, leveraging years of existing protocol development for managing 

heterogeneous technologies and efficient resource utilisation.  

5. Resource Management: The framework allows for various network and node state to be 

discovered and stored. This state information is collected using the protocol mechanisms 

provided by traditional and already existing network and service management tools.  

6. Dynamic Management: A key goal of an SDN controller is actuate dynamic control based on 

application demands and other network events.  

7. Policy Control: implement policy management mechanisms for specifying connection 

requirements (e.g., QoS, security) based on applications demands and constraints. It also 

allows operators to meet the varying service levels they provide to customers . 

8. Technology Agnostic: communicates with a wide range of network nodes using varying 

forwarding technology, and using a variety of Southbound APIs and protocols.  

It should also be possible to utilise both a distributed control plane as well for local policy decisions 

and leveraging years of protocol development and function, thus providing the best practices of 

centralised control, and distributed control plane for ephemeral state management. 
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Figure 19 Application-Based Network Operations (ABNO) Framework [54] 

Current networks consist of switches and routers using traditionally distributed control planes and 

data plane technologies. Ensuring network efficiency is limited in such networks as intelligence is 

distributed across many switches or routers and often involves complex protocols and procedures. In 

contrast, an SDN network with OpenFlow will use a centralised control plane (or “controller”). This 

will be the entity receiving application and customer requests directly, and then responsible for 

establishing the transport paths or flows directly, and data planes at nodes to perform packet 

matches, forwarding, copying or dropping actions.  

The ABNO-based architecture [54] allowed a controller to be data plane technology agnostic, a 

significant difference compared to SDN Controllers, which are typically OpenFlow based. An ABNO 

Controller, per domain (administrative or technology), discovers, organises, and layers multiple 

services across the infrastructure. This programmable control feature facilitated automation 

techniques to be used to set up end-to-end services. Allowing for far more flexibility beyond the 

customer requested service, and with the capability to modify paths and network function nodes to 

be modified (torn down, resized, relocated) at any time particularly in response to changing network 

conditions of the operational network state.  This was a direct solution to the BT Media and Broadcast 

issue of having to build in significant network capacity and lack of adaptability to fluctuations in the 

resource location, types or changing availability, and in recovering from partial or catastrophic failure. 

The advent of NFV is also used within ABNO to leverage IT virtualisation techniques to migrate entire 

classes of network functions (the BT example might include media encoding and storage) requiring 

proprietary hardware onto virtual platforms based on general compute and storage servers, at a far 

cheaper cost point. These virtual function nodes are often known as a Virtualised Network Function 

(VNF), and typically executed on a single VM, or collection of Virtual Machines (VMs), and more 

recently Containers (light-weight Linux machines).  

Furthermore, this virtualisation allows multiple isolated VNFs or unused resources to be allocated to 

other VNF-based applications during weekdays and business hours, facilitating overall IT capacity to 

be shared by all content delivery components, or even other network function appliances. Industry, 

via the European Telecommunications Standards Institute (ETSI), has defined a suitable architectural 

framework and has also documented a number of resiliency requirements and specific objectives for 

virtualised media infrastructures.  
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4.1. ABNO Functional Components 
The research in this document culminates in the development of the ABNO framework, a standards-

based reference framework for flexible control of transport resources. The ABNO framework was 

published by the Internet Engineering Task Force (IETF) and represents an industry acceptance of an 

SDN and NFV capable control framework to meet the requirements of future networks and services.   

The ABNO architecture builds on the establish SDN principles for on-demand and application-specific 

provisioning of network resources, supporting a wide range of applications (e.g. point-to-point and 

point-to-multipoint connectivity in transport networks, capable of providing optimisation of traffic 

paths. The ABNO approach is disruptive when compared to traditional network provisioning model, 

where services are created based on management requests and deployed by network planners. Above 

all, ABNO addresses key requirements gathered during discussions with the worlds largest transport 

network operators, and the challenges of BT’s Media and Broadcast  networks. It was designed to 

integrate multiple technologies and need to provide a wide variety of services in the response of direct 

requests from the customer and application layer. 

A main principle of the ABNO architecture was to leverage several existing technologies for discovering 

and disseminating information about the resources available in a network, regarding topologies and 

their mapping to network resources, for requesting path computations and for provisioning/reserving 

application-aware network services. Therefore, ABNO may be considered as a composition of existing 

components but enhanced with new elements and interfaces. The PCE is a key element and performs 

the role of the “brain” in the ABNO architecture. Its usage is extended to provide application-aware 

path computations and policy enforcement for the set of services supported in ABNO. The deployment 

of stateful PCE is of particular interest in the context of ABNO, mainly for proactive control and 

operation of underlying networks. Further PCE developments to fully utilise the ABNO ambitions will 

be required.  

ABNO consists of nine functional blocks, presented in figure 20 (“Key Functional Blocks of the ABNO 

Architecture”) below.  
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Figure 20 Key Functional Blocks of the ABNO Architecture [55] 

The core of the ABNO architecture is the ABNO controller itself. The controller allows applications and 

NMS/OSS to specify end-to-end path requirements and access path state information. A path request 

triggers the controller to inspect the current network connectivity and resource allocations, and to 

provision a path which fulfils the resource requirements and does not violate the network policy. Also, 

the controller is responsible to re-optimise paths at run-time, taking into consideration other path 

requests, routing state and network errors. The architecture contains an OAM handler to collect 

network error from all network layers. The OAM handler monitors the network and collects various 

performance, alarms, and health notifications from network devices, using OAM protocols like IPFIX 

[56] and NETCONF, which are correlated to distil high-level error reports for the ABNO controller and 

the NMS.  

It is worth noting that the ABNO architecture integrates with the network routing policy through an 

Interface to the Routing System (I2RS) client, this allows direct modification of the control plane and 

applies policy for candidate paths, which could then filter down to the data plane. 

Legacy NMS and OSS 

A Network Management System (NMS) or an Operations Support System (OSS) can be used to control, 

operate, and manage a network.  Within the ABNO framework, an engineer, NMS or OSS may require 

a high-level service directly to the ABNO Controller.   

The NMS and OSS may also need to be consumers of network events reported through the OAM 

Handler, especially relevant when ABNO is used in a legacy network.  ABNO could also be used to react 

to OAM reports as well as displaying them to users and raising alarms.  It certain situations the NMS 

and OSS can also access the Traffic Engineering Database (TED) [57] and Label Switched Path Database 

(LSP-DB), hosted by the ABNO instance, to show the users the current state of the network.  

Finally, the NMS and OSS may utilise a direct programmatic or configuration interface to interact with 

the network nodes within the network, circumventing ABNO entirely. However, any node state change 

will eventually be discovered by ABNO.  
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Application Service Coordinator 

The Application Service Coordinator communicates with the ABNO Controller to request operations 

on the network. Requests may be initiated from entities such as the NMS and OSS, application specific 

interface, and services in the ABNO architecture may be requested by or on behalf of applications 

themselves.  

In the context of this section, the term "application" is a broad one, and defined in RFC7491 and 

quoted below: 

• “An application may be a program that runs on a host or server, and that provides services 

to a user, such as a video conferencing application. Alternatively, an application may be a 

software tool that a user uses to make requests to the network to set up specific services 

such as end-to-end connections or scheduled bandwidth reservations.”  

Furthermore, an application may be a sophisticated control system that is responsible for arranging 

the provision of more complex tasks, such as a virtual private network or inter-data centre 

connectivity. For the sake of ABNO architecture discussion, all of these concepts of an application are 

grouped and shown as the Application Service Coordinator (ASC). In reality (an implementation), the 

function of the Application Service Coordinator may be distributed across multiple applications or 

servers, for scale, speed and resiliency. 

ABNO Controller 

The ABNO Controller component is the main interface to the network for the NMS, OSS, and 

Application Service Coordinator. It manages the provisioning request and other advanced network 

coordination and functions.  The ABNO Controller oversees the behaviour of the network in response 

to changing network conditions and by application network requirements and policies.  It instantiates 

the required components, in a correct sequence,  and applies policies where applicable. 

Policy Agent 

The policy is a very important aspect of the control and management of the transport network.  

Provisioning high bandwidth connections are costly. It is, therefore, significant in deciding how the key 

capabilities and components of the ABNO architecture function. The Policy Agent is responsible for 

propagating those policies into the other components of the system. Simplicity in this discussion 

necessitates leaving out many of the policy interactions that will take place. In our example, the Policy 

Agent is only discussed interacting with the ABNO Controller, in reality, it will also interact with some 

other components and the network elements themselves. For example, the Path Computation 

Element (PCE) will be a Policy Enforcement Point (PEP) [58], and additionally, the Interface to the 

Routing System (I2RS) Client (where applicable) will also be a PEP as noted in [59]. 

OAM Handler 

During discussions with operators and BT, it became clear that Operations, Administration, and 

Maintenance (OAM) [48] plays a pivotal role in the health of the network and overall efficiency. Its 

required for detecting faults, and taking the necessary action to react to problems in the network. 

Therefore, these capabilities must be represented within the ABNO architecture. The ABNO OAM 

Handler is responsible for receiving notifications from the network about potential problems or testing 

newly setup connections, for correlating alerts and alarms, and for instantiating other required 

components of the ABNO platform, for resilience and recover connections that were established by 

the ABNO Controller, based on application requests. The OAM Handler also reports network problems 
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to high-layer OSS and BSS, especially for service-affecting problems, to the NMS, OSS, and Application 

Service Coordinator. Additionally, the OAM Handler interacts with the devices in the network to 

initiate OAM actions within the data plane [4], such as monitoring and testing. 

Path Computation Element  

As discussed previously the PCE is already a highly capable functional component that services 

requests to compute paths across a network graph deployed already in key transport networks for 

managing traffic engineered services.  In particular, it can manage a variety of traffic engineered MPLS 

and GMPLS Label Switched Paths (LSPs), and supports optimisation functions.  By leveraging the PCE 

within ABNO, we inherit key capabilities. The ABNO PCE may receive these requests from the ABNO 

Controller, from the Virtual Network Topology Manager (VNTM), or from network elements 

themselves. 

As discussed, the PCE operates on a view of the network topology, to be accurate and provide relevant 

paths it must be updated to reflect actual state, is stored in the Traffic Engineering Database (TED) 

[57].  A more sophisticated computation may be provided by a Stateful PCE that enhances the TED 

with a database (the LSP) containing information about the LSPs that are provisioned and operational 

within the network. 

Numerous additional functionality developed by the IETF, including the Active PCE, allows a functional 

component that includes a Stateful PCE to make provisioning requests to set up new services or to 

modify in-place services as described in [25,26]. This function may directly access the network 

elements or channelled supported via the ABNO Provisioning Manager. This component also provides 

coordination between multiple PCEs (possible transit domain management entities) each operating 

on a local TED. This proves very useful for automating (and reducing the time for) performing path 

computation in multi-domain or multi-layer networks. Reducing or negating entirely, the need for 

human engineers to traffic engineer a path across multiple transit domains especially if the transit 

domains are operated by different teams or even organisations.  

In the latter case, the ABNO controller will need to request an optimal path for the service.  If the 

domains (ASes) require path setup to preserve confidentiality about their internal topologies and 

capabilities, they will not share a TED, and subsequently, each domain (AS) will operate its PCE.  In 

such a situation, the Hierarchical PCE (H-PCE) architecture, described in [53], is necessary. 

Network Database 

The ABNO architecture includes some databases that contain information stored for use by the 

system. The two main databases are the TED and the LSP Database (LSP-DB), but there may be some 

other databases used to contain information about topology (ALTO Server), policy (Policy Agent), 

services (ABNO Controller), etc. 

Typically, the IGP (like OSPF-TE or IS-IS-TE) are responsible for generating and disseminating the TED 

within a domain. Often in multi-domain and multi-layer environments, it may be necessary to export 

the TED to another control element, such as a PCE, which can perform more complex path 

computation and optimisation tasks.  

Virtual Network Topology Manager 

A Virtual Network Topology (VNT) [60] is defined as a group of one or more LSPs in one or more lower-

layer (server) networks that provide information for efficient path handling in an upper-layer (client) 

network. An example might be: using a set of LSPs in a transport wavelength division multiplexed 
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(WDM) network (server layer), which may provide connectivity as virtual links (client yet) in a higher-

layer IP/MPLS packet switched network. 

The creation of virtual topology within ABNO for inclusion in a network is not a simple activity and will 

require further development. Consideration and selection of which nodes in the upper-layer are best 

to connect, in which lower-layer network to provision LSPs to provide the connectivity, and how to 

route the LSPs. 

Provisioning Manager 

The ABNO Provisioning Manager is responsible for making or directing requests for the establishment 

of connections.  Instructions to the control planes running in the network (via signalling methods such 

as RSVP-TE) or the direct programming of individual network nodes via provisioning protocol, or both 

methods simultaneously.  

South Bound Interfaces 

ABNO Should support both management of existing (legacy) nodes, or where the network devices will 

need to managed (configured) directly from the legacy OSS platforms. Many protocols already exist 

which are capable of performing programming functions, and these must be supported by ABNO, 

examples include:  

• SNMP [61] 

• Network Configuration Protocol (NETCONF) [62] 

• REST-based Configuration (RESTCONF) [63] 

• ForCES [50] 

• OpenFlow Wire Protocol [64] 

• PCEP [24] 

 
The role of the protocols described is to assign a state to the forwarding element, either by 

programming each node individually or via a distributed signalling mechanism. Indeed, the previous 

list is not an exhaustive representation of protocol methods and procedures available, and over time, 

new forwarding mechanisms will be developed. Therefore, the ABNO framework has been designed 

to be forwarding mechanism-agnostic, and able to support future, yet unknown forwarding 

technologies.  
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5. ABNO Architecture Implementation and Testing 
This chapter highlights an important instantiation of ABNO further developed for control of flexible 

optical bitrate services. This ABNO-based control platform was called Adaptive Network Manager 

(ANM) and is described in more detailed in the following sub-sections.   

Often, the primary purpose of a functional architecture is to decompose a problem space and 

separate distinct and discrete functions into capabilities. These can then be evaluated against a 

requirement document and use cases.  It is critical that we consider the core requirements and use 

cases, to ensure we are solving the right problem.  It may also be noted: 

• Architecture is not a blueprint for implementation; 

• Each component are abstract functional units; 

• Functions can be realised as separate software blobs on different processors; 

• Depending on resiliency requirements, functions may be replicated and distributed, or 
centralised; 

• A protocol provides a realisation of the interaction between architectural, functional 
components. 

• Not all interfaces require protocols; often an interface may be internal. 
 

Various acadamic and industry attempts to define and document candidate SDN, and NFV network 

architectures exist, but these are use case specific (mostly enterprise and campus networks) and 

very limited research has been published on large-scale operator use cases. ABNO was one of the 

first control frameworks that truly met the emerging requirements of real-world operators. The 

following sections outline some success stories for ABNO implementation.  

5.1 Adaptive Network Manager (ANM) 

The European Commission funded project “IDEALIST” (BT was a major partner led by Andrew Lord) 

identified the need for a control architecture [56] to combine the best of distributed routing and 

signaling protocols. The ABNO architecture provided real-time adaption and to survive against failures, 

and a centralised intelligence that, on the one hand, provides a point for optimization (e.g. interfacing 

with the planning tool), and capable of interfacing with the higher-applications, including cloud 

platforms and data centre (WAN) inter-connections.  

The control plane functions are based on the well-known GMPLS architecture, while the centralised 

intelligence and interface with applications follow an SDN approach. Thus, the “Adaptive Network 

Manager” (ANM) was the pivotal network controller (underpinned on the ABNO framework), that 

considers not only the Flexi-grid Network but a wider scope, a multi-layer IP/MPLS over optical 

Network. 

Several initial feasibility studies were conducted to ascertain the suitability of the ANBO-based ANM 

platform. The scope and outcomes from these early tests are documented in key papers and journals, 

and my own paper: 

• R. Casellas, R. Muñoz, J.M. Fabrega, M.S. Moreolo, R. Martinez, L. Liu, T. Tsuritani, and I. 

Morita, "Design and Experimental Validation of a GMPLS/PCE Control Plane for Elastic CO-

OFDM Optical Networks," Selected Areas in Communications, IEEE Journal on, vol.31, no.1, 

pp.49,61, January 2013. [66] 

• Aguado, et al., “ABNO: a feasible SDN approach for multi-vendor IP and optical networks,” in 

OFC, Th3I.5, March 2014. [67] 
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• L. Velasco, D. King, O. Gerstel, R. Casellas, A. Castro, and V. López, “In-Operation Network 

Planning,” IEEE Communications Magazine, vol. 52, pp. 52-60, 2014. [68] 

5.1.1 ANM Interfaces 
As the ABNO architecture was generic in its intent, most of the interfaces are defined as concepts. In 

the ANM architecture some modules whose interfaces are not already defined, then HTTP/JSON 

interfaces will be used in these interfaces. There are two reasons: easy development and flexibility for 

the workflows definition. These interfaces will help to have a modular design, which can be adapted 

to the future requirements that may come during the project. If during the project, there are some 

other solutions in the standardisation fora, this has been assessed and where applicable, included in 

the ANM architecture. 

 

Figure 21 Adaptive Network Manager Functional Components and Interfaces [67] 

• IN-APP - This is the interface between the application layer/NMS/OSS and the ABNO 
controller. Application layer makes requests to set up connections or to trigger any other 
workflow using HTTP/JSON. This interface is currently under development in the Internet 
Engineering Task Force (IETF). The parameters of the requested change depending on the 
workflow, but the operation type is always mandatory; 

• IAL-APP - This is the interface between the ALTO Server [70] and Application layer/NMS/OSS, 
where the Application layer acts as an ALTO Client [70]. They communicate using the ALTO 
Protocol [69]. They communicate over HTTP/JSON. An information model has to be defined 
for this interface to support TED, LSPs and inventory requests; 

• IA-I2, II2-N - The Interface to the Routing System (I2RS) [59]; 

• IPA-A, IPA-V, IPA-AL - All the interfaces between the Policy Agent and the modules that 
request it for permission using an HTTP/JSON request; 
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• IA-P - This is the interface between the ABNO controller and the PCE. The ABNO controller 
queries the PCE using PCE, Stateless and Stateful PCEs may be used this interface will 
support requests for both PCEs; 

• IA-V - This interface connects the ABNO controller and the VNTM [60]. They communicate 
through PCEP. 

5.1.2 Adaptive Network Manager (ANM) Network Optimization 
While most networks are designed to survive single failures without affecting customer service level 

agreements (SLAs), they are not designed to survive large-scale disasters, such as earthquakes, floods, 

wars, or terrorist acts, simply because of their low failure probability and the high cost of 

overprovisioning to address such events in today’s network.  

Since many systems might be affected, large network reconfigurations are necessary during large-

scale disaster recovery.  The disaster recovery process is like that of the virtual topology 

reconfiguration after a failure. However, multiple optical systems, IP links, and possible routers and 

OXCs (assuming central offices are affected) may be taken offline during the disaster. Several 

additional planning and operation requirements in response to largescale disasters are highlighted 

below: 

• Consideration of potential IP layer traffic distribution changes, either using MPLS-TE tunnels 

or by modification of IP routing metrics, and evaluating benefits based on the candidate 

topology 

• It may be impossible to reach the desired network end state with one-step optimisations. 

Therefore, two or more step optimisations may be necessary, for example, to reroute some 

other optical connections to make room for some new connections  

• The system must verify that the intermediate configuration after each such step is robust 

and can support the current traffic and possibly withstand additional outages  

• Based on pre-emption and traffic priorities, it might be desirable to disconnect some virtual 

links to reuse the resources for post-disaster priority connections and traffic 

We have described the creation of one disaster recovery plan, but in a real network, there may be 

several possible plans, each with its pros and cons. The tool must present all these plans to the 

operator so that the operator can select the best plan, and possibly modify it and understand how it 

will behave. 
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Figure 22 Control Plane Architecture showing a Multi-Domain Network Using an ABNO-based Controller 

To summarise, the above process consists of several steps: 

1. Immediate action by the network to recover some of the traffic;  

2. Dissemination of new or updated network state; 

3. The root cause analysis to understand what failed and why; 

4. An operator-assisted planning process to come up with a disaster recovery plan; 

5. Execution of the plan, possibly in multiple steps; 

6. Re-convergence of the network after each step and in its final state. 

This scenario for recovering from catastrophic network failures may also be known as “In-Operation 

Network Planning”.   

 

Figure 23 Control Messaging in the ABNO-based Controller Environment [68] 
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5.1.3 Applicability of ABNO to BT Media and Broadcast  
Although ABNO was developed in cooperation with BT applicability to BT Media and Broadcast is 

currently work in progress. A core design principle for BT Media and Broadcast is to create a 

contribution and content network that can be deployed rapidly and in a scalable way. The first element 

to be virtualised is the cache node itself, and then required services such as content monitors and load 

balancers. OpenSource software-based (virtualised) CDN (vCDN) platforms are available, and at BT we 

used the Lancaster University developed OpenCache [72] platform, for our lab testing.   

A key requirement of the vCDN is reconfigurable bandwidth as the content we move from HD content 

at 1080p to 4k streams, and demands change based on time of day and week. Deploying the various 

infrastructure elements of a CDN as a collection of virtual appliances (VNFs) and connecting content 

and access (user networks) with a flexible optical network infrastructure offers significant benefits.  

The following figure describes how an ABNO-enabled network controller would integrate with an NFV-

based CDN and shows its capability to future BT Media and Broadcast CDN network infrastructure. 

 

Figure 24 Candidate SDN & NFV Framework based on the ETSI  NFV ISG Model using ABNO 
 for Contribution Video Distribution [73] 

The functional components and interfaces identified in figure 23 (“Candidate SDN & NFV Framework 

based on ETSI NFV ISG Model using ABNO for Contribution Video Distribution”) above were identified 

to deliver a workable architecture for BT Media and Broadcast [73]. The interfaces are further 

described below: 

1. Os-Ma: an interface to OSS and handles network service lifecycle management and other 

functions 

2. Vn-Nf: represents the execution environment provided by the Vim to a VNF (e.g. a single VNF 

could have multiple VMs) 
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3. Nf-Vi: interface to the Vim and used for VM lifecycle management 

4. Ve-Vnfm: interface between VNF and Vnfm and handles VNF set-up and tear-down 

5. Vi-Ha: an interface between the virtualisation layer (e.g. hypervisor for hardware compute 

servers) and hardware resources 

Using the ABNO-based controller in conjunction with the NFV Management and Infrastructure itself 

would provide the VNFs connectivity over a high-bitrate optical infrastructure, and similar flexibility in 

the IP and Ethernet layer, which until recently with the advent of Elastic Optical Networks, was simply 

not previously available in the optical transport domain.  

This proposal highlighted, and the interfaces identified, are now being considered by BT for 

development into a further “Phase 3 – Trial”. If successful, would form the basis of an operational 

platform for future BT Media and Broadcast services.   
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6. Conclusion  
The efforts described in this thesis to design and build a control platform for next generation transport 

networks have proven very successful. The author of this thesis – who has taken the lead throughout 

these efforts over the past several years – has used his work to directly impact the telecoms 

development of next generation transport controller architectures. Key achievements have been the 

ABNO development effort, the related ABNO documents and papers, standardisation of the 

framework in the relevant industry standards forum, and also coordination of BT’s network operator 

contributions to the framework. The author, as lead researcher, also facilitated ABNO acceptance by 

industry and academia dissemination via papers, resource models used by ABNO, applicability 

statements for ABNO, and also ABNO-based tutorials and workshops. The feasibility of ABNO and its 

subsequent adoption by numerous industry partners, research projects and also within the relevant 

part of the academic world, demonstrates its novelty, relevance and timely adoption.   

Emerging optical technologies are providing a compelling answer for exponential bandwidth 

consumption, and a variety of European Commission projects have utilised ABNO as a solution to the 

lack of automation, service elasticity and reduction in operational complexity and costs when 

compared to traditional techniques.  We have identified that Elastic Optical Networks (EON) and the 

flexi-grid (flexible bit rate) technology offers important benefits and capabilities, including wavelength 

slicing from 100Mb/s up to 200Gb/s, and beyond. Again, ABNO-based controllers have proven more 

than capable and will generate innovative research for many years to come.       

The BT organisation sponsoring the researcher provided the environment for the thesis author to 

develop their ABNO framework and facilitate its application to several use cases, both within BT but 

also within other European operator environments, and telecoms labs. The ABNO framework is being 

considered for BT Media and Broadcast network, utilising on the principles on SDN, NFV and related 

technologies, and initial thoughts are the ABNO framework will offer exciting results. These benefits 

should manifest themselves as new service capabilities and flexibility while reducing costs across 

multiple layers for the transport of BT’s Media and Broadcast services.  

Using an ABNO-based control platform, BT will be able to set up and tear down end-to-end 

connections, via a centralised controller, significantly faster with less protocol complexity compared 

to existing transmission and IP/MPLS networks. Furthermore, using protocol agnostic south-bound 

interfaces and commodity routers and switches will offer a significant reduction in capital costs.  

The feasibility of ABNO and subsequent adoption by numerous industry partners, research projects 

and wider academia, demonstrates its relevance and timely adoption.  Furthermore, ABNO was 

instantiated as an Adaptive Network Manager (ANM) in the H2020 IDEALIST project. Supported by key 

industrial vendors including Ericsson, ADVA and Alcatel (now Nokia) which underscores ABNOs 

industrial usage, as well as academic. Other challenges remain for ABNO, as highlighted in the 

following sub-section 6.2 (“Areas for Further Research”).  

6.2 Research Questions-Findings 
The overall objectives and research described in this document were firmly anchored around three 

initial research questions, these were: 

1. How can we meet Internet bandwidth growth yet minimise network costs? 

Transport networks are used to aggregate traffic pipes from multiple users and services among 

different cities, regions, or continents. Typically, the operation of this infrastructure has been complex 

and was not capable of adapting to significant traffic changes without significant manual input. The 
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ABNO framework approach will help operators to reduce the CAPEX and OPEX in the networks, thanks 

to the optimisation of the resources and the reduction of the complexity in the operation of the 

network.  

2. Which enabling network technologies might be leveraged to control network layers and 

functions cooperatively, instead of separated network layer and technology control? 

The ABNO framework is well-adapted to heterogeneous network environments, avoiding vendor lock-

in (solutions in the market are typically mono-vendor), support for a variety of SDN (including Open 

Flow (OF) networks), facilitating edge-to-edge multi-domain path setup. 

3. Is it possible to utilise both centralised and distributed control mechanisms for automation 

and traffic optimisation? 

A key consideration of the research was to consider if it was feasible and useful to blend both 

distributed and centralised control planes. While the initial findings on the functional benefits of the 

ABNO framework look very promising, adopting an approach where both the hierarchical centralised 

and distributed models may be utilised and exploited is a complex process. The current findings 

discussed in this document highlight that a hybrid control plane deployment model would yield the 

greatest benefits. 

The ABNO-based centralised controller may act as a consistent global database and specific network 

mechanisms to ensure new traffic or service requests are handled consistently. A cluster of ABNO-

based controllers may be deployed, to improve partition tolerance, but the potential issue of network 

resource inconsistency must be considered, and some form of global network state synchronisation 

needs to be provided between controllers. 

By its nature, a distributed control plane will be dynamic, with any link or service state change being 

propagated via the distributed communication mechanisms. If we consider convergence after the 

partition of the network, a traditional distributed control-plane operation provides high survivability, 

fast recovery, and can maintain an accurate state. The centralised controller element may then be 

used to compute end-to-end services that are built across multi-domain and multi-technology 

environments, facilitate network-wide transactions such as specific application grooming and global 

concurrent optimisations.  

Several challenges will stem from stitching heterogeneous environments across multiple technological 

and administrative domain-levels, spanning multiple resource segments. These challenges include 

scaling the control architecture, addressing the potential system complexity of maintaining state 

synchronisation between the SDN Orchestrator and Child Controllers and adapting YANG resource 

models for control of end-to-end services. 

6.3 Areas for Further Research 
The following sub-sections outline key opportunities to continue the investigation and research of 

the ABNO architecture, with a focus on applying ABNO to future networking, including network 

slicing.   

6.3.1 Applicability of ABNO to Slicing as a Service (Saas) and Beyond    
The advent of 5G to serve large-scale deployment of networked sensors, mission-critical services, and 

evolved residential and business applications is an exciting prospect. Automating the provisioning of 

5G services, deployed over a heterogeneous infrastructure (regarding domains, technologies, and 

management platforms), remains a complex task, yet driven by the constant need to provide end-to-
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end connections at network slices at reducing costs and service deployment time. At the same time, 

such services are increasingly conceived around interconnected functions and require allocation of 

computing, storage, and networking resources. 

The provisioning of 5G services (network connectivity, services involving heterogeneous resources) 

and network slicing will require automated connection setup using specific requirements regarding 

quality of service, latency, bandwidth, enabling recovery (protection and restoration), across multiple 

domain and technology layers. This makes ABNO a highly suitable control and orchestration 

architecture.  

Two large European Commission funded projects (H2020 5G “CROSSHAUL” and H2020 5G “METRO-

HAUL” are actively investigating and using ABNO for 5G services and network resource control. While 

the initial findings on the functional benefits of varying control plane deployment scenarios, adopting 

a common approach where both distributed and centralised models can be utilised and exploited, 

would yield the greatest benefits. However, several challenges will stem from stitching heterogeneous 

environments across multiple technological and administrative domains, spanning multiple network 

segments.  

Therefore, significant research work will be required for METRO-HAUL to provide complete 

integration in which constrained 5G services (including end-to-end connections and network slices) 

are allocated in environments spanning multiple administrative domains, supported by 

heterogeneous control planes, while ultimately requiring flexible control and monitoring by the 

instance controller. Furthermore, it is expected that advances related to data analytics (telemetry) 

and machine learning are also required for improved control of 5G services managed by, most likely, 

a hierarchical control system. 

The following sub-sections outline key areas for further ABNO investigation and development for 5G 

networks and services.  

6.3.1.1 Requirements for Network Slicing   

A platform managing network slicing will have to provide the following capabilities, as defined by the 

5G PPP discussion [77], [78]:  

• Resource Slicing: For network slicing, it is important to consider both infrastructure resources 
and service functions, allowing a flexible approach to delivering a range of 5G services both 
by partitioning (slicing) the available network resources to present them for use by an 
application or consumer. It would also provide instances of service and network function at 
the right locations and in the correct chaining logic, with access to the necessary hardware, 
including specific compute and storage resources. Mapping of resources to slices may be 1-
to-1, or resources might be shared among multiple slices; 
 

• Network and Function Virtualization: Virtualization is the abstraction of resources where the 
abstraction is made available for use by an operations entity, for example, by the Network 
Management Station (NMS) of a high-layer network.  The resources to be virtualised can be 
physical or already virtualised, supporting a recursive pattern with different abstraction 
layers. Therefore, virtualisation will be critical for network slicing as it enables effective 
resource sharing between network slices; 
 
Just as server virtualisation makes virtual machines (VMs) independent of the underlying 
physical hardware, network virtualisation will facilitate the creation of isolated (virtual) 
networks, which are then decoupled from the underlying physical transport network; 
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• Resource Isolation: Isolation of data and traffic is a major requirement that must be satisfied 
for certain applications to operate in concurrent network slices on a common shared 
underlying infrastructure. Therefore, isolation must be understood regarding; 
 

• Performance: It is critical that each virtual slice is created to meet specific service objectives 
and performance requirements. These are usually identified as operator Key Performance 
Indicators (KPIs).  Furthermore, performance isolation per slice is required. No network slice 
should be adversely impacted by application or use congestion on other slices; 
 

• Security: Attacks or faults occurring in one slice must not have an impact on other slices, or 
service flows are not only isolated on network edge, but multiple customer traffic is not mixed 
across the core of the network.  
 

• Slice Management: Each slice must be independently viewed, utilised, and managed as a 
separate network. 

 

6.4.1 Orchestration of ABNO-based Controllers in 5G 

Large network operators, like British Telecom, must integrate multiple transport domain technologies 

for next generation transport networks, including 5G. By allowing a single converged network 

infrastructure to deliver multiple service types, with varying characteristics and meeting the dynamic 

demands of large bandwidth, low latency, applications. 

It has been demonstrated that ABNO may directly manage a variety of network devices using multiple 

programming methods, as well as coordinate several control plane instances (such as SDN controllers 

or PCE to provide end-to-end connectivity across multiple transport domains that may be comprised 

of varying technologies or managed by different administrative zones, even within a single operation 

like British Telecom.  

However, a multi-domain network coordination mechanism between ABNO controllers would need 

to be developed. This might sit on top of the ABNO architecture and provide an abstracted and virtual 

view of the tenant's virtual infrastructure exposing topological information.  

6.4.1.1 Reliability of the ABNO Controller  

Any future 5G network will be carrying mission-critical services and connectivity across the network 

will have to be reliable for such services. There are primarily two types of failure recovery mechanisms: 

restoration and protection for the network element and link failures. Restoration is a reactive strategy, 

while protection is a proactive strategy. 

The recovery paths can be either pre-planned or dynamically allocated, but resources are not reserved 

until failure occurs. Additional signaling is required to establish the restoration path when a failure 

occurs. Protection: The paths are pre-planned and reserved before a failure occurs. When a failure 

occurs, no additional signaling is needed to establish the protection path. Compared to the restoration 

scheme, the protection scheme can enable faster recovery without the involvement of the network 

controller when failures are detected. 

Moreover, the required bandwidth and latency during failures can be considerably reduced because 

no interactions are required between switches and the controller. Therefore, for large-scale SDN 

systems, path protection solutions are more favourable to achieve fast failure recovery  
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6.4.1.2 Network Telemetry and ABNO 

Dynamic resource setup and reallocation is critical for 5G operators; however, these capabilities are 

heavily dependent on the ability to measure and collect transport network performance information 

[79], then evaluate network and service quality using a very small set of metrics (including KPIs), then  

providing a network or service diagnosis, or root cause analysis for service disruptions. In parallel, the 

ABNO controller must support network resource scheduling which can adapt to real-time connection 

setup or resizing demands. 

Work has begun on developing telemetry models to support ABNO-based management and recovery. 

Generally, this work would use a YANG-based [76] telemetry model, and a set of candidate models 

and how they would be used have been recently submitted to the IETF as a standardisation activity 

[80].  

6.4.1.3 Securing the ABNO Controller and Network Resources 

Securing the transport network when using a centralised controller and distributed forwarding nodes 

poses significant challenges. By its nature, an ABNO-enabled transport network will encounter 

multiple threat vectors and may be more vulnerable than traditional network architecture. Traditional 

security techniques and solutions may not be applicable, as the transport topology changes and the 

network, forwarding fabric, is reconfigured, new security policies will be inserted, and multiple 

security services must be enabled and monitored. Furthermore, the significant challenge of managing 

the trade-offs between network security, performance and flexibility must also be evaluated, to 

ensure 5G services and networks are hardened to cyber-attacks.  
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7. Impact 
The impact of ABNO is summarised here, covering practical dissemination including academic research 

and collaborative project use (sub-section 7.1 “Research Projects using ABNO”) and industrial use 

(sub-section 7.2 “Industrial Uptake”). The industrial dissemination includes the adoption of ABNO as 

an IETF Internet Standard – RFC7491 [54], which then spawned numerous additional work items 

within the IETF for ABNO-related resource models and interfaces.  

7.1 Research Projects using ABNO 
The ABNO framework and subsequent architecture have been adopted and exploited in numerous 

collaborative research projects; in chronological order, these include: 

FP7 IDEALIST – ABNO Is used as the central management framework for an industry-driven elastic and 

adaptive optical network infrastructure for transport networks. The platform that integrated ANBO 

design principles was Adaptive Network Manager (ANM), which was the network management and 

operation platform developed by IDEALIST for control of the Elastic Optical Networks (EON). The ANM 

platform provided Multi-Layer Path Provisioning, Multi-layer Restoration and Network Optimization 

after Restoration.  

EC FP7 OFERTIE – In the OFERTIE (OpenFlow Experiment in Real-Time Internet Edutainment) project 

we were researching the use of software-defined networking (SDN) to improve delivery of an 

emerging class of distributed applications for the Future Internet known as Real-Time Online 

Interactive Applications (ROIA).  

ABNO was used to enhance the OFELIA testbed facility to allow researchers to request, control and 

extend network resources dynamically. 

EC FP7 DISCUS – The DISCUS project demonstrated a complete end-to-end architecture and 

technologies for an energy efficient and environmentally sustainable optical network. It provided a 

revolution in communications networks applicable across Europe and the wider world exploiting to 

the full the opportunity offered by LR-PONS technology and flat optical core networks to produce a 

simplified and economically efficient infrastructure. The ABNO controller platform was used for the 

distributed DISCUS core, providing high-bandwidth services for all users and services. 

EC FP7 CONTENT – CONTENT developed the next generation ubiquitous converged network to 

support the future Infrastructure as a Service (IaaS) platforms. It provided a technology platform 

interconnecting geographically distributed computational resources that can support a variety of 

Cloud and mobile Cloud services. The connectivity required between mobile and fixed end-users and 

the IT resources was provided by an advanced multi-technology network infrastructure, where 

computational resources are shared and accessed remotely on an on-demand basis in accordance to 

the cloud computing paradigm. 

The ABNO platform facilitated the convergence of wireless and optical network and IT resources in 

support of CONTENT IaaS Cloud services.  

EC FP7 STRAUSS – The STRAUSS project developed highly efficient and global (multi-domain) optical 

infrastructure for Ethernet transport. It's architecture leveraged SDN principles for flexible optical 

circuit and packet switching technologies beyond 100 Gbps. It used ABNO for dynamic virtual network 

reconfiguration over SDN orchestrated multi-technology optical transport domains. 

EC FP7 LIGHTNESS – Developed a metro/core network orchestration platform using a centralised 

ABNO-based decision point responsible for inter-data centre network resources allocation.  
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FI-PPP XIFI – One of the key points XIFI was to use OpenNaaS with network services provided by 

European NRENs and GEANT, enabling an effective orchestration of network resources to facilitate 

the deployment of several Future Internet application scenarios. 

ABNO – Provided a controller for creating a multi-DC community cloud across Europe. It was used to 

facilitate on-demand and application-specific reservation of network connectivity, reliability, and 

resources.  

TOUCAN – The TOUCAN project aims are bold “to achieve ultimate network convergence enabled by 

a radically new technology agnostic architecture targeting a wide range of applications and end users”, 

this required a radically different approach to network resource management, i.e., ABNO.  

H2020 ACINO – Providing infrastructure for application-centric optical and IP network orchestration 

based on ABNO. 

H2020 ORCHESTRA – Using ABNO OAM Handler for optical performance monitoring for enabling 

dynamic networks using a holistic cross-layer, self-configurable approach. 

More recently, ABNO has been adopted to address 5G network control and orchestration 

requirements: 

H2020 5G CROSSHAUL – Developing a 5G integrated backhaul and fronthaul transport network 

enabling a flexible and software-defined reconfiguration of all networking elements in a multi-tenant 

and service-oriented unified management environment. The control platform is ABNO-based. 

H2020 5G METRO-HAUL – Providing all the elements of the transmission, switching, networking, 

compute, and storage, orchestrating dynamic solutions for next generation 5G applications and 

services. The control platform is ABNO-based. 

7.2 Industry Uptake of ABNO 
Contribution to Internet Standards was a key objective during the researchers PhD research period. A 

relevant organisation for ABNO was the Internet Engineering Task Force (IETF). The main method of 

participation is via mailing lists: there is one mailing list for each working group where all topics 

relevant to the working group are discussed. They also attended several IETF meetings where they 

contributed directly using research developed during my PhD.  

The most direct method of contribution is proposing an Internet Draft of a technical solution and using 

a working group to develop the documents that will be progressed towards becoming an RFC. Thus, it 

would be classed as an Internet Standard, Informational Standard, Best Practice Standard, or an 

Experimental Standard.  

An RFC proposal is reviewed by IETF participants, typically engineers from vendors or network 

operators, by researchers, or by scientists in the form of a document describing methods, behaviours, 

research, or innovations. They take many forms: requirements, architecture, protocol specifications, 

and best practices. All apply to the working of the Internet and Internet-connected systems. Each 

proposal is submitted either for review by a working group tasked with a specific technology topic or 

challenge or convey new concepts, information.  

7.3 Personal ABNO Publications  
The following list of the researcher's conference presentations, publications, book chapters, and 

peer-reviewed journals further highlights the impact that ABNO has had on research and industry. 
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• “Software Defined Networks” 

Jan 9, 2012 

UKNOF 21 London 

• “Blending SDN with PCE for Scalable Data Center Service Deployment” 

May 31, 2012 

iPOP (IP over Optical) Tokyo 

• “Computing Protection and Recovery Paths for Data Center Services and Applications” 

Oct 28, 2012 

ISOCORE MPLS Washington 

• “A PCE-based Architecture for Application-based Network Operations” 

Feb 25, 2013 

Internet Engineering Task Force 

• “A Critical Survey of Network Functions Virtualisation (NFV)” 

May 30, 2013   

iPOP (IP over Optical) Tokyo 

• “Using the Path Computation Element to Enhance SDN for Elastic Optical Networks (EON)” 

May 31, 2013   

iPOP (IP over Optical) Tokyo 

• “Adaptive Network Manager: Coordinating Operations in Flex-grid Networks” 

June 23, 2013 

IEEE Transparent Optical Networks (ICTON), 2013 15th International Conference 

• “Network Functions Virtualisation: The New Frontier of Telecoms Innovation” 

Jul 11, 2013 

Multi-Service Networking, Science & Technology Facilities Council, Abingdon, UK 

• “Unification of Formal and De Facto Standards for Abstraction and Autonomic Control of 

the Transport Network” 

Oct 13, 2013 

Layer123 SDN & NFV World Congress 

• “An Architecture for Application-based Network Operations” 

Nov 18, 2013 

MPLS & SDN Washington 2013 

• “In-operation Network Planning” 

Jan 22, 2014 

IEEE Communications Magazine 

• “SDN Testbed Experiences, Challenges and Next Steps” 

Jan 30, 2014 

FP7/FIRE SDN Workshop 

• “NFV: A Real Options Analysis for vEPC” 

Mar 20, 2014 

SDN World Congress & NFV Summit 

• “The Role of PCE in an SDN World” 

Sep 1, 2014 

European Workshop on SDN (EWSDN) 

• “Architecting SDN for Optical Access Networks” 

Sep 28, 2014 

European Conference on Optical Communication (ECOC) 
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• “NFV Impact on European Research and Education” 

Oct 17, 2014 

Layer 123 SDN & NFV World Congress 

• “RFC7491: A PCE-Based Architecture for Application-Based Network Operations” 

March 2015 

Internet Engineering Task Force (IETF) 

• “OpenCache: A Software-defined Content Caching Platform” 

Apr 14, 2015  

IEEE NetSoft 

• “Evolution of OpenCache: an OpenSource Virtual Content Distribution Network (vCDN) 

Platform” May 7, 2015 

Cambridge Wireless, The End of Network Architecture  

• “SDN-based elastic and adaptive optical transport network: findings and future research.” 

Jun 24, 2015 

WDM & Next Generation Optical Networking  

• “The role of SDN and NFV for flexible optical networks: Status, Challenges and 

Opportunities.” 

July 5, 2015 

IEEE Transparent Optical Networks (ICTON)  

• “Using YANG for the dissemination of the Traffic Engineering Database within a software-

defined Elastic Optical Networks.” 

July 5, 2015 

IEEE Transparent Optical Networks (ICTON)  

• “Prospects for the Software Defined Network and Network Function Virtualisation in 

Media and Broadcast” 

Oct 22, 2015 

Society of Motion Picture & Television Engineers (SMPTE)  

• “Elastic Optical Networks: Application-Based Network Operations (ABNO)” (Book Chapter) 

Jun 14, 2016 

Springer Publications 

• “The Software Defined Transport Network: Fundamentals, Findings and Futures” 

July 13, 2016 

Multi-Layer Network Orchestration (NetOrch) 

• “Network-based Telemetry to Facilitate the Programmable Management Plane for Optical 

Transport Infrastructure” 

July 14, 2016 

IEEE Transparent Optical Networks (ICTON)  

• “Baguette: Towards end-to-end service orchestration in heterogeneous networks.” 

Oct 25, 2016 

16th International Conference on Algorithms and Architectures For Parallel Processing 

• “Network Service Orchestration Standardization: A Technology Survey” 

Feb 7, 2017 

Elsevier, Computer Standards & Interfaces  

• “Transport Northbound Interface: The Need for Specification and Standards Coordination” 

May 16, 2017 

IEEE Transparent Optical Networks (ICTON)  
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• “A Yang Data Model for WSON Tunnel” 

June 2017 

Internet Engineering Task Force (IETF) 

• “A Yang Data Model for WSON Optical Networks” 

July 2017 

Internet Engineering Task Force (IETF) 

• “YANG data model for Flexi-Grid media-channels.” 

July 2017 

Internet Engineering Task Force (IETF) 

• “YANG data model for Flexi-Grid Optical Networks.” 

July 2017 

Internet Engineering Task Force (IETF) 

• “YANG models for ACTN TE Performance Monitoring Telemetry and Network 

Autonomics.” 

July 2017 

Internet Engineering Task Force (IETF) 

• “Applicability of Abstraction and Control of Traffic Engineered Networks (ACTN) to 

Network Slicing” 

July 2017 

Internet Engineering Task Force (IETF) 

• “Transport Northbound Interface Use Cases” 

July 2017 

Internet Engineering Task Force (IETF) 

7.4 ABNO Open Source Software 
Various OpenSource instantiations exist of ABNO implementations; these include: 

Netphony Suite 

The Telefonica Netphony suite is a set of Java-based libraries that enable to create an ABNO-based 

centralised control plane. It comprises a set of components, distributed as JAR files, which are hosted 

in publicly available GitHub repositories.  

https://github.com/telefonicaid/netphony-abno 

iONE 

An implementation of the ABNO architecture, named as iONE. The iONE platform consists of a single 

generic configurable module and a set of dynamically linkable workflows. The main application is 

optical spectrum defragmentation and used to experimentally demonstrate iONE's key functions. 

https://ieeexplore.ieee.org/document/7329043/ 

7.5 Transport Network Resource Models and North-bound API 
An ancillary activity that was spawned by the research was the need to develop additional resource 

modes for transport network resources, that would be controlled using an ABNO-based controller. It 

was important that the wider industry accepted these resource models. Therefore the IETF was the 

forum used, and the following models are now being developed towards a further set of RFCs: 

“A YANG Data Model for Flexi-Grid Media-Channels” 

https://tools.ietf.org/html/draft-ietf-ccamp-flexigrid-media-channel-yang 

https://github.com/telefonicaid/netphony-abno
https://ieeexplore.ieee.org/document/7329043/
https://tools.ietf.org/html/draft-ietf-ccamp-flexigrid-media-channel-yang
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“YANG data model for Flexi-Grid Optical Networks” 

https://tools.ietf.org/html/draft-ietf-ccamp-flexigrid-yang 

“A Yang Data Model for WSON Tunnel” 

https://tools.ietf.org/html/draft-ietf-ccamp-wson-tunnel-model 

“A Yang Data Model for WSON Optical Networks” 

https://tools.ietf.org/html/draft-ietf-ccamp-wson-yang 

Transport network domains (OTN and WDM), managed by ABNO would benefit from a well-defined 

open-source interface (API) to each transport network domain controller. This is required for 

operators to facilitate control automation and orchestrate end-to-end services across multi-domain   

networks. These functions may be enabled using standardised data models (e.g. aforementioned 

resource models), and appropriate protocol (e.g., NETCONF and RESTCONF). 

“Transport Northbound Interface Applicability Statement” 

https://tools.ietf.org/html/draft-ietf-ccamp-transport-nbi-app-statement 

This document analyses the applicability of the resource YANG models discussed and being defined 

by the IETF to support control and orchestration across transport domains via a North-bound Interface 

(NBI). 
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• R. Casellas, D. King, et al., "A control plane architecture for multi-domain elastic optical 
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Research – Team

• LU Team

– PhD Supervisors:
• Professor David Hutchinson

• Dr Christopher Edwards

• Dr Nicholas Race

– Research Partner
• Chris Ford, Lancaster University Management School

• Academic Rationale
– Opportunity to investigate an emerging area in computer science and 

telecommunications research.

– Provide useful data and evidence to industry and standards development 
organisations.

• My Industry Experience 
– Bell Labs, Cisco Systems, Redback Networks, Movaz (ADVA), Aria Networks 

– IETF WG Secretary of ROLL, L3VPN, CCAMP and PCE.
• Author: RFC4687, RFC5557, RFC6006, RFC6007, RFC6163, RFC6639, RFC6805. 

• Currently progressing 7 WG documents and 7 individual drafts.



Research – Network and Function Virtualisation
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Research – Investigating the Problem Space

• Evidence gathering 

– “A Critical Survey of Network Functions Virtualization” to help define the problem space

– Qualitative and exploratory study (Eisenhardt 1989, Yin 2009, Thomas 2011)

– Inductive, hypothesis-generating approach

– Guided by tenets of Grounded Theory (Glaser and Strauss 1967, Charmaz 2006, 
Corbin and Strauss 2008, Suddaby 2006) 

• Analysis (Miles and Huberman 1994)

– Detailed coding of interview transcripts (nVivo).

• Development of concepts and their dimensions.

• Intensive review around each concept.

• Interpretation

– Combining memos & concepts into cohesive whole.

• Establishing cross-user connections.

• Identifying industry comparatives to inform analysis (e.g., Human Genome Mapping)

• Writing up

– Develop substantive model and frameworks.

– Construct authentic & plausible arguments (economic and technical) based on evidence.

– Publishing findings and conclusions documents (including IETF informational I-Ds and ETSI 
contributions).
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Research – NFV Concept Development

• European Telecommunication Standards Institute (ETSI)

– Role has been to provide an environment to develop the problem space. 

– Responsibility to publish problem statements, requirements and 
recommendations. 

• ETSI NFV History
– Whitepaper “Network Functions Virtualisation - An Introduction, Benefits, 

Enablers, Challenges & Call for Action”, October 2012.

– Initial concepts discussed at the end of  2012 in ETSI Future Networks 
Workshop. 

– Formal Industry Specification Group (ISG) session in January, 2013. 

– NFV ISG has met twice in 2013, with a third session planned for Bonn in 
July 2013. 
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Research – ETSI NFV ISG Structure
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Technical Steering Committee

Chair & Technical Manager: Don Clarke (BT) 

Vice-Chair: Diego Lopez (TF)

Program Manager: Ning Zong (HW)

Members: ISG Vice Chair + WG Chairs + Expert Group Leaders + Others

NFV ISG Chair

Prodip Sen (VZ)

NFV ISG Vice-Chair

Uwe Michel (DT)

Virtualisation Infrastructure 
Chairs: Steve Wright (AT&T) + YunChao Hu (HW)

Management & Orchestration
Chairs: Diego Lopez (TF) + Raquel Morera (VZ)

Software Architecture
Chairs: Fred Feisullin (Sprint) + Marie-Paule (HP)

Reliability & Availability
Chairs: Naseem Khan (VZ) + Markus Schoeller  

(NEC)

Performance & Portability
Francisco Javier Ramón Salguero (TF)

Security
Bob Briscoe (BT)



Research –NFV ISG Work Contributions
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Research – NFV Interviewees 

• A total of Twenty (20) CSPs have been identified and targeted.

• Discussions and interviews to date:
– British Telecom

– Verizon

– KDDI

– AT&T

– Telefonica

– Telstra

– NTT docomo

– France Telecom

– Deutsche Telekom

• Initial focus on CSPs to gain rich data and develop initial concepts.

• Second round includes vendors and other stakeholders.
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Findings – So Far (1)

• Operators have been independently researching network and 
function virtualisation with hardware and software vendors for 
years.

• “Enablers for NFV?”
– Open Innovation during early stages of process and technology 

development 

– Performance of commodity hardware 

– Success of previous Hosted and Cloud Services

• Most interviews highlighted that industry cooperation is required to:
– Sanity check use cases.

– Apply pressure on vendors.

– Provide the economy of scale for commercial development, deployment 
and operation of NFV-enabled services. 
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Findings – So Far (2)

• Infrastructure Complexity

– Increasing variety of proprietary hardware and dedicated function. 

– Current nodes are fragmented with disparate operation and management.

• Energy Consumption
– Sites are expanding while operators and customers are being directed to 

reduce CO2 emissions.

• Service Deployment 
– The time to specify, procure, integrate and deploy needs to be radically 

reduced. 

– Increased automation of service deployment.

• Rationalisation of Operation Support Systems
– Physical presence and consequent operations per component and site.

– Too many disparate OSS and NMS entities in the network. 
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Findings – Network Functions Virtualisation

• BT Virtualisation Testing from 2012 [1]

• Combined BRAS & CDN functions on 
Intel® Xeon® Processor 5600 Series 
HP c7000 BladeSystem using Intel® 
82599 10 Gigabit Ethernet Controller 
sidecars

– BRAS chosen as an “acid test”

– CDN chosen as architecturally 
complements BRAS

• BRAS created from scratch so minimal 
functionality:

– PPPoE; only PTA, priority queuing; no 
RADIUS, VRFs

– CDN COTS – fully functioning 
commercial product

11

[1] Bob Briscoe, Don Clarke, Pete Willis, Andy Reid, Paul Veitch, “Network Functions Virtualisation”

http://www.ietf.org/proceedings/86/slides/slides-86-sdnrg-1.pdf

http://www.ietf.org/proceedings/86/slides/slides-86-sdnrg-1.pdf
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• Average 3 Million Packets Per Second per Logical Core for 
PPPoE processing.

– Equivalent to 94 M PPS/97 Gbps per Blade = 1.5 G 
PPS/1.5 Tbps per 10 U chassis1.

– Test used 1024 PPP sessions & strict priority QoS

– Test used an Intel® Xeon® E5655 @ 3.0 GHz, 8 
physical cores, 16 logical cores (not all used).

• Scaled to 9K PPPoE sessions per vBRAS.

– Support of 3 vBRAS per server.

• Subsequent BT research:
– Implemented & testing software Hierarchical QoS.

– Results so far show processing is still not the bottleneck.

– Also tested vCDN performance & video quality.

Test 

Id 

Description Result 

1.1.1 Management access Pass 

1.2.1 Command line configuration: add_sp_small Pass 

1.2.2 Command line configuration: add_sub_small Pass 

1.2.3 Command line configuration: del_sub_small Pass 

1.2.4 Command line configuration: del_sp_small Pass 

1.3.1 Establish PPPoE session Pass 

1.4.1 Block unauthorized access attempt: invalid 

password 

Pass 

1.4.2 Block unauthorized access attempt: invalid user Pass 

1.4.3 Block unauthorized access attempt: invalid VLAN Pass 

1.5.1 Time to restore 1 PPPoE session after BRAS reboot Pass 

1.6.1 Basic Forwarding Pass 

1.7.1 Basic QoS - Premium subscriber Pass 

1.7.2 Basic QoS - Economy subscriber Pass 

2.1.1 Command line configuration: add_sp_medium Pass 

2.1.2 Command line configuration: add_sub_medium Pass 

2.2.1 Establish 288 PPPoE sessions Pass 

2.3.1 Performance forwarding: downstream to 288 

PPPoE clients 

Pass 

2.3.2 Performance forwarding: upstream from 288 PPPoE 

clients 

Pass 

2.3.3 Performance forwarding: upstream and downstream 

from/to 288 PPPoE clients 

Pass 

2.4.1 Time to restore 288 PPPoE sessions after BRAS 

reboot 

Pass 

2.5.1 Dynamic configuration: add a subscriber Pass 

2.5.2 Dynamic configuration: connect new subscribers to 

BRAS 

Pass 

2.5.3 Dynamic configuration: delete a subscriber Pass 

2.5.4 Dynamic configuration: delete service provider Pass 

2.6.1 QoS performance – medium configuration Pass 

3.1.1 Command line configuration: add_sp_large Pass 

3.1.2 Command line configuration: add_sub_large Pass 

3.2.1 Establish 1024 PPPoE sessions Pass 

3.3.1 Performance forwarding: downstream to 1024 

PPPoE clients 

Pass 

3.3.2 Performance forwarding: upstream from 1024 Pass 

Findings – Network Functions Virtualisation

“Performance potential to match the performance 

per footprint of  existing BRAS equipment.”

[1] Using128 byte packets. A single logical core handles traffic only in one direction so figures quoted are half-duplex.

[2] http://www.btplc.com/Innovation/News/NetworkVirtualization.htm

http://www.btplc.com/Innovation/News/NetworkVirtualization.htm


Next Steps – Management & Orchestration 

• Management & Service Orchestration 
– Discovery of network resources.

– Routing and path computation.

– Network resource abstraction, and presentation to application layer.

– Multi-layer coordination and interworking.

– Multi-domain & multi-vendor network resources provisioning through different 
control mechanisms (e.g., Optical, OpenFlow, GMPLS, MPLS).

– Policy Control.

– OAM and performance monitoring. 

• Leveraging existing technologies
– What is currently available?

– Integrate with existing and developing standards!
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Next Steps – Management & Orchestration 

• Application-Based Network Operations

– A PCE-based Architecture for Application-based Network Operations

– draft-farrkingel-pce-abno-architecture

• “Standardised” components

– Policy Management

– Network Topology 

• LSP-DB

• TED

– Path Computation and 
Traffic Engineering

• PCE, PCC

– Stateful & Stateless

– Online & Offline

– P2P, P2MP, MP2MP

– Multi-layer Coordination

• Virtual Network Topology Manager 

– Network Signaling & Programming 

• RSVP-TE

• ForCES and OpenFlow

• Interface to the Routing System (I2RS)
14



Next Steps – Currently

• Publish “Survey” results and findings.

• Developing orchestration and provisioning architecture and 
components for NFV applications

– “Application-Based Network Operations (ABNO)” as an IETF Standard

• Documenting technical gaps for resiliency and restoration across 
use cases:

– “Use cases and Requirements for Virtual Service Node Pool Management”

– “An Overview of Reliable Service Nodes Discovery and Provision 
Protocols”

• Build Something!
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Thank You!
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What Is Interesting and New? 

 Secure Inter-domain Routing (SIDR) 

– A long-standing effort making progress 

 Network Virtualization Overlays (NVO3) 

– A new working group starting to focus 

 Interface to the Routing System (IRS) 

– A new proposal with a meeting planned for 

IETF-85 in November 

2 



SIDR 

 Inter-domain routing is fragile 

– “99% of mis-announcements are accidental originations 

of someone else’s prefix” – Google 

– It is possible some mis-announcements are malicious! 

 SIDR aims to address 

– Is an AS authorized to originate an IP prefix? 

– Is the AS-Path represented in the route the same as the 

path through which the NLRI travelled? 

– Is the BGP protocol exchange secure? 

 Non-goal is to prevent all malicious attacks 
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Resource Public Key Infrastructure (RPKI) 

 Public and private key 

– Encrypt with one; decrypt with the other 

 Public key issued by certifying authority 

 X.509 certificates used 

– Tree of certification following address allocation 

– Address prefix is signed and announced with public key 

 Route Origin Authorization 

– A signed prefix and AS number 

– Some support for aggregation 

– BGP advertisement checked against signed ROAs 

 NB.Compute load much less than ACLs 

4 



SIDR Progress 

 Completed frameworks for RPKI and ROAs 

 Completed core infrastructure for RPKI/ROA 

 Mature/completed 

– Protocol for exchanging information between 

RPKI and routers 

– Advertisement validation mechanism 

 Work in progress 

– Security enhancements to BGP 

 Specifically secure the AS-PATH attribute 

5 



SIDR References 

 SIDR Working Group 

http://datatracker.ietf.org/wg/sidr/charter/ 

 RFC 6480 

An Infrastructure to Support Secure Internet 

Routing 

http://datatracker.ietf.org/doc/rfc6480/ 

 Endless presentations at nanog and ripe 

– http://www.nanog.org/presentations/archive/index.php 

 Search for SIDR 

– https://ripe64.ripe.net/programme/meeting-plan/tutorials/ 
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Multi-tenant DC Networking 

IP/MPLS Network 

Storage 

DC DC 

FW LB 

VM-based 
Appliances 

NAT 

VMs on Server 
Blades 

VM VM 

VPN 
PE/GW 

VSw 

 Gateway to the outside world. 

 

 DC Interconnect and connectivity to 

Internet and VPN customers.  

 

 High capacity core node, usually a cost 

effective Ethernet switch; may support 

routing capabilities. 

 

 Top of Rack (ToR) hardware-based 

Ethernet switch; may perform IP routing.  

 

 Virtual Switch (VSw) software based 

Ethernet switch running inside the server 

blades. 

 

 

Top of rack 
Switch 



NVO3 Overview 

 Multi-tenancy has become a core requirement of data centers 

– Including for Virtualized Machines (VMs) and VM multi-tenancy 

 Three key requirements needed to  support multi-tenancy are 

– Traffic isolation 

– Address independence 

– Fully flexible VM placement and migration 

 NVO3 WG considers approaches to multi-tenancy that reside at 

the  network layer rather than using traditional isolation (e.g., VLANs) 

– An overlay model to interconnect VMs distributed across a data center 

 NVO3 WG will determine which types of connectivity services.  

are needed by typical DC deployments (for example, IP 

and/or Ethernet) 

• NV03 WG Will Not develop service provider solutions for wide-area 

interconnect of data centers 

 

 



NVO3 WG Progress 

 NVO3 Working Group 

– First meeting IETF-84 July 2012 

– http://datatracker.ietf.org/wg/nvo3/charter/ 

 

 Problem Statement: Overlays for Network Virtualization 

– Describes issues associated with providing multi-tenancy that require an 
overlay-based network virtualization approach to addressing them 

– Adopted by working group September 2012 

– http://tools.ietf.org/html/draft-ietf-nvo3-overlay-problem-statement 

 

 Framework for DC Network Virtualization 

– Provides a framework for NVO3. It defines a logical view of the main 
components with the intention of streamlining terminology and focusing the 
solution set 

– Adopted by working group September 2012 

– http://tools.ietf.org/html/draft-ietf-nvo3-framework-00 

http://datatracker.ietf.org/wg/nvo3/charter/
http://datatracker.ietf.org/wg/nvo3/charter/
http://datatracker.ietf.org/wg/nvo3/charter/
http://tools.ietf.org/html/draft-ietf-nvo3-overlay-problem-statement
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NVO3 has loads of buzz 

 Internet-Drafts include: 

– Data and  Control Plane 

Requirements 

– Framework  

 Overlay Architecture  

 Addressing 

– Use Cases 

 VPN Applicability 

 Mobility Issues 

– Operational Requirements 

– Security Framework 

 

 



IRS 

 Configuration access to routers tends to be 

– Non-dynamic 

– Granular 

– Non-standard 

 Existing programmatic interfaces target 

– Data plane 

– FIB 

 Need a way to provide high-level input to routing and to extract data 

– Make entries in RIBs 

– Control routing protocols 

– Set policies  

 For policy-based routing QoS, OAM, etc. 

 Security, firewalls, etc. 

 Route import/export 

– Read topology and routing information 
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IRS Framework 
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Data Plane 
FIB 

RIBs and RIB Manager Policy DB 

Routing and 

Signaling 

Protocols 

Topology DB OAM, Events 

and 

Measurement 

IRS Agent 

IRS Client IRS Client 

Router 

Server 

Application Application 

Application 

IRS Protocol & 

Data Encoding 



Questions to Be Answered 

 What is an IRS Application? 

 How does IRS interact with Configuration? 

 Are there already existing protocols and 

encoding languages? 

 How does this relate to OpenFlow? 

 What’s it all for? 
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IRS Use Cases 

 Core routing system manipulation 

– Injection of static routes 

– Control of RIB-to-FIB policy 

– Extraction of RIBs and other data 

 Topology manipulation 

– Extraction of topology and traffic engineering info 

– Creation of virtual links and tunnels 

 BGP policy 

– Import and export policies 

– Route reflector control 

– Flowspec definition and configuration 

 Firewalls 

– Injection of policies 
14 



IRS Plans 

 Post some Internet-Drafts and discuss the idea 

 BoF meeting IETF-85 in Atlanta (November) 

– Assess level of focus and support 

 Maybe form a working group 

– Start with framework, use cases, requirements 

– Write abstract information models 

– Continue to evaluate existing protocols and encoding 

languages 

– Maybe develop new protocols/languages 

– Write data models 
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IRS References 

 IETF-85 BoF Proposals 

http://trac.tools.ietf.org/bof/trac/ 

 IRS discussion mailing list 

http://www.ietf.org/mailman/listinfo/irs-discuss  

 IRS Problem Statement 

http://datatracker.ietf.org/doc/draft-atlas-irs-

problem-statement/  

 IRS Framework 

http://datatracker.ietf.org/doc/draft-ward-irs-

framework/ 
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UK EPSRC-funded Project 
” TOUCAN”

• A UK Funded project

– £6M from the UK Research Council

– £6M from industry partners

– Duration is 5 years from August 2014

• Towards Ultimate Network Convergence (TOUCAN)

– Define technology agnostic architecture for convergence 
based on SDN & NFV primitives

– Facilitate optimal interconnection of any transport 
technology domains, networked devices and data sets with 
high flexibility, resource and energy efficiency

• Industry partners, include:

– BCC, Broadcom, BT, Janet, NEC, Innovate UK, Plextek, 
Samsung 
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TOUCAN Network 
Transport Infrastructure

• TOUCAN Transport network

– JANET Lightpaths and Dark 
Fibre 

– Multi-Datacenter 
interconnections

– 1/10/40 Gigabyte transport 
infrastructure 

– Regional connectivity 

– Ongoing deployment of  
evolving transport 
technologies
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• Wide range of  end-devices and 
applications

– Smart city infrastructure

– Fiber-based broadband 

– Cloud applications

– NFV-based Services

– Academic campus and testbed 
connectivity and experimentation 

TOUCAN Applications
Testbeds & Services



TOUCAN High-level Architecture 
Functional Components and Relationships
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TOUCAN Interoperability Challenges 
A need for “Open Standards” and applied solutions 

• How to ensure interoperability within TOUCAN, and beyond the project?
– Software has come to dominate what we perceive as "the Internet" and the "agile” development model 

has created an exponential curve in the rate of innovation

• Standards Development Organisations (SDOs)
– We found SDOs appear incapable of defining and maintaining their boundaries, and new technology 

study groups are exploding across them

– Most organisations are self-perpetuating

• Code is King
– Although code is “coin of the realm” in Open Source Software (OSS) projects, code is not always 

normative

• Conclusion? We still need Standards, but they must be applied!
– A question of relevance and NOT existence 

– More coordination between SDOs, avoiding dilution of effort and resources, and CONFUSION
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• TOUCAN Transport network control goals

– Facilitate seamless interconnection, abstraction and slicing, of transport network technology domains

– Extreme flexibility in data throughput, high adaptability, and underlying transport resource efficiency 

– Enable seamless application-level infrastructure programmability via automated APIs

• ACTN Design principles

– Agnostic Resource Sharing 

• Efficient resource sharing for multiple underlying forwarding and function technologies

– Programmability

• Pragmatic approach to repurpose existing and well-defined technologies, and underpinning them with SDN principles

– Automation 

• Enables heterogeneous transport domain networking, management technologies (e.g., GMPLS, ASON, PCE, NMS/EMS,) 
while allowing logically centralised control and orchestration of resources

– Slicing

• Virtual network automation using abstraction, slicing and in-operation optimisation, of underlying resources for higher-layer 
services, independent of how the underlay domain resources are managed or controlled 

7

TOUCAN Transport Infrastructure Objectives
Abstraction and Control of Transport Networks (ACTN)



Resource 
Descriptions

WSON YANG

FLEXI YANG

LIFI YANG

Resource 
Discovery & 
Abstraction

PCEP-LS

BGP-LS

Rest/YANG

Controller 
Hierarchy 

Stateful 
Hierarchical PCE

Virtual Network 
Control

PCEP VN 
Association

Controller State 
Synchronization

PCEP State 
Synchronization 

Ensuring TOUCAN Platform Interoperability 
ACTN Building Blocks

8



Resource Models for TOUCAN 
Optical Resource Modeling

• Objectives

• To provide automated  interfaces (models) of optical and transport resources to controllers and orchestration layers (including the 
TOUCAN platform)

– Effort so far

• Define requirements of TOUCAN architecture for optical transport resource modeling 

• Survey of existing work in IETF and other industry groups for transport service modeling

• Coordinate proposals with leading vendors to adopt ideas and suggestions from TOUCAN into IETF for industry standardisation 

• Proposed a new service model for connection-orientated SDN transport, being discussed in the Traffic Engineering and Signaling 
(TEAS) Working Group

– Success so far 

• Proposed a new data model for WSON, which has been accepted by the IETF

– Wavelength Selective Optical Networking YANG Model
https://tools.ietf.org/html/draft-ietf-ccamp-wson-yang

• Proposed a new data mode for Flexi-Grid, under consideration by the IETF

– Flexi-Grid YANG Model 
https://tools.ietf.org/html/draft-vergara-ccamp-flexigrid-yang

https://tools.ietf.org/html/draft-ietf-ccamp-wson-yang
https://tools.ietf.org/html/draft-vergara-ccamp-flexigrid-yang


• Objectives
– To take principles and ideas from TOUCAN and coordinate within industry to facilitate virtual network operation, creation of a 

virtualized environment allowing network operators to view, control, and partition, multi-domain networks 

– As transport networks evolve, the need to provide network abstraction has emerged as a key requirement for operators, underlying
the industry impact of TOUCAN research objectives

• Effort so far
– Developed a problem Statement for Abstraction and Control of Transport Networks

tools.ietf.org/html/draft-leeking-actn-problem-statement

– Agree a framework for Abstraction and Control of Transport Networks with industry technology leaders: Young Lee (Huawei), 
Daniele Ceccarelli (Ericsson), Daniel King (University of Lancaster), Sergio Belotti (Alcatel-Lucent), Luyuan Fang 
(Microsoft), Dhruv Dhody (Huawei), Diego Lopez (Telefonica), Gert Grammel (Juniper)
tools.ietf.org/html/draft-ceccarelli-actn-framework

• Success so far
– ACTN Framework proposal has been accepted by the IETF Traffic Engineering And Signaling (TEAS) working group, providing 

a cornerstone for convergence of transport networks

Ensuring TOUCAN Platform Interoperability 
Abstraction and Control of Transport Networks (ACTN)

https://tools.ietf.org/html/draft-leeking-actn-problem-statement-03
https://tools.ietf.org/html/draft-ceccarelli-actn-framework-07


Northbound Interface for TOUCAN 
Service Modeling

• Objectives 
– Using to TOUCAN investigations and findings to facilitate standardisation of the Northbound Interface from the 

Controller to the Orchestrator 

• Effort so far
– Survey, Requirements and Functions of YANG Models for the Northbound Interface of a Transport Network 

Controller 
https://tools.ietf.org/html/draft-zhang-ccamp-transport-yang-gap-analysis

– https://tools.ietf.org/html/draft-zhang-ccamp-transport-ctrlnorth-yang

– Proposed a YANG Model for Connection-oriented Transport Services
https://tools.ietf.org/html/draft-zhang-teas-transport-service-model

• Success so far
– No proposal has yet be formally adopted by the working group but we expect to make progress at IETF 97 

(November) 
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IEEE LiFi Data 

Plane 

Specification

TOUCAN Architecture
Data Models and Info Models 
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Ensuring TOUCAN Platform Interoperability 
Abstraction and Control of Transport Networks (ACTN)

• Blending: Standards, Open Source and Interoperability Testing
– Creating a feedback loop for development and deployment 
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• IETF

• ITU-T

• ONF

Specifications and 
Standards

• ONOS

Open Source  Project 
Code Contributions

• Multi-vendor 

• Multi-platform

• Multi-domain 
technology

Real

Implementations



ACTN Building Blocks
ONOS PCEP Implementation
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ONOS 
(Domain 3)

ONOS

ONOS
(Domain 2)

ONOS 
(Domain 1)

ACTN APP

PCEP
Speaker

PCEP
Speaker

PCEP
Speaker

PCEP
Speaker

• Stateful H-PCE logic

• Multi-Domain Coordination

• Virtual Network Operation  

MDSC: Super Controller

PNC

PCEP Interface 

(Controller-Controller)

PCEP Interface

(SBI)

ACTN APP ACTN APP ACTN APP

• Recursive Interfaces 

• Binary interface

• Hierarchical PCE 

•Resource Discovery

•Resource Reservation



ACTN Code Contributions
ONOS Timeline
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Basic ACTN

• Stateful H-PCE
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Abstraction and Control of Transport Networks (ACTN) 
ACTN Summary & Code Current Status 

• Working together with SDOs , Open Source projects and PoC demos for early, and often, implementations

• Open ACTN wiki: https://sites.google.com/site/openactn/ for specification and reference information 

• YANG Models GitHub

• ONOS GitHub: 

– https://github.com/opennetworkinglab/onos/tree/master/protocols/pcep

– https://github.com/opennetworkinglab/onos/tree/master/protocols/bgp

• Support from vendors, operators and research/academia: Ericsson, Huawei, ALU, Infinera, KDDI, CMCC, 
China Telecom, Telefonica, SKT, KT, Microsoft, U. of Lancaster, U. of Bristol, BUPT, ETRI, CATR, etc. 

• First industry multi-layer, multi-domain packet optical demo across multiple platform is planned in November 
2016 (IETF 97, Seoul, Korea.)
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Thank You!
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Recent Optical Network Developments 
The Elastic Optical

• Elastic Optical Networks
– Photonic Integrated Circuit (PIC) technology

• Paving the path towards cost effective transmission schemes beyond 100Gbps.

– Digital Coherent and SuperChannel technology solutions

• Variable >100Gbps client signals and cost effective >100Gbps transponders 

• Capable of long reach up to 400Gbps without regeneration   

– Cost effective and flexible transponders 

• The Sliceable-Bandwidth Variable Transponder (SBVT). 

– Reduce bandwidth to extend reach

– More spectrum to extend reach

– More bandwidth over short reach

• Flexi-grid
– A variable-sized optical frequency range.

– ITU-T Study Group 15 (www.itu.int/rec/T-REC-G.694.1)



What do we mean by SDN?

• Software
• It’s all software!

• We are looking for automation

• Tools and applications

• Driven or Defined
• Does it matter?

• Networks
• Management of forwarding decisions
• Control of end-to-end paths
• Whole-sale operation of network

• The goals of commercial SDN networks
• Make our networks better
• Rapidly provide cool services at lower prices
• Reduce OPEX and simplify network operations
• Enable better monitoring and diagnostics
• Make better use of deployed resources

• Converged services are the future
• Converged infrastructure is the future
• There is a significant element of centralisation



Building a Functional Architecture

• The purpose of a functional architecture is to decompose a problem space
– Separate distinct and discrete functions into separate components
– Identify the functional interactions between components

• An architecture is not a blue-print for implementation!
– Components are abstract functional units
– They can be realized as separate software blobs on different processors
– Or they can all be rolled into one piece of spaghetti code
– And they can be replicated and distributed, or centralized

• A protocol provides a realization of the interaction between two functional components
– You only need to use it when the components are separated

• There have been many useful attempts to document architectures for SDN and NFV

• Our work has tried to present a wider picture
– Address a range of network operation and management scenarios
– Encompass (without changing) existing profiles of the architecture
– Embrace SDN and NFV without becoming focused or obsessed with them
– Highlight existing protocols and components



Application-Based Network Operation (ABNO)

• Application-Based Network Operations

– A PCE-based Architecture for Application-based Network Operations

– draft-farrkingel-pce-abno-architecture

• Network Controller Framework

– Avoiding single technology domain “controller” architecture

– Reuse well-defined components and protocols

• Discovery of network resources and topology management.

• Routing and path computation

• Multi-layer coordination and interworking

• Policy Control

• OAM and performance monitoring

• Support a variety of southbound protocols

– Leveraging existing technologies, support new ones

• Integrate with defined and developing standards, across SDOs



ABNO 
Functional Components 

• “Standardized” components 

• Policy Management

• Network Topology 
– LSP-DB

– TED

– Inventory Management 

• Path Computation and 
Traffic Engineering

– PCE, PCC

– Stateful & Stateless

– Online & Offline

– P2P, P2MP, MP2MP

• Multi-layer Coordination
– Virtual Network Topology Manager 

• Network Signaling & Programming 
– Optical (GMPLS/RSVP-TE)

– ForCES

– OpenFlow

– Interface to the Routing System 

– Future technologies: Segment Routing & Service Function Chaining



• A richer function-set based on the same concepts

• Enables the use of OpenFlow and other protocols

• There are implementation/deployment choices to be made

Controllers

Orchestrator

Applications

OpenFlow

OpenFlow Northbound

Application-controller plane i/f

Minimum required for SDN controller of infrastructure

ABNO Controller

Applications

PCE

Provisioning Manager

Controllers

Application Service Coordinator

OAM
Handler

PCEP

Choices

Choices

What is required for commercial 
deployment of SDN control 
platforms for real networks

I2RS

Compare ABNO with SDN Architecture



FP7 IDEALIST Adaptive Network Manager 
Based on an ABNO architecture 

OSS Entity

ABNO ControllerPolicy 
Agent

ALTO 
Server

Databases 
TED 

LSP-DB

Provisioning Manager

Client Network Layer (L3)

Server Network Layer (L0)

I2RS 
Client

L3 
PCE

1

3

4

VNTM

L0 
PCE

2

6

5

ABNO Operation

1. OSS Entity requests for a path between two L3 
nodes.

2. ABNO Controller verifies OSS Entity user rights 
using the Policy Manager.

3. ABNO Controller requests to L3-PCE (active) for 
a path between both locations.

4. As L3-PCE finds a path, it configures L3 nodes via 
the Provisioning Manager.

5. Provisioning Manager configures L3 nodes using 
the required interface (RSVP-TE)

6. Response of successful path setup sent to ABNO 
Controller

7. ABNO Controller notifies the OSS Entity that the 
connection has been 
set-up.

OAM 
Handler



FP7 IDEALIST Findings
ABNO Related Articles & Developments

• Publications (just a few) 
– In-Operation Network Planning

IEEE Communications Magazine

– Experimental Demonstration of an Active Stateful PCE performing Elastic Operations and Hitless 
Defragmentation
ECOC European Conference on Optical Communications

– Planning Fixed to Flexgrid Gradual Migration: Drivers and Open Issues
IEEE Communications Magazine

– Dynamic Restoration in Multi-layer IP/MPLS-over-Flexgrid Networks
IEEE Design of Reliable Communication Networks (DRCN)

– A Traffic Intensity Model for Flexgrid Optical Network Planning under Dynamic Traffic Operation
OSA Optical Fiber Communication (OFC)

– Full list of IDEALIST publications: www.ict-idealist.eu/index.php/publications-standards

• Standards Input
– A PCE-based Architecture for Application-based Network Operations

draft-farrkingel-pce-abno-architecture

– Unanswered Questions in the Path Computation Element Architecture
tools.ietf.org/html/draft-ietf-pce-questions



Additional EC Projects
ABNO Actively being investigated and developed

• FI-PPP XIFI (wiki.fi-xifi.eu) Creating a multi-DC community cloud across Europe.
– Flexible User Interface 

– Federated Cloud and Service Management

– Dynamic Network Management 

– Resource Monitoring

• FP7 OFERTIE (www.ofertie.org) Enhances the OFELIA testbed facility to allow researchers to 
request, control and extend network resources dynamically.

• FP7 DISCUS (discus-fp7.eu) Distributed Core for unlimited bandwidth supply for all Users and 
Services

• FP7 CONTENT (content-fp7.eu) Convergence of Wireless Optical Network and IT Resources in 
Support of Cloud Services 

• FP7 PACE (ict-pace.net) - Next Steps for the Path Computation Element 
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Old Dog Consulting 

What shall we talk about? 

• The Path Computation Element (PCE) 
• What it is and where it comes from 
• How it is being used and what are the future plans 

• SDN and NFV 
• What do we mean with these terms? 
• Is there a need for path computation? 

• Application-Based Network Optimization (ABNO) 
• An “all-embracing” architecture or SDN and NFV 
• Where does PCE fit in ABNO? 
• What further work is needed? 

• ABNO-centric implementations and research 
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Old Dog Consulting 

• PCE: Path Computation Element - “An entity (component, application, or network node) that is 
capable of computing a network path or route based on a network graph and applying 
computational constraints.” from RFC 4655 

• That means that a PCE is a functional component in an abstract architecture. 
• It’s purpose is to determine paths though a network 
• It operates on a topology map (the Traffic Engineering Database – TED) 

• Nodes and links == connectivity graph 
• Node constraints and link constraints == metrics and capabilities 
• Learned from the routing protocol in the network, or from the inventory  database, or direct from the network nodes 

• It can be realised as a component of an existing device (NMS, router, switch) or as a 
dedicated server (or virtualised service) 

• Benefit of identifying PCE as a separate service… 
• Offload CPU-heavy computations 

• Provide advanced and sophisticated algorithms 

• Coordinate computation across multiple paths 
• Operate on an enhance TED 

• Primary initial purpose was for Traffic Engineered MPLS LSPs 
• Rapidly picked up for optical transport networks 

 

The PCE – A short history 
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Old Dog Consulting 

Deployment Models for PCE 

• The Path Computation Client (PCC) may be co-located with the PCE or separate 

PCE 

PCE NMS 

PCE 

PCE 
NMS 
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Old Dog Consulting 

Deployment models can be seen as theology 

• There is a range of 
theologies 
– There is one God who sees 

and controls everything 

– There is a single God who 
answers prayer, but you 
have free choice 

– There are many gods each 
with different 
responsibilities 

– We all contain an element 
of God 

• PCE can be placed in a 
number of places 

– In a central provisioning 
server (NMS) 

– In a dedicated computation 
server 

– There may be multiple PCEs 
with different capabilities in 
different parts of the 
network 

– The PCE function can be 
distributed into the routers 

• How you choose to use PCE depends on how you like to operate your network 
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Old Dog Consulting 

The PCE Protocol (PCEP) 

• The PCE architecture originates in the IETF 
• The main focus of the IETF is to specify protocols 

• PCEP is the request/response protocol for accessing the services of a PCE 
• Session-based carried over TCP 

• Like PCE, PCEP had a very narrow purpose 
• Simple path computation request/response for MPLS-TE LSPs 

• Initial proposals and early implementations 
• Used RSVP-TE Path messages 

• It is “kind of obvious”: that is exactly what we will signal 
• Just use the TCP session to give context to the usage 

• It really worked 

• But was that really extensible? 
• Even in the MPLS-TE context we needed multiple extensions 
• RSVP has a lot of baggage 

• Result: 
• A new container protocol and re-use of RSVP objects 

 

PCC PCE 

PCReq 

{source, destination, 
 constraints, 
 objective function} 

PCRsp 

{source, destination, 
 explicit path,  
 signalling attributes} 

6 of  34 



Old Dog Consulting 

The PCE – some more history 
• Packet networks have not been a roaring success for PCE 

• Initially, only Cisco implemented 

• It is implemented and deployed 

• Main use cases are  

• Dual-homed IGP areas 

• Centrally controlled TE domains 

• There is a huge amount of research and experimentation 

• More than 20 projects funded by the EU have PCE as a core component 

• A number of operators have in depth experimentations 

• Commercial and Open Source Implementations 

• Software stacks from Metaswitch and Marben 

• But these are PCEP implementations, not full PCEs 

• Several Open Source implementations exist 

• Hardware vendors 

• Network operators 

• The best take-up for PCE so far is in optical networks 
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Old Dog Consulting 

Evolution 

• PCE evolved very quickly after it was invented 

• Advanced PCEP encodings for non-packet environments 

• PCEP extensions for coordinated path computations 
• Path protection 

• Network re-optimisation 

• Cooperating PCEs for multi-domain applications 

• Applicability to sophisticated services such as point-to-multipoint 

• Hierarchical PCE for selection of paths across multiple domains 

• And evolution continues today 
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Old Dog Consulting Cooperating PCEs 
• The first “interesting” problem for PCE was inter-domain TE 

• “A domain is any collection of network elements within a common sphere of address 
management or path computation responsibility.” RFC 4655 

• An IGP area or an Autonomous System 
• An optical island 

• Nodes in one network cannot see into other networks 
• PCEs must ask each other for advice 

 

 

 
 

   

 
 

 

 

 

Ingress 

Egress 

PCE 

A 

D 

C 

B 

2. Thinks… 

“Route through 

A looks best” PCE 

4. Thinks… 

“Route through D 

would be best” 

1. I want to reach 

the Egress 

3. How should I 

reach the Egress? 

X Y 

5. I want to reach 

the Egress 
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Old Dog Consulting 

Hierarchical PCE 
• How do I select a path across multiple domains? 

• Parent PCE (pPCE) has 
• An overview topology showing connectivity between domains 
• Communications with each Child PCE (cPCE) 

• Parent can selectively and simultaneously invoke children to assemble an end-to-end path 

cPCE1 
cPCE2 

cPCE3 cPCE4 

cPCE5 

 
 

 

 

 

 
 

 

 

 

 

Parent 
pPCE 

Ingress 

Egress 
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Old Dog Consulting 

The Stateful PCE 
• The “classic” PCE uses network state stored in the TED 

• This information may be gathered from the network 
• Passive participation in the IGP 
• Export from the network using BGP-LS 

• Or it may be gathered by “other mechanisms” (RFC 4655)  
• Inventory, management systems, configuration export 

• There is also transitory per-computation state in the PCE 
• This allows bulk computation or  “Please compute a path considering this other LSP” 

• A Stateful PCE is aware of other LSPs in the network 
• A PCE could retain knowledge of paths it previously computed 
• Or it may gather information about LSPs as exported from the network 

• BGP-LS 
• PCEP 

• “Yes, I used that path you gave me” 

• “Here are some other LSPs I know about” 

• A Stateful PCE is able to do more intelligent path computation 
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Old Dog Consulting 

The Active PCE 
• An Active PCE is able to advise the network 

• About more optimal paths 

• When congestion is a problem 

• As far as the protocol is concerned, it is only a small step 

• The PCC can say “Please worry about these LSPs for me.” 
• Delegation of LSPs from the PCC to the PCE 

• The PCE can say “Here is a path you didn’t ask for.” 
• For delegated LSPs or for new  LSPs 

• This enriches PCEP 

• From a request/response protocol 

• To become almost a configuration / provisioning protocol 

• Architecturally it is “interesting” 

• PCEP used to be the language spoken by the computation engine (PCE) 

• Now it is the language spoken by the network management system (NMS) that has a computation component 

• That doesn’t make it wrong. It does make it different 

• It also opens up PCEP as an SDN protocol as we will see later 
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New Networks and PCE 
• New IETF effort : SPRING Working Group 

• Source Packet Routed Networking 
• Path through the network is predetermined for each packet  
• Path is encoded in the packet header as a series of hops 
• Some form of path computation is required 

• Could be as simple as SPF 
• May achieve load balancing 
• Might assign flows to different quality paths (delay, jitter, reliability, etc.) 

• Service Function Chaining 
• Another new IETF effort : SFC Working Group 
• A Service Function Chain is an ordered list of service functions and servers 

• That means some form of path computation is necessary 

• Deterministic wireless networks 
• For example Timeslotted Channel Hopping (TSCH) - IEEE802.15.4e 
• Path planning is an important aspect of operating these networks 

• PCE is being investigated as a tool for these new networks 
• What that really means is that PCEP extensions are being proposed 
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What do we mean by “SDN”? 

• Software 
• It’s all software! 

• We are looking for automation 

• Tools and applications 

• Driven or Defined 
• Does it matter? 

• Networks 
• Management of forwarding decisions 
• Control of end-to-end paths 
• Whole-sale operation of network 

• The goals of commercial SDN networks 
• Make our networks better 
• Rapidly provide cool services at lower prices 
• Reduce OPEX and simplify network operations 
• Enable better monitoring and diagnostics 
• Make better use of deployed resources 

• Converged services are the future 
• Converged infrastructure is the future 

 
• There is a significant element of centralisation 
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Bringing PCE to the SDN Feast 
• PCE is an essential element for planning services in any network 

• An Orchestrator cannot orchestrate without determining how traffic will flow through the network 
• And that means that an Orchestrator needs path computation function 

• Whether the PCE is built into the Orchestrator or lives as a separate component is an implementation choice 

• A Controller cannot control more than a single node without determining how traffic will flow through a set 
of nodes 

• And that means that a Controller may need path computation function 

• Whether the PCE is built into the Controller or lives as a separate component is an implementation choice 
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Old Dog Consulting PCEP as an SDN Protocol 
• It is a simple step beyond an Active, Stateful PCE 

• Instead of suggesting LSPs, a PCE can provision LSPs 

• Now PCEP can be seen as a full-scale provisioning protocol 
• I can provision anything for which I might have asked for a path 

• End-to-end LSPs 
• A fragment or segment of an LSP 
• The forwarding instructions on a single node 

• Now PCE can be integral to the SDN components 
• I can use PCEP as an SDN Controller protocol 
• And/or as the Orchestrator-to-Controller protocol 

• This raises the question of “competition” with OpenFlow which we will address later 
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Can we define “NFV”? 

• Operators use a variety of proprietary appliances to provide network functions when delivering 
services  

• Deploying a new network function often requires new hardware components  
• Integrating new equipment into the network takes space, power, and the technical knowledge 
• This problem is compounded by function and technology lifecycles which are becoming shorter as innovation 

accelerates 

• The concept of virtualization is well-known and has been used for many years 
• Operating system virtualization (Virtual Machines) 
• Computational and application resource virtualisation (Cloud Computing) 
• Link and node virtualisation (Virtual Network Topologies) 
• Data Center Virtualisation (Virtual Data Center) 

• Network Function Virtualization  
• Virtualize the class of network function 
• Replace specialist hardware with instances of virtual services provided on service nodes in the network 
• Enables high volume services and functions on generic platforms 

• Virtualizing network connectivity for services and applications is just another facet of NFV  
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SDN & PCE as enablers for Network Virtualization 
• Consider Transport SDN as an example 

• Integrates Packet, TDM, and Optical Layer into a single converged network 

• Requires centralized control functions including resource computation 

• Uses southbound control interface 
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Harnessing the Unicorn 

• We’ve established that PCE is a wonderful thing 

• We know that SDN and NFV offer a bright future for networking 

• How do we bring PCE fully into the picture and make it work for us? 
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Building a Functional Architecture 

• The purpose of a functional architecture is to decompose a problem space 
• Separate distinct and discrete functions into separate components 
• Identify the functional interactions between components 

• An architecture is not a blue-print for implementation! 
• Components are abstract functional units 
• They can be realized as separate software blobs on different processors 
• Or they can all be rolled into one piece of spaghetti code 
• And they can be replicated and distributed, or centralized 

• A protocol provides a realization of the interaction between two functional components 
• You only need to use it when the components are separated 

• There have been many useful attempts to document architectures for SDN and NFV 

• Our work has tried to present a wider picture 
• Address a range of network operation and management scenarios 
• Encompass (without changing) existing profiles of the architecture 
• Embrace SDN and NFV without becoming focused or obsessed with them 
• Highlight existing protocols and components 
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Application-Based Network Operation (ABNO) 

• Application-Based Network Operations 
• A PCE-based Architecture for Application-based Network Operations 
• draft-farrkingel-pce-abno-architecture 

• Network Controller Framework 
• Avoiding single technology domain “controller” architecture 
• Reuse well-defined components and protocols 

• Discovery of network resources and topology management. 
• Routing and path computation 
• Multi-layer coordination and interworking 
• Policy Control 
• OAM and performance monitoring 

• Support a variety of southbound protocols 
• Leveraging existing technologies, support new ones 

• Integrate with defined and developing standards, across SDOs 
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Old Dog Consulting ABNO – Functional Components 
• “Standardized” components  

• Policy Management 

• Network Topology  

• LSP-DB 

• TED 

• Inventory Management  

• Path Computation and  
Traffic Engineering 

• PCE, PCC 

• Stateful & Stateless 

• Online & Offline 

• P2P, P2MP, MP2MP 

• Multi-layer Coordination 

• Virtual Network Topology Manager  

• Network Programming and Signallling 

• ForCES 

• OpenFlow 

• Interface to the Routing System  

• PCEP 

• RSVP-TE 
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Old Dog Consulting Compare ABNO with SDN Architecture 
• A richer function-set based on the same concepts 

• Enables the use of OpenFlow and other protocols 

• There are implementation/deployment choices to be made 

Controllers 
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Applications 
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Application-controller plane i/f 
ABNO Controller 

Applications 

PCE 

Provisioning Manager 

Controllers 

Application Service Coordinator 

OAM 
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PCEP 

Choices 

Choices 

Minimum required for SDN controller of infrastructure 

What is required for 
commercial deployment 
of SDN control platforms 
for real networks 

I2RS 
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ABNO Implementation and Research 

• There are a number of experimental implementations of ABNO 
• Most notable was a demonstration of Packet-Transport Integration 

• Packet devices from Juniper Networks 

• Optical devices from Infinera 

• ANBO-based Transport SDN from Telefonica 

• Telefonica has also tested with ADVA and Ciena 

• Multiple research projects examining the use of ABNO… 
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FP7 “IDEALIST” Project  

• Industry-Driven Elastic and Adaptive Lambda Infrastructure for Service and 
Transport (IDEALIST) Networks  

• The work is partially funded by the European Community’s Seventh Framework Programme FP7/2007-
2013 through the Integrated Project (IP) IDEALIST under grant agreement nº 317999.  

• www.ict-idealist.eu 

• The network architecture proposed by IDEALIST is based on four technical 
cornerstones: 

• An optical transport system enabling flexible transmission and switching beyond 400Gbps per channel 
• Control plane architecture for multi-layer and multi-domain optical transport network, extended for 

flexi-grid labels and variable bandwidth. 
• Dynamic network resources allocation at both IP packet and optical transport network layer 
• Multilayer network optimization tools enabling both off-line planning, on-line network reoptimization 

in across the IP and optical transport network 
• These tools are called Adaptive Network Management (ANM) 

• They are based on the ABNO architecture 
• Implementations exist! 

25 of  34 

http://www.ict-idealist.eu/
http://www.ict-idealist.eu/
http://www.ict-idealist.eu/


Old Dog Consulting 

FP7 IDEALIST Findings - Articles & Input to SDOs 
• Publications (just a few)  

• In-Operation Network Planning 
IEEE Communications Magazine 

• Experimental Demonstration of an Active Stateful PCE performing Elastic Operations and Hitless 
Defragmentation 
ECOC European Conference on Optical Communications 

• Planning Fixed to Flexgrid Gradual Migration: Drivers and Open Issues 
IEEE Communications Magazine 

• Dynamic Restoration in Multi-layer IP/MPLS-over-Flexgrid Networks 
IEEE Design of Reliable Communication Networks (DRCN) 

• A Traffic Intensity Model for Flexgrid Optical Network Planning under Dynamic Traffic Operation 
OSA Optical Fiber Communication (OFC) 

• Full list of IDEALIST publications: www.ict-idealist.eu/index.php/publications-standards 

• Standards Input 
• Unanswered Questions in the Path Computation Element Architecture 

tools.ietf.org/html/draft-ietf-pce-questions 
• A PCE-based Architecture for Application-based Network Operations 

tools.ietf.org/html/draft-farrkingel-pce-abno-architecture 
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Other FP7 Projects with ABNO 
• FP7 OFERTIE (www.ofertie.org) Enhances the OFELIA testbed facility to allow 

researchers to request, control and extend network resources dynamically 

• FP7 DISCUS (www.discus-fp7.eu) Distributed Core for unlimited 
bandwidth supply for all Users and Services 

• FP7 CONTENT (www.content-fp7.eu) Convergence of Wireless 
Optical Network and IT Resources in Support of Cloud 
Services  

• FI-PPP XIFI (www.wiki.fi-xifi.eu) Creating a multi-DC community 
cloud across Europe 

• Flexible User Interface  

• Federated Cloud and Service Management  

• Dynamic Network Management  

• Resource Monitoring  
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TOUCAN 
• Towards Ultimate Convergence of All Networks (TOUCAN) 

• A UK funded project for 5 years from August 2014 

• Academic Leadership 
• Lancaster, Heriot Watt, Edinburgh, and Bristol Universities 

• Technology Partners 
• BT, Plextek, NEC, Samsung, JANET, and Broadcom 

• Technology agnostic architecture for convergence based on SDN principles 
• Facilitate optimal interconnection of any network technology domains, networked devices and data sets with high 

flexibility, resource, and energy efficiency 
• Widely diverse networking technologies 

• Fiber-optic core 
• DSL, GigE 
• GSM/LTE 
• WiFi 
• Sensors 

• Service driven control with on demand delivery across virtualised infrastructure  
• Optimization based on capacity, connectivity, spectrum utilization, resource allocation and energy efficiency 
• Commoditisation of network and IT hardware devices 
• Exploit notion of adaptivity and programmability for optimal IT resource and workload allocation  

• Investigating ABNO architecture as a cornerstone 
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The PACE Project 

• Next Steps in PAth Computation Element (PCE) Architectures 

• FP7 Coordination and Support Action 

• Education and dissemination of PCE concepts 
• Tutorials, papers, knowledge base, outreach 

• Development and applicability of new uses of PCE 
• Including SDN and NFV through support of ABNO 

• Consolidate and coordinate existing (OpenSource) PCE developments 

• http://www.ict-pace.net/ 
• Funding from the European Union's Seventh Framework Programme for research, 

technological development and demonstration through the PACE project under grant 
agreement number 619712 
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ABNO and Research - Next Steps 

• The research community is already embracing ABNO 

• That should lead to important feedback 
• What is not clear in the architecture? 
• What pieces are missing or wrong? 
• How well do implementations behave? 
• How is PCE integrated into the whole? 

• What new PCE algorithms are needed? 
• How does PCEP need to be enhanced? 

• What new network types can be managed? 
• How can NFV, SFC, and network slicing be operated? 
• What are the security, management, and economic implications? 
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ABNO and Industry / Standards 

• draft-farrkingel-pce-abno-architecture will soon be published as an RFC 
• It is informational and not a mandatory standard 

• It leaves a number of interfaces unspecified  

• For example, service request interface 

• It presents too many choices 

• Next steps 
• Applicability statements to show how to profile ABNO for specific environments 

• A few are captured in the draft 

• More (such as SDN) could be documented 

• New requirements documents and protocol specifications to fill the gaps 

• This work will be done in coordination with industry 
• What do people really want to build and deploy? 

31 of  34 



Old Dog Consulting 

Assertions 

• PCE is here to stay as a functional component of SDN 
• Implementing PCE as a distinct unit enables  

• Scaling 
• Load-balancing 
• Rapid advancement of algorithms 

• That means PCEP is a necessary protocol for accessing PCE 
• PCEP can be used as a “provisioning protocol” 

• Most clear use in circuit-switched networks (MPLS-TE, GMPLS, …) 
• Jury is out on the use of PCEP as a per-node control protocol 

• SDN should be seen as a critical part of a wider view of network operation 
• Re-use of components and protocols makes sense 
• The ABNO architecture embraces SDN and factors it into the bigger picture 
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Network Evolution
SDN, A reality check

• Why Software Defined Networking? 
– There‘s a hype in the industry! (no, really?)

– Where are we on the hype cycle?

• Dispelling some myths 
– SDN is not just a provisioning system or 

configuration management tool

• Can you really buy “off the shelf” SDN 
– Which architectural approach? 

– What are SDN protocols these days?

• SDN for large, complex networks 
requires internal development

– Do we have to mirror the Google and 
Facebook approach?
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An opportunity for SDN & NFV
Variable bit-rate technology

• Flexible and Elastic Optical Networks
– Photonic Integrated Circuit (PIC) technology

• Paving the path towards cost effective transmission schemes beyond 100Gbps.

– Digital Coherent and SuperChannel technology solutions

• Variable >100Gbps client signals and cost effective >100Gbps transponders 

• Capable of long reach up to 400Gbps without regeneration   

– Cost effective and flexible transponders 

• The Sliceable-Bandwidth Variable Transponder (SBVT). 

– Reduce bandwidth to extend reach

– More spectrum to extend reach

– More bandwidth over short reach

• FlexGrid
– A variable-sized optical frequency range

– ITU-T Study Group 15 (www.itu.int/rec/T-REC-G.694.1)
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Leveraging 
FlexGrid with SDN & NFV

• The network architecture we developed is based on four technical cornerstones:
1. An optical transport system enabling flexible transmission and switching up to, and beyond 

400Gbps per channel.

2. Hybrid control plane architecture for multi-layer and multi-domain optical transport network, 
extended for flexi-grid labels and variable bandwidth

3. Dynamic network resources allocation at both IP and optical transport network. layer

4. Leveraging Software Defined Networks and Network Functions Virtualisation paradigms 

• Focus on standards-based development
– Framework for GMPLS based control of Flexi-grid DWDM networks 

– Generalized Labels for the Flexi-Grid in LSC Label Switching Routers 

– GMPLS OSPF-TE Extensions in for Flexible Grid DWDM Networks

– RSVP-TE Signaling Extensions in support of Flexible Grid 

– Extensions to PCEP for Hierarchical Path Computation Elements (H-PCE)

– A YANG data model for FlexGrid Optical Networks
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A Controller for 
Optical Network Operations

• “SDN Controller” is a contentious term, it can have many different meanings:

– Historically the term was derived from the network domain, technology and 
protocol mechanism

• SDN Controller wars are ongoing:

– Operators have an expectation of standards-based technologies for deploying and 
operating networks

– SDN controller vendors rarely provide multivendor interoperability using open 
standards

– Provisioning should be a compelling feature of SDN, however many SDN 
controllers use non-standardised APIs

– Recent Open Source initiatives tend to be vendor led

• Typically SDN controllers have a very limited view of topology, multi-layer and multi-
domain scenarios are slowly being added

• Flexibility has been notably absent from most controller architectures both in terms of 
southbound protocol support and northbound application requests
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Decomposition of an 
Optical network controller

• Avoiding the mistake of a single “controller” architecture

– As it encourages the expansion and use of specific protocols

• Discovery of network resources and topology management

• Network resource abstraction, and high-layer presentation

• Wavelength assignment and path computation

• Multi-layer coordination and interworking

– Multi-domain & multi-vendor network resources provisioning through different control 
mechanisms (e.g., OpenFlow, ForCES)

• Policy Control

• OAM and Performance Monitoring

• Security & Resiliency

• A wide variety of southbound northbound protocol support

• Leveraging existing technologies

– What is currently available?

– Must integrate with existing and developing standards
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What is an
Application-Based Network Operation?

• Applications-Based Network Operations (ABNO - RFC7491)

– A PCE-based Architecture for Application-based Network Operations
https://tools.ietf.org/html/rfc7491

• Network Controller Framework

– Avoiding single technology domain “controller” architecture

– Reuse well-defined components

– Support a variety of southbound protocols

• Leveraging existing technologies, support new ones

• Integrate with defined and developing standards, 
across SDOs
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ABNO for FlexGrid 
Uses & Applications

• The network does not need to be seen any longer as a composition of individual elements

– Applications need to be capable of interaction with the network.

• Support of the next generation of variable and dynamic optical transport characteristics

– Multi-layer path provisioning

– Network optimization after restoration

• Automated deployment and operation of services.

– “Create a new transport connection for me”

– “Reoptimize my network after restoration switching”

– “Respond to how my network is being used”

– “Schedule these services”

– “Identify lease loaded links, and targets for future capacity planning”
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ABNO
Functional Components 

• “Standardized” components 

• Policy Management

• Network Topology 

– LSP-DB

– TED

– Inventory Management 

• Path Computation and 
Traffic Engineering

– PCE, PCC

– Stateful & Stateless

– Online & Offline

– P2P, P2MP, MP2MP

• Multi-layer Coordination

– Virtual Network Topology Manager 

• Network Signaling & Programming 

– RSVP-TE

– ForCES

– OpenFlow

– Interface to the Routing System 

– Emerging technologies: Segment Routing & Service Function Chaining
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Is Content Delivery the 
“Killer Application” for SDN & NFV?

• Delivery of content, especially of video, is one of the 
major challenges of all operator networks due to 
massive growing amount of traffic.

• Complementary to the growth of today’s Video Traffic

– On-demand Content Services to internet end-users, 
with similar quality constraints as for traditional TV 
Service of Network Operators

– Delivery of terrestrial transmissions over IP/optical 
networks

• Distribution of terrestrial transmissions:

– Uncompressed: Serial Digital Interface (SDI)

– Compressed: Motion JPEG

10

Name Video Bitrate

SD-SDI 480i/576i 270 Mbit/s

HD-SDI 720p/1080i 1.5 Gbit/s

3G-SDI 1080p 3 Gbit/s

6G UHD-SDI 4K 30fps 6 Gbit/s

12G UHD-SDI 4K 60fps 12 Gbit/s

24G UHD-SDI 4K 120fps 24 Gbit/s



SDN & NFV “Killer Application”
Content Distribution Network (CDN)

• Design principles require an efficient, reliable and responsive 
CDN 

– Fault-tolerant network with appropriate load balancing 

– Performance of a CDN is typically characterized by the response 
time (i.e. latency) perceived by the end-users

– Slow response time is the single greatest contributor to users 
abandoning content and web sites and processes

– The performance of a CDN is affected by 

• Distributed content location

• Switching mechanism 

• Data replication and caching strategies

• Reliable functions and network connectivity

11



Blending SDN & NFV for the
Virtualized CDN (vCDN)

• SDN Network Control

– Centralized control

– Dynamic connectivity 

– Elastic bandwidth

• NFV Flexibility, Performance & Predictability 

– Performance: Mean Response Time, Latency, Hit Ratio Percentage, Number of Completed Requests, 
Rejection rate and Mean CDN load

– Dimensioning: remaining stable whatever the use of virtualized HW resources for CDN components

– Resource management: allow the right balance of network i/o to CPU power to storage i/o performance 
(e.g., RAM and HDD)

• Efficient use of resources (storage)

– Fulfil specific storage density requirements, e.g. to cache a large catalog of popular content

• Deployment & Operational tools

– Compliance of cache nodes with main monitoring and reporting requirements (e.g., JSON, YANG, SNMP, 
syslog, etc.) so that operator is able to manage different types of cache nodes together for a Delivery Service

• Content Management 

– Ability to select specific cached content (e.g., video/HTTP) and replicate/duplicate these selected content 
items during delivery via virtual switching to a Quality of Experience (QoE) virtualized function without 
degrading the overall performance of the virtualized CDN function

12



Yes, but. 
Is it actually being used/developed?

• EC-Funded Projects investigating, using and/or developing ABNO
– FI-PPP XIFI

– FP7 OFERTIE 

– FP7 DISCUS 

– FP7 CONTENT 

– FP7 PACE (ict-pace.net) - Next Steps for the Path Computation Element 

• Deployments and Code Availability 
– iONE, Universitat Politècnica de Catalunya (UPC) (OpenSource) 

– ANM, Telefonica (OpenSource)

– Infinera (Closed Proof of concept)

• Publications & Standards
– A PCE-Based Architecture for Application-Based Network Operations, IETF RFC7491

– Unanswered Questions in the Path Computation Element Architecture, IETF RFC7399

– “In-Operation Network Planning”, IEEE Communications Magazine

– “Adaptive Network Manager: Coordinating Operations in Flex-grid Networks”, ICTON (IEEE)

– “Experimental Demonstration of an Active Stateful PCE performing Elastic Operations and Hitless Defragmentation”, ECOC 
European Conference on Optical Communications

– “Planning Fixed to Flexgrid Gradual Migration: Drivers and Open Issues”, IEEE Communications Magazine

– “Dynamic Restoration in Multi-layer IP/MPLS-over-Flexgrid Networks”, IEEE Design of Reliable Communication Networks 
(DRCN)

– “A Traffic Intensity Model for Flexgrid Optical Network Planning under Dynamic Traffic Operation”, OSA Optical Fiber 
Communication (OFC)

– And many, many more…

13



Future research and investigations
Where next?

• Commercializing ABNO for video distribution and storage
– Ongoing re-use of components and protocols, and extending where necessary, makes sense

• Implementing a controller as a distinct unit with the SDN architecture provides a number 
of benefits:

– Scaling

– Load-balancing

– Resilience

– Multiple forwarding technology support (various optic flavours)

– Rapid advancement of algorithms, the next disruptive wave of innovation will be 
Machine Learning (ML)

• Therefore, SDN should be seen as a critical part of a wider view of network operation

• However, gaps exist!

14



Assuming a basis for a controller
How to do we integrate into the orchestrator?

• Application specific orchestration layer needed

– Can this ever be generalized to be application agnostic?

– How might we define the service?

– Are service information models are available?

• Optimization being performed in multiple layers

– If using PCE, where should the PCE element(s) actually be located? 

– Is the PCE a candidate for Network Functions Virtualisation (NFV)?

– How do we scale, load balance and ensure resilience for?

– Speed at which path computations are provided

• Can paths be determined and provisioned any quicker?

• How can we combine offline (planning) and online (real-time) requests?

• Multi-layer support (packet layer over flexible optical networks)
– Placement of video services at both the packet and optical layer (bandwidth dependent)

• Application of Policy/Intent when computing computation paths and configuring 
equipment

15



Standards, Open Source?
Both?

• Standards, or Open Source?
– A future of development only via Open API’s risks user/operator ability to influence 

technology and specification progress, unless they are embedded in the project

• The role of Standards Development Organizations (SDO) is a question of 
relevant, not existence

– It typically takes >2 years for SDOs to formalize a standard

• Open Source SDN has been incredibly successful
– Network programmability

– Management and operations (IT & NFV Orchestration)

– However
• Vendor bias

• Small communities (underfunded monocultures)

• Potential for security flaws 

• Fragmentation (many OSS projects that each solve 20% of a problem but cannot be used together)

16



Thank You!
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Networks today integrate multiple technologies allowing network infrastructure to deliver a variety of 

services to support the different characteristics and dynamic demands of applications. There is an increasing 

goal to make the network responsive to service requests issued directly from the application layer and high-

layer client interfaces. This differs from the established model where services in the network are instantiated 

in response to management commands driven by a human user using a wide variety of Operational Support 

Systems (OSS), and where networks are typically over-provisioned to ensure minimal traffic loss, even at 

peak traffic periods.  
 

10.1 General Concepts 

An idealized network resource controller would be based on an architecture that combines a number of 

technology components, mechanisms and procedures. These include: 

• Policy control of entities and applications for managing requests for network resource information 

and connections  

• Gathering information about the resources available in a network 

• Consideration of multi-layer resources and how topologies map to underlying network resources 

• Handling of path computation requests and responses  

• Provisioning and reserving network resources 

• Verification of connection and resource setup 

10.1.1 Network Abstraction 

A major purpose of Software Defined Networks (SDN) is to bury complexity and make service deployment 

and overall network operation simpler without invoking the management and provisioning software of the 

many manufacturers deployed in the network. Consequently, allowing higher-layer applications to 

automate requests and creation of services simpler and more direct.  

10.1.2 Logically Centralized Control  

We use the term “logical centralized” to signify that network control may appear focused in a single entity, 

independent of its possible implementation in distributed form. The centralized control principle states that 

resources can be used more efficiently when viewed from a global perspective.  

A centralized SDN controller would be able to orchestrate resources that span a number of subordinate 

domains or in cooperation with other entities, and thereby offer resource efficiency when setting up services 

and overall operation of network resources. Other reasons for logically centralized control include scale, 

optimization of information exchange and minimization of propagation delay.  

Given constraints of not being able to always deploy green field networks it is necessary that a controller 

co-exist with both native SDN forwarding technologies (OpenFlow) non-native SDN traffic engineered 

technology (MPLS, GMPLS, etc.).  



Chapter 10 - Application-Based Network Operations (ABNO) 2 

10.1.3 Application Driven Use-Cases 

Dynamic application-driven requests and the services they establish place a set of new requirements on the 

operation of networks. They need on-demand and application-specific reservation of network connectivity, 

reliability, and resources (such as bandwidth) in a variety of network applications (such as point-to-point 

connectivity, network virtualization, or mobile back-haul) and in a range of network technologies from 

packet (IP/MPLS) and optical transport networks, to Software Defined Networks (SDN) forwarding 

technologies, application-driven use cases include: 

• Virtual Private Network (VPN) Planning –Support and deployment of new VPN customers and 

resizing of existing customer connections across packet and optical networks 

• Optimization of Traffic Flows – Applications with the capability to request and create overlay 

networks for communication connectivity between file sharing servers, data caching or mirroring, 

media streaming, or real-time communications 

• Interconnection of Content Delivery Networks (CDN) and Data Centers (DC) – Establishment 

and resizing of connections across core networks and distribution networks 

• Automated Network Coordination – Automate resource provisioning, facilitate grooming and 

regrooming, bandwidth scheduling, and concurrent resource optimization 

• Centralized Control – Remote network components allowing coordinated programming of 

network resources through such techniques as Forwarding and Control Element Separation 

(ForCES) OpenFlow (OF) 

An SDN Controller framework for network operator environments must combine a number of technology 

components, mechanisms and procedures, including:  

• Policy control of entities and applications for managing requests for network resource information 

and connections 

• Gathering information about the resources available in a network. 

• Consideration of multi-layer resources, and how these topologies map to underlying network 

resources 

• Handling of path computation requests and responses 

• Provisioning and reserving network resources 

• Verification of connection and resource setup 

The overall objective is develop a control and management architecture of transport networks to allow 

network operators to manage their networks using the core principles of Software Defined Networks to 

allow high-layer applications and clients to request, reconfigure and re-optimize the network resources in 

near real time, and in response to fluid traffic changes and network failures.  

This chapter outlines the core network control principles required for application-based network operations 

of transport networks, discusses key control plane principles and architectures. It introduces the 

Application-Based Network Operations (ABNO) Framework [1], and how this framework and functional 

components and how they are combined for Adaptive Network Manager (ANM) [2], used to address the 

requirements for operating Elastic Optical Networks (EON) [3]. Finally, the chapter provides a view of the 

research challenges and areas for investigation to continue development of Transport SDN, and control of 

EONs. 

10.2 Network Control  

A central principle of SDN is the separation of a network forwarding and control planes (Fig. 1). By 

separating these functions, a set of specific advantages in terms of centralized or distributed programmatic 

control. Firstly, there is a potential economic advantage by using commodity hardware rather than 

proprietary specific hardware. Secondly, remove the need for a fully distributed control plane with 

capability often requiring senior engineering experience to deploy and operate, with a wide range of 

features, which are very often underutilized. Thirdly, the ability to consolidate in one or a few places what 

is often a considerably complex piece of OSS software to configure and control network resources.  
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Fig. 1 Management, Control and Forwarding Example 

Typically, the network operator has followed a prescribed path for hardware upgrade to circumnavigate the 

networking scaling issues. This requires the operator to consider the node forwarding performance versus 

price-to-performance numbers to pick just the right time to participate in an upgrade. Conversely, as 

network topologies increase the complexity of the control plane and scalability also need consideration.  

The Internet represents an example of a significant scaling problem. Vast numbers of administrative regions 

loosely tied with the interconnections changing constantly as traffic patterns fluctuate and failures occur. 

Therefore, to address the control paradigm the Internet was designed accordingly. Its structure was 

federated, where individual nodes participate together to distribute reachability information in order to 

develop a localized view of a consistent, loop-free network using IP forwarding. The Internet forwarding 

paradigm, where routes and reachability information is exchanged that later results in data plane paths being 

programmed to realize those paths, however paths are often sub-optimal and prone to traffic congestion, so 

clearly this approach has weaknesses which might be addressed using a centralized approach. 

As network technology evolved and the concepts of SDN were invented (centralized control, superstation 

of control and forwarding, and network programmability), the cycle of growth and scaling management 

and upgrade in the control plane to accommodate scale, was a clear objective. It is much easier to pursue 

solutions for a centralized management environment controlling distributed, but simple, forwarding 

elements.  

Control Plane  

The control plane is the part of the node architecture that is concerned with establishing the network map. 

Control plane functions, such as participating in routing protocols, are control elements. This establishes 

the local rule set used to create the forwarding table entries, interpreted by the data plane, to forward traffic 

between incoming and outgoing ports on a node (Fig. 2). The foundation of the current IP control plane 

model is to use an Interior Gateway Protocol (IGP). This normally is in the form of a link-state protocol 

such as Open Shortest Path First (OSPF) or Intermediate-System-to-Intermediate-System (ISIS). The IGP 

will establish layer 3 reachability between a connected, acyclic graph of IP forwarding elements. 
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Fig. 2 Relationship of Control and Forwarding Plane 

Layer 3 network reachability information primarily concerns itself with the reachability of a destination IP 

prefix. In all modern uses, layer 3 is used to segment or stitch together layer 2 domains in order to overcome 

layer 2 scaling problems. In most cases, the routing table contains a list of destination layer 3 addresses and 

the outgoing interface(s) associated with them. Control plane logic can define certain traffic rules, for 

priority treatment of specific traffic for which a high quality of service is defined known as differentiated 

services. Forwarding focuses on the reachability of network addresses.  

The role of the control plane includes: 

• Network topology discovery (resource discovery) 

• Signaling, routing, address assignment 

• Connection set-up/tear-down 

• Connection protection/restoration 

• Path Computation & Traffic engineering 

Management Plane  

The Management Plane is responsible for managing the control plane. It performs a number of 

responsibilities, including configuration management and applying policy. It also provides Fault 

Management, Performance Management, Accounting and Security Management functions.  

In their early deployments, optical transport networks were inherently managed, deployed in a single 

administrative domain, and locked to a single vendor hardware solution (i.e., arranged into vendor islands). 

Such small and mid-sized networks, in terms of number of nodes, were relatively homogeneous, thus 

reducing interoperability issues. A single, vendor-specific Network Management System (NMS) was 

deployed, being responsible for the management of the optical network, tailored to the underlying hardware, 

and using proprietary interfaces and extensions.  

Those systems were perceived as closed, bundled together as a whole, and with a limited set of 

functionalities that were dependent on a given release. The provisioning of a network connectivity service 

involved manual processes, where a service activation or modification could involve human intervention, 

with a user requesting the service provider, which was then manually planning and configuring the route 

and resources in the network to support the service. 



Chapter 10 - Application-Based Network Operations (ABNO) 5 

Several challenges motivated the evolution towards the control plane. First, network operators continuously 

have specific requirements to reduce operational costs, while ensuring that the network still meets the 

requirements of the supported services. Second, the manual, long-lasting processes associated to NMS-

based networks did not seem adapted for the dynamic provisioning of services with recovery and Quality 

of Service (QoS). In short, the introduction of a dynamic control plane was justified, from an operational 

perspective, for the automation of certain tasks, freeing the operator from the burden of manually managing 

and configuring individual nodes, leading to significant cost reductions.  

In this context, the introduction of a control plane aims at fulfilling the requirements of fast and automatic 

end-to-end provisioning and re-routing of flexi-grid connections, while supporting different levels of 

quality of service. Regardless, of the actual technology, a control plane needs to address common functions 

like addressing, automatic topology discovery, network abstraction, path computation, and connection 

provisioning, as stated earlier in this chapter. From a high level perspective, and as any software system 

that automates tasks and processes, the functions of a control plane can, from a simplistic point of view, be 

distributed or centralized, although we will later see that this separation is becoming blurry. This dichotomy 

applies not only from a functional perspective, but also from a resource allocation perspective. Both models 

are viable; both have their own strengths and weaknesses, and both are being extended to address the new 

requirements associated to the aforementioned emerging optical technologies, such as flexible spectrum 

allocation, efficient co-routed connection setup and configuration of related optical parameters. Thus, the 

selection of a centralized or distributed control plane is conditioned by diverse aspects, such as the desired 

functions, flexibility and extensibility, availability, etc., as well as by more concrete aspects such as the 

inherent constraints of the optical technology (e.g., the need to account for physical impairments which are 

collected from monitoring systems and not standardized), already installed deployments, and actual 

network size and scalability.  

The network elements participating in distributed control plane environment exchange the accumulated 

advertisements from other nodes in a state database (e.g., OSPF database) and run a Dijkstra (shortest path) 

algorithm to establish a reachability graph of best paths to destinations. This process uses a distributed 

flooding algorithm within the IGP protocol procedure to propagate attachment information, thus, all nodes 

speaking a particular IGP protocol in the domain remain connected to each other (directly or indirectly) and 

participate with timely reachability information and establish a network topology, that reports change in 

connectivity in the event of failure. A key aspect is thus convergence, which is the time it takes from when 

a network element introduces a change in reachability of a destination due to a network. A variety of 

methods exist in various IGP mechanisms and procedures to address scaling of the control plane state 

(memory and CPU) in the network, both for physical and logical design. These the tools include 

summarization, filtering, recursion and segregation.  

10.2.1 Control Elements for Operating Optical Networks 

Path Computation  

Path computation manages aspects related to finding a physical route between two network nodes, 

commonly referred to as endpoints. Path computation is a functional component of a control plane, invoked 

for the purposes of (dynamic) provisioning, re-routing, restoration, as well as advanced use cases such as 

overall optimization, adaptive network planning or, in the particular case of DWDM flexi-grid networks, 

spectrum de-fragmentation. 

Service Provisioning 

This would include the node and interface configuration, specifically known as service provisioning. The 

set up and tear down of connections. The control element would automatically configure the required hops 

between the source and destination nodes required to create a connection between two (or point to multi-

point) points in the network. The procedure and protocols used via the controller to configure different 

elements to set up a connection is known as either distribute via the signaling mechanisms available (such 

as RSVP-TE), or direct using a flow provision process (such as OpenFlow). 
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OAM and Performance Monitoring 

Operations, Administration, and Maintenance (OAM) is often used as a general term to describe a collection 

of tools for fault detection and isolation, and for performance measurement. Many OAM tools and 

capabilities have been defined for various technology layers [4]. 

OAM tools may, and quite often do, work in conjunction with a control plane and management plane. OAM 

provides instrumentation tools for measuring and monitoring the data plane. OAM tools often use control-

plane functions, e.g., to initialize OAM sessions and to exchange various parameters. The OAM tools 

communicate with the management plane to raise alarms, and often OAM tools may be activated by the 

management plane (as well as by the control plane), e.g., to locate and localize problems, and initiate 

performance measurement of an optical segment, or end-to-end service.  

10.3 Distributed and Centralized Control Planes 

10.3.1 Control Plane architecture evolution 

In their early deployments, optical transport networks were inherently managed, deployed in a single 

administrative domain, and locked to a single vendor hardware solution (i.e., arranged into vendor islands). 

Such small and mid-sized networks, in terms of number of nodes, were relatively homogeneous, thus 

reducing interoperability issues. A single, vendor-specific Network Management System (NMS) was 

deployed, being responsible for the management of the optical network, tailored to the underlying hardware, 

and using proprietary interfaces and extensions.  

Those systems were perceived as closed, bundled together as a whole, and with a limited set of 

functionalities that were dependent on a given release. The provisioning of a network connectivity service 

involved manual processes, where a service activation or modification could involve human intervention, 

with a user requesting the service provider, which was then manually planning and configuring the route 

and resources in the network to support the service. 

Several challenges motivated the evolution towards the control plane. First, network operators continuously 

have specific requirements to reduce operational costs, while ensuring that the network still meets the 

requirements of the supported services. Second, the manual, long-lasting processes associated to NMS-

based networks did not seem adapted for the dynamic provisioning of services with recovery and QoS. In 

short, the introduction of a dynamic control plane was justified, from an operational perspective, for the 

automation of certain tasks, freeing the operator from the burden of manually managing and configuring 

individual nodes, leading to significant cost reductions.  

In this context, the introduction of a control plane aims at fulfilling the requirements of fast and automatic 

end-to-end provisioning and re-routing of flexi-grid connections, while supporting different levels of 

quality of service. Regardless, of the actual technology, a control plane needs to address common functions 

like addressing, automatic topology discovery, network abstraction, path computation, and connection 

provisioning, as stated earlier in this chapter. From a high level perspective, and as any software system 

that automates tasks and processes, the functions of a control plane can, from a simplistic point of view, be 

distributed or centralized, although we will later see that this separation is becoming blurry. This dichotomy 

applies not only from a functional perspective, but also from a resource allocation perspective. Both models 

are viable; both have their own strengths and weaknesses, and both are being extended to address the new 

requirements associated to the aforementioned emerging optical technologies, such as flexible spectrum 

allocation, efficient co-routed connection setup and configuration of related optical parameters. Thus, the 

selection of a centralized or distributed control plane is conditioned by diverse aspects, such as the desired 

functions, flexibility and extensibility, availability, etc., as well as by more concrete aspects such as the 

inherent constraints of the optical technology (e.g., the need to account for physical impairments which are 

collected from monitoring systems and not standardized), already installed deployments, and actual 

network size and scalability.  

For example, the Internet represents an example of a significant scaling problem. Vast numbers of 

administrative regions are loosely tied with the interconnections changing constantly as traffic patterns 

fluctuate and failures occur. To address this, the Internet control paradigm was designed to be distributed. 
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On the other hand, SDH/Optical core transport networks, while geographically spanning national or 

continental regions, are still relatively small in size /number of elements when compared to IP networks, 

and are commonly under the control of a single entity or operator. Services offered were relatively stable, 

characterized by long holding times, coupled to slow traffic dynamics, and service provisioning delays of 

the order of days/ weeks was acceptable. Such deployments models were, arguably, best addressed with a 

centralized control paradigm. 

While the need of a control plane does not seem to present significant opposition, the choice of the 

technology is still debatable. From a historical perspective, the evolution of the control plane for optical 

networks started augmenting NMS based networks with a distributed control plane, based on the ASON 

(Automatically Switched Optical Networks) [5] [6] [7] architecture with Generalized Multi-Protocol Label 

Switching GMPLS [8] suite of protocols, as detailed next. Recently, the application of Software Defined 

Networking (SDN) principles to the control of optical networks is presented as a means to enable the 

programmability of the underlying network (in any case, the formal separation of the data and control planes 

is a key concept in optical network control). To some extent, there is an analogy between a Transport SDN 

architecture and a centralized NMS, although the former insists on using modern system architectures, open 

and standard interfaces, and flexible and modular software development. 

Distributed Control 

In this setting, the control plane is implemented by a set of cooperating entities (control plane controllers) 

that execute processes that communicate. Control plane functions such as topology management, path 

computation or signaling are distributed (for the first one, each node disseminates the topological elements 

that are directly under its control, and the IGP routing protocol enables the construction of a unified view 

of the network topology. Path computation is carried out by the ingress node of the connection and signaling 

is distributed along the nodes involved in the path). The protocols ensure the coordination and 

synchronization functions, autonomously (although commonly, the provisioning of a new service is done 

upon request from a NMS). 

The reference architecture is defined by the ITU-T, named ASON enabling dynamic control of an optical 

network, automating the resource and connection management. ASON relies of the GMPLS set of protocols 

defined by the IETF (with minor variations). In short, the ASON/GMPLS architecture defines the transport, 

control and management planes. In particular, the control plane is responsible for the actual resource and 

connection control, and consists of Optical Connection Controllers (OCC), interconnected via Network to 

Network Interfaces (NNIs) for network topology and resource discovery, routing, signaling, and connection 

setup and release (with recovery). The Management Plane is responsible for managing and configuring the 

control plane and fault management, performance management, accounting and security. 

 
Fig. 3 Example of GMPLS-controlled optical network 

As seen in Fig. 3, the main involved processes are the Connection Controller (CC) and the Routing 

Controller (RC), and optionally a path computation component. A data communication network, based on 

IP control channels (IPCC) to allow the exchange of control messages between GMPLS controllers, is also 
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required, which can be deployed in-band or out-of-band (including, for example, a dedicated and separated 

physical network). A GMPLS-enabled node (both control and hardware) is named Label Switched Router 

(LSR). Each GMPLS controller manages the state of all the connections (i.e., Label Switched Path - LSPs) 

originated, terminated or passing-through a node, stored in the LSP Database (LSPDB), and maintains its 

own network state information (topology and resources), collected in a local Traffic Engineering Database 

(TED) repository. 

The network elements participating in distributed control plane environment exchange the accumulated 

advertisements from other nodes in a state database (e.g. OSPF database) and run a Dijkstra (shortest path) 

algorithm to establish a reachability graph of best paths to destinations. This process uses a distributed 

flooding algorithm within the IGP protocol procedure to propagate attachment information, thus, all nodes 

speaking a particular IGP protocol in the domain remain connected to each other (directly or indirectly) and 

participate with timely reachability information and establish a network topology, that reports change in 

connectivity in the event of failure. A key aspect is thus convergence, which is the time it takes from when 

a network element introduces a change in reachability of a destination due to a network change, such as a 

failure. A variety of methods exist in various IGP mechanisms and procedures to address scaling of the 

control plane state (memory and CPU) in the network, both for physical and logical design. These the tools 

include summarization, filtering, recursion and segregation 

Centralized Control 

In a centralized control, a single entity, usually called controller, is responsible for the control plane 

functions, commonly using open and standard protocols, such as those defined by the SDN architectures 

and protocols e.g. OpenFlow protocol (OF/OFP) [19]. The controller performs path computation and 

service provisioning, and proceeds to configure the forwarding and switching behavior of the nodes. A 

centralized control plane provides a method for programmatic control of network resources and 

simplification of control plane process. Deployment and operation of connections requires an interaction 

with control points to establish the forwarding rules for specific traffic. These are not recent innovations, 

separation of the control and data planes occurred with the development of ForCES [9] and Generalized 

Switch Management Protocol (GSMP) [10] many years ago.  

By deploying the control plane intelligence in the controller, resources allocated in hardware nodes for CP 

functions are reduced significantly. Moreover, such solutions involve deploying hardware (computational 

and storage) in a centralized location which is orders of magnitude more powerful than individual 

controllers are. Although a centralized controller does not seem significantly different from an NMS, it is 

worth noting aspects such as the automation of processes, and programmability, as well as the use of open 

interfaces and standard architectures, terminology, models and protocols. Note that a logically centralized 

controller may, itself, be implemented as a distributed system, while appearing, programmatically, as a 

single entity. Finally, SDN principles bring new opportunities such as joint allocation of IT and network 

resources, or the orchestration of heterogeneous control technologies, or the unified control of access and 

core network segments. 

Comparison of Distributed versus Centralized 

In a distributed control approach, individual nodes participate together to distribute reachability information 

in order to develop a localized view of a consistent, loop-free network. Routes and reachability information 

is exchanged that later results in data plane paths being programmed to realize those paths, however paths 

are often sub-optimal and prone to traffic congestion, so clearly this approach has weaknesses which might 

be addressed using a centralized approach. Mainly, a distributed control plane is affected by the latencies 

in the propagation and synchronization of data. Changes occurring at a given network element need to be 

propagated and the transitory may affect network performance. 

On the other hand, in a distributed model, each node element is mainly self-sustained. There is no bottleneck 

or single point of failure, such a SDN controller, and is the model that seems most appropriate when there 

is no central authority and functional elements need to cooperate. Each node can survive failures at other 

nodes as long as the network remains connected. 
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The benefits of a centralized model are lower capital and operational cost, involving, in the case of a control 

plane, minimal control plane hardware and software at each node, while enabling computational scaling at 

the controller location. A centralized controller may be easier to implement, given the tight coupling of 

components, and the less stringent requirements of internal interfaces not subject to interoperability issues. 

It simplifies automation and management, enables network programmability and it is less subject to 

latencies and out-of-date information due to the need of synchronizing entities. It provides more flexibility, 

a single point of extension for operators’ policies and customizations, and improved security. There is less 

control plane overhead, and arguably, network security is increased, with less complexity and greater 

control over potential risk areas. The downside is that centralized elements are always points of failure. 

Hybrid Control plane models 

In view of the current trends and evolutions of control plane architectures, it seems too simplistic to tag a 

control plane as distributed or centralized. Control plane architectures are evolving towards hybrid control- 

plane models, in which some elements may be centralized and some elements may be distributed, 

sometimes following the mantra “distribute when you can, centralize when you must”. Even if a given 

control plane entity is centralized, it can be logically centralized, where a system is implemented in terms 

of the composition of functional components that appear as one. A given function can be centralized in a 

given domain (e.g. the path computation function can be centralized in a Path Computation Element (PCE) 

assuming a single PCE per domain deployment model, but the same function can be distributed amongst 

several children PCE in Hierarchical PCE (H-PCE) architecture [15] within a multi-domain scenario. 

 

 
 

Fig. 4 The use of an orchestrator for the over-arching control of heterogeneous control technologies 
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New use cases, such as remote data center interconnection, highlight the need for multi-domain service 

provisioning and heterogeneous CP interworking, potentially requiring an overarching control (see Fig. 4). 

Additionally, network operators aim at addressing the joint control and allocation of network and IT 

resources (e.g. networking, computing and storage resources), or the joint optimization of different network 

segments, such as access, aggregation and core. Different alternatives, with varying degrees of integration 

and flexibility, are available: straightforward approaches characterized by the adaptation of one control 

model to the other or more advanced interworking requiring the definition of common models (e.g. a subset 

of attributes for network elements) and of coordination and orchestration functions. Such orchestrator may 

in turn, be (logically or physically) centralized while delegating specific functions, to subsystems that may 

be distributed (such as the provisioning of connectivity delegated to a GMPLS control plane) [8].  

Finally, let us mentions that the adoption of new computing and interworking models, and concepts, such 

as those of server consolidation, host virtualization or Network Function Virtualization (NFV), are 

challenging common approaches and existing practice: for example a GMPLS control plane could be run 

as a Virtual Network Function running in a datacenter, for legacy purposes, in which a distributed system 

could run on a centralized physical infrastructure. 

10.4 Framework for Application-Based Network Operations (ABNO) 

The three tenants of SDN are programmability, the separation of the control and data planes, and the 

management of ephemeral network state in a centralized control model [1], regardless of the degree of 

centralization. In an ideal world, it should be possible to utilize a distributed control plane as well, providing 

the best practices of centralized control, and distributed control plane for ephemeral state management. 

Application-Based Network Operations (ABNO) was designed using the following architectural principles: 

1. Loose Coupling: For ease of implementation and fast development, we do not attempt to tightly 

integrate the functional components of the network controller. Instead, we use well-defined APIs 

and protocol mechanisms. 

2. Low Overhead: The goal is to ensure that each management and control function is not duplicated, 

which reduces the overall platform overhead.  

3. Modular: A modular design enables easier composition of existing features into new capabilities. 

4. Intelligent: Designing the framework around the Path Computation Element and Traffic Engineered 

principles, provides significant benefits for controlling a range of network technologies and 

maximizing resource utilization.  

5. Resource Management: The framework allows for various network and node state to be discovered 

and stored. This state information is collected using the protocol mechanisms provided by 

traditional and already existing network and service management tools.  

6. Dynamic Management: A key goal of an SDN controller is actuate dynamic control based on 

application demands and other network events.  

7. Policy Control: It is important to implement policy management to provide the mechanisms for 

specifying connection requirements (e.g., QoS, security) for various applications. It also allows 

network operators to associate different service levels. 

8. Technology Agnostic: The ABNO framework communicates with the network nodes using a 

variety of Southbound APIs and protocols. Allowing for a wide variety of forwarding mechanisms 

to be managed using ABNO. 

Fig. 5 presents an example of network architecture using ABNO. 
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Fig. 5 ABNO Architecture Example 

10.4.1 Functional Components 

NMS and OSS 

A Network Management System (NMS) or an Operations Support System (OSS) can be used to control, 

operate, and manage a network. Within the ABNO framework, an NMS or OSS may issue high-level 

service requests to the ABNO Controller. It may also establish policies for the activities of the components 

within the architecture. 

The NMS and OSS can be consumers of network events reported through the OAM Handler and can act 

on these reports as well as displaying them to users and raising alarms. The NMS and OSS can also access 

the Traffic Engineering Database (TED) [11] and Label Switched Path Database (LSP-DB) to show the 

users the current state of the network. 

Lastly, the NMS and OSS may utilize a direct programmatic or configuration interface to interact with the 

network nodes within the network. 

Application Service Coordinator 

The Application Service Coordinator communicates with the ABNO Controller to request operations on 

the network. Requests may be initiated from entities such as the NMS and OSS, services in the ABNO 

architecture may be requested by or on behalf of applications. In this context, the term “application” is very 

broad. An application may be a program that runs on a host or server and that provides services to a user, 

such as a video conferencing application. Alternatively, an application may be a software tool that a user 

uses to make requests to the network to set up specific services such as end-to-end connections or scheduled 

bandwidth reservations. Finally, an application may be a sophisticated control system that is responsible 

for arranging the provision of a more complex network service such as a virtual private network. For the 

sake of ABNO architecture discussion, all of these concepts of an application are grouped together and are 

shown as the Application Service Coordinator, since they are all in some way responsible for coordinating 

the activity of the network to provide services for use by applications. In practice, the function of the 

Application Service Coordinator may be distributed across multiple applications or servers. 

ABNO Controller 

The ABNO Controller is the main gateway to the network for the NMS, OSS, and Application Service 

Coordinator for the provision of advanced network coordination and functions. The ABNO Controller 

governs the behavior of the network in response to changing network conditions and in accordance with 
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application network requirements and policies. It is the point of attachment, and invokes the right 

components in the right order. 

Policy Agent 

Policy plays a very important role in the control and management of the network. It is, therefore, significant 

in influencing how the key components of the ABNO architecture operate. The Policy Agent is responsible 

for propagating those policies into the other components of the system. Simplicity in this discussion 

necessitates leaving out many of the policy interactions that will take place. In our example, the Policy 

Agent is only discussed interacting with the ABNO Controller, in reality it will also interact with a number 

of other components and the network elements themselves. For example, the Path Computation Element 

(PCE) will be a Policy Enforcement Point (PEP) [12], and the Interface to the Routing System (I2RS) Client 

will also be a PEP as noted in [13]. 

OAM Handler 

Operations, Administration, and Maintenance (OAM) plays a critical role in understanding how a network 

is operating, detecting faults, sand taking the necessary action to react to problems in the network. Within 

the ABNO architecture, the OAM Handler is responsible for receiving notifications (often-called alerts) 

from the network about potential problems, for correlating them, and for triggering other components of 

the system to take action to preserve or recover the services that were established by the ABNO Controller. 

The OAM Handler also reports network problems and, in particular, service- affecting problems to the 

NMS, OSS, and Application Service Coordinator. Additionally, the OAM Handler interacts with the 

devices in the network to initiate OAM actions within the data plane [4], such as monitoring and testing. 

Path Computation Element (PCE) 

The Path Computation Element (PCE) is a functional component that services requests to compute paths 

across a network graph. In particular, it can generate traffic engineered routes for MPLS-TE and GMPLS 

Label Switched Paths (LSPs). The PCE may receive these requests from the ABNO Controller, from the 

Virtual Network Topology Manager, or from network elements themselves. 

The PCE operates on a view of the network topology stored in the Traffic Engineering Database (TED). A 

more sophisticated computation may be provided by a Stateful PCE that enhances the TED with a database 

(the LSP) containing information about the LSPs that are provisioned and operational within the network. 

Additional functionality in an Active PCE allows a functional component that includes a Stateful PCE to 

make provisioning requests to set up new services or to modify in-place services as described in [14]. This 

function may directly access the network elements or channelled through the Provisioning Manager. 

Coordination between multiple PCEs operating on different TEDs can prove useful for performing path 

computation in multi-domain or multi-layer networks. A domain in this case might be an Autonomous 

System (AS), thus enabling inter-AS path computation.  

In the latter case, the ABNO controller will need to request an optimal path for the service. If the domains 

(ASes) require path setup to preserve confidentiality about their internal topologies and capabilities, they 

will not share a TED and subsequently each domain (AS) will operate its own PCE. In such a situation, the 

Hierarchical PCE (H-PCE) architecture, described in [15], is necessary. 

Network Database 

The ABNO architecture includes a number of databases that contain information stored for use by the 

system. The two main databases are the TED and the LSP Database (LSP-DB), but there may be a number 

of other databases used to contain information about topology (ALTO Server), policy (Policy Agent), 

services (ABNO Controller), etc. 

Typically the IGP (like OSPF-TE or IS-IS-TE) are responsible for generating and disseminating the TED 

within a domain. In multi-domain environments, it may be necessary to export the TED to another control 

element, such as a PCE, which can perform more complex path computation and optimization tasks.  
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Virtual Network Topology Manager (VNTM) 

A Virtual Network Topology (VNT) is defined as a set of one or more LSPs in one or more lower-layer 

networks that provides information for efficient path handling in an upper-layer network. For instance, a 

set of LSPs in a wavelength division multiplexed (WDM) network can provide connectivity as virtual links 

in a higher-layer packet switched network. 

The creation of virtual topology for inclusion in a network is not a simple task. Decisions must be made 

about which nodes in the upper-layer it is best to connect, in which lower-layer network to provision LSPs 

to provide the connectivity, and how to route the LSPs. 

Provisioning Manager 

The Provisioning Manager is responsible for making or channelling requests for the establishment of LSPs. 

This may be instructions to the control plane running in the networks, or may involve the programming of 

individual network nodes. 

10.4.2 South Bound Interfaces (SBI) 

The network devices maybe configured or programmed directly from the NMS/OSS. Many protocols 

already exist to perform these functions, including the following:  

• SNMP [16]  

• The Network Configuration Protocol (NETCONF) [17], [21] 

• RESTCONF [18] 

• ForCES [9]  

• OpenFlow [19] 

• PCEP [20]  

The role of the protocols described is to assign state to the forwarding element, either by programming each 

node individually or via a distributed signaling mechanism. Indeed the previous list is not an exhaustive 

representation of protocol methods and procedures available, and over time, new forwarding mechanisms 

will be developed. Therefore, the ABNO framework has been designed to be forwarding mechanism 

agnostic.  

10.5 Adaptive Network Manager  

The European Commission funded project “IDEALIST” identified the need for a control architecture to 

combine the best of distributed routing and signaling protocols, to provide real-time adaption and to survive 

against failures, and a centralized intelligence that, on the one hand, provides a point for optimization (e.g. 

interfacing with the planning tool), and also capable of interfacing with the higher-applications, including 

cloud platforms and data center (WAN) inter-connections.  

The distributed functions are based on the well-known GMPLS architecture, while the centralized 

intelligence and interface with applications follows a SDN approach. Thus, the Adaptive Network Manager 

(ANM) is the IDEALIST network controller (based on the ABNO framework) [22], that considers not only 

the Flexi-grid Network (the main focus of IDEALIST), but a wider scope, a multi-layer IP/MPLS over 

optical Network. 

10.5.1 Interfaces 

As the ABNO architecture was generic in its intent, most of the interfaces are defined as concepts. In ANM 

architecture HTTP/JSON interfaces will be used in these interfaces not already defined (Fig. 6). There are 

two reasons: easy development and flexibility for the workflows definition. These interfaces will help to 

have a modular design, which can be adapted to the future requirements that may come during the project. 

If during the project, there are some other solutions in the standardization fora, this have been assessed and 

where applicable, included in the ANM architecture. 
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Fig. 6 Adaptive Network Manager Functional Components and Interfaces 

• IN-APP - This is the interface between the application layer/NMS/OSS and the ABNO controller. 

Application layer makes requests to set up connections or to trigger any other workflow using 

HTTP/JSON. This interface is current under development in the Internet Engineering Task Force 

(IETF). The parameters of the request change depending on the workflow, but the operation type 

is always mandatory. 

• IAL-APP - This is the interface between the ALTO Server and Application layer/NMS/OSS, where 

the Application layer acts as an ALTO Client. They communicate using the ALTO Protocol [23]. 

They communicate over HTTP/JSON. An information model has to be defined for this interface to 

support TED, LSPs and inventory requests. 

• IA-I2, II2-N - The Interface to the Routing System (I2RS) 

• IPA-A, IPA-V, IPA-AL - All the interfaces between the Policy Agent and the modules that request 

it for permission using a HTTP/JSON request. 

• IA-P - This is the interface between the ABNO controller and the PCE. The ABNO controller 

queries the PCE using PCE, Stateless and Stateful PCEs may be used this interface will support 

requests for both PCEs. 

• IA-V - This interface connects the ABNO controller and the VNTM. They communicate through 

PCEP. 

10.6 Adaptive Network Manager (ANM) Use Cases 

10.6.1 Catastrophic Network Failure 

While most networks are designed to survive single failures without affecting customer service level 

agreements (SLAs), they are not designed to survive large-scale disasters, such as earthquakes, floods, wars, 
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or terrorist acts, simply because of their low failure probability and the high cost of overprovisioning to 

address such events in today’s network.  

Since many systems might be affected, large network reconfigurations are necessary during large-scale 

disaster recovery. The disaster recovery process is similar to that of the virtual topology reconfiguration 

after a failure. However, multiple optical systems, IP links, and possible routers and OXCs (assuming 

central offices are affected) may be taken offline during the disaster. Several additional planning and 

operation requirements in response to largescale disasters are highlighted below: 

• Consideration of potential IP layer traffic distribution changes, either using MPLS-TE tunnels or 

by modification of IP routing metrics, and evaluating benefits based on the candidate topology 

• It may be impossible to reach the desired network end state with one-step optimizations. Therefore, 

two or more step optimizations may be necessary, for example, to reroute some other optical 

connections to make room for some new connections  

• The system must verify that the intermediate configuration after each such step is robust and can 

support the current traffic and possibly withstand additional outages  

• Based on preemption and traffic priorities, it might be desirable to disconnect some virtual links so 

as to reuse the resources for post-disaster priority connections and traffic 

We have described the creation of one disaster recovery plan, but in a real network, there may be several 

possible plans, each with its pros and cons. The tool must present all these plans to the operator so that the 

operator can select the best plan, and possibly modify it and understand how it will be behave. 

To summarize, the above process consists of several steps: 

1. Immediate action by the network to recover some of the traffic  

2. Dissemination of the new network state 

3. Root cause analysis to understand what failed and why 

4. An operator-assisted planning process to come up with a disaster recovery plan 

5. Execution of the plan, possibly in multiple steps  

6. Reconvergence of the network after each step and in its final state 

This scenario for recovering from catastrophic network failures may also be known as “In-Operation 

Network Planning” [24]. The ANM platform and use cases are also discussed in-depth in the next chapter.  

10.7 Next Steps for ABNO-based Control & Orchestration  

We can assume that SDN is well-defined as a logically centralized control framework and architecture. It 

supports the programmability of network functions and protocols by decoupling the data plane from the 

control plane through a well-defined control SBI protocol. These SBI’s existing in many forms, and assist 

in the hiding of technology or vendor specific forwarding mechanisms. As network evolution continues a 

new technology area known as “Network Functions Virtualization” (NFV) [25] is developing in parallel to 

SDN.  

The development of NFV is to leverage Information Technology (IT) virtualization techniques to migrate 

entire classes of network functions typically hosted on proprietary hardware onto virtual platforms based 

on general compute and storage servers. Each virtual function node is known as a Virtualized Network 

Function (VNF), which may run on a single or set of Virtual Machines (VMs), instead of having custom 

hardware appliances for the proposed network function. 

Furthermore, this virtualization allows multiple isolated VNFs or unused resources to be allocated to other 

VNF-based applications during weekdays and business hours, facilitating overall IT capacity to be shared 

by all content delivery components, or even other network function appliances. Industry, via the European 

Telecommunications Standards Institute (ETSI), has defined a suitable architectural framework [25], and 

has also documented a number resiliency requirements and specific objectives for virtualized media 

infrastructures. 

Utilizing the benefits of enabling technologies (i.e. ABNO-based control principles and NFV-based 

infrastructure), we have the potential to fundamentally change the way we build, deploy and control 
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broadcast services built on top of flexible optical networks allowing dynamic and elastic delivery and high-

bandwidth broadcast and media resources. 

10.7.1 Control & Orchestration of Virtual Content Distribution Network (vCDN) 

Virtualisation of Content Distribution Networks (CDNs) components is a core design principle necessary 

to create a content network that can be deployed rapidly and in a scalable way. The first element to be 

virtualized is the cache node itself, and then required services such as content monitors and load balancers 

[26]. A key requirement of the vCDN is reconfigurable bandwidth as content moved from HD content at 

1080p to 4k streams, and demands change based on time of day and week [27]. Deploying the various 

infrastructure elements of a CDN as a collection of virtual appliances (VNFs) and connecting content and 

access (user networks) with a flexible optical network infrastructure offers significant benefits.  

Fig. 7 describes how an ABO-enabled network controller would integrate with an NFV-based CDN. 

 

 
Fig. 7 Candidate SDN & NFV Framework based on ETSI NFV ISG Model 

Using the ABNO-based controller in conjunction with the NFV Management and Infrastructure itself would 

provide the VNFs connectivity over a high-bitrate optical infrastructure, and similar flexibility that exists 

in the IP and Ethernet layer, which until recently and the advent of Elastic Optical Networks, simply not 

previously available in optical transport domain.  
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List of Acronyms 
ABNO Application-based Network Operations 

ASON Automatically Switched Optical Network 

BGP-LS Border Gateway Protocol Link State 

GMPLS Generalized Multi-protocol Label Switching 

H-PCE Hierarchical Path Computation Element 

IP/MPLS Multi-protocol Label Switching over Internet Protocol 

LSP Label-switched Path 

LSP-DB LSP Database 

NFV Network Function Virtualization 

NMS Network Management System 

OF Open Flow 

OXC Optical cross-connect 

PCE Path Computation Element 

QoS Quality of Service 

SDN Software Defined Networking 

TE Traffic Engineering 

TED TE Database 
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1.  Introduction

   Networks today integrate multiple technologies allowing network
   infrastructure to deliver a variety of services to support the
   different characteristics and demands of applications.  There is an
   increasing demand to make the network responsive to service requests
   issued directly from the application layer.  This differs from the
   established model where services in the network are delivered in
   response to management commands driven by a human user.

   These application-driven requests and the services they establish
   place a set of new requirements on the operation of networks.  They
   need on-demand and application-specific reservation of network
   connectivity, reliability, and resources (such as bandwidth) in a
   variety of network applications (such as point-to-point connectivity,
   network virtualization, or mobile back-haul) and in a range of
   network technologies from packet (IP/MPLS) down to optical.  An
   environment that operates to meet this type of application-aware
   requirement is said to have Application-Based Network Operations
   (ABNO).

   The Path Computation Element (PCE) [ RFC4655] was developed to provide
   path computation services for GMPLS- and MPLS-controlled networks.
   The applicability of PCEs can be extended to provide path computation
   and policy enforcement capabilities for ABNO platforms and services.

   ABNO can provide the following types of service to applications by
   coordinating the components that operate and manage the network:

   - Optimization of traffic flows between applications to create an
     overlay network for communication in use cases such as file
     sharing, data caching or mirroring, media streaming, or real-time
     communications described as Application-Layer Traffic Optimization
     (ALTO) [ RFC5693].

   - Remote control of network components allowing coordinated
     programming of network resources through such techniques as
     Forwarding and Control Element Separation (ForCES) [ RFC3746],
     OpenFlow [ ONF], and the Interface to the Routing System (I2RS)
     [ I2RS-Arch ], or through the control plane coordinated through the
     PCE Communication Protocol (PCEP) [ PCE-Init-LSP ].

   - Interconnection of Content Delivery Networks (CDNi) [ RFC6707]
     through the establishment and resizing of connections between
     content distribution networks.  Similarly, ABNO can coordinate
     inter-data center connections.
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   - Network resource coordination to automate provisioning, and to
     facilitate traffic grooming and regrooming, bandwidth scheduling,
     and Global Concurrent Optimization using PCEP [ RFC5557].

   - Virtual Private Network (VPN) planning in support of deployment of
     new VPN customers and to facilitate inter-data center connectivity.

   This document outlines the architecture and use cases for ABNO, and
   shows how the ABNO architecture can be used for coordinating control
   system and application requests to compute paths, enforce policies,
   and manage network resources for the benefit of the applications that
   use the network.  The examination of the use cases shows the ABNO
   architecture as a toolkit comprising many existing components and
   protocols, and so this document looks like a cookbook.  ABNO is
   compatible with pre-existing Network Management System (NMS) and
   Operations Support System (OSS) deployments as well as with more
   recent developments in programmatic networks such as Software-Defined
   Networking (SDN).

1.1 .  Scope

   This document describes a toolkit.  It shows how existing functional
   components described in a large number of separate documents can be
   brought together within a single architecture to provide the function
   necessary for ABNO.

   In many cases, existing protocols are known to be good enough or
   almost good enough to satisfy the requirements of interfaces between
   the components.  In these cases, the protocols are called out as
   suitable candidates for use within an implementation of ABNO.

   In other cases, it is clear that further work will be required, and
   in those cases a pointer to ongoing work that may be of use is
   provided.  Where there is no current work that can be identified by
   the authors, a short description of the missing interface protocol is
   given in Appendix A .

   Thus, this document may be seen as providing an applicability
   statement for existing protocols, and guidance for developers of new
   protocols or protocol extensions.
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2.  Application-Based Network Operations (ABNO)

2.1 .  Assumptions

   The principal assumption underlying this document is that existing
   technologies should be used where they are adequate for the task.
   Furthermore, when an existing technology is almost sufficient, it is
   assumed to be preferable to make minor extensions rather than to
   invent a whole new technology.

   Note that this document describes an architecture.  Functional
   components are architectural concepts and have distinct and clear
   responsibilities.  Pairs of functional components interact over
   functional interfaces that are, themselves, architectural concepts.

2.2 .  Implementation of the Architecture

   It needs to be strongly emphasized that this document describes a
   functional architecture.  It is not a software design.  Thus, it is
   not intended that this architecture constrain implementations.
   However, the separation of the ABNO functions into separate
   functional components with clear interfaces between them enables
   implementations to choose which features to include and allows
   different functions to be distributed across distinct processes or
   even processors.

   An implementation of this architecture may make several important
   decisions about the functional components:

   - Multiple functional components may be grouped together into one
     software component such that all of the functions are bundled and
     only the external interfaces are exposed.  This may have distinct
     advantages for fast paths within the software and can reduce
     interprocess communication overhead.

     For example, an Active, Stateful PCE could be implemented as a
     single server combining the ABNO components of the PCE, the Traffic
     Engineering Database, the Label Switched Path Database, and the
     Provisioning Manager (see Section 2.3 ).

   - The functional components could be distributed across separate
     processes, processors, or servers so that the interfaces are
     exposed as external protocols.
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     For example, the Operations, Administration, and Maintenance (OAM)
     Handler (see Section 2.3.1.6 ) could be presented on a dedicated
     server in the network that consumes all status reports from the
     network, aggregates them, correlates them, and then dispatches
     notifications to other servers that need to understand what has
     happened.

   - There could be multiple instances of any or each of the components.
     That is, the function of a functional component could be
     partitioned across multiple software components with each
     responsible for handling a specific feature or a partition of the
     network.

     For example, there may be multiple Traffic Engineering Databases
     (see Section 2.3.1.8 ) in an implementation, with each holding the
     topology information of a separate network domain (such as a
     network layer or an Autonomous System).  Similarly, there could be
     multiple PCE instances, each processing a different Traffic
     Engineering Database, and potentially distributed on different
     servers under different management control.  As a final example,
     there could be multiple ABNO Controllers, each with capability to
     support different classes of application or application service.

   The purpose of the description of this architecture is to facilitate
   different implementations while offering interoperability between
   implementations of key components, and easy interaction with the
   applications and with the network devices.

2.3 .  Generic ABNO Architecture

   Figure 1 illustrates the ABNO architecture.  The components and
   functional interfaces are discussed in Sections 2.3.1  and 2.3.2 ,
   respectively.  The use cases described in Section 3  show how
   different components are used selectively to provide different
   services.  It is important to understand that the relationships and
   interfaces shown between components in this figure are illustrative
   of some of the common or likely interactions; however, this figure
   does not preclude other interfaces and relationships as necessary to
   realize specific functionality.
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    +----------------------------------------------------------------+
    |          OSS / NMS / Application Service Coordinator           |
    +-+---+---+----+-----------+---------------------------------+---+
      |   |   |    |           |                                 |
   ...|...|...|....|...........|.................................|......
   :  |   |   |    |      +----+----------------------+          |     :
   :  |   |   | +--+---+  |                           |      +---+---+ :
   :  |   |   | |Policy+--+     ABNO Controller       +------+       | :
   :  |   |   | |Agent |  |                           +--+   |  OAM  | :
   :  |   |   | +-+--+-+  +-+------------+----------+-+  |   |Handler| :
   :  |   |   |   |  |      |            |          |    |   |       | :
   :  |   | +-+---++ | +----+-+  +-------+-------+  |    |   +---+---+ :
   :  |   | |ALTO  | +-+ VNTM |--+               |  |    |       |     :
   :  |   | |Server|   +--+-+-+  |               |  | +--+---+   |     :
   :  |   | +--+---+      | |    |      PCE      |  | | I2RS |   |     :
   :  |   |    |  +-------+ |    |               |  | |Client|   |     :
   :  |   |    |  |         |    |               |  | +-+--+-+   |     :
   :  | +-+----+--+-+       |    |               |  |   |  |     |     :
   :  | | Databases +-------:----+               |  |   |  |     |     :
   :  | |   TED     |       |    +-+---+----+----+  |   |  |     |     :
   :  | |  LSP-DB   |       |      |   |    |       |   |  |     |     :
   :  | +-----+--+--+     +-+---------------+-------+-+ |  |     |     :
   :  |       |  |        |    Provisioning Manager   | |  |     |     :
   :  |       |  |        +-----------------+---+-----+ |  |     |     :
   ...|.......|..|.................|...|....|...|.......|..|.....|......
      |       |  |                 |   |    |   |       |  |     |
      |     +-+--+-----------------+--------+-----------+----+   |
      +----/               Client Network Layer               \--+
      |   +----------------------------------------------------+ |
      |      |                         |        |          |     |
     ++------+-------------------------+--------+----------+-----+-+
    /                      Server Network Layers                    \
   +-----------------------------------------------------------------+

                    Figure 1: Generic ABNO Architecture

2.3.1 .  ABNO Components

   This section describes the functional components shown as boxes in
   Figure 1.  The interactions between those components, the functional
   interfaces, are described in Section 2.3.2 .
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2.3.1.1 .  NMS and OSS

   A Network Management System (NMS) or an Operations Support System
   (OSS) can be used to control, operate, and manage a network.  Within
   the ABNO architecture, an NMS or OSS may issue high-level service
   requests to the ABNO Controller.  It may also establish policies for
   the activities of the components within the architecture.

   The NMS and OSS can be consumers of network events reported through
   the OAM Handler and can act on these reports as well as displaying
   them to users and raising alarms.  The NMS and OSS can also access
   the Traffic Engineering Database (TED) and Label Switched Path
   Database (LSP-DB) to show the users the current state of the network.

   Lastly, the NMS and OSS may utilize a direct programmatic or
   configuration interface to interact with the network elements within
   the network.

2.3.1.2 .  Application Service Coordinator

   In addition to the NMS and OSS, services in the ABNO architecture may
   be requested by or on behalf of applications.  In this context, the
   term "application" is very broad.  An application may be a program
   that runs on a host or server and that provides services to a user,
   such as a video conferencing application.  Alternatively, an
   application may be a software tool that a user uses to make requests
   to the network to set up specific services such as end-to-end
   connections or scheduled bandwidth reservations.  Finally, an
   application may be a sophisticated control system that is responsible
   for arranging the provision of a more complex network service such as
   a virtual private network.

   For the sake of this architecture, all of these concepts of an
   application are grouped together and are shown as the Application
   Service Coordinator, since they are all in some way responsible for
   coordinating the activity of the network to provide services for use
   by applications.  In practice, the function of the Application
   Service Coordinator may be distributed across multiple applications
   or servers.

   The Application Service Coordinator communicates with the ABNO
   Controller to request operations on the network.
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2.3.1.3 .  ABNO Controller

   The ABNO Controller is the main gateway to the network for the NMS,
   OSS, and Application Service Coordinator for the provision of
   advanced network coordination and functions.  The ABNO Controller
   governs the behavior of the network in response to changing network
   conditions and in accordance with application network requirements
   and policies.  It is the point of attachment, and it invokes the
   right components in the right order.

   The use cases in Section 3  provide a clearer picture of how the ABNO
   Controller interacts with the other components in the ABNO
   architecture.

2.3.1.4 .  Policy Agent

   Policy plays a very important role in the control and management of
   the network.  It is, therefore, significant in influencing how the
   key components of the ABNO architecture operate.

   Figure 1 shows the Policy Agent as a component that is configured by
   the NMS/OSS with the policies that it applies.  The Policy Agent is
   responsible for propagating those policies into the other components
   of the system.

   Simplicity in the figure necessitates leaving out many of the policy
   interactions that will take place.  Although the Policy Agent is only
   shown interacting with the ABNO Controller, the ALTO Server, and the
   Virtual Network Topology Manager (VNTM), it will also interact with a
   number of other components and the network elements themselves.  For
   example, the Path Computation Element (PCE) will be a Policy
   Enforcement Point (PEP) [ RFC2753] as described in [ RFC5394], and the
   Interface to the Routing System (I2RS) Client will also be a PEP as
   noted in [ I2RS-Arch ].

2.3.1.5 .  Interface to the Routing System (I2RS) Client

   The Interface to the Routing System (I2RS) is described in
   [ I2RS-Arch ].  The interface provides a programmatic way to access
   (for read and write) the routing state and policy information on
   routers in the network.

   The I2RS Client is introduced in [ I2RS-PS ].  Its purpose is to manage
   information requests across a number of routers (each of which runs
   an I2RS Agent) and coordinate setting or gathering state to/from
   those routers.
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2.3.1.6 .  OAM Handler

   Operations, Administration, and Maintenance (OAM) plays a critical
   role in understanding how a network is operating, detecting faults,
   and taking the necessary action to react to problems in the network.

   Within the ABNO architecture, the OAM Handler is responsible for
   receiving notifications (often called alerts) from the network about
   potential problems, for correlating them, and for triggering other
   components of the system to take action to preserve or recover the
   services that were established by the ABNO Controller.  The OAM
   Handler also reports network problems and, in particular, service-
   affecting problems to the NMS, OSS, and Application Service
   Coordinator.

   Additionally, the OAM Handler interacts with the devices in the
   network to initiate OAM actions within the data plane, such as
   monitoring and testing.

2.3.1.7 .  Path Computation Element (PCE)

   PCE is introduced in [ RFC4655].  It is a functional component that
   services requests to compute paths across a network graph.  In
   particular, it can generate traffic-engineered routes for MPLS-TE and
   GMPLS Label Switched Paths (LSPs).  The PCE may receive these
   requests from the ABNO Controller, from the Virtual Network Topology
   Manager, or from network elements themselves.

   The PCE operates on a view of the network topology stored in the
   Traffic Engineering Database (TED).  A more sophisticated computation
   may be provided by a Stateful PCE that enhances the TED with a
   database (the LSP-DB -- see Section 2.3.1.8.2 ) containing information
   about the LSPs that are provisioned and operational within the
   network as described in [ RFC4655] and [ Stateful-PCE ].

   Additional functionality in an Active PCE allows a functional
   component that includes a Stateful PCE to make provisioning requests
   to set up new services or to modify in-place services as described in
   [ Stateful-PCE ] and [ PCE-Init-LSP ].  This function may directly access
   the network elements or may be channeled through the Provisioning
   Manager.

   Coordination between multiple PCEs operating on different TEDs can
   prove useful for performing path computation in multi-domain or
   multi-layer networks.  A domain in this case might be an Autonomous
   System (AS), thus enabling inter-AS path computation.
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   Since the PCE is a key component of the ABNO architecture, a better
   view of its role can be gained by examining the use cases described
   in Section 3 .

2.3.1.8 .  Databases

   The ABNO architecture includes a number of databases that contain
   information stored for use by the system.  The two main databases are
   the TED and the LSP Database (LSP-DB), but there may be a number of
   other databases used to contain information about topology (ALTO
   Server), policy (Policy Agent), services (ABNO Controller), etc.

   In the text that follows, specific key components that are consumers
   of the databases are highlighted.  It should be noted that the
   databases are available for inspection by any of the ABNO components.
   Updates to the databases should be handled with some care, since
   allowing multiple components to write to a database can be the cause
   of a number of contention and sequencing problems.

2.3.1.8.1 .  Traffic Engineering Database (TED)

   The TED is a data store of topology information about a network that
   may be enhanced with capability data (such as metrics or bandwidth
   capacity) and active status information (such as up/down status or
   residual unreserved bandwidth).

   The TED may be built from information supplied by the network or from
   data (such as inventory details) sourced through the NMS/OSS.

   The principal use of the TED in the ABNO architecture is to provide
   the raw data on which the Path Computation Element operates.  But the
   TED may also be inspected by users at the NMS/OSS to view the current
   status of the network and may provide information to application
   services such as Application-Layer Traffic Optimization (ALTO)
   [ RFC5693].

2.3.1.8.2 .  LSP Database

   The LSP-DB is a data store of information about LSPs that have been
   set up in the network or that could be established.  The information
   stored includes the paths and resource usage of the LSPs.

   The LSP-DB may be built from information generated locally.  For
   example, when LSPs are provisioned, the LSP-DB can be updated.  The
   database can also be constructed from information gathered from the
   network by polling or reading the state of LSPs that have already
   been set up.
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   The main use of the LSP-DB within the ABNO architecture is to enhance
   the planning and optimization of LSPs.  New LSPs can be established
   to be path-disjoint from other LSPs in order to offer protected
   services; LSPs can be rerouted in order to put them on more optimal
   paths or to make network resources available for other LSPs; LSPs can
   be rapidly repaired when a network failure is reported; LSPs can be
   moved onto other paths in order to avoid resources that have planned
   maintenance outages.  A Stateful PCE (see Section 2.3.1.7 ) is a
   primary consumer of the LSP-DB.

2.3.1.8.3 .  Shared Risk Link Group (SRLG) Databases

   The TED may, itself, be supplemented by SRLG information that assigns
   to each network resource one or more identifiers that associate the
   resource with other resources in the same TED that share the same
   risk of failure.

   While this information can be highly useful, it may be supplemented
   by additional detailed information maintained in a separate database
   and indexed using the SRLG identifier from the TED.  Such a database
   can interpret SRLG information provided by other networks (such as
   server networks), can provide failure probabilities associated with
   each SRLG, can offer prioritization when SRLG-disjoint paths cannot
   be found, and can correlate SRLGs between different server networks
   or between different peer networks.

2.3.1.8.4 .  Other Databases

   There may be other databases that are built within the ABNO system
   and that are referenced when operating the network.  These databases
   might include information about, for example, traffic flows and
   demands, predicted or scheduled traffic demands, link and node
   failure and repair history, network resources such as packet labels
   and physical labels (i.e., MPLS and GMPLS labels), etc.

   As mentioned in Section 2.3.1.8.1 , the TED may be enhanced by
   inventory information.  It is quite likely in many networks that such
   an inventory is held in a separate database (the Inventory Database)
   that includes details of the manufacturer, model, installation date,
   etc.

2.3.1.9 .  ALTO Server

   The ALTO Server provides network information to the application layer
   based on abstract maps of a network region.  This information
   provides a simplified view, but it is useful to steer application-
   layer traffic.  ALTO services enable service providers to share
   information about network locations and the costs of paths between
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   them.  The selection criteria to choose between two locations may
   depend on information such as maximum bandwidth, minimum cross-domain
   traffic, lower cost to the user, etc.

   The ALTO Server generates ALTO views to share information with the
   Application Service Coordinator so that it can better select paths in
   the network to carry application-layer traffic.  The ALTO views are
   computed based on information from the network databases, from
   policies configured by the Policy Agent, and through the algorithms
   used by the PCE.

   Specifically, the base ALTO protocol [ RFC7285] defines a single-node
   abstract view of a network to the Application Service Coordinator.
   Such a view consists of two maps: a network map and a cost map.  A
   network map defines multiple Provider-defined Identifiers (PIDs),
   which represent entrance points to the network.  Each node in the
   application layer is known as an End Point (EP), and each EP is
   assigned to a PID, because PIDs are the entry points of the
   application in the network.  As defined in [ RFC7285], a PID can
   denote a subnet, a set of subnets, a metropolitan area, a Point of
   Presence (PoP), etc.  Each such network region can be a single domain
   or multiple networks; it is just the view that the ALTO Server is
   exposing to the application layer.  A cost map provides costs between
   EPs and/or PIDs.  The criteria that the Application Service
   Coordinator uses to choose application routes between two locations
   may depend on attributes such as maximum bandwidth, minimum cross-
   domain traffic, lower cost to the user, etc.

2.3.1.10 .  Virtual Network Topology Manager (VNTM)

   A Virtual Network Topology (VNT) is defined in [ RFC5212] as a set of
   one or more LSPs in one or more lower-layer networks that provides
   information for efficient path handling in an upper-layer network.
   For instance, a set of LSPs in a wavelength division multiplexed
   (WDM) network can provide connectivity as virtual links in a higher-
   layer packet-switched network.

   The VNT enhances the physical/dedicated links that are available in
   the upper-layer network and is configured by setting up or tearing
   down the lower-layer LSPs and by advertising the changes into the
   higher-layer network.  The VNT can be adapted to traffic demands so
   that capacity in the higher-layer network can be created or released
   as needed.  Releasing unwanted VNT resources makes them available in
   the lower-layer network for other uses.
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   The creation of virtual topology for inclusion in a network is not a
   simple task.  Decisions must be made about which nodes in the upper
   layer it is best to connect, in which lower-layer network to
   provision LSPs to provide the connectivity, and how to route the LSPs
   in the lower-layer network.  Furthermore, some specific actions have
   to be taken to cause the lower-layer LSPs to be provisioned and the
   connectivity in the upper-layer network to be advertised.

   [RFC5623] describes how the VNTM may instantiate connections in the
   server layer in support of connectivity in the client layer.  Within
   the ABNO architecture, the creation of new connections may be
   delegated to the Provisioning Manager as discussed in
   Section 2.3.1.11 .

   All of these actions and decisions are heavily influenced by policy,
   so the VNTM component that coordinates them takes input from the
   Policy Agent.  The VNTM is also closely associated with the PCE for
   the upper-layer network and each of the PCEs for the lower-layer
   networks.

2.3.1.11 .  Provisioning Manager

   The Provisioning Manager is responsible for making or channeling
   requests for the establishment of LSPs.  This may be instructions to
   the control plane running in the networks or may involve the
   programming of individual network devices.  In the latter case, the
   Provisioning Manager may act as an OpenFlow Controller [ ONF].

   See Section 2.3.2.6  for more details of the interactions between the
   Provisioning Manager and the network.

2.3.1.12 .  Client and Server Network Layers

   The client and server networks are shown in Figure 1 as illustrative
   examples of the fact that the ABNO architecture may be used to
   coordinate services across multiple networks where lower-layer
   networks provide connectivity in upper-layer networks.

   Section 3.2  describes a set of use cases for multi-layer networking.

2.3.2 .  Functional Interfaces

   This section describes the interfaces between functional components
   that might be externalized in an implementation allowing the
   components to be distributed across platforms.  Where existing
   protocols might provide all or most of the necessary capabilities,
   they are noted.  Appendix A  notes the interfaces where more protocol
   specification may be needed.
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   As noted at the top of Section 2.3 , it is important to understand
   that the relationships and interfaces shown between components in
   Figure 1 are illustrative of some of the common or likely
   interactions; however, this figure and the descriptions in the
   subsections below do not preclude other interfaces and relationships
   as necessary to realize specific functionality.  Thus, some of the
   interfaces described below might not be visible as specific
   relationships in Figure 1, but they can nevertheless exist.

2.3.2.1 .  Configuration and Programmatic Interfaces

   The network devices may be configured or programmed directly from the
   NMS/OSS.  Many protocols already exist to perform these functions,
   including the following:

   - SNMP [ RFC3412]

   - The Network Configuration Protocol (NETCONF) [ RFC6241]

   - RESTCONF [ RESTCONF]

   - The General Switch Management Protocol (GSMP) [ RFC3292]

   - ForCES [ RFC5810]

   - OpenFlow [ ONF]

   - PCEP [ PCE-Init-LSP ]

   The TeleManagement Forum (TMF) Multi-Technology Operations Systems
   Interface (MTOSI) standard [ TMF-MTOSI] was developed to facilitate
   application-to-application interworking and provides network-level
   management capabilities to discover, configure, and activate
   resources.  Initially, the MTOSI information model was only capable
   of representing connection-oriented networks and resources.  In later
   releases, support was added for connectionless networks.  MTOSI is,
   from the NMS perspective, a north-bound interface and is based on
   SOAP web services.

   From the ABNO perspective, network configuration is a pass-through
   function.  It can be seen represented on the left-hand side of
   Figure 1.

2.3.2.2 .  TED Construction from the Networks

   As described in Section 2.3.1.8 , the TED provides details of the
   capabilities and state of the network for use by the ABNO system and
   the PCE in particular.
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   The TED can be constructed by participating in the IGP-TE protocols
   run by the networks (for example, OSPF-TE [ RFC3630] and IS-IS TE
   [ RFC5305]).  Alternatively, the TED may be fed using link-state
   distribution extensions to BGP [ BGP-LS].

   The ABNO system may maintain a single TED unified across multiple
   networks or may retain a separate TED for each network.

   Additionally, an ALTO Server [ RFC5693] may provide an abstracted
   topology from a network to build an application-level TED that can be
   used by a PCE to compute paths between servers and application-layer
   entities for the provision of application services.

2.3.2.3 .  TED Enhancement

   The TED may be enhanced by inventory information supplied from the
   NMS/OSS.  This may supplement the data collected as described in
   Section 2.3.2.2  with information that is not normally distributed
   within the network, such as node types and capabilities, or the
   characteristics of optical links.

   No protocol is currently identified for this interface, but the
   protocol developed or adopted to satisfy the requirements of the
   Interface to the Routing System (I2RS) [ I2RS-Arch ] may be a suitable
   candidate because it is required to be able to distribute bulk
   routing state information in a well-defined encoding language.
   Another candidate protocol may be NETCONF [ RFC6241] passing data
   encoded using YANG [ RFC6020].

   Note that, in general, any combination of protocol and encoding that
   is suitable for presenting the TED as described in Section 2.3.2.4
   will likely be suitable (or could be made suitable) for enabling
   write-access to the TED as described in this section.

2.3.2.4 .  TED Presentation

   The TED may be presented north-bound from the ABNO system for use by
   an NMS/OSS or by the Application Service Coordinator.  This allows
   users and applications to get a view of the network topology and the
   status of the network resources.  It also allows planning and
   provisioning of application services.

   There are several protocols available for exporting the TED north-
   bound:

   - The ALTO protocol [ RFC7285] is designed to distribute the
     abstracted topology used by an ALTO Server and may prove useful for
     exporting the TED.  The ALTO Server provides the cost between EPs
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     or between PIDs, so the application layer can select which is the
     most appropriate connection for the information exchange between
     its application end points.

   - The same protocol used to export topology information from the
     network can be used to export the topology from the TED [ BGP-LS].

   - The I2RS [ I2RS-Arch ] will require a protocol that is capable of
     handling bulk routing information exchanges that would be suitable
     for exporting the TED.  In this case, it would make sense to have a
     standardized representation of the TED in a formal data modeling
     language such as YANG [ RFC6020] so that an existing protocol such
     as NETCONF [ RFC6241] or the Extensible Messaging and Presence
     Protocol (XMPP) [ RFC6120] could be used.

   Note that export from the TED can be a full dump of the content
   (expressed in a suitable abstraction language) as described above, or
   it could be an aggregated or filtered set of data based on policies
   or specific requirements.  Thus, the relationships shown in Figure 1
   may be a little simplistic in that the ABNO Controller may also be
   involved in preparing and presenting the TED information over a
   north-bound interface.

2.3.2.5 .  Path Computation Requests from the Network

   As originally specified in the PCE architecture [ RFC4655], network
   elements can make path computation requests to a PCE using PCEP
   [ RFC5440].  This facilitates the network setting up LSPs in response
   to simple connectivity requests, and it allows the network to
   reoptimize or repair LSPs.

2.3.2.6 .  Provisioning Manager Control of Networks

   As described in Section 2.3.1.11 , the Provisioning Manager makes or
   channels requests to provision resources in the network.  These
   operations can take place at two levels: there can be requests to
   program/configure specific resources in the data or forwarding
   planes, and there can be requests to trigger a set of actions to be
   programmed with the assistance of a control plane.
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   A number of protocols already exist to provision network resources,
   as follows:

   o  Program/configure specific network resources

      - ForCES [ RFC5810] defines a protocol for separation of the
        control element (the Provisioning Manager) from the forwarding
        elements in each node in the network.

      - The General Switch Management Protocol (GSMP) [ RFC3292] is an
        asymmetric protocol that allows one or more external switch
        controllers (such as the Provisioning Manager) to establish and
        maintain the state of a label switch such as an MPLS switch.

      - OpenFlow [ ONF] is a communications protocol that gives an
        OpenFlow Controller (such as the Provisioning Manager) access to
        the forwarding plane of a network switch or router in the
        network.

      - Historically, other configuration-based mechanisms have been
        used to set up the forwarding/switching state at individual
        nodes within networks.  Such mechanisms have ranged from
        non-standard command line interfaces (CLIs) to various
        standards-based options such as Transaction Language 1 (TL1)
        [ TL1] and SNMP [ RFC3412].  These mechanisms are not designed for
        rapid operation of a network and are not easily programmatic.
        They are not proposed for use by the Provisioning Manager as
        part of the ABNO architecture.

      - NETCONF [ RFC6241] provides a more active configuration protocol
        that may be suitable for bulk programming of network resources.
        Its use in this way is dependent on suitable YANG modules being
        defined for the necessary options.  Early work in the IETF’s
        NETMOD working group is focused on a higher level of routing
        function more comparable with the function discussed in
        Section 2.3.2.8 ; see [ YANG-Rtg].

      - The [ TMF-MTOSI] specification provides provisioning, activation,
        deactivation, and release of resources via the Service
        Activation Interface (SAI).  The Common Communication Vehicle
        (CCV) is the middleware required to implement MTOSI.  The CCV is
        then used to provide middleware abstraction in combination with
        the Web Services Description Language (WSDL) to allow MTOSIs to
        be bound to different middleware technologies as needed.
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   o  Trigger actions through the control plane

      - LSPs can be requested using a management system interface to the
        head end of the LSP using tools such as CLIs, TL1 [ TL1], or SNMP
        [ RFC3412].  Configuration at this granularity is not as time-
        critical as when individual network resources are programmed,
        because the main task of programming end-to-end connectivity is
        devolved to the control plane.  Nevertheless, these mechanisms
        remain unsuitable for programmatic control of the network and
        are not proposed for use by the Provisioning Manager as part of
        the ABNO architecture.

      - As noted above, NETCONF [ RFC6241] provides a more active
        configuration protocol.  This may be particularly suitable for
        requesting the establishment of LSPs.  Work would be needed to
        complete a suitable YANG module.

      - The PCE Communication Protocol (PCEP) [ RFC5440] has been
        proposed as a suitable protocol for requesting the establishment
        of LSPs [ PCE-Init-LSP ].  This works well, because the protocol
        elements necessary are exactly the same as those used to respond
        to a path computation request.

        The functional element that issues PCEP requests to establish
        LSPs is known as an "Active PCE"; however, it should be noted
        that the ABNO functional component responsible for requesting
        LSPs is the Provisioning Manager.  Other controllers like the
        VNTM and the ABNO Controller use the services of the
        Provisioning Manager to isolate the twin functions of computing
        and requesting paths from the provisioning mechanisms in place
        with any given network.

   Note that I2RS does not provide a mechanism for control of network
   resources at this level, as it is designed to provide control of
   routing state in routers, not forwarding state in the data plane.
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2.3.2.7 .  Auditing the Network

   Once resources have been provisioned or connections established in
   the network, it is important that the ABNO system can determine the
   state of the network.  Similarly, when provisioned resources are
   modified or taken out of service, the changes in the network need to
   be understood by the ABNO system.  This function falls into four
   categories:

   - Updates to the TED are gathered as described in Section 2.3.2.2 .

   - Explicit notification of the successful establishment and the
     subsequent state of the LSP can be provided through extensions to
     PCEP as described in [ Stateful-PCE ] and [ PCE-Init-LSP ].

   - OAM can be commissioned and the results inspected by the OAM
     Handler as described in Section 2.3.2.14 .

   - A number of ABNO components may make inquiries and inspect network
     state through a variety of techniques, including I2RS, NETCONF, or
     SNMP.

2.3.2.8 .  Controlling the Routing System

   As discussed in Section 2.3.1.5 , the Interface to the Routing System
   (I2RS) provides a programmatic way to access (for read and write) the
   routing state and policy information on routers in the network.  The
   I2RS Client issues requests to routers in the network to establish or
   retrieve routing state.  Those requests utilize the I2RS protocol,
   which will be based on a combination of NETCONF [ RFC6241] and
   RESTCONF [ RESTCONF] with some additional features.

2.3.2.9 .  ABNO Controller Interface to PCE

   The ABNO Controller needs to be able to consult the PCE to determine
   what services can be provisioned in the network.  There is no reason
   why this interface cannot be based on standard PCEP as defined in
   [ RFC5440].

2.3.2.10 .  VNTM Interface to and from PCE

   There are two interactions between the Virtual Network Topology
   Manager and the PCE:

   The first interaction is used when VNTM wants to determine what LSPs
   can be set up in a network: in this case, it uses the standard PCEP
   interface [ RFC5440] to make path computation requests.
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   The second interaction arises when a PCE determines that it cannot
   compute a requested path or notices that (according to some
   configured policy) a network is low on resources (for example, the
   capacity on some key link is nearly exhausted).  In this case, the
   PCE may notify the VNTM, which may (again according to policy) act to
   construct more virtual topology.  This second interface is not
   currently specified, although it may be that the protocol selected or
   designed to satisfy I2RS will provide suitable features (see
   Section 2.3.2.8 ); alternatively, an extension to the PCEP Notify
   message (PCNtf) [ RFC5440] could be made.

2.3.2.11 .  ABNO Control Interfaces

   The north-bound interface from the ABNO Controller is used by the
   NMS, OSS, and Application Service Coordinator to request services in
   the network in support of applications.  The interface will also need
   to be able to report the asynchronous completion of service requests
   and convey changes in the status of services.

   This interface will also need strong capabilities for security,
   authentication, and policy.

   This interface is not currently specified.  It needs to be a
   transactional interface that supports the specification of abstract
   services with adequate flexibility to facilitate easy extension and
   yet be concise and easily parsable.

   It is possible that the protocol designed to satisfy I2RS will
   provide suitable features (see Section 2.3.2.8 ).

2.3.2.12 .  ABNO Provisioning Requests

   Under some circumstances, the ABNO Controller may make requests
   directly to the Provisioning Manager.  For example, if the
   Provisioning Manager is acting as an SDN Controller, then the ABNO
   Controller may use one of the APIs defined to allow requests to be
   made to the SDN Controller (such as the Floodlight REST API [ Flood ]).
   Alternatively, since the Provisioning Manager may also receive
   instructions from a Stateful PCE, the use of PCEP extensions might be
   appropriate in some cases [ PCE-Init-LSP ].
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2.3.2.13 .  Policy Interfaces

   As described in Section 2.3.1.4  and throughout this document, policy
   forms a critical component of the ABNO architecture.  The role of
   policy will include enforcing the following rules and requirements:

   - Adding resources on demand should be gated by the authorized
     capability.

   - Client microflows should not trigger server-layer setup or
     allocation.

   - Accounting capabilities should be supported.

   - Security mechanisms for authorization of requests and capabilities
     are required.

   Other policy-related functionality in the system might include the
   policy behavior of the routing and forwarding system, such as:

   - ECMP behavior

   - Classification of packets onto LSPs or QoS categories.

   Various policy-capable architectures have been defined, including a
   framework for using policy with a PCE-enabled system [ RFC5394].
   However, the take-up of the IETF’s Common Open Policy Service
   protocol (COPS) [ RFC2748] has been poor.

   New work will be needed to define all of the policy interfaces within
   the ABNO architecture.  Work will also be needed to determine which
   are internal interfaces and which may be external and so in need of a
   protocol specification.  There is some discussion that the I2RS
   protocol may support the configuration and manipulation of policies.

2.3.2.14 .  OAM and Reporting

   The OAM Handler must interact with the network to perform several
   actions:

   - Enabling OAM function within the network.

   - Performing proactive OAM operations in the network.

   - Receiving notifications of network events.
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   Any of the configuration and programmatic interfaces described in
   Section 2.3.2.1  may serve this purpose.  NETCONF notifications are
   described in [ RFC5277], and OpenFlow supports a number of
   asynchronous event notifications [ ONF].  Additionally, Syslog
   [ RFC5424] is a protocol for reporting events from the network, and IP
   Flow Information Export (IPFIX) [ RFC7011] is designed to allow
   network statistics to be aggregated and reported.

   The OAM Handler also correlates events reported from the network and
   reports them onward to the ABNO Controller (which can apply the
   information to the recovery of services that it has provisioned) and
   to the NMS, OSS, and Application Service Coordinator.  The reporting
   mechanism used here can be essentially the same as the mechanism used
   when events are reported from the network; no new protocol is needed,
   although new data models may be required for technology-independent
   OAM reporting.

3.  ABNO Use Cases

   This section provides a number of examples of how the ABNO
   architecture can be applied to provide application-driven and
   NMS/OSS-driven network operations.  The purpose of these examples is
   to give some concrete material to demonstrate the architecture so
   that it may be more easily comprehended, and to illustrate that the
   application of the architecture is achieved by "profiling" and by
   selecting only the relevant components and interfaces.

   Similarly, it is not the intention that this section contain a
   complete list of all possible applications of ABNO.  The examples are
   intended to broadly cover a number of applications that are commonly
   discussed, but this does not preclude other use cases.

   The descriptions in this section are not fully detailed applicability
   statements for ABNO.  It is anticipated that such applicability
   statements, for the use cases described and for other use cases,
   could be suitable material for separate documents.

3.1 .  Inter-AS Connectivity

   The following use case describes how the ABNO framework can be used
   to set up an end-to-end MPLS service across multiple Autonomous
   Systems (ASes).  Consider the simple network topology shown in
   Figure 2.  The three ASes (ASa, ASb, and ASc) are connected at AS
   Border Routers (ASBRs) a1, a2, b1 through b4, c1, and c2.  A source
   node (s) located in ASa is to be connected to a destination node (d)
   located in ASc.  The optimal path for the LSP from s to d must be
   computed, and then the network must be triggered to set up the LSP.
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          +--------------+ +-----------------+ +--------------+
          |ASa           | |       ASb       | |          ASc |
          |         +--+ | | +--+       +--+ | | +--+         |
          |         |a1|-|-|-|b1|       |b3|-|-|-|c1|         |
          | +-+     +--+ | | +--+       +--+ | | +--+     +-+ |
          | |s|          | |                 | |          |d| |
          | +-+     +--+ | | +--+       +--+ | | +--+     +-+ |
          |         |a2|-|-|-|b2|       |b4|-|-|-|c2|         |
          |         +--+ | | +--+       +--+ | | +--+         |
          |              | |                 | |              |
          +--------------+ +-----------------+ +--------------+

   Figure 2: Inter-AS Domain Topology with Hierarchical PCE (Parent PCE)

   The following steps are performed to deliver the service within the
   ABNO architecture:

   1. Request Management

      As shown in Figure 3, the NMS/OSS issues a request to the ABNO
      Controller for a path between s and d.  The ABNO Controller
      verifies that the NMS/OSS has sufficient rights to make the
      service request.

                                 +---------------------+
                                 |       NMS/OSS       |
                                 +----------+----------+
                                            |
                                            V
                  +--------+    +-----------+-------------+
                  | Policy +-->-+     ABNO Controller     |
                  | Agent  |    |                         |
                  +--------+    +-------------------------+

                      Figure 3: ABNO Request Management

   2. Service Path Computation with Hierarchical PCE

      The ABNO Controller needs to determine an end-to-end path for the
      LSP.  Since the ASes will want to maintain a degree of
      confidentiality about their internal resources and topology, they
      will not share a TED and each will have its own PCE.  In such a
      situation, the Hierarchical PCE (H-PCE) architecture described in
      [ RFC6805] is applicable.

      As shown in Figure 4, the ABNO Controller sends a request to the
      parent PCE for an end-to-end path.  As described in [ RFC6805], the
      parent PCE consults its TED, which shows the connectivity between
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      ASes.  This helps it understand that the end-to-end path must
      cross each of ASa, ASb, and ASc, so it sends individual path
      computation requests to each of PCEs a, b, and c to determine the
      best options for crossing the ASes.

      Each child PCE applies policy to the requests it receives to
      determine whether the request is to be allowed and to select the
      types of network resources that can be used in the computation
      result.  For confidentiality reasons, each child PCE may supply
      its computation responses using a path key [ RFC5520] to hide the
      details of the path segment it has computed.

                           +-----------------+
                           | ABNO Controller |
                           +----+-------+----+
                                |       A
                                V       |
                             +--+-------+--+   +--------+
               +--------+    |             |   |        |
               | Policy +-->-+ Parent PCE  +---+ AS TED |
               | Agent  |    |             |   |        |
               +--------+    +-+----+----+-+   +--------+
                              /     |     \
                             /      |      \
                      +-----+-+ +---+---+ +-+-----+
                      |       | |       | |       |
                      | PCE a | | PCE b | | PCE c |
                      |       | |       | |       |
                      +---+---+ +---+---+ +---+---+
                          |         |         |
                       +--+--+   +--+--+   +--+--+
                       | TEDa|   | TEDb|   | TEDc|
                       +-----+   +-----+   +-----+

           Figure 4: Path Computation Request with Hierarchical PCE

      The parent PCE collates the responses from the children and
      applies its own policy to stitch them together into the best
      end-to-end path, which it returns as a response to the ABNO
      Controller.
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   3. Provisioning the End-to-End LSP

      There are several options for how the end-to-end LSP gets
      provisioned in the ABNO architecture.  Some of these are described
      below.

      3a. Provisioning from the ABNO Controller with a Control Plane

          Figure 5 shows how the ABNO Controller makes a request through
          the Provisioning Manager to establish the end-to-end LSP.  As
          described in Section 2.3.2.6 , these interactions can use the
          NETCONF protocol [ RFC6241] or the extensions to PCEP described
          in [ PCE-Init-LSP ].  In either case, the provisioning request
          is sent to the head-end Label Switching Router (LSR), and that
          LSR signals in the control plane (using a protocol such as
          RSVP-TE [ RFC3209]) to cause the LSP to be established.

                            +-----------------+
                            | ABNO Controller |
                            +--------+--------+
                                     |
                                     V
                              +------+-------+
                              | Provisioning |
                              | Manager      |
                              +------+-------+
                                     |
                                     V
                +--------------------+------------------------+
               /                  Network                      \
              +-------------------------------------------------+

                    Figure 5: Provisioning the End-to-End LSP

      3b. Provisioning through Programming Network Resources

          Another option is that the LSP is provisioned hop by hop from
          the Provisioning Manager using a mechanism such as ForCES
          [ RFC5810] or OpenFlow [ ONF] as described in Section 2.3.2.6 .
          In this case, the picture is the same as that shown in
          Figure 5.  The interaction between the ABNO Controller and the
          Provisioning Manager will be PCEP or NETCONF as described in
          option 3a, and the Provisioning Manager will be responsible
          for fanning out the requests to the individual network
          elements.
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      3c. Provisioning with an Active Parent PCE

          The Active PCE is described in Section 2.3.1.7 , based on the
          concepts expressed in [ PCE-Init-LSP ].  In this approach, the
          process described in option 3a is modified such that the PCE
          issues a direct PCEP command to the network, without a
          response being first returned to the ABNO Controller.

          This situation is shown in Figure 6 and could be modified so
          that the Provisioning Manager still programs the individual
          network elements as described in option 3b.

                  +-----------------+
                  | ABNO Controller |
                  +----+------------+
                       |
                       V
                    +--+----------+         +--------------+
      +--------+    |             |         | Provisioning |
      | Policy +-->-+ Parent PCE  +---->----+ Manager      |
      | Agent  |    |             |         |              |
      +--------+    +-+----+----+-+         +-----+--------+
                     /     |     \                |
                    /      |      \               |
             +-----+-+ +---+---+ +-+-----+        V
             |       | |       | |       |        |
             | PCE a | | PCE b | | PCE c |        |
             |       | |       | |       |        |
             +-------+ +-------+ +-------+        |
                                                  |
                 +--------------------------------+------------+
                /                  Network                      \
               +-------------------------------------------------+

               Figure 6: LSP Provisioning with an Active PCE

      3d. Provisioning with Active Child PCEs and Segment Stitching

          A mixture of the approaches described in options 3b and 3c can
          result in a combination of mechanisms to program the network
          to provide the end-to-end LSP.  Figure 7 shows how each child
          PCE can be an Active PCE responsible for setting up an edge-
          to-edge LSP segment across one of the ASes.  The ABNO
          Controller then uses the Provisioning Manager to program the
          inter-AS connections using ForCES or OpenFlow, and the LSP
          segments are stitched together following the ideas described
          in [ RFC5150].  Philosophers may debate whether the parent PCE
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          in this model is active (instructing the children to provision
          LSP segments) or passive (requesting path segments that the
          children provision).

                           +-----------------+
                           | ABNO Controller +-------->--------+
                           +----+-------+----+                 |
                                |       A                      |
                                V       |                      |
                             +--+-------+--+                   |
               +--------+    |             |                   |
               | Policy +-->-+ Parent PCE  |                   |
               | Agent  |    |             |                   |
               +--------+    ++-----+-----++                   |
                             /      |      \                   |
                            /       |       \                  |
                       +---+-+   +--+--+   +-+---+             |
                       |     |   |     |   |     |             |
                       |PCE a|   |PCE b|   |PCE c|             |
                       |     |   |     |   |     |             V
                       +--+--+   +--+--+   +---+-+             |
                          |         |          |               |
                          V         V          V               |
               +----------+-+ +------------+ +-+----------+    |
               |Provisioning| |Provisioning| |Provisioning|    |
               |Manager     | |Manager     | |Manager     |    |
               +-+----------+ +-----+------+ +-----+------+    |
                 |                  |              |           |
                 V                  V              V           |
              +--+-----+       +----+---+       +--+-----+     |
             /   AS a   \=====/   AS b   \=====/   AS c   \    |
            +------------+ A +------------+ A +------------+   |
                           |                |                  |
                     +-----+----------------+-----+            |
                     |    Provisioning Manager    +----<-------+
                     +----------------------------+

      Figure 7: LSP Provisioning with Active Child PCEs and Stitching

   4. Verification of Service

      The ABNO Controller will need to ascertain that the end-to-end LSP
      has been set up as requested.  In the case of a control plane
      being used to establish the LSP, the head-end LSR may send a
      notification (perhaps using PCEP) to report successful setup, but
      to be sure that the LSP is up, the ABNO Controller will request
      the OAM Handler to perform Continuity Check OAM in the data plane
      and report back that the LSP is ready to carry traffic.
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   5. Notification of Service Fulfillment

      Finally, when the ABNO Controller is satisfied that the requested
      service is ready to carry traffic, it will notify the NMS/OSS.
      The delivery of the service may be further checked through
      auditing the network, as described in Section 2.3.2.7 .

3.2 .  Multi-Layer Networking

   Networks are typically constructed using multiple layers.  These
   layers represent separations of administrative regions or of
   technologies and may also represent a distinction between client and
   server networking roles.

   It is preferable to coordinate network resource control and
   utilization (i.e., consideration and control of multiple layers),
   rather than controlling and optimizing resources at each layer
   independently.  This facilitates network efficiency and network
   automation and may be defined as inter-layer traffic engineering.

   The PCE architecture supports inter-layer traffic engineering
   [ RFC5623] and, in combination with the ABNO architecture, provides a
   suite of capabilities for network resource coordination across
   multiple layers.

   The following use case demonstrates ABNO used to coordinate
   allocation of server-layer network resources to create virtual
   topology in a client-layer network in order to satisfy a request for
   end-to-end client-layer connectivity.  Consider the simple multi-
   layer network in Figure 8.

      +--+   +--+   +--+                    +--+   +--+   +--+
      |P1|---|P2|---|P3|                    |P4|---|P5|---|P6|
      +--+   +--+   +--+                    +--+   +--+   +--+
                        \                  /
                         \                /
                          +--+  +--+  +--+
                          |L1|--|L2|--|L3|
                          +--+  +--+  +--+

                       Figure 8: Multi-Layer Network

   There are six packet-layer routers (P1 through P6) and three optical-
   layer lambda switches (L1 through L3).  There is connectivity in the
   packet layer between routers P1, P2, and P3, and also between routers
   P4, P5, and P6, but there is no packet-layer connectivity between
   these two islands of routers, perhaps because of a network failure or
   perhaps because all existing bandwidth between the islands has
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   already been used up.  However, there is connectivity in the optical
   layer between switches L1, L2, and L3, and the optical network is
   connected out to routers P3 and P4 (they have optical line cards).
   In this example, a packet-layer connection (an MPLS LSP) is desired
   between P1 and P6.

   In the ABNO architecture, the following steps are performed to
   deliver the service.

   1. Request Management

      As shown in Figure 9, the Application Service Coordinator issues a
      request for connectivity from P1 to P6 in the packet-layer
      network.  That is, the Application Service Coordinator requests an
      MPLS LSP with a specific bandwidth to carry traffic for its
      application.  The ABNO Controller verifies that the Application
      Service Coordinator has sufficient rights to make the service
      request.

                             +---------------------------+
                             |    Application Service    |
                             |        Coordinator        |
                             +-------------+-------------+
                                           |
                                           V
                   +------+   +------------+------------+
                   |Policy+->-+     ABNO Controller     |
                   |Agent |   |                         |
                   +------+   +-------------------------+

         Figure 9: Application Service Coordinator Request Management

   2. Service Path Computation in the Packet Layer

      The ABNO Controller sends a path computation request to the
      packet-layer PCE to compute a suitable path for the requested LSP,
      as shown in Figure 10.  The PCE uses the appropriate policy for
      the request and consults the TED for the packet layer.  It
      determines that no path is immediately available.
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                             +-----------------+
                             | ABNO Controller |
                             +----+------------+
                                  |
                                  V
                +--------+     +--+-----------+   +--------+
                | Policy +-->--+ Packet-Layer +---+ Packet |
                | Agent  |     |      PCE     |   |   TED  |
                +--------+     +--------------+   +--------+

                     Figure 10: Path Computation Request

   3. Invocation of VNTM and Path Computation in the Optical Layer

      After the path computation failure in step 2, instead of notifying
      the ABNO Controller of the failure, the PCE invokes the VNTM to
      see whether it can create the necessary link in the virtual
      network topology to bridge the gap.

      As shown in Figure 11, the packet-layer PCE reports the
      connectivity problem to the VNTM, and the VNTM consults policy to
      determine what it is allowed to do.  Assuming that the policy
      allows it, the VNTM asks the optical-layer PCE to find a path
      across the optical network that could be provisioned to provide a
      virtual link for the packet layer.  In addressing this request,
      the optical-layer PCE consults a TED for the optical-layer
      network.

                                 +------+
                  +--------+     |      |     +--------------+
                  | Policy +-->--+ VNTM +--<--+ Packet-Layer |
                  | Agent  |     |      |     |      PCE     |
                  +--------+     +---+--+     +--------------+
                                     |
                                     V
                               +---------------+   +---------+
                               | Optical-Layer +---+ Optical |
                               |      PCE      |   |   TED   |
                               +---------------+   +---------+

       Figure 11: Invocation of VNTM and Optical-Layer Path Computation

   4. Provisioning in the Optical Layer

      Once a path has been found across the optical-layer network, it
      needs to be provisioned.  The options follow those in step 3 of
      Section 3.1 .  That is, provisioning can be initiated by the
      optical-layer PCE or by its user, the VNTM.  The command can be
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      sent to the head end of the optical LSP (P3) so that the control
      plane (for example, GMPLS RSVP-TE [ RFC3473]) can be used to
      provision the LSP.  Alternatively, the network resources can be
      provisioned directly, using any of the mechanisms described in
      Section 2.3.2.6 .

   5. Creation of Virtual Topology in the Packet Layer

      Once the LSP has been set up in the optical layer, it can be made
      available in the packet layer as a virtual link.  If the GMPLS
      signaling used the mechanisms described in [ RFC6107], this process
      can be automated within the control plane; otherwise, it may
      require a specific instruction to the head-end router of the
      optical LSP (for example, through I2RS).

      Once the virtual link is created as shown in Figure 12, it is
      advertised in the IGP for the packet-layer network, and the link
      will appear in the TED for the packet-layer network.

                     +--------+
                     | Packet |
                     |   TED  |
                     +------+-+
                            A
                            |
                           +--+                    +--+
                           |P3|....................|P4|
                           +--+                    +--+
                               \                  /
                                \                /
                                 +--+  +--+  +--+
                                 |L1|--|L2|--|L3|
                                 +--+  +--+  +--+

                Figure 12: Advertisement of a New Virtual Link

   6. Path Computation Completion and Provisioning in the Packet Layer

      Now there are sufficient resources in the packet-layer network.
      The PCE for the packet layer can complete its work, and the MPLS
      LSP can be provisioned as described in Section 3.1 .

   7. Verification and Notification of Service Fulfillment

      As discussed in Section 3.1 , the ABNO Controller will need to
      verify that the end-to-end LSP has been correctly established
      before reporting service fulfillment to the Application Service
      Coordinator.
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      Furthermore, it is highly likely that service verification will be
      necessary before the optical-layer LSP can be put into service as
      a virtual link.  Thus, the VNTM will need to coordinate with the
      OAM Handler to ensure that the LSP is ready for use.

3.2.1 .  Data Center Interconnection across Multi-Layer Networks

   In order to support new and emerging cloud-based applications, such
   as real-time data backup, virtual machine migration, server
   clustering, or load reorganization, the dynamic provisioning and
   allocation of IT resources and the interconnection of multiple,
   remote Data Centers (DCs) is a growing requirement.

   These operations require traffic being delivered between data
   centers, and, typically, the connections providing such inter-DC
   connectivity are provisioned using static circuits or dedicated
   leased lines, leading to an inefficiency in terms of resource
   utilization.  Moreover, a basic requirement is that such a group of
   remote DCs can be operated logically as one.

   In such environments, the data plane technology is operator and
   provider dependent.  Their customers may rent lambda switch capable
   (LSC), packet switch capable (PSC), or time division multiplexing
   (TDM) services, and the application and usage of the ABNO
   architecture and Controller enable the required dynamic end-to-end
   network service provisioning, regardless of underlying service and
   transport layers.

   Consequently, the interconnection of DCs may involve the operation,
   control, and management of heterogeneous environments: each DC site
   and the metro-core network segment used to interconnect them, with
   regard to not only the underlying data plane technology but also the
   control plane.  For example, each DC site or domain could be
   controlled locally in a centralized way (e.g., via OpenFlow [ ONF]),
   whereas the metro-core transport infrastructure is controlled by
   GMPLS.  Although OpenFlow is specially adapted to single-domain
   intra-DC networks (packet-level control, lots of routing exceptions),
   a standardized GMPLS-based architecture would enable dynamic optical
   resource allocation and restoration in multi-domain (e.g., multi-
   vendor) core networks interconnecting distributed data centers.
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   The application of an ABNO architecture and related procedures would
   involve the following aspects:

   1. Request from the Application Service Coordinator or NMS

      As shown in Figure 13, the ABNO Controller receives a request from
      the Application Service Coordinator or from the NMS, in order to
      create a new end-to-end connection between two end points.  The
      actual addressing of these end points is discussed in the next
      section.  The ABNO Controller asks the PCE for a path between
      these two end points, after considering any applicable policy as
      defined by the Policy Agent (see Figure 1).

                             +---------------------------+
                             |    Application Service    |
                             |     Coordinator or NMS    |
                             +-------------+-------------+
                                           |
                                           V
                   +------+   +------------+------------+
                   |Policy+->-+     ABNO Controller     |
                   |Agent |   |                         |
                   +------+   +-------------------------+

        Figure 13: Application Service Coordinator Request Management

   2. Address Mapping

      In order to compute an end-to-end path, the PCE needs to have a
      unified view of the overall topology, which means that it has to
      consider and identify the actual end points with regard to the
      client network addresses.  The ABNO Controller and/or the PCE may
      need to translate or map addresses from different address spaces.
      Depending on how the topology information is disseminated and
      gathered, there are two possible scenarios:

      2a. The Application Layer Knows the Client Network Layer

          Entities belonging to the application layer may have an
          interface with the TED or with an ALTO Server allowing those
          entities to map the high-level end points to network
          addresses.  The mechanism used to enable this address
          correlation is out of scope for this document but relies on
          direct interfaces to other ABNO components in addition to the
          interface to the ABNO Controller.
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          In this scenario, the request from the NMS or Application
          Service Coordinator contains addresses in the client-layer
          network.  Therefore, when the ABNO Controller requests the PCE
          to compute a path between two end points, the PCE is able to
          use the supplied addresses, compute the path, and continue the
          workflow in communication with the Provisioning Manager.

      2b. The Application Layer Does Not Know the Client Network Layer

          In this case, when the ABNO Controller receives a request from
          the NMS or Application Service Coordinator, the request
          contains only identifiers from the application-layer address
          space.  In order for the PCE to compute an end-to-end path,
          these identifiers must be converted to addresses in the
          client-layer network.  This translation can be performed by
          the ABNO Controller, which can access the TED and ALTO
          databases allowing the path computation request that it sends
          to the PCE to simply be contained within one network and TED.
          Alternatively, the computation request could use the
          application-layer identifiers, leaving the job of address
          mapping to the PCE.

          Note that in order to avoid any confusion both approaches in
          this scenario require clear identification of the address
          spaces that are in use.

   3. Provisioning Process

      Once the path has been obtained, the Provisioning Manager receives
      a high-level provisioning request to provision the service.
      Since, in the considered use case, the network elements are not
      necessarily configured using the same protocol, the end-to-end
      path is split into segments, and the ABNO Controller coordinates
      or orchestrates the establishment by adapting and/or translating
      the abstract provisioning request to concrete segment requests by
      means of a VNTM or PCE that issues the corresponding commands or
      instructions.  The provisioning may involve configuring the data
      plane elements directly or delegating the establishment of the
      underlying connection to a dedicated control plane instance
      responsible for that segment.
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      The Provisioning Manager could use a number of mechanisms to
      program the network elements, as shown in Figure 14.  It learns
      which technology is used for the actual provisioning at each
      segment by either manual configuration or discovery.

                                  +-----------------+
                                  | ABNO Controller |
                                  +-------+---------+
                                          |
                                          |
                                          V
                      +------+     +------+-------+
                      | VNTM +--<--+     PCE      |
                      +---+--+     +------+-------+
                          |               |
                          V               V
                    +-----+---------------+------------+
                    |       Provisioning Manager       |
                    +----------------------------------+
                      |       |       |       |       |
                      V       |       V       |       V
                    OpenFlow  V    ForCES     V      PCEP
                           NETCONF          SNMP

                       Figure 14: Provisioning Process

   4. Verification and Notification of Service Fulfillment

      Once the end-to-end connectivity service has been provisioned, and
      after the verification of the correct operation of the service,
      the ABNO Controller needs to notify the Application Service
      Coordinator or NMS.

3.3 .  Make-before-Break

   A number of different services depend on the establishment of a new
   LSP so that traffic supported by an existing LSP can be switched with
   little or no disruption.  This section describes those use cases,
   presents a generic model for make-before-break within the ABNO
   architecture, and shows how each use case can be supported by using
   elements of the generic model.

3.3.1 .  Make-before-Break for Reoptimization

   Make-before-break is a mechanism supported in RSVP-TE signaling where
   a new LSP is set up before the LSP it replaces is torn down
   [ RFC3209].  This process has several benefits in situations such as
   reoptimization of in-service LSPs.
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   The process is simple, and the example shown in Figure 15 utilizes a
   Stateful PCE [ Stateful-PCE ] to monitor the network and take
   reoptimization actions when necessary.  In this process, a service
   request is made to the ABNO Controller by a requester such as the
   OSS.  The service request indicates that the LSP should be
   reoptimized under specific conditions according to policy.  This
   allows the ABNO Controller to manage the sequence and prioritization
   of reoptimizing multiple LSPs using elements of Global Concurrent
   Optimization (GCO) as described in Section 3.4 , and applying policies
   across the network so that, for instance, LSPs for delay-sensitive
   services are reoptimized first.

   The ABNO Controller commissions the PCE to compute and set up the
   initial path.

   Over time, the PCE monitors the changes in the network as reflected
   in the TED, and according to the configured policy may compute and
   set up a replacement path, using make-before-break within the
   network.

   Once the new path has been set up and the network reports that it is
   being used correctly, the PCE tears down the old path and may report
   the reoptimization event to the ABNO Controller.

             +---------------------------------------------+
             | OSS / NMS / Application Service Coordinator |
             +----------------------+----------------------+
                                    |
                       +------------+------------+
                       |     ABNO Controller     |
                       +------------+------------+
                                    |
               +------+     +-------+-------+     +-----+
               |Policy+-----+      PCE      +-----+ TED |
               |Agent |     +-------+-------+     +-----+
               +------+             |
                                    |
             +----------------------+----------------------+
            /                    Network                    \
           +-------------------------------------------------+

                 Figure 15: The Make-before-Break Process

3.3.2 .  Make-before-Break for Restoration

   Make-before-break may also be used to repair a failed LSP where there
   is a desire to retain resources along some of the path, and where
   there is the potential for other LSPs to "steal" the resources if the

King & Farrel                 Informational                    [Page 38]

https://tools.ietf.org/pdf/rfc7491


 
RFC 7491              PCE-Based Architecture for ABNO          March 2015

   failed LSP is torn down first.  Unlike the example in Section 3.3.1 ,
   this case addresses a situation where the service is interrupted, but
   this interruption arises from the break in service introduced by the
   network failure.  Obviously, in the case of a point-to-multipoint
   LSP, the failure might only affect part of the tree and the
   disruption will only be to a subset of the destination leaves so that
   a make-before-break restoration approach will not cause disruption to
   the leaves that were not affected by the original failure.

   Figure 16 shows the components that interact for this use case.  A
   service request is made to the ABNO Controller by a requester such as
   the OSS.  The service request indicates that the LSP may be restored
   after failure and should attempt to reuse as much of the original
   path as possible.

   The ABNO Controller commissions the PCE to compute and set up the
   initial path.  The ABNO Controller also requests the OAM Handler to
   initiate OAM on the LSP and to monitor the results.

   At some point, the network reports a fault to the OAM Handler, which
   notifies the ABNO Controller.

   The ABNO Controller commissions the PCE to compute a new path,
   reusing as much of the original path as possible, and the PCE sets up
   the new LSP.

   Once the new path has been set up and the network reports that it is
   being used correctly, the ABNO Controller instructs the PCE to tear
   down the old path.

             +---------------------------------------------+
             | OSS / NMS / Application Service Coordinator |
             +----------------------+----------------------+
                                    |
                       +------------+------------+   +-------+
                       |     ABNO Controller     +---+  OAM  |
                       +------------+------------+   |Handler|
                                    |                +---+---+
                            +-------+-------+            |
                            |      PCE      |            |
                            +-------+-------+            |
                                    |                    |
             +----------------------+--------------------+-+
            /                    Network                    \
           +-------------------------------------------------+

           Figure 16: The Make-before-Break Restoration Process
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3.3.3 .  Make-before-Break for Path Test and Selection

   In a more complicated use case, an LSP may be monitored for a number
   of attributes, such as delay and jitter.  When the LSP falls below a
   threshold, the traffic may be moved to another LSP that offers the
   desired (or at least a better) quality of service.  To achieve this,
   it is necessary to establish the new LSP and test it, and because the
   traffic must not be interrupted, make-before-break must be used.

   Moreover, it may be the case that no new LSP can provide the desired
   attributes and that a number of LSPs need to be tested so that the
   best can be selected.  Furthermore, even when the original LSP is set
   up, it could be desirable to test a number of LSPs before deciding
   which should be used to carry the traffic.

   Figure 17 shows the components that interact for this use case.
   Because multiple LSPs might exist at once, a distinct action is
   needed to coordinate which one carries the traffic, and this is the
   job of the I2RS Client acting under the control of the ABNO
   Controller.

   The OAM Handler is responsible for initiating tests on the LSPs and
   for reporting the results back to the ABNO Controller.  The OAM
   Handler can also check end-to-end connectivity test results across a
   multi-domain network even when each domain runs a different
   technology.  For example, an end-to-end path might be achieved by
   stitching together an MPLS segment, an Ethernet/VLAN segment, another
   IP segment, etc.

   Otherwise, the process is similar to that for reoptimization as
   discussed in Section 3.3.1 .
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             +---------------------------------------------+
             | OSS / NMS / Application Service Coordinator |
             +----------------------+----------------------+
                                    |
            +------+   +------------+------------+    +-------+
            |Policy+---+     ABNO Controller     +----+  OAM  |
            |Agent |   |                         +--+ |Handler|
            +------+   +------------+------------+  | +---+---+
                                    |               |     |
                            +-------+-------+    +--+---+ |
                            |      PCE      |    | I2RS | |
                            +-------+-------+    |Client| |
                                    |            +--+---+ |
                                    |               |     |
            +-----------------------+---------------+-----+-+
           /                     Network                     \
          +---------------------------------------------------+

     Figure 17: The Make-before-Break Path Test and Selection Process

   The pseudocode that follows gives an indication of the interactions
   between ABNO components.

      OSS requests quality-assured service

      :Label1

      DoWhile not enough LSPs (ABNO Controller)
        Instruct PCE to compute and provision the LSP (ABNO Controller)
        Create the LSP (PCE)
      EndDo

      :Label2

      DoFor each LSP (ABNO Controller)
        Test LSP (OAM Handler)
        Report results to ABNO Controller (OAM Handler)
      EndDo

      Evaluate results of all tests (ABNO Controller)
      Select preferred LSP and instruct I2RS Client (ABNO Controller)
      Put traffic on preferred LSP (I2RS Client)

      DoWhile too many LSPs (ABNO Controller)
        Instruct PCE to tear down unwanted LSP (ABNO Controller)
        Tear down unwanted LSP (PCE)
      EndDo
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      DoUntil trigger (OAM Handler, ABNO Controller, Policy Agent)
        keep sending traffic (Network)
        Test LSP (OAM Handler)
      EndDo

      If there is already a suitable LSP (ABNO Controller)
        GoTo Label2
      Else
        GoTo Label1
      EndIf

3.4 .  Global Concurrent Optimization

   Global Concurrent Optimization (GCO) is defined in [ RFC5557] and
   represents a key technology for maximizing network efficiency by
   computing a set of traffic-engineered paths concurrently.  A GCO path
   computation request will simultaneously consider the entire topology
   of the network, and the complete set of new LSPs together with their
   respective constraints.  Similarly, GCO may be applied to recompute
   the paths of a set of existing LSPs.

   GCO may be requested in a number of scenarios.  These include:

   o  Routing of new services where the PCE should consider other
      services or network topology.

   o  A reoptimization of existing services due to fragmented network
      resources or suboptimized placement of sequentially computed
      services.

   o  Recovery of connectivity for bulk services in the event of a
      catastrophic network failure.

   A service provider may also want to compute and deploy new bulk
   services based on a predicted traffic matrix.  The GCO functionality
   and capability to perform concurrent computation provide a
   significant network optimization advantage, thus utilizing network
   resources optimally and avoiding blocking.

   The following use case shows how the ABNO architecture and components
   are used to achieve concurrent optimization across a set of services.
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3.4.1 .  Use Case: GCO with MPLS LSPs

   When considering the GCO path computation problem, we can split the
   GCO objective functions into three optimization categories:

   o  Minimize aggregate Bandwidth Consumption (MBC).

   o  Minimize the load of the Most Loaded Link (MLL).

   o  Minimize Cumulative Cost of a set of paths (MCC).

   This use case assumes that the GCO request will be offline and be
   initiated from an NMS/OSS; that is, it may take significant time to
   compute the service, and the paths reported in the response may want
   to be verified by the user before being provisioned within the
   network.

   1. Request Management

      The NMS/OSS issues a request for new service connectivity for bulk
      services.  The ABNO Controller verifies that the NMS/OSS has
      sufficient rights to make the service request and apply a GCO
      attribute with a request to Minimize aggregate Bandwidth
      Consumption (MBC), as shown in Figure 18.

                                 +---------------------+
                                 |       NMS/OSS       |
                                 +----------+----------+
                                            |
                                            V
                  +--------+    +-----------+-------------+
                  | Policy +-->-+     ABNO Controller     |
                  | Agent  |    |                         |
                  +--------+    +-------------------------+

                  Figure 18: NMS Request to ABNO Controller

      1a. Each service request has a source, destination, and bandwidth
          request.  These service requests are sent to the ABNO
          Controller and categorized as GCO requests.  The PCE uses the
          appropriate policy for each request and consults the TED for
          the packet layer.
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   2. Service Path Computation in the Packet Layer

      To compute a set of services for the GCO application, PCEP
      supports synchronization vector (SVEC) lists for synchronized
      dependent path computations as defined in [ RFC5440] and described
      in [ RFC6007].

      2a. The ABNO Controller sends the bulk service request to the
          GCO-capable packet-layer PCE using PCEP messaging.  The PCE
          uses the appropriate policy for the request and consults the
          TED for the packet layer, as shown in Figure 19.

                               +-----------------+
                               | ABNO Controller |
                               +----+------------+
                                    |
                                    V
                  +--------+     +--+-----------+   +--------+
                  |        |     |              |   |        |
                  | Policy +-->--+ GCO-Capable  +---+ Packet |
                  | Agent  |     | Packet-Layer |   |  TED   |
                  |        |     |     PCE      |   |        |
                  +--------+     +--------------+   +--------+

             Figure 19: Path Computation Request from GCO-Capable PCE

      2b. Upon receipt of the bulk (GCO) service requests, the PCE
          applies the MBC objective function and computes the services
          concurrently.

      2c. Once the requested GCO service path computation completes, the
          PCE sends the resulting paths back to the ABNO Controller.
          The response includes a fully computed explicit path for each
          service (TE LSP).
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   3. The concurrently computed solution received from the PCE is sent
      back to the NMS/OSS by the ABNO Controller as a PCEP response, as
      shown in Figure 20.  The NMS/OSS user can then check the candidate
      paths and either provision the new services or save the solution
      for deployment in the future.

                         +---------------------+
                         |       NMS/OSS       |
                         +----------+----------+
                                    ^
                                    |
                         +----------+----------+
                         |    ABNO Controller  |
                         |                     |
                         +---------------------+

               Figure 20: ABNO Sends Solution to the NMS/OSS

3.5 .  Adaptive Network Management (ANM)

   The ABNO architecture provides the capability for reactive network
   control of resources relying on classification, profiling, and
   prediction based on current demands and resource utilization.
   Server-layer transport network resources, such as Optical Transport
   Network (OTN) time-slicing [ G.709 ], or the fine granularity grid of
   wavelengths with variable spectral bandwidth (flexi-grid) [ G.694.1 ],
   can be manipulated to meet current and projected demands in a model
   called Elastic Optical Networks (EON) [ EON].

   EON provides spectrum-efficient and scalable transport by introducing
   flexible granular traffic grooming in the optical frequency domain.
   This is achieved using arbitrary contiguous concatenation of the
   optical spectrum that allows the creation of custom-sized bandwidth.
   This bandwidth is defined in slots of 12.5 GHz.

   Adaptive Network Management (ANM) with EON allows appropriately sized
   optical bandwidth to be allocated to an end-to-end optical path.  In
   flexi-grid, the allocation is performed according to the traffic
   volume, optical modulation format, and associated reach, or following
   user requests, and can be achieved in a highly spectrum-efficient and
   scalable manner.  Similarly, OTN provides for flexible and granular
   provisioning of bandwidth on top of Wavelength Switched Optical
   Networks (WSONs).

   To efficiently use optical resources, a system is required that can
   monitor network resources and decide the optimal network
   configuration based on the status, bandwidth availability, and user
   service.  We call this ANM.
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3.5.1 .  ANM Trigger

   There are different reasons to trigger an adaptive network management
   process; these include:

   o  Measurement: Traffic measurements can be used in order to cause
      spectrum allocations that fit the traffic needs as efficiently as
      possible.  This function may be influenced by measuring the IP
      router traffic flows, by examining traffic engineering or link
      state databases, by usage thresholds for critical links in the
      network, or by requests from external entities.  Nowadays, network
      operators have active monitoring probes in the network that store
      their results in the OSS.  The OSS or OAM Handler components
      activate this measurement-based trigger, so the ABNO Controller
      would not be directly involved in this case.

   o  Human: Operators may request ABNO to run an adaptive network
      planning process via an NMS.

   o  Periodic: An adaptive network planning process can be run
      periodically to find an optimum configuration.

   An ABNO Controller would receive a request from an OSS or NMS to run
   an adaptive network manager process.

3.5.2 .  Processing Request and GCO Computation

   Based on the human or periodic trigger requests described in the
   previous section, the OSS or NMS will send a request to the ABNO
   Controller to perform EON-based GCO.  The ABNO Controller will select
   a set of services to be reoptimized and choose an objective function
   that will deliver the best use of network resources.  In making these
   choices, the ABNO Controller is guided by network-wide policy on the
   use of resources, the definition of optimization, and the level of
   perturbation to existing services that is tolerable.

   This request for GCO is passed to the PCE, along the lines of the
   description in Section 3.4 .  The PCE can then consider the end-to-end
   paths and every channel’s optimal spectrum assignment in order to
   satisfy traffic demands and optimize the optical spectrum consumption
   within the network.

   The PCE will operate on the TED but is likely to also be stateful so
   that it knows which LSPs correspond to which waveband allocations on
   which links in the network.  Once the PCE arrives at an answer, it
   returns a set of potential paths to the ABNO Controller, which passes
   them on to the NMS or OSS to supervise/select the subsequent path
   setup/modification process.
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   This exchange is shown in Figure 21.  Note that the figure does not
   show the interactions used by the OSS/NMS for establishing or
   modifying LSPs in the network.

                           +---------------------------+
                           |        OSS or NMS         |
                           +-----------+---+-----------+
                                       |   ^
                                       V   |
                 +------+   +----------+---+----------+
                 |Policy+->-+     ABNO Controller     |
                 |Agent |   |                         |
                 +------+   +----------+---+----------+
                                       |   ^
                                       V   |
                                 +-----+---+----+
                                 +      PCE     |
                                 +--------------+

      Figure 21: Adaptive Network Management with Human Intervention

3.5.3 .  Automated Provisioning Process

   Although most network operations are supervised by the operator,
   there are some actions that may not require supervision, like a
   simple modification of a modulation format in a Bit-rate Variable
   Transponder (BVT) (to increase the optical spectrum efficiency or
   reduce energy consumption).  In this process, where human
   intervention is not required, the PCE sends the Provisioning Manager
   a new configuration to configure the network elements, as shown in
   Figure 22.
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                         +------------------------+
                         |       OSS or NMS       |
                         +-----------+------------+
                                     |
                                     V
               +------+   +----------+------------+
               |Policy+->-+     ABNO Controller   |
               |Agent |   |                       |
               +------+   +----------+------------+
                                     |
                                     V
                              +------+------+
                              +     PCE     |
                              +------+------+
                                     |
                                     V
                     +----------------------------------+
                     |       Provisioning Manager       |
                     +----------------------------------+

     Figure 22: Adaptive Network Management without Human Intervention

3.6 .  Pseudowire Operations and Management

   Pseudowires in an MPLS network [ RFC3985] operate as a form of layered
   network over the connectivity provided by the MPLS network.  The
   pseudowires are carried by LSPs operating as transport tunnels, and
   planning is necessary to determine how those tunnels are placed in
   the network and which tunnels are used by any pseudowire.

   This section considers four use cases: multi-segment pseudowires,
   path-diverse pseudowires, path-diverse multi-segment pseudowires, and
   pseudowire segment protection.  Section 3.6.5  describes the
   applicability of the ABNO architecture to these four use cases.

3.6.1 .  Multi-Segment Pseudowires

   [RFC5254] describes the architecture for multi-segment pseudowires.
   An end-to-end service, as shown in Figure 23, can consist of a series
   of stitched segments shown in the figure as AC, PW1, PW2, PW3, and
   AC.  Each pseudowire segment is stitched at a "stitching Provider
   Edge" (S-PE): for example, PW1 is stitched to PW2 at S-PE1.  Each
   access circuit (AC) is stitched to a pseudowire segment at a
   "terminating PE" (T-PE): for example, PW1 is stitched to the AC at
   T-PE1.
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   Each pseudowire segment is carried across the MPLS network in an LSP
   operating as a transport tunnel: for example, PW1 is carried in LSP1.
   The LSPs between PE nodes may traverse different MPLS networks with
   the PEs as border nodes, or the PEs may lie within the network such
   that each LSP spans only part of the network.

              -----         -----         -----         -----
     ---     |T-PE1|  LSP1 |S-PE1|  LSP2 |S-PE3|  LSP3 |T-PE2|    +---+
    |   | AC |     |=======|     |=======|     |=======|     | AC |   |
    |CE1|----|........PW1........|..PW2........|..PW3........|----|CE2|
    |   |    |     |=======|     |=======|     |=======|     |    |   |
     ---     |     |       |     |       |     |       |     |    +---+
              -----         -----         -----         -----

                    Figure 23: Multi-Segment Pseudowire

   While the topology shown in Figure 23 is easy to navigate, the
   reality of a deployed network can be considerably more complex.  The
   topology in Figure 24 shows a small mesh of PEs.  The links between
   the PEs are not physical links but represent the potential of MPLS
   LSPs between the PEs.

   When establishing the end-to-end service between Customer Edge nodes
   (CEs) CE1 and CE2, some choice must be made about which PEs to use.
   In other words, a path computation must be made to determine the
   pseudowire segment "hops", and then the necessary LSP tunnels must be
   established to carry the pseudowire segments that will be stitched
   together.

   Of course, each LSP may itself require a path computation decision to
   route it through the MPLS network between PEs.

   The choice of path for the multi-segment pseudowire will depend on
   such issues as:

   - MPLS connectivity

   - MPLS bandwidth availability

   - pseudowire stitching capability and capacity at PEs

   - policy and confidentiality considerations for use of PEs
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                                   -----
                                  |S-PE5|
                                  /-----\
     ---      -----         -----/       \-----         -----      ---
    |CE1|----|T-PE1|-------|S-PE1|-------|S-PE3|-------|T-PE2|----|CE2|
     ---      -----\        -----\        -----        /-----      ---
                    \         |   -------   |         /
                     \      -----        \-----      /
                      -----|S-PE2|-------|S-PE4|-----
                            -----         -----

           Figure 24: Multi-Segment Pseudowire Network Topology

3.6.2 .  Path-Diverse Pseudowires

   The connectivity service provided by a pseudowire may need to be
   resilient to failure.  In many cases, this function is provided by
   provisioning a pair of pseudowires carried by path-diverse LSPs
   across the network, as shown in Figure 25 (the terminology is
   inherited directly from [ RFC3985]).  Clearly, in this case, the
   challenge is to keep the two LSPs (LSP1 and LSP2) disjoint within the
   MPLS network.  This problem is not different from the normal MPLS
   path-diversity problem.

                  -------                         -------
                 |  PE1  |          LSP1         |  PE2  |
            AC   |       |=======================|       |   AC
             ----...................PW1...................----
     --- -  /    |       |=======================|       |    \  -----
    |     |/     |       |                       |       |     \|     |
    | CE1 +      |       |      MPLS Network     |       |      + CE2 |
    |     |\     |       |                       |       |     /|     |
     --- -  \    |       |=======================|       |    /  -----
             ----...................PW2...................----
            AC   |       |=======================|       |   AC
                 |       |          LSP2         |       |
                  -------                         -------

                    Figure 25: Path-Diverse Pseudowires

   The path-diverse pseudowire is developed in Figure 26 by the
   "dual-homing" of each CE through more than one PE.  The requirement
   for LSP path diversity is exactly the same, but it is complicated by
   the LSPs having distinct end points.  In this case, the head-end
   router (e.g., PE1) cannot be relied upon to maintain the path
   diversity through the signaling protocol because it is aware of the
   path of only one of the LSPs.  Thus, some form of coordinated path
   computation approach is needed.
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                  -------                         -------
                 |  PE1  |          LSP1         |  PE2  |
             AC  |       |=======================|       |  AC
              ---...................PW1...................---
             /   |       |=======================|       |   \
     -----  /    |       |                       |       |    \  -----
    |     |/      -------                         -------      \|     |
    | CE1 +                     MPLS Network                    + CE2 |
    |     |\      -------                         -------      /|     |
     -----  \    |  PE3  |                       |  PE4  |    /  -----
             \   |       |=======================|       |   /
              ---...................PW2...................---
             AC  |       |=======================|       |  AC
                 |       |          LSP2         |       |
                  -------                         -------

           Figure 26: Path-Diverse Pseudowires with Disjoint PEs

3.6.3 .  Path-Diverse Multi-Segment Pseudowires

   Figure 27 shows how the services in the previous two sections may be
   combined to offer end-to-end diverse paths in a multi-segment
   environment.  To offer end-to-end resilience to failure, two entirely
   diverse, end-to-end multi-segment pseudowires may be needed.

                                   -----                -----
                                  |S-PE5|--------------|T-PE4|
                                  /-----\               ----- \
              -----         -----/       \-----         -----  \ ---
             |T-PE1|-------|S-PE1|-------|S-PE3|-------|T-PE2|--|CE2|
       ---  / -----\        -----\        -----        /-----    ---
      |CE1|<        -------   |   -------   |         /
       ---  \ -----        \-----        \-----      /
             |T-PE3|-------|S-PE2|-------|S-PE4|-----
              -----         -----         -----

     Figure 27: Path-Diverse Multi-Segment Pseudowire Network Topology

   Just as in any diverse-path computation, the selection of the first
   path needs to be made with awareness of the fact that a second, fully
   diverse path is also needed.  If a sequential computation was applied
   to the topology in Figure 27, the first path CE1,T-PE1,S-PE1,
   S-PE3,T-PE2,CE2 would make it impossible to find a second path that
   was fully diverse from the first.
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   But the problem is complicated by the multi-layer nature of the
   network.  It is not enough that the PEs are chosen to be diverse
   because the LSP tunnels between them might share links within the
   MPLS network.  Thus, a multi-layer planning solution is needed to
   achieve the desired level of service.

3.6.4 .  Pseudowire Segment Protection

   An alternative to the end-to-end pseudowire protection service
   enabled by the mechanism described in Section 3.6.3  can be achieved
   by protecting individual pseudowire segments or PEs.  For example, in
   Figure 27, the pseudowire between S-PE1 and S-PE5 may be protected by
   a pair of stitched segments running between S-PE1 and S-PE5, and
   between S-PE5 and S-PE3.  This is shown in detail in Figure 28.

             -------              -------              -------
            | S-PE1 |    LSP1    | S-PE5 |    LSP3    | S-PE3 |
            |       |============|       |============|       |
            |   .........PW1..................PW3..........   | Outgoing
   Incoming |  :    |============|       |============|    :  | Segment
   Segment  |  :    |             -------             |    :..........
    ...........:    |                                 |    :  |
            |  :    |                                 |    :  |
            |  :    |=================================|    :  |
            |   .........PW2...............................   |
            |       |=================================|       |
            |       |    LSP2                         |       |
             -------                                   -------

    Figure 28: Fragment of a Segment-Protected Multi-Segment Pseudowire

   The determination of pseudowire protection segments requires
   coordination and planning, and just as in Section 3.6.5 , this
   planning must be cognizant of the paths taken by LSPs through the
   underlying MPLS networks.

3.6.5 .  Applicability of ABNO to Pseudowires

   The ABNO architecture lends itself well to the planning and control
   of pseudowires in the use cases described above.  The user or
   application needs a single point at which it requests services: the
   ABNO Controller.  The ABNO Controller can ask a PCE to draw on the
   topology of pseudowire stitching-capable PEs as well as additional
   information regarding PE capabilities, such as load on PEs and
   administrative policies, and the PCE can use a series of TEDs or
   other PCEs for the underlying MPLS networks to determine the paths of
   the LSP tunnels.  At the time of this writing, PCEP does not support
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   path computation requests and responses concerning pseudowires, but
   the concepts are very similar to existing uses and the necessary
   extensions would be very small.

   Once the paths have been computed, a number of different provisioning
   systems can be used to instantiate the LSPs and provision the
   pseudowires under the control of the Provisioning Manager.  The ABNO
   Controller will use the I2RS Client to instruct the network devices
   about what traffic should be placed on which pseudowires and, in
   conjunction with the OAM Handler, can ensure that failure events are
   handled correctly, that service quality levels are appropriate, and
   that service protection levels are maintained.

   In many respects, the pseudowire network forms an overlay network
   (with its own TED and provisioning mechanisms) carried by underlying
   packet networks.  Further client networks (the pseudowire payloads)
   may be carried by the pseudowire network.  Thus, the problem space
   being addressed by ABNO in this case is a classic multi-layer
   network.

3.7 .  Cross-Stratum Optimization (CSO)

   Considering the term "stratum" to broadly differentiate the layers of
   most concern to the application and to the network in general, the
   need for Cross-Stratum Optimization (CSO) arises when the application
   stratum and network stratum need to be coordinated to achieve
   operational efficiency as well as resource optimization in both
   application and network strata.

   Data center-based applications can provide a wide variety of services
   such as video gaming, cloud computing, and grid applications.  High-
   bandwidth video applications are also emerging, such as remote
   medical surgery, live concerts, and sporting events.

   This use case for the ABNO architecture is mainly concerned with data
   center applications that make substantial bandwidth demands either in
   aggregate or individually.  In addition, these applications may need
   specific bounds on QoS-related parameters such as latency and jitter.

3.7.1 .  Data Center Network Operation

   Data centers come in a wide variety of sizes and configurations, but
   all contain compute servers, storage, and application control.  Data
   centers offer application services to end-users, such as video
   gaming, cloud computing, and others.  Since the data centers used to
   provide application services may be distributed around a network, the
   decisions about the control and management of application services,
   such as where to instantiate another service instance or to which
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   data center a new client is assigned, can have a significant impact
   on the state of the network.  Conversely, the capabilities and state
   of the network can have a major impact on application performance.

   These decisions are typically made by applications with very little
   or no information concerning the underlying network.  Hence, such
   decisions may be suboptimal from the application’s point of view or
   considering network resource utilization and quality of service.

   Cross-Stratum Optimization is the process of optimizing both the
   application experience and the network utilization by coordinating
   decisions in the application stratum and the network stratum.
   Application resources can be roughly categorized into computing
   resources (i.e., servers of various types and granularities, such as
   Virtual Machines (VMs), memory, and storage) and content (e.g.,
   video, audio, databases, and large data sets).  By "network stratum"
   we mean the IP layer and below (e.g., MPLS, Synchronous Digital
   Hierarchy (SDH), OTN, WDM).  The network stratum has resources that
   include routers, switches, and links.  We are particularly interested
   in further unleashing the potential presented by MPLS and GMPLS
   control planes at the lower network layers in response to the high
   aggregate or individual demands from the application layer.

   This use case demonstrates that the ABNO architecture can allow
   cross-stratum application/network optimization for the data center
   use case.  Other forms of Cross-Stratum Optimization (for example,
   for peer-to-peer applications) are out of scope.

3.7.1.1 .  Virtual Machine Migration

   A key enabler for data center cost savings, consolidation,
   flexibility, and application scalability has been the technology of
   compute virtualization provided through Virtual Machines (VMs).  To
   the software application, a VM looks like a dedicated processor with
   dedicated memory and a dedicated operating system.

   VMs not only offer a unit of compute power but also provide an
   "application environment" that can be replicated, backed up, and
   moved.  Different VM configurations may be offered that are optimized
   for different types of processing (e.g., memory intensive, throughput
   intensive).
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   VMs may be moved between compute resources in a data center and could
   be moved between data centers.  VM migration serves to balance load
   across data center resources and has several modes:

     (i) scheduled vs. dynamic;

    (ii) bulk vs. sequential;

   (iii) point-to-point vs. point-to-multipoint

   While VM migration may solve problems of load or planned maintenance
   within a data center, it can also be effective to reduce network load
   around the data center.  But the act of migrating VMs, especially
   between data centers, can impact the network and other services that
   are offered.

   For certain applications such as disaster recovery, bulk migration is
   required on the fly, which may necessitate concurrent computation and
   path setup dynamically.

   Thus, application stratum operations must also take into account the
   situation in the network stratum, even as the application stratum
   actions may be driven by the status of the network stratum.

3.7.1.2 .  Load Balancing

   Application servers may be instantiated in many data centers located
   in different parts of the network.  When an end-user makes an
   application request, a decision has to be made about which data
   center should host the processing and storage required to meet the
   request.  One of the major drivers for operating multiple data
   centers (rather than one very large data center) is so that the
   application will run on a machine that is closer to the end-users and
   thus improve the user experience by reducing network latency.
   However, if the network is congested or the data center is
   overloaded, this strategy can backfire.

   Thus, the key factors to be considered in choosing the server on
   which to instantiate a VM for an application include:

   - The utilization of the servers in the data center

   - The network load conditions within a data center

   - The network load conditions between data centers

   - The network conditions between the end-user and data center

King & Farrel                 Informational                    [Page 55]

https://tools.ietf.org/pdf/rfc7491


 
RFC 7491              PCE-Based Architecture for ABNO          March 2015

   Again, the choices made in the application stratum need to consider
   the situation in the network stratum.

3.7.2 .  Application of the ABNO Architecture

   This section shows how the ABNO architecture is applicable to the
   cross-stratum data center issues described in Section 3.7.1 .

   Figure 29 shows a diagram of an example data center-based
   application.  A carrier network provides access for an end-user
   through PE4.  Three data centers (DC1, DC2, and DC3) are accessed
   through different parts of the network via PE1, PE2, and PE3.

   The Application Service Coordinator receives information from the
   end-user about the desired services and converts this information to
   service requests that it passes to the ABNO Controller.  The
   end-users may already know which data center they wish to use, or the
   Application Service Coordinator may be able to make this
   determination; otherwise, the task of selecting the data center must
   be performed by the ABNO Controller, and this may utilize a further
   database (see Section 2.3.1.8 ) to contain information about server
   loads and other data center parameters.

   The ABNO Controller examines the network resources using information
   gathered from the other ABNO components and uses those components to
   configure the network to support the end-user’s needs.

King & Farrel                 Informational                    [Page 56]

https://tools.ietf.org/pdf/rfc7491


 
RFC 7491              PCE-Based Architecture for ABNO          March 2015

   +----------+    +---------------------------------+
   | End-User |--->| Application Service Coordinator |
   +----------+    +---------------------------------+
         |                          |
         |                          v
         |                 +-----------------+
         |                 | ABNO Controller |
         |                 +-----------------+
         |                          |
         |                          v
         |               +---------------------+       +--------------+
         |               |Other ABNO Components|       | o o o   DC 1 |
         |               +---------------------+       |  \|/         |
         |                          |            ------|---O          |
         |                          v           |      |              |
         |            --------------------------|--    +--------------+
         |           / Carrier Network      PE1 |  \
         |          /      .....................O   \   +--------------+
         |         |      .                          |  | o o o   DC 2 |
         |         | PE4 .                      PE2  |  |  \|/         |
          ---------|----O........................O---|--|---O          |
                   |     .                           |  |              |
                   |      .                    PE3   |  +--------------+
                    \      .....................O   /
                     \                          |  /   +--------------+
                      --------------------------|--    | o o o   DC 3 |
                                                |      |  \|/         |
                                                 ------|---O          |
                                                       |              |
                                                       +--------------+

            Figure 29: The ABNO Architecture in the Context of
                Cross-Stratum Optimization for Data Centers

3.7.2.1 .  Deployed Applications, Services, and Products

   The ABNO Controller will need to utilize a number of components to
   realize the CSO functions described in Section 3.7.1 .

   The ALTO Server provides information about topological proximity and
   appropriate geographical location to servers with respect to the
   underlying networks.  This information can be used to optimize the
   selection of peer location, which will help reduce the path of IP
   traffic or can contain it within specific service providers’
   networks.  ALTO in conjunction with the ABNO Controller and the
   Application Service Coordinator can address general problems such as
   the selection of application servers based on resource availability
   and usage of the underlying networks.
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   The ABNO Controller can also formulate a view of current network load
   from the TED and from the OAM Handler (for example, by running
   diagnostic tools that measure latency, jitter, and packet loss).
   This view obviously influences not just how paths from the end-user
   to the data center are provisioned but can also guide the selection
   of which data center should provide the service and possibly even the
   points of attachment to be used by the end-user and to reach the
   chosen data center.  A view of how the PCE can fit in with CSO is
   provided in [ CSO-PCE], on which the content of Figure 29 is based.

   As already discussed, the combination of the ABNO Controller and the
   Application Service Coordinator will need to be able to select (and
   possibly migrate) the location of the VM that provides the service
   for the end-user.  Since a common technique used to direct the
   end-user to the correct VM/server is to employ DNS redirection, an
   important capability of the ABNO Controller will be the ability to
   program the DNS servers accordingly.

   Furthermore, as already noted in other sections of this document, the
   ABNO Controller can coordinate the placement of traffic within the
   network to achieve load balancing and to provide resilience to
   failures.  These features can be used in conjunction with the
   functions discussed above, to ensure that the placement of new VMs,
   the traffic that they generate, and the load caused by VM migration
   can be carried by the network and do not disrupt existing services.

3.8 .  ALTO Server

   The ABNO architecture allows use cases with joint network and
   application-layer optimization.  In such a use case, an application
   is presented with an abstract network topology containing only
   information relevant to the application.  The application computes
   its application-layer routing according to its application objective.
   The application may interact with the ABNO Controller to set up
   explicit LSPs to support its application-layer routing.

   The following steps are performed to illustrate such a use case.

   1. Application Request of Application-Layer Topology

      Consider the network shown in Figure 30.  The network consists of
      five nodes and six links.

      The application, which has end points hosted at N0, N1, and N2,
      requests network topology so that it can compute its application-
      layer routing, for example, to maximize the throughput of content
      replication among end points at the three sites.
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                 +----+       L0 Wt=10 BW=50       +----+
                 | N0 |............................| N3 |
                 +----+                            +----+
                   |   \    L4                        |
                   |    \   Wt=7                      |
                   |     \  BW=40                     |
                   |      \                           |
             L1    |       +----+                     |
             Wt=10 |       | N4 |               L2    |
             BW=45 |       +----+               Wt=12 |
                   |      /                     BW=30 |
                   |     /  L5                        |
                   |    /   Wt=10                     |
                   |   /    BW=45                     |
                 +----+                            +----+
                 | N1 |............................| N2 |
                 +----+       L3 Wt=15 BW=35       +----+

                      Figure 30: Raw Network Topology

      The request arrives at the ABNO Controller, which forwards the
      request to the ALTO Server component.  The ALTO Server consults
      the Policy Agent, the TED, and the PCE to return an abstract,
      application-layer topology.

      For example, the policy may specify that the bandwidth exposed to
      an application may not exceed 40 Mbps.  The network has
      precomputed that the route from N0 to N2 should use the path
      N0->N3->N2, according to goals such as GCO (see Section 3.4 ).  The
      ALTO Server can then produce a reduced topology for the
      application, such as the topology shown in Figure 31.
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                      +----+
                      | N0 |............
                      +----+            \
                        |   \            \
                        |    \            \
                        |     \            \
                        |      |            \   AL0M2
                  L1    |      | AL4M5       \  Wt=22
                  Wt=10 |      | Wt=17        \ BW=30
                  BW=40 |      | BW=40         \
                        |      |                \
                        |     /                  \
                        |    /                    \
                        |   /                      \
                      +----+                        +----+
                      | N1 |........................| N2 |
                      +----+   L3 Wt=15 BW=35       +----+

           Figure 31: Reduced Graph for a Particular Application

      The ALTO Server uses the topology and existing routing to compute
      an abstract network map consisting of three PIDs.  The pair-wise
      bandwidth as well as shared bottlenecks will be computed from the
      internal network topology and reflected in cost maps.

   2. Application Computes Application Overlay

      Using the abstract topology, the application computes an
      application-layer routing.  For concreteness, the application may
      compute a spanning tree to maximize the total bandwidth from N0 to
      N2.  Figure 32 shows an example of application-layer routing,
      using a route of N0->N1->N2 for 35 Mbps and N0->N2 for 30 Mbps,
      for a total of 65 Mbps.
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               +----+
               | N0 |----------------------------------+
               +----+        AL0M2 BW=30               |
                 |                                     |
                 |                                     |
                 |                                     |
                 |                                     |
                 | L1                                  |
                 |                                     |
                 | BW=35                               |
                 |                                     |
                 |                                     |
                 |                                     |
                 V                                     V
               +----+        L3 BW=35                +----+
               | N1 |...............................>| N2 |
               +----+                                +----+

                Figure 32: Application-Layer Spanning Tree

   3. Application Path Set Up by the ABNO Controller

      The application may submit its application routes to the ABNO
      Controller to set up explicit LSPs to support its operation.  The
      ABNO Controller consults the ALTO maps to map the application-
      layer routing back to internal network topology and then instructs
      the Provisioning Manager to set up the paths.  The ABNO Controller
      may re-trigger GCO to reoptimize network traffic engineering.

3.9 .  Other Potential Use Cases

   This section serves as a placeholder for other potential use cases
   that might get documented in future documents.

3.9.1 .  Traffic Grooming and Regrooming

   This use case could cover the following scenarios:

   - Nested LSPs

   - Packet Classification (IP flows into LSPs at edge routers)

   - Bucket Stuffing

   - IP Flows into ECMP Hash Bucket
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3.9.2 .  Bandwidth Scheduling

   Bandwidth scheduling consists of configuring LSPs based on a given
   time schedule.  This can be used to support maintenance or
   operational schedules or to adjust network capacity based on traffic
   pattern detection.

   The ABNO framework provides the components to enable bandwidth
   scheduling solutions.

4.  Survivability and Redundancy within the ABNO Architecture

   The ABNO architecture described in this document is presented in
   terms of functional units.  Each unit could be implemented separately
   or bundled with other units into single programs or products.
   Furthermore, each implemented unit or bundle could be deployed on a
   separate device (for example, a network server) or on a separate
   virtual machine (for example, in a data center), or groups of
   programs could be deployed on the same processor.  From the point of
   view of the architectural model, these implementation and deployment
   choices are entirely unimportant.

   Similarly, the realization of a functional component of the ABNO
   architecture could be supported by more than one instance of an
   implementation, or by different instances of different
   implementations that provide the same or similar function.  For
   example, the PCE component might have multiple instantiations for
   sharing the processing load of a large number of computation
   requests, and different instances might have different algorithmic
   capabilities so that one instance might serve parallel computation
   requests for disjoint paths, while another instance might have the
   capability to compute optimal point-to-multipoint paths.

   This ability to have multiple instances of ABNO components also
   enables resiliency within the model, since in the event of the
   failure of one instance of one component (because of software
   failure, hardware failure, or connectivity problems) other instances
   can take over.  In some circumstances, synchronization between
   instances of components may be needed in order to facilitate seamless
   resiliency.

   How these features are achieved in an ABNO implementation or
   deployment is outside the scope of this document.
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5.  Security Considerations

   The ABNO architecture describes a network system, and security must
   play an important part.

   The first consideration is that the external protocols (those shown
   as entering or leaving the big box in Figure 1) must be appropriately
   secured.  This security will include authentication and authorization
   to control access to the different functions that the ABNO system can
   perform, to enable different policies based on identity, and to
   manage the control of the network devices.

   Secondly, the internal protocols that are used between ABNO
   components must also have appropriate security, particularly when the
   components are implemented on separate network nodes.

   Considering that the ABNO system contains a lot of data about the
   network, the services carried by the network, and the services
   delivered to customers, access to information held in the system must
   be carefully managed.  Since such access will be largely through the
   external protocols, the policy-based controls enabled by
   authentication will be powerful.  But it should also be noted that
   any data sent from the databases in the ABNO system can reveal
   details of the network and should, therefore, be considered as a
   candidate for encryption.  Furthermore, since ABNO components can
   access the information stored in the database, care is required to
   ensure that all such components are genuine and to consider
   encrypting data that flows between components when they are
   implemented at remote nodes.

   The conclusion is that all protocols used to realize the ABNO
   architecture should have rich security features.

6.  Manageability Considerations

   The whole of the ABNO architecture is essentially about managing the
   network.  In this respect, there is very little extra to say.  ABNO
   provides a mechanism to gather and collate information about the
   network, reporting it to management applications, storing it for
   future inspection, and triggering actions according to configured
   policies.
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   The ABNO system will, itself, need monitoring and management.  This
   can be seen as falling into several categories:

   - Management of external protocols

   - Management of internal protocols

   - Management and monitoring of ABNO components

   - Configuration of policy to be applied across the ABNO system
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Appendix A .  Undefined Interfaces

   This appendix provides a brief list of interfaces that are not yet
   defined at the time of this writing.  Interfaces where there is a
   choice of existing protocols are not listed.

   o  An interface for adding additional information to the Traffic
      Engineering Database is described in Section 2.3.2.3 .  No protocol
      is currently identified for this interface, but candidates
      include:

      - The protocol developed or adopted to satisfy the requirements of
        I2RS [ I2RS-Arch ]

      - NETCONF [ RFC6241]

   o  The protocol to be used by the Interface to the Routing System is
      described in Section 2.3.2.8 .  The I2RS working group has
      determined that this protocol will be based on a combination of
      NETCONF [ RFC6241] and RESTCONF [ RESTCONF] with further additions
      and modifications as deemed necessary to deliver the desired
      function.  The details of the protocol are still to be determined.

   o  As described in Section 2.3.2.10 , the Virtual Network Topology
      Manager needs an interface that can be used by a PCE or the ABNO
      Controller to inform it that a client layer needs more virtual
      topology.  It is possible that the protocol identified for use
      with I2RS will satisfy this requirement, or this could be achieved
      using extensions to the PCEP Notify message (PCNtf).

   o  The north-bound interface from the ABNO Controller is used by the
      NMS, OSS, and Application Service Coordinator to request services
      in the network in support of applications as described in
      Section 2.3.2.11 .

      - It is possible that the protocol selected or designed to satisfy
        I2RS will address the requirement.

      - A potential approach for this type of interface is described in
        [ RFC7297] for a simple use case.

   o  As noted in Section 2.3.2.14 , there may be layer-independent data
      models for offering common interfaces to control, configure, and
      report OAM.
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   o  As noted in Section 3.6 , the ABNO model could be applied to
      placing multi-segment pseudowires in a network topology made up of
      S-PEs and MPLS tunnels.  The current definition of PCEP [ RFC5440]
      and associated extensions that are works in progress do not
      include all of the details to request such paths, so some work
      might be necessary, although the general concepts will be easily
      reusable.  Indeed, such work may be necessary for the wider
      applicability of PCEs in many networking scenarios.
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AbstrAct

A key objective of the IDEALIST proj-
ect included the design and implementation 
of a GMPLS and PCE-based control plane for 
multi-vendor and multi-domain flexi-grid EON, 
leveraging the project advances in optical switch-
ing and transmission technology, an enabling 
interoperable deployment. A control plane, rely-
ing on a set of entities, interfaces, and protocols, 
provides the automation of the provisioning, 
recovery, and monitoring of end-to-end optical 
connections. This article provides an overview of 
the implemented architecture. We present the 
macroscopic system along with the core function-
al blocks, control procedures, message flows, and 
protocol extensions. The implemented end-to-
end architecture adopted active stateful hierar-
chical PCE, under the control and orchestration 
of an adaptive network manager, interacting with 
a parent PCE, which first coordinates the selec-
tion of domains and the end-to-end provisioning 
using an abstracted view of the topology, and 
second, delegates the actual computation and 
intra-domain provisioning to the correspond-
ing children PCEs. End-to-end connectivity is 
obtained by either a single LSP, or by the con-
catenation of multiple LSP segments, which are 
set up independently by the underlying GMPLS 
control plane at each domain. The architecture 
and protocol extensions have been implemented 
by several partners, assessing interoperability in 
a multi-partner testbed and adoption by the rele-
vant Internet SDO.

IntroductIon
FlexI-GrId networks

Optical transport networks [1] (OTN) are com-
posed of network elements connected by optical 
fibers allowing the transport, multiplexing, rout-
ing, management, supervision, and survivability 
of optical channels carrying client signals. Such 
channels were constrained by a DWDM fixed 
frequency grid, inefficient for low rate signals 
and not adequate for high rate signals. The term 

“flexible grid or flexi-grid” [2] relates to the updat-
ed set of nominal central frequencies (NCF), 
defined within an abstract grid anchored at 193.1 
THz, a new channel spacing (6.25 GHz), and 
other optical spectrum management consider-
ations covering the efficient and flexible alloca-
tion of optical spectral bandwidth. A frequency 
slot (i.e., a variable-sized optical frequency range) 
is thus characterized by its nominal central fre-
quency and its width, expressed in multiples of 
a given width granularity (12.5 GHz), and can 
be allocated to a connection, based on the signal 
modulation format and data rate.

The functional architecture of an OTN is 
decomposed into independent layers [1] and, in 
our context, the media layer is the server layer of 
the optical signal layer, and the optical signal is 
guided to its destination by means of a network 
media channel where the switching is based on a 
frequency slot.

HArdwAre Models

An information model is an abstract description 
used to represent and manage objects (such as 
a network device) on a conceptual level, inde-
pendent of any specific protocols used to trans-
port data. A data model is protocol specific and 
includes many technology specific details. Using 
well-defined standards-based common informa-
tion and data models, provides interoperable data 
exchange between different implementations.

Standardization, notably at the Internet Engi-
neering Task Force (IETF), is often influenced 
by early implementations and cooperative devel-
opment by vendors and open source projects. 
Particularly pertinent to this article is the fact 
that the data models that were used to represent 
and configure optical interfaces with flexi-grid 
capabilities, or to describe a network topol-
ogy (nodes, links, and connectivity) enhanced 
with details of optical capabilities and available 
resources, enabling network optimization and 
dynamic and online path computation, were 
developed by the project members themselves 
and contributed to the IETF.

A Control Plane Architecture for 
Multi-Domain Elastic Optical Networks: 

The View of the IDEALIST Project
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IDEALIST project included 
the design and imple-
mentation of a GMPLS 
and PCE-based control 
plane for multi-vendor 
and multi-domain flexi-
grid EON, leveraging the 
project advances in the 
optical switching and 
transmission technology, 
an enabling interoperable 
deployment. A control 
plane, relying on a set of 
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visioning, recovery and 
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drIvers And MotIvAtIons For An 
“IdeAlIst” control plAne

Backbone networks are intended to transport the 
aggregated traffic from several metropolitan net-
works. However, existing transport networks are 
based on the assumption that the traffic demands 
are predictable, and are not adapted to varying 
traffic requirements. Therefore, current networks 
require multiple manual configurations in the 
metro and core network nodes.

Dynamic optical networks are possible thanks 
to a distributed generalized multi-protocol label 
switching (GMPLS) control plane. There is a 
need for an end-to-end architecture to reduce 
the provisioning process of legacy network man-
agement systems (NMS), using standard network 
configuration interfaces, which will trigger auto-
mated standard control plane for multi-domain/
vendor/layer operation. The control plane allows 
the reconfiguration of the optical service, its pro-
tection and restoration capabilities, not only for a 
single domain, but also for multi-domain scenar-
ios. The benefits of a standardized control plane 
extend beyond the absolute functions enabled by 
the control plane itself, because such a common 
approach also facilitates interoperability between 
equipment supplied by different vendors, and so 
enables a network operator to construct a het-
erogeneous network yet operate it in a homoge-
neous way.

The implemented control plane architecture 
covers the automated provisioning and recovery 
of network connectivity services in a multi-do-
main setting. Such developments are increasingly 
driven by use cases such as interconnecting dis-
tributed data-centers, associated traffic patterns, 
and dynamicity.

exIstInG control plAne FrAMework

There is extensive experience in the use of a 
dynamic distributed control plane. Standardiza-
tion of this work has been conducted principally 
within the IETF, with some architectural and 
use-case documents developed within the ITU-T. 
The GMPLS architecture [3] comprises the fol-
lowing elements.

A link/neighbor discovery/verification pro-
tocol, such as the Link Management Protocol 
(LMP), that allows neighboring nodes part of the 
control plane adjacency to unambiguously associate 
data plane adjacencies (e.g., fiber links), correlate 
identifiers, and assure compatible capabilities.

A routing protocol. The Open Shortest Path 
First (OSPF) protocol describes the characteris-
tics of nodes and links, so the state and capabili-
ties of the resources are distributed and updated 
to all of the nodes, knowing which resources are 
in use, faulted/out of service, or available.

A signaling protocol. The ReSerVation Proto-
col with Traffic Engineering extensions (RSVP-
TE) is used to set up label switched paths (LSPs). 
RSVP-TE messages specify the path of the LSP, 
request specific capacity on the path, and report 
back the exact allocated network resources to 
support the LSP.

A path computation service. A key aspect is 
determining which path an LSP should follow. 
This function can be performed externally (the 
path is supplied to the control plane), or delegat-

ed to the control plane. In either case, the com-
putation can be complex. The path computation 
element (PCE) is a functional component that 
can be queried using the Path Computation Ele-
ment communication Protocol (PCEP), recently 
extended to allow the network to delegate con-
trol of an LSP to a PCE, and to allow a PCE to 
direct the establishment of new LSPs (becoming 
an active PCE) [4].

A network state reporting mechanism. The 
Link State Border Gateway Protocol (BGP-LS) 
allows an entity to collect, synthesize, and report 
the full set of state and capability information 
from the network to an external consumer such 
as a management system [5].

A coherent view of these protocols in a man-
aged or software defined networking (SDN) 
context is provided by the IETF through their 
application based network operation (ABNO) 
architecture [6].

control plAne ArcHItecture
Our GMPLS/PCE control plane for multi-do-
main flexi-grid networks addresses the provi-
sioning of either a network media channel or a 
constant bit rate service between optical trans-
ceivers, which can support multiple bit rates. 
A media channel is a media association rep-
resenting the topology path and the allocated 
resource (i.e., the frequency slot). It is similar to 
the GMPLS concept of LSP where, from a data 
plane perspective, it is the path in the network 
resulting from reserving and configuring trans-
mission and switching resources across TE links 
and nodes in a way that can transport client sig-
nals and data from its entry point or interface to 
the exit point or interface. It represents a (effec-
tive) frequency slot supported by a concatena-
tion of media elements. GMPLS labels locally 
represent the media channel and its associated 
frequency slot, which is the switched resource. 
Network media channels are considered a partic-
ular case of media channels when the end points 
are transceivers, and transport a single optical 
tributary signal (OTS), as shown in Fig. 1. The 
control plane deals with the resource reserva-
tion and configuration of media layer matrixes 
that switch frequency slots and the configura-
tion of the transceivers at the endpoints, with an 
agreed hardware model that, as of today, is not 
standard. No signal layer (e.g., OTS) switching is 
considered. Switching at the media layer is con-
figured by configuring optical filters and config-
uring cross-connections.

From a bottom-top approach, each domain 
deploys its own GMPLS control plane instance. 
On top of it, each domain deploys an active 
stateful PCE (AS-PCE) for the purposes of both 
optimal path computation and service provi-
sioning within its domain. Multi-domain path 
computation and provisioning is carried out by 
means of a hierarchical path computation ele-
ment (H-PCE) [7], with the parent PCE (pPCE) 
coordinating the procedures between children 
PCEs (cPCE) and under the control and orches-
tration of an adaptive network manager (ANM). 
The macroscopic architecture is shown in Fig. 2.

The implemented con-
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AdAptIve network MAnAGer And 
In-operAtIon network plAnnInG

The control plane has relied only on distributed 
functionalities, but the advent of PCE demon-
strates that having a central entity can provide 
multiple benefits. The ANM was conceived with 
the idea of orchestrating network processes 
beyond the PCE capabilities. Its functionalities 
are to monitor network resources, and to decide 
the optimal network configuration based on the 
status, bandwidth availability, and user service. It 
does not replace the control plane, but extends 
and complements it (e.g., interacting with the cli-
ent layer) and delegating specific functions (e.g., 
path computation) to it.

The ANM was implemented, utilizing 
the ABNO architecture, and relies on stan-
dards-based and open interfaces, providing the 
capability for application interaction via a north 
bound interface (NBI) and south bound inter-
face to the data plane, either directly to each 
network element or via the control plane. The 
link between the ANM and the control plane is 
the parent PCE, which receives queries to carry 
out path computation and provision end-to-end 
connections.

The ANM platform allows automatic IP link 
provisioning, multi-layer restoration, dynamic 
bandwidth allocation based on traffic changes, 
periodic defragmentation, and network reopti-
mization after network failure recovery [8], so 
an operator planning tool has updated network 
information and maintains a provisioning inter-
face with the network. This architecture benefits 
from the GMPLS/PCE control plane, reducing 
network CAPEX by minimizing the over-provi-
sioning required in today’s static environments.

HIerArcHIcAl pAtH coMputAtIon eleMent

A parent PCE (pPCE) is responsible for inter-do-
main path computation, while in each domain a 
local child PCE (cPCE) performs intra-domain 

computation. The pPCE resorts to the hierarchi-
cal traffic engineering database (H-TED) storing 
the list of the domains and inter-domain con-
nectivity information, to determine the sequence 
of domains. Moreover, to perform effective 
inter-domain computation, the pPCE is allowed 
to ask cPCEs for the path computation of the 
several border-to-border LSP segments.

A number of innovative extensions have been 
implemented by IDEALIST. First, besides reach-
ability information, abstract intra-domain TE 
information is announced to the pPCE (e.g., in 
the form of mesh of abstracted TE links between 
border nodes) with the aim of improving the 
effectiveness of the domain sequence computa-
tion. In particular, the north-bound distribution 
of link state and TE information using BGP-LS 
is utilized by domains’ BGP speakers to populate 
the H-TED. Second, in order to enable advanced 
TE functionalities, e.g., elastic operations and 
re-optimizations [9, 10], the H-PCE architecture 
has been extended to support the active stateful 
PCE with instantiation capabilities.

In summary, the H-PCE achieves end-to-
end path computation by performing domain 
sequence selection and segment expansion, 
based on spectrum availability information pro-
vided by BGP-LS and PCEP requests submitted 
to cPCEs. The same H-PCE deployment is used 
in some use cases to perform the provisioning, 
where the end-to-end path is split in segments, 
sent to the cPCE by means of instantiation mes-
sages, and each cPCE performs segment instanti-
ation. The end-to-end LSP is set up in the form 
of a “stitching on the wire” of several segments.

GMpls dIstrIbuted control plAne

Within each domain, there is an instance of a 
GMPLS control plane. GMPLS controllers exe-
cute several collaborative processes, and a data 
communication network based on IP control 
channels allows the exchange of control messages 
between controllers. Noteworthy processes are 
the connection controller, the routing controller, 
or the link resource manager. We assume that 
a GMPLS controller is associated with a single 
flexi-grid optical node.

Under distributed control, each GMPLS 
controller manages the state of the connections 
(i.e., LSPs) originating, terminating, or pass-
ing-through a node and maintains its own net-
work state information (topology and resources), 
collected in a local TED and synchronized thanks 
to the routing and topology dissemination pro-
tocol. Controllers then appropriately configure 
the underlying hardware (filter, transceiver, or 
switch configuration) during the establishment of 
an LSP, as per the basic operation of a GMPLS 
control plane [3]. In the next section, we over-
view the main involved procedures focusing on 
the specific aspects of the optical technology (see 
[11] for a detailed view).

control plAne procedures
IntrA-doMAIn And Inter-doMAIn topoloGy 

dIsseMInAtIon

Within a domain, each node routing controller 
is responsible for disseminating changes in the 
network state regarding the resources under its 

Figure 1. Relationship between optical tributary signal, network media chan-
nel, and media layer elements, and its view as a GMPLS LSP construct.
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control (e.g., originating links) through OSPF-
TE link state advertisements (LSA). Each LSA 
is sent to the neighboring nodes, which update 
their TED repositories and forward the LSA 
in turn. This mechanism allows synchronizing 
all the nodes’ repositories within a given time, 
referred to as the routing convergence time. The 
basic procedures remain mostly unchanged, rely-
ing on extending the actual information objects 
within the LSAs.

OSPF-TE has been extended to support the 
dissemination of per-node and per-link TE attri-
butes, reflecting device restrictions and overall 
optical spectrum availability. In particular, nodes 
may have asymmetric switching capabilities or 
different minimum slot size restrictions; optical 
transmitters/receivers may have different tun-
ability constraints. Other extensions have been 
implemented for disseminating the capabilities 
of sliceable bandwidth variable transceivers 
(S-BVTs), including, for example, the number of 
available sub-transponders and their parameters. 
Let us note that in this approach, OSPF-TE is 
one of the methods by which a cPCE obtains the 
TED to perform constrained routing and spec-
trum assignment (RSA) and is the source of the 
(abstracted) information conveyed toward the 
pPCE.

BGP-LS has also been suitably extended to 
support specific information exchange, such as 
spectrum availability, transponders’ physical 
parameters, and interoperability capabilities. 
BGP-LS is also used to report the relevant attri-
butes of inter-domain links. Without disclosing 
the internal domain topology, this allows a pPCE 
to have, at least, a graph that represents inter-do-
main connectivity and to perform basic multi-do-
main path computation.

MultI-doMAIn pAtH coMputAtIon

Following Fig. 3, when a service request, driv-
en by an operator, is received by the ANM, the 
controller asks the pPCE for an inter-domain 
path (step 1). The pPCE, based on the (possibly 
abstracted and aggregated) information obtained 
from the cPCEs, computes the domain sequence 
(including each domain entry and exit nodes) 
and subsequently requests from the cPCEs the 
corresponding border-to-border expansion (also 
by means of PCEP PCReq messages, step 2). 
Once the pPCE receives the responses (PCRep, 
step 3), which include, among other objects, the 
segment spectrum availability, the pPCE per-
forms a detailed end-to-end path computation 
including the routing, spectrum assignment, and 
transponder selection. Optical constraints are 
considered based, for instance, on node switch-
ing capabilities, optical reach, and transponder 
capabilities. For example, in the case of an end-
to-end spectrum continuity constraint, the pPCE 
has to assign a frequency slot such that it is able 
to convey the requested bandwidth, it is avail-
able across all the end-to-end path, including 
inter-domain links, and it allows the selection 
of available end-point transponders. Then, the 
pPCE answers the ABNO controller via a PCEP 
Response message.

Inter-doMAIn servIce provIsIonInG vIA 
AnM wItH ActIve stAteFul cApAbIlItIes

Once the path is computed, the ABNO control-
ler asks the pPCE to establish the path with a 
PCEP Initiate message. There are several pro-
visioning models, with varying requirements of 
control plane interoperability. Here, we focus 
on the contiguous LSP with a single end-to-end 
RSVP-TE session, and the model relying on the 
stateful capabilities of the H-PCE structure with 
multiple (one per domain) RSVP-TE sessions.

In the single session case, the provisioning 
interface is a dedicated PCEP session with either 
the cPCE of the ingress domain or directly the 
ingress node, and there is a single RSVP-TE 
session from the source node within the source 
domain to the destination node. The multiple 
session case requires that all PCEs are stateful 
with instantiation capabilities. The connectivity 
at the data plane level is insured by concatenat-
ing compatible media channels at every domain, 
each set up by the local RSVP-TE session. Note 
that the first case implies interoperability at the 
control plane signaling level between different 
optical vendors’ respective RSVP-TE implemen-
tations at the inter-domain boundaries, since 
there is a single end-to-end session that cross-
es the external network-to-network interfaces. 
On the contrary, for the second case, interoper-
ability requirements are limited to PCEP, ver-
tically, from the cPCEs to the pPCE, between 
each vendor and the provider of the pPCE. Both 
approaches can be seen in Figs. 3 and 4.

Figure 2. Control Plane architecture showing a multi-domain network with an 
AS-PCE per domain acting as a Child PCE, a Parent PCE and an ANM.
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In either case, once the end-to-end path or the 
specific segment is computed, the assigned slot 
is included in the explicit route objects (EROs) 
after each hop. In the first case (Fig. 3) the end-to-
end ERO is sent to the ingress node in a PCIni-
tiate message (step 5), triggering the signaling 
process (6, 7) and final report to the ANM (8). 
In the second case (Fig. 4), the obtained ERO 
per segment are enclosed in PCInitiate messages 
sent by pPCE to each involved cPCE (step 4). 
Once intra-domain provisioning is performed 
(step 5-8), PCE Report (PCRpt) messages are 
sent to pPCE to acknowledge the segments’ sta-
tus (step 9). Finally, the multi-domain LSP is 
stored in the H-TED and provisioning response 
is provided to the ANM (step 10). Similar pro-
cedures for inter-domain LSP update and LSP 
deletion are envisioned.

control plAne protocol extensIons
Control plane extensions affect all the proto-
cols of the GMPLS suite together with the those 
adopted as northbound interfaces (i.e., PCEP 
and BGP-LS).

provIsIonInG And lspdb syncHronIzAtIon InterFAce

The provisioning of LSPs relies on the use of 
the PCEP protocol, enhanced with stateful and 
instantiation extensions. Specific extensions to 
PCEP to cope with flexi-grid involve the BAND-
WIDTH object to convey the traffic descriptor 
that specifies the requested or allocated fre-
quency slot width, and the ERO object with the 
resources to use along the path, which has been 
extended to carry the information describing the 
configuration of the optical transponders, such 
as the selected modulation format, baud rate, 
FEC, and so on. To this end, a new sub-object, 
called explicit transponder control (ETC), has 
been defined. It is formed by a variable list of 
sub-transponder TLVs, each of them describ-
ing one of the specific sub-carriers forming the 
super-channel LSP. To overcome scalability lim-
itations, we enable the summarization of a set of 
parameters in a single parameter, the transceiver 

class, which considers the main parameters such 
as trunk mode and type, framing, channel band 
and grid, minimum and maximum chromatic dis-
persion, maximum polarization mode dispersion, 
differential group delay, and so on. A transceiver 
vendor is thus responsible for specifying the class 
contents and values. The vendor can publish the 
parameters of its classes or declare them to be 
compatible with already published classes.

IntrA-doMAIn topoloGy dIsseMInAtIon

The OSPF-TE protocol has been extended to 
convey, on a per link basis, the status of each 
possible central frequency or NCF (referred to as 
NCF availability) and the presence and attributes 
of transceivers. The former is done by means of 
a new object within the switching capability-spe-
cific information (SCSI) field. NCF availabili-
ty is advertised using a bitmap format with bit 
position zero representing the lowest central 
frequency, each succeeding bit position repre-
senting the next central frequency; a bit set to 1 
means the NCF is not in use.

MultI-doMAIn topoloGy AbstrActIon

BGP-LS extensions addressed both the propaga-
tion of the NCFs’ availability and the announce-
ment of an S-BVT transceiver’s capabilities to 
the pPCE, in order to perform routing and spec-
trum assignment (RSA) for the multi-domain 
path. The first extension involves adding a new 
LINK_STATE attributes object TLV into the 
BGP-LS Update message, further character-
izing a given optical link. The latter extension 
involves announcing the capabilities of an S-BVT 
attached to a given link using two new BGP-LS 
TLVs called “MF-OTP encoding” (for multi-flow 
optical transponder) and “transceiver class and 
application code”, respectively. Both BGP-LS 
extensions reuse the same encoding as those pro-
posed in OSPF-TE.

pAtH coMputAtIon

Specific extensions were defined for the RSA 
procedures in a hierarchical framework. Upon 

Figure 4. Stateful H-PCE with per-domain instantiation and local RSVP-TE session provisioning model.
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request from the pPCE, all cPCEs compute the 
path segment (sequence of nodes and links) 
inside their respective domain and reply this 
information to the pPCE, along with spectrum 
availability. This is accomplished by sending a 
PCEP Reply (PCRep) message containing the 
ERO object and two new objects: a LABEL_
SET object that encodes the free NCFs along the 
computed path, and a SUGGESTED_LABEL 
object, suggesting (but not mandating) the label 
(i.e., the specific frequency slot) to be used in 
that domain. The pPCE performs an end-to-end 
allocation with this information.

sIGnAlInG protocol

The extensions to the signaling protocol include:
• A new 64-bit label format, used in all the 

objects carrying a label (GENERALIZED_
LABEL, SUGGESTED_LABEL, LABEL_
SET, ERO, etc.) specifying frequency slot 
center and width in terms of two integer 
values, n and m, according to the following 
formulas: Center Frequency (THz) = 193.1 
+ n * 0.00625, slot width (GHz) = 12.5 * m.

• A new traffic descriptor type for the SEND-
ER_TSPEC and FLOWSPEC objects to 
specify traffic parameters, carrying the slot 
width. 

Note that the label value, used in GMPLS to 
define what is switched, indicates, in this case, 
the slot features and, in particular, its width, 
therefore also affecting the LSP bandwidth. The 
same ERO extensions already described apply to 
the ERO object contained in the signaling mes-
sages.

experIMentAl vAlIdAtIon
The architecture and its integration with the 
underlying data plane has been demonstrated in 
several stages, starting from control plane test-
beds and ultimately integrating both control and 
data planes. In [12] the optical channel provi-
sioning was evaluated in a distributed multi-part-
ner control plane testbed with locations in 
Madrid (Telefnica I+D), Barcelona (CTTC), 
Torino (Telecom Italia), and Pisa (CNIT). The 
testbed was connected at the control plane level 
by means of dedicated IPsec tunnel, emulating 
a multi-domain network (Fig. 5). On top of this 
connectivity, logical relationships between PCEs 
were established. We reported the details of the 
interoperability of routing (BGP-LS), path com-
putation and instantiation (PCEP), and signal-
ing (RSVP-TE) implementations [12]. In [13], a 
higher degree of interoperability was achieved, 
demonstrating the aforementioned differ-
ent provisioning models. Experimental results 
showed all protocol interactions and LSP setup 
times. The adoption of BGP-LS extensions fully 
enabled multi-domain TE and was demonstrated 
in a limited number of domains. The system was 
integrated and demonstrated at both the con-
trol and data plane levels [14], where domains 
can have real hardware optical nodes that switch 
frequency slots, although by necessity inter-do-
main links between remote locations are emu-
lated. The data plane included both real and 
emulated flexi-grid nodes and SBVTs. Two real 
S-BVT prototypes were provided by different 
IDEALIST vendors (e.g., CNIT/Ericsson and 

Coriant). These S-BVTs performed super-chan-
nel transmission with a  configurable number 
of PM-16QAM Nyquist-shaped carriers, overall 
providing up to 1Tb/s. At the receiver, coherent 
strategy with off-line post-processing was adopt-
ed. The S-BVTs supported the configuration of 
the number of active carriers, their central fre-
quencies, modulation format, symbol rate and 
FEC.

Future consIderAtIons
The evolution of transmission and data plane 
technologies, supporting rates at 1Tb/s and 
beyond, will reach its maximum potential when 
supported by automatic configuration procedures 
enabling the deployment of spectrally-efficient 
plug-and-play transponders. Control plane solu-
tions will have to be improved to provide pro-
cedures for the commissioning and self-tuning 
of the transmission parameters (e.g., upon fail-
ure recovery) while aiming to optimize the use 
of network resources. Plug-and-play 1Tb/s tran-
sponders will also have to operate in interopera-
ble multi-vendor environments.

While the control plane supports the dynamic 
configuration of transceivers, the full automa-
tion and self-tuning of parameters will rely on 
the integration with functional components relat-
ed to cognitive and self-adaptive networks. The 
solutions require, for example, the deployment of 
passive and active monitoring and measurement 
systems beyond what currently exists, along with 
the adoption of formal languages and frame-
works for the specification of rules and policies 
typical of expert systems.

Multi-vendor interoperability still remains a 
major issue to solve. While there are incentives 
(e.g., from operators or service providers trying 
to drive down costs), there is huge pressure for 
vendors to increase margins and differentiate 
from competing offers.

The decoupling of the data plane and the 
control plane is expected to also be applied in 
the context of optical core networks through 
the concept of transport SDN. A unified con-
trol plane architecture is expected to successfully 
orchestrate the core with metro and data center 
premises, enabling the challenging support for 
future front/back-haul networks and 5G appli-
cations. Once flexible and open frameworks and 
interfaces have been adopted for the control and 
orchestration of network connectivity services 
across, for example, multiple heterogeneous 
domains, extending the know-how and conceiv-
ing new architectures for the joint allocation of 
heterogeneous resources is the next logical step, 
and addresses uses cases that require the alloca-
tion of both computing and storage resources.

To achieve the goal of effective interoperabil-
ity, two factors are also expected to play key roles 
in addition to standardization, i.e., the definition 
of common, standard data models, and the use 
of open source software, offering common core 
components and allowing “plug-ins” for different 
applications and vendor devices. Although some 
vendors may still include proprietary optimiza-
tions, a common basis is expected to improve 
interoperability performance.

Ongoing efforts at the SDOs regarding the 
definition of common information models (e.g., 
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related to network topologies) are a step in this 
direction. Nevertheless, the goal of achieving 
total interoperability still remains a hard issue, 
even more difficult in the domain of optical 
transport networks.

conclusIons
A GMPLS/PCE control plane for flexi-grid net-
works orchestrated by the ANM requires an 
architecture and protocols fulfilling the initial 
requirements while ensuring robustness, secu-
rity, and scalability. Although the framework 
is considered to be stable and quite mature, 
addressing the constraints associated with flexi-
grid DWDM networks, variable bandwidth trans-
ceivers, and programmable devices is a complex 
problem. We have detailed the components of 
such a multi-domain control plane. The summa-
rization of TE capabilities per domain, underlay 
network abstraction, and applicability of stateful 
PCE capabilities to end-to-end path computation 
across multi-domain networks, are part of the 
IDEALIST solutions based on a hierarchy of the 
PCEs, which have been implemented, demon-
strated in a multi-vendor testbed, and reported 
for standardization.

While other standardization bodies are work-
ing on the specification of the architecture of 
an SDN-based solution for multi-domain trans-
port networks, our original goal was to extend 
the GMPLS protocol suite. The final architec-
ture shares several aspects with SDN, since each 
domain is scoped and encapsulated by an active 
stateful PCE, and architectural elements still 
apply even if the network is composed of het-
erogeneous control technologies, including, for 
example, SDN and Openflow [15].

The architecture is hybrid, combining distrib-
uted and centralized elements. An additional 
role of the ANM and PCE is to enable a pro-

gressive migration to a transport SDN, since the 
architecture fits in a wider SDN applicability 
context in which driving a GMPLS domain is one 
south-bound interface of an orchestrator. From 
the perspective of the ANM and the H-PCE, 
the main differences would be the mechanism 
to retrieve the topologies and the actual service 
provisioning, which would be either delegated 
(GMPLS) or using a dedicated protocol that 
directly configures the hardware (OpenFlow).

A standard control plane for a multi-do-
main/multi-vendor flexi-grid network can only 
be realistically designed, assuming a standard 
data plane, to a level of detail that does not cur-
rently exist. Current data plane standards imply 
that flexible network media channels are unlikely 
except in specially designed subnetworks, and 
while allowing mixed rate signals on the same 
fiber, standardized multi-vendor interoperabil-
ity is not, as of today, covered. IDEALIST has 
addressed this by having (data and control plane) 
implementation agreements, but without fur-
ther advances (including, e.g., S-BVTs) a control 
plane cannot fully exploit the theoretical advan-
tages of flexi-grid in an interoperable scenar-
io. Interoperability still remains a major issue 
unlikely to be solved in the short term. While 
there are drivers and incentives (e.g., from oper-
ators or service providers trying to drive down 
costs), there remains a huge pressure for ven-
dors.
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Figure 5. Multi-domain flexi-grid elastic optical network resulting from interconnecting partners’ test-
beds.
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A B S T R A C T

Network services underpin operator revenues, and value-added services provide income beyond core (voice and
data) infrastructure capability. Today, operators face multiple challenges: a need to innovate and offer a wider
choice of value-added services, whilst increasing network scale, bandwidth and flexibility. They must also reduce
operational costs, and deploy services far faster - in minutes rather than days or weeks.

In the recent years, the network community, motivated by the aforementioned challenges, has developed
production network architectures and seeded technologies, like Software Defined Networking, Application-
based Network Operations and Network Function Virtualization. These technologies enhance the highly desired
properties for elasticity, agility and cost-effectiveness in the operator environment. A key requirement to fully
exploit the benefits of these new architectures and technologies is a fundamental shift in management and
control of resources, and the ability to orchestrate the network infrastructure: coordinate the instantiation of
high-level network services across different technological domains and automate service deployment and re-
optimization.

This paper surveys existing standardization efforts for the orchestration - automation, coordination, and
management - of complex set of network and function resources (both physical and virtual), and highlights the
various enabling technologies, strengths and weaknesses, adoption challenges for operators, and areas where
further research is required.

1. Introduction

Flexibility, agility and automation and a much faster time-to-
market cycle, where the latter is something that we, as operators,
lack today
(Christos Kolias, Network Architect, Orange [1]).

Network services are the primary value-added products for
Network Operators (operators), enabling them to monetize their
infrastructure investments. Operator service portfolios cover a wide
range of functionalities, spanning from basic Internet connectivity
services, such as IPTV delivery, to highly-available and secure con-
nectivity between business sites. This operator business model has
been highly successful, their user base continuously expands [2], while

new services are adopted by end-users.
As a direct consequence, network infrastructures have grown

significantly in the recent years and operators face significant chal-
lenges maintaining high revenues, while supporting innovative new
network services. On the one hand, traffic volumes increase exponen-
tially [3] and forces operators to upgrade infrastructures frequently.
Additionally, the established service management model relies exten-
sively on manual device reconfiguration by the network engineers,
coordinated through Operational Support Systems (OSS), while link
over-provision is used to enforce SLAs. Effectively, the predominant
service management model incurs significant capital (CAPEX) and
operational expenditures (OPEX) for the operator [4]. On the other
hand, network infrastructures employ a widening range of heteroge-
neous technologies to support the diverse characteristics and dynamic
demands of residential and enterprise network services. Unfortunately,
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the control and management interfaces of the relevant technologies do
not keep abreast with the requirements of network applications for
fluid and dynamic control. The different technological domains and
layers exhibit significant interface proliferation, while vertical control
integration in network devices impairs management flexibility and
responsiveness. As a result, the futuristic vision of network operators to
provide service-oriented control interfaces to end-user applications,
still remains unfulfilled.

These limitations have motivated the network and systems com-
munity to develop new paradigms and architectures which improve
network infrastructure flexibility, agility, programmability and elasti-
city and ensure low OPEX. Recent network paradigms, like Software
Defined Networking (SDN) and Application-based Network Operations
(ABNO), promote control convergence across network layers and
logical centralization of network infrastructure management through
the specification of common device control interfaces. In parallel, the
Network Function Virtualization (NFV) paradigm promotes the ”soft-
warization” and virtualization of network functions, in order to enable
data plane processing with similar elasticity, scalability and resilience
available in cloud environments. Furthermore, new network architec-
tures including Service Functions Chaining (SFC) and Segment
Routing (SR), simplify service deployment and allow seamless integra-
tion of traffic-engineered (deterministic) network services and network
policy.

To capitalize on the fluidity of these novel networking paradigms
and architectures, operators a require new control and management
system, capable to orchestrate the different technologies and resource
types available in modern network infrastructures. These systems are
responsible to converge control and management heterogeneity be-
tween technologies, in an effort to synthesize innovative service-
oriented interfaces, and enable autonomous and automated service
deployment and adaptation. The development of service orchestration
architectures and interfaces has been accelerating, but since each
vendor typically develops its own protocols and mechanisms, integra-
tion remains a challenge. Towards the goal for automated, flexible and
cost-effective service orchestration, interoperability and standardiza-
tion play a crucial role for its success.

This paper surveys standardization efforts towards enabling net-
work service orchestration from an operator perspective. To elaborate
on available interfaces, standards and recommendations we follow a
top-down approach. We begin with a definition of the document
terminology, and we elaborate on the network service orchestrator
requirements and objectives from the perspective of four of the world's
largest and complex network operators —British Telecom, Deutsche
Telekom, NTT and China Telecom — (Section 2). Furthermore, to
motivate our discussion on network services, we present the design and
requirements of three popular network service use cases, namely Radio
Access Network and Mobile Evolved Packet Core connectivity services
and end-to-end content distribution service (Section 3). We then
elaborate on the capabilities and interfaces of the predominant network
(Section 4) and function (Section 5) management and control archi-
tectures. Finally, we discuss the future directions for network orches-
tration standardization efforts (Section 6) and conclude this paper
(Section 7).

2. What is network service orchestration?

2.1. Terminology

A network service is a high-level network functionality that
generates business value for customers and/or the operator. Network
services are typically represented as directed graphs, where the nodes
of the graph represent low-level network functions and the directed
edges describe ordering and connectivity.

A network or service function (NF) is a specialized network
element, designed to efficiently perform a restricted set of low-level

operations on traffic. An NF can manipulate traffic at multiple layers of
the protocol stack and it is common to manipulate packets traversing
the network, as well as terminate network flows. Virtual software
instances, such as a Broadband Network Gateway (vBNG) or IP
Multimedia Subsystem (vIMS) running on a virtual machine, or
specialized physical hosts, such as hardware load-balancers, are both
common approaches to realize NFs. Furthermore, virtualization allows
instantiation of multiple NFs on a single physical node, while a single
physical node can potentially support the instantiation of multiple
different NF types. Finally, NFs predominantly are designed to modify
network traffic, but passive monitoring NFs are equally popular, such
as intrusion detection systems.

A Service Orchestrator is a control system for the provision,
management and re-optimization of network services. Effectively, a
service orchestrator receives network service requests from individual
applications, service consumers and the operator. Based on the
received service requests, the available infrastructure resources and
the topological properties of the underlying network, the orchestrator is
responsible to define and execute a deployment plan that fulfills the NF
and connectivity requirements of each service. In parallel, the service
orchestrator monitors the performance of all services and dynamically
adjusts the infrastructure configuration to continuously ensure the
performance guarantees and cost goals.

Service Orchestration aims to support a wide range of infrastruc-
ture technologies and resource types and depends on technical
standards to broaden its applicability. A technical standard reflects
an established set of requirements or norms to precise technical
systems. They are typically formal documents that establish uniform
engineering or technical criteria, procedures, protocols and practices.
This survey paper investigates the myriad of SDN and NFV standards
(both formal and de-facto) across a range of Standards Development
Organizations (SDO), and rapidly expanding environment of Open
Source software projects. Typically, the impedance mismatch between
SDOs and Open Source is at least 2:1 (two years to a paper standard
versus one year to a product that creates a de-facto standard) [5].

2.2. Requirements

A Service orchestration is a complex high-level control system and
relevant research efforts have proposed a wide range of goals for a
service orchestrator. We identify the following functional properties:

Coordination: Operator infrastructures comprise of a wide range
of network and computation systems providing a diverse set of
resources, including network bandwidth, CPU and storage. Effective
deployment of a network service depends on their coordinated config-
uration. The network manager must provision network resources and
modify the forwarding policy of the network, to ensure ordering and
connectivity between the service NFs. This process becomes complex
when considering the different control capabilities and interfaces
across network technologies found in the metropolitan, access and
wide area layers of the operator network. Furthermore, the network
manager must configure the devices that will host the service NFs,
either in software or hardware. The service orchestrator is responsible
for abstracting the management and configuration heterogeneity of the
different technologies and administrative domains [6,7].

Automation: Existing infrastructures incur significant operational
workload for the configuration, troubleshooting and management of
network services. Network technologies typically provide different
configuration interfaces in each network layer and require manual
and repetitive configuration by network managers to deploy a network
service [8]. In addition, vertical integration of network devices requires
extensive human intervention to deploy and manage a network service
in a multi-vendor and multi-technology environment. A key goal for
service orchestration is to minimize human intervention during the
deployment and management of network services. Efforts in program-
mable network and NFV control, like SDN, ABNO and ETSI NFV
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MANO, provide low-level automation capabilities, which can be
exploited by the service orchestrator to synthesize high-level automa-
tion service deployment and management mechanisms [9].

Resource provision and monitor: The specification of network
services contain complex SLA guarantees, which perplex network
management. For example, allocating resources, which meet service
delivery guarantees, is an NP-hard problem from the perspective of the
operator and the re-optimization of a large network can take days. In
parallel, existing service deployment approaches rely on static resource
allocations and require resource provision for the worst-case service
load scenarios. A key goal for service orchestration is to enable dynamic
and flexible resource control and monitoring mechanisms, which
converge resource control across the underlying technologies and
abstract their heterogeneity [10,11].

Efforts towards service orchestration are still limited. Relevant
architecture and interface specifications define mechanisms for effec-
tive automation and programmability of individual resource types, like
the SDN and ABNO paradigms for network resources and the NFV
MANO for compute and storage resources. Nonetheless, these archi-
tectures remain low-level and provide partial control over the infra-
structure towards service orchestration. Service orchestration initia-
tives from network operators and vendors [12,13] propose the devel-
opment of a new orchestration layer above and beyond the existing
individual control mechanisms which will capitalize on their low-level
automation and flexibility capabilities to support a service-oriented
control abstraction exposed to the OSS/BSS, as depicted in Fig. 1. In
terms of network control, the service orchestrator can access low-level
forwarding interfaces, as well as high high-level control interfaces
implementing standardized forwarding control mechanisms, like
Segment Routing and Service Function Chain, through the network
controller. In parallel, NF management across the operator datacenters
can be achieved through a dual-layer control and management stack, as
suggested by relevant NF management architectures. The lower layer
contains the Virtual Infrastructure Manager (VIM), which manages
and configures the virtualization policy of compute and storage
resources. The top layer contains the VNF Manager (VNFM) respon-
sible for the configuration, control and monitor of individual NFs. The
service orchestrator will operate on top of these two management
services (network and IT, see Fig. 1) and will be responsible for
exploiting their functionality to provide network service delivery, given
the policy of the operator, channeled through the OSS. The effective-
ness of the service orchestrator highly depends on the granularity and
flexibility of the underlying control interfaces. This paper surveys
standardization efforts for infrastructure control in an effort to discuss

the existing opportunities and challenges towards service orchestra-
tion.

3. Network services

Network services enable a wide range of value-added functionalities
for operators and users across all layers of the infrastructure. This
section presents three popular network services to identify control
requirements for a service orchestrator. Specifically, we elaborate on
the architecture of mobile radio access and core networks, followed by
a discussion on CDN services as an example of a value-added service.

Fig. 2 depicts the abstract view of the service chain of the discussed
services, along with their functional block. The figure illustrates three
layers of network services: connectivity services provided by the
network infrastructure; core network services that provide commu-
nication and value-added services to end-users of the network; and a
top application layer, which delivers an application service to the end-
user.

3.1. Radio access network (RAN)

The 3G standards split the mobile RAN in two functional blocks:
the Remote Radio Head (RRH), which receives and transmit the
wireless signal and applies the appropriate signal transformations
and amplification, and the Base Band Unit (BBU), which runs the
MAC protocol and coordinates neighboring cells. The channel between
these two entities has high bandwidth and ultra-low latency require-
ments and the two systems are typically co-located in production
deployments. Nonetheless, this design choice increases the operator
cost to deploy and operate its RAN. BBUs are expensive components
which increase the overall acquisition cost of a base station, while the
BBU cooling requirements makes the RAN a significant contributor to
the aggregate power consumption of the operator [14].

Recent trends in RAN design separate the two components, by
moving the BBU to the central office of the operator; an architectural
paradigm commonly termed Cloud-RAN (C-RAN). C-RAN significantly
reduces deployment and operational costs and improves elasticity and
resilience of the RAN. In parallel, the centralization of multiple RRHs
under the control of a single BBU improves resource utilization and cell
handovers, and minimizes cell-interference. Currently multiple inter-
faces, architectures and testbeds provide the technological capabilities
to run and test C-RAN systems [15,16], while vendors currently
provide production-ready virtualized BBU appliances [17]. In addition,
novel control abstractions can converge RAN control with underlying
transport technologies and enable flexible deployment strategies [18].

Fig. 1. An architectural model for service orchestration in operator infrastructure. The
orchestrator uses the interfaces exported by the network controller and the VNF Manager
to control the deployment, management, configuration and troubleshooting of network
services.

Fig. 2. An aggregate view of the functional blocks which deliver CDN and other value-
added services to a mobile network.
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A challenge for C-RAN architectures is the high multi-Gb band-
width requirements and strict sub-milliseconds latency and jitter
demands for the links between the RRH and the datacenter [19].
These connectivity guarantees exhibit significant variability (from a few
Mb to 30 Gb) within the course of a day, reflecting the varying loads of
mobile cell, as well as the signal modulation and channel configuration.
To provide flexible and on-demand front-haul connectivity with strong
latency guarantees, operators require novel orchestration mechanisms
supporting dynamic and multi-technology resource management. In
addition, effective RAN virtualization requires a framework for the
management and monitoring of BBU instances to provide service
resiliency. The service orchestrator can monitor the performance of
the BBU VNF instances and adjust the compute resource allocation, the
VNF replication degree and the load distribution policy. In parallel, the
orchestrator can improve front-haul efficiency by mapping the con-
nectivity requirements between the BBU and the RRH in network
resource allocation policy.

The 3rd Generation Partnership Project (3GPP) is actively explor-
ing the applicability of NFV technologies on a range of mobile network
use-cases, like fault-management and performance monitoring, and
has defined a set of management requirements in the RAN, the Mobile
Core Network and the IP Multimedia Subsystem (IMS) [20]. In
parallel, the 5G Public Private Partnership (5G PPP), within its effort
to standardize the technologies and protocols for the next generation
communication network defines end-to-end network service orchestra-
tion as a core design goal [21].

3.2. Evolved packet core (EPC)

Evolved Packet Core (EPC) is a network architecture for the core
network of mobile operators, introduced in the 4G standards. It
converges voice and data traffic in a single IP-based infrastructure.
EPC comprises of different functional elements providing the core
mobile network services. The EPCs main functional blocks are pre-
sented in Fig. 2. The Service Gateway (SGW) is the gateway terminating
the interface toward the RAN. Packet Data Network Gateway (PGW) is
the gateway to Packet Delivery Network (PDN) and enforces per-user
packet filtering, policing/shaping rate and traffic accounting. The
Mobility Management Entity (MME) and Policy and Charging Rules
Functions (PCRF) are acting as controllers for mobility and billing
functions. Furthermore, the IMS provides signaling for the establish-
ment and termination of end-to-end packet-based multimedia services,
like Voice over LTE (VoLTE). These functions are currently delivered
using expensive integrated network devices, which provide limited
modularity and interoperability between vendors. Thus, ensuring EPC
service delivery guarantees during peak times, can be achieved only
during the network planning phase through network and function over-
provision. Furthermore, running multiple logical networks, each
providing different performance guarantees and functionalities, over
a single physical infrastructure, a key functionality for 5G technologies
termed network slicing, will require extensive virtualization of the key
EPC functions [22].

Multiple studies have argued for the softwarization of the key EPC
functional blocks and the introduction of programmability in the EPC
network control. SoftAir [23] is a software-defined architecture for next
generation mobile networks using network and function virtualization
paradigms for both the EPC and the RAN. Open5GCore [24] is another
effort toward the cloudification of the EPC. Effectively, the framework
provides an LTE protocol stack and supports uniform and distributed
control plane. Furthermore, carrier-grade IMS VNF products are
readily available from different vendors [25]. Finally, both IMS and
EPC services are primary use cases for the European
Telecommunications Standards Institute (ETSI) NFV Industrial
Specification Group (ISG) [26].

3.3. Content delivery network (CDN)

CDN services provide efficient distribution of static content on
behalf of third-party Internet applications [27]. They rely on a well-
provisioned and highly-available network of cache servers and allow
end-users to retrieve static content with low latency by automatically
redirecting them to an appropriate cache server, based on the user
location, the caching policy and cache load. CDN traffic currently
constitutes a large portion of the operator traffic volumes and
providers, like Akamai, serve 15–30% of the global Internet traffic [28].

The CDN service chain is simple and consists of a load-balancing
function and a cache function, as depicted in Fig. 2. The greatest
challenge in the deployment of such a service is the aggregate network
data volumes of the service and the large number of network end-
points. As a result, temporal variations in CDN traffic patterns can have
a dramatic effect on the traffic matrix of the operator and affect
Internet service delivery. In parallel, CDN-ISP integration lacks sup-
port for dynamical resource provision, in order to gracefully manage
the dynamic traffic patterns. Connectivity relies on fixed-capacity
peering relationships through popular IXPs or CDN-operated peering
locations [29], which must be provisioned for the worst-case scenario.

The current design of CDN services introduces an interesting joint
optimization problem between operators and CDN service providers. A
CDN service bring content closer to the user and enable dynamic
deployment of caching NFs in the central offices of the operator and
enforce network resource guarantees. The service can provide sufficient
elasticity for the CDN caching layer, while the ISP can reduce core
network load. Similar approaches have been proposed in the context of
mobile operators, mobile CDN emerged to faster access to mobile apps,
facilitate mobile video streaming and supporting dynamic contents
[30,31]. In parallel, new network control architectures based on SDN
and NFV principles enable CDN services to localize users and offload
the redirection task in the network forwarding policy [32,33]. These
approaches provide an innovative environment to improve CDN
functionality, but require a flexible control mechanism to integrate
CDN services and infrastructures. A service orchestrator can autono-
mously adapt the CDN service deployment plan to the CDN load
characteristics, using a policy specification from the CDN provider. In
parallel, the orchestrator can monitor traffic volumes to infer content
locality and hotspot development and deploy NF caches close to the
end-user to improve latency and network efficiency.

4. Network orchestration standardization

Modern operator infrastructures contain a wide range of technol-
ogies across all network layers. Typically, the network of an operator is
separated into multiple control domains (access, metropolitan and
core), each using different network technologies, control interfaces and
implementing forwarding policy with diverse goals [34]. Management,
configuration and troubleshooting processes rely extensively on human
intervention, to translate high-level connectivity goals into individual
device configurations, while service deployment is designed in paper by
network managers. As a result, service lead-times for new services can
take up to a few months [35], with the majority of this time spent in the
design and configuration of network infrastructures.

The inflexibility and limited automation in the network infrastruc-
ture has motivated the development of new control and management
architectures and protocols. An important design goal for these new
networking paradigms is standardization and openness of interfaces, in
order to overcome the existing inter-operability limitations created by
the vertical integration of network devices. In this section, we elaborate
on two recent and highly successful control architectures; SDN (Section
4.1) and ABNO (Section 4.2). Such paradigms provide the required
low-level control interfaces to effectively deploy services across an
operator network and to control network resources. Our presentation
focuses on the architecture of the respective paradigms and elaborates
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on the standardization efforts for the interfaces exposed to the service
orchestrator.

4.1. Software defined networking (SDN)

SDN [36] is a recent network paradigm aiming for automated,
flexible and user-controlled network forwarding and management.
SDN is motivated by earlier network programmability efforts, including
Active Networks [37], ForCES [38], RCP [39] and Tempest [40]. Unlike
most earlier network programmability architectures, which explored
clean-slate design of data plane protocols, SDN maintains backwards
compatibility with existing network technologies. SDN design is driven
by four major design goals: (i) network control and data plane
separation; (ii) logical control centralization; (iii) open and flexible
interfaces between control layers; and iv) network programmability.

SDN standardization efforts are primarily driven by the Open
Network Foundation (ONF), while the IRTF SDNRG WG [41] explores
complementary standards for the higher control layers. Similar stan-
dardization activities take place within various SDOs, namely the
Broadband Forum (broadband network applications) and the
International Telecommunication Union (ITU) study groups (SG) 11
(SDN signaling), SG 13 (SDN applications in future networks), SG 15
(transport network applications of SDN) and SG 17 (applications of
SDN for secure services), but efforts in these SDOs are currently in
early stages and provide initial problem statements and requirement
analysis.

Fig. 3 presents an architectural model of an SDN control stack. The
architecture separates the control functionalities into three distinct
layers. The data plane is the bottom layer and contains all the network
devices of the infrastructure. Data plane devices are designed to
efficiently perform a restricted set of low-level traffic monitoring and
packet manipulation functions and have limited control intelligence.
Each devices implements one or more southbound Interfaces (SBIs)
which enable control of the forwarding and resource allocation policy
from external entities. SBIs can be categorized into control interfaces
like OpenFlow [42] and PCE [43], designed to manipulate the device

forwarding policy, and management interfaces, like NETCONF [44]
and OF-CONFIG [45], designed to provide remote device configura-
tion, monitoring and fault management. SDN functionality is not
limited to networks supporting new clean-slate programmable inter-
faces and includes SBIs based on existing control protocol, like routing
protocols.

The control plane is the middle layer of the architecture and
contains the Network Operating System (NOS), a focal point of the
architecture. A NOS aggregates and centralizes control of multiple data
plane devices and synthesize new high-level Northbound Interfaces
(NBIs) for management applications. For example, existing NOS
implementations provide topology monitoring and resource virtualiza-
tion services and enable high-level policy specification languages,
among other functionalities. Furthermore, a NOS aggregates control
policy requirements from management applications and provides them
accurate network state information. The NOS is responsible to analyze
policy requests from individual management applications, ensure
conformance with the administrative domain policy, detect and
mitigate policy conflicts between management applications and trans-
late these requests into appropriate data plane device configurations. A
key element for the scalability of the architecture is logical centraliza-
tion of network control; a control plane can consist of multiple NOS
instances, each controlling an overlapping network segment, and use
synchronization mechanisms, typically termed as eastbound and west-
bound interfaces, to converge in a common network-wide view of the
network state and policy between NOS instances. This way, an SDN
control domain can recover from multiple NOS instance failures and
the control load can be distributed across the remaining instances.
Finally, the application plane is the top layer of the architecture and
contains specialized applications that use NBIs to implement high-level
NFs, like load balancing and resource management.

Detailed presentation of the standardization, research and imple-
mentation efforts in the SDN community are presented in [46]. For the
rest of this section we focus on NBI standardization efforts. NBIs are
crucial for service orchestration, since they enable control and mon-
itoring of service connectivity and network resource utilization and
flexible fault-management. Nonetheless, NBI standardization is limited
and existing control interface and mechanism design is driven by NOS
development efforts.

NBIs can be organized in two broad categories. The first category
contains low-level information modeling NBIs. Information models
converge the state representation of data plane devices and abstract the
heterogeneity of SBIs. Network information models have been devel-
oped before the introduction of the SDN paradigm by multiple SDOs,
like the ITU [47,48] and the Distributed Management Task Force
(DMTF) [49]. Relevant to the SDN paradigm is the ONF information
modeling working group (WG), which develops the Common
Information Model (CoreModel) [50] specifications. The CoreModel
is hierarchical and includes a core model, which provides a basic
abstraction for data plane forwarding elements, and a technology
forwarding and an application-specific model, which evolve the core
model abstraction. CoreModel specifications exploit object inheritance
and allow control applications to acquire abstract network connectivity
information and, in parallel, access technology-specific attributes of
individual network devices. The CoreModel adoption is limited and
existing NOSes employ custom information models.

The second NBI category contains high-level and innovative control
abstractions, exploring interfaces beyond the typical match-action-
forward model. These interfaces are typically implemented as NOS
management applications, use the information model to implement
their control logic and are consumed by external entities, like the
Operation Support System (OSS), the service orchestrator and other
control applications. Effectively, these interfaces manifest the reference
points between the Network and Service Orchestrator components
(Fig. 1). For the rest of this section we elaborate on NBI formal
specifications, as well as NBI designs developed in production NOSes.

Fig. 3. The SDN architecture model can be separated in three layers: the data, control
and application planes.
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We elaborate on legacy control interfaces implemented in SDN
environment, as well as interfaces supported by the ONOS [51] and
OpenDayLight (ODL) [52] projects, the most popular and mature
open-source NOS implementations.

Path Computation. Path Computation Element (PCE) is a control
technology which addresses resource and forwarding control limita-
tions in label-switched technologies. Generalized Multi-Protocol Label
Switching (GMPLS) and Multi-Protocol Label Switching (MPLS)
technologies follow a distributed approach for path establishment.
Switches use traffic engineering extensions to routing protocols, like
OSPF-TE [53], to collect network resource and topology information.
Path requests trigger a label switch to compute an end-to-end path to
the destination network using its topology information and provisions
the path using signaling protocols, like RSVP-TE [54]. A significant
limitation in MPLS path computation is the increased computational
requirements for the co-processor of edge label switches in large
networks, while limited visibility between network layers or across
administrative domains can lead to sub-optimal path selections. PCE
proposes a centralized path computation architecture and defines a
protocol which allows the network controller to receive path requests
from the NMS and to configure paths across individual network
forwarding elements. PCE control can be used by the service orches-
trator to provision connectivity between the NF nodes.

The ONOS PCEP project1 enables ONOS to serve Path Computation
Client (PCC) requests and to manage label switched paths (LSP) and
MPLS-TE tunnels. In addition, the PCEP project develops a path
computation mechanism for the ONOS tunneling subsystem and
provides tunnels as a system resource. Tunnel establishment support,
both as L2 and L3 VPNs, is available to application through a RESTful
NBI and applications are distinguished between tunnel providers and
tunnel consumers.

LSP computation relies on network topology information, stored in
a traffic engineering database (TED) and populated by an Interior
Gateway Protocol (IGP). This information remains local within an
Autonomous System (AS), limiting Path Computation in a single
administrative domain. The IETF Inter-Domain Routing WG defines
a mechanism to share link-state information across domains using the
Network Layer Reachability Information (NLRI) field of the BGP
protocol, standardized in the BGP-LS protocol extensions [55]. The
ONOS BGP-LS project introduces support for the BGP-LS protocol
(peering and link state information support) as SBI to complement the
ONOS PCEP project 1.

The BGP-LS/PCEP module2 of the ODL project implements sup-
port for the aforementioned protocols as a control application.
Furthermore, the module supports additional PCE extensions, like
stateful-PCE [56], PCEP for segment routing (Section 5.4), and secure
transport for PCEP (PCEPS) [57]. Stateful-PCE introduces time,
sequence and resource usage synchronization within and across
PCEP sessions, allowing dynamic LSP management. Furthermore,
PCEPS adds security extension to the control channel of the PCE
protocol.

ALTO. The Application Layer Traffic Optimization [58] is an IETF
WG developing specifications that allow end-user applications to access
accurate network performance information. Distributed network ap-
plications, like peer-to-peer and content distribution, can improve their
peer-selection logic using network path information towards alterna-
tive service end-points. This better-than-random decision improves the
performance of bandwidth-intensive or latency-sensitive applications,
while the network provider can improve link utilization across its
network. The ALTO protocol enables a service orchestrator to monitor
the network of the operator and make informed service deployment
decisions. ODL provides an ALTO server module2 with a RESTful

ALTO NBI.
Virtual Tenant Networks. Virtual Tenant Networks (VTNs) [59] is a

network virtualization architecture, developed by NEC. VTN develops
an abstraction that logically disassociates the specification of virtual
overlay networks from the topology of the underlying network infra-
structure. Effectively, users can define any network topology and the
VTN management system will map the requested topology over the
physical topology. VTN enables seamless service deployment for the
service orchestrator, by decoupling the deployment plan from the
underlying infrastructure. The VTN abstraction is extensively sup-
ported by the ODL project.2

Locator/ID Separation. The IETF Locator/ID separation protocol
(LISP) [60] is a network architecture addressing the scalability
problems of routing systems at Internet-scale. LISP proposes a dual
addressing mechanism, which decouples the location of a host from its
unique identifier. LISP-aware end-hosts require only a unique destina-
tion end-point identifier (EID) to transmit a packet, while intermediate
routing nodes use a distributed mapping service to translate EIDs to
Routing Locations (RLOCs), an identifier of the network of the
destination host. A packet is send to an Edge LISP router in the EID
domain, where a LISP header with the RLOC address of the destination
network is added. The packet is then routed across the underlay
network to the destination EID domain. The LISP architecture provides
a scalable mechanism for NFs connectivity and mobility.

ODL provides a LISP flow mapping module.2 The module uses an
SBI to acquire RLOC and EID information from the underlying
network and exposes this information through a RESTCONF NBI. In
addition, the NBI allows applications, like load balancers, to create
custom overlay networks. The module is currently compatible with the
Service Function Chain (SFC) (Section 5.3) functionality and holds
future integration plans with group-based policy mechanisms.

Real time media. The ONF has currently a dedicated WG exploring
standardization requirements for SDN NBIs. At the time of writing, the
group has released an NBI specifications for a Real Time Media [61]
control protocol, in collaboration with the International Multimedia
Telecommunication Consortium (IMTC). The protocol allows end-user
applications to communicate with the local network controller, dis-
cover available resources and assign individual flows to specific quality
of experience (QoE) classes, through a RESTful API. ONF is currently
developing a proof-of-concept implementation of the API as part of the
ASPEN project [62].

Intent-based networking. Intent-based networking is a popular
SDN NBI exploring the applicability of declarative policy languages in
network management. Unlike traditional imperative policy language,
Intent-based policies describe to the NOS the set of acceptable network
states and leave low-level network configuration and adaptation to the
NOS. As a result, Intents are invariant to network parameters like link
outages and vendor variance, because they lack any implementation
details. In addition, intents are portable across controllers, thus
simplifying application integration and run-time complexity, but
requires a common NBI across platforms, which is currently an active
goal for multiple SDOs WG.

The IETF has adopted the NEMO specifications [63], an Intent-
based networking policy language. NEMO is a Domain Specific
Language (DSL), following the declarative programming paradigm.
NEMO applications do not define the underlying mechanisms for data
storage and manipulation, but rather describe their goals. The language
defines three major abstractions: an end-point, describes a network
end-point, a connection, describes connectivity requirements be-
tween network end-points, and an operation, describes packet
operations. Huawei is currently leading an implementation initiative,
based on ODL and the OPNFV project [64].

In parallel, the ONF has recently organized a WG to standardize a
common Intent model. The group aims to fulfill two objectives: i)
describe the architecture and requirements of Intent implementations
across controllers and define portable intent expressions, and ii)

1 https://wiki.onosproject.org/display/ONOS/Feature+Proposals
2 https://wiki.opendaylight.org/view/Project_list
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develop a community-approved information model which unifies
Intent interfaces across controllers. The respective standard is coupled
with the development of the Boulder framework [65], an open-source
and portable Intent framework which can integrate with all major SDN
NOSes. Boulder organizes intents through a grammar which consists of
subjects, predicates and targets. The language can be extended to
include constraints and conditions. The reference Boulder implemen-
tation has established compatibility with ODL through the Network
Intent Composition (NIC) project, while ONOS support is currently
under development.

Group-Based Policy (GBP) is an alternative Intent-based network-
ing paradigm, developed by the ODL project. Based upon promise-
theory [66], GBP separates application concerns and simplifies depen-
dency mapping, thus allowing greater automation during the consoli-
dation and deployment of multiple policy specifications. The GBP
abstraction models policy using the notions of end-point and end-point
groups and provides language primitives to control the communication
between them. Developers can specify through GBP their application
requirements and the relationship between different tiers of their
application, while remaining opaque towards the topology and cap-
abilities of the underlying network. The ODL GBD module provides an
NBI2 which leverages the low-level control of several network virtua-
lization technologies, like OpenStack Neutron [67] and SFC (Section
5.3).

4.2. Application-based network operations (ABNO)

The evolution of the SDN paradigm has highlighted that clean-slate
design approaches are prone to protocol and interface proliferation
which can limit the evolvability and interoperability of a deployment.
ABNO [68] s an alternative modular control architecture standard,
published as an Area Director sponsored RFC document, and it reuse
existing standards to provide connectivity services. ABNO by-design
provides network orchestration capabilities for multi-technology and
multi-domain environments, since it relies on production protocols
developed and adopted to fulfill these requirements. The architecture
enables network applications to automatically provision network paths
and access network state information, controlled by an operator-
defined network policy.

ABNO consists of eight functional blocks, presented in Fig. 4 along
with their interfaces, but production deployments do not require to
implement all the components. A core element of the architecture is the
ABNO controller. The controller allows applications and NMS/OSS to
specify end-to-end path requirements and access path state informa-
tion. A path request triggers the controller to inspect the current
network connectivity and resource allocations, and to provision a path
which fulfills the resource requirements and does not violate the
network policy. In addition, the controller is responsible to re-optimize

paths at run-time, taking under consideration other path requests,
routing state and network errors. The architecture contains an OAM
handler to collect network error from all network layers. The OAM
handler monitors the network and collects error notifications from
network devices, using interfaces like IPFIX and NETCONF, which are
correlated in order to synthesize high-level error reports for the ABNO
controller and the NMS. In addition, the ABNO architecture integrates
with the network routing policy through an Interface to the Routing
System (I2RS) client. I2RS [69] is an IETF WG that develops an
architecture for real-time and event-based application interaction with
the routing system of network devices. Furthermore, the WG has
developed a detailed information model [70] that allows external
applications to monitor the RIB of a forwarding device. As a result,
the I2RS client of the ABNO architecture aggregates information from
network routers in order to adapt its routing policy, while it can by
modify routing tables the routing policy to reflect path availability.

Path selection is provided by a PCE controller, while a provisioning
manager is responsible for path deployment and configuration using
existing control plane protocols, like OpenFlow and NETCONF. It is
important to highlight that these functional blocks may be omitted in a
production deployment and the architecture proposes multiple over-
lapping control channels. In addition, the architecture contains an
optional Virtual Network Topology Manager (VNTM), which can
provision connectivity in the network physical layer, like configuring
virtual links in WDM networks.

Topology discovery is a key requirement for the path selection
algorithm of the PCE controller and the ABNO architecture uses
multiple databases to store relevant information. The Traffic-
Engineering Database (TED) is a required database for any ABNO
architecture and contains the network topology along with link
resource and capability information. The database is populated with
information through traffic engineering extensions in the routing
protocol. Optionally, the architecture suggests support for an LSP
database, which stores information for established paths, and a
database to store associative information between physical links and
network paths, for link capacity prediction during virtual link provision
over optical technologies.

A critical element for production deployment is the ability of the
ABNO architecture to employ a common policy for all path selection
decisions. The ABNO architecture incorporates a Policy Agent which is
controlled by the NMS/OSS. The policy agent authenticates requests,
maintains accounting information and reflects policy restrictions for
the path selection algorithm. The policy agent is a focal point in the
architecture and any decision by the ABNO controller, the PCE
controller and the ALTO server requires a check with the active
network policy.

In addition to the ABNO control interfaces, the architecture
provides additional application interfaces which expose network state
information through an ALTO server. The server uses the ALTO
protocol to provide accurate path capacity and load information to
applications and assist the application server selection process and
performance monitoring.

A number of ABNO-based implementations exist detailing how the
architecture was used to orchestrate resources in complex network
environments, including: iONE [71] for content distribution in the
telecom Cloud [72], and Adaptive Network Manager [73] for co-
ordinating operations in flex-grid optical and packet networks [74].
The large telecom vendor Infinera and network operator Telefonica,
also provided a joint demonstration to orchestrate and provision
bandwidth services in real-time (”Network as a Service - NaaS”) across
a multi-vendor IP/MPLS and optical transport network, using a variety
of APIs [75].

5. Function orchestration standardization

Along with the ability to control end-to-end connectivity, service
Fig. 4. The functional blocks of an ABNO architecture. Interface between functional
block can re-use existing protocol standards.
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orchestration requires support for automated control, management
and configuration of NFs. Currently, NFs appear as a bump on the wire.
In addition, NF implementations rely on specialized devices, while
their control and management interfaces exhibit significant prolifera-
tion and heterogeneity and are not integrated with the network control
plane. As a result, service deployment requires extensive human
intervention to populate the network forwarding policy with static
configurations that steer traffic to the desired NFs, resulting in limited
service agility constrained by the underlying network topology. These
limitations convolute the management of network services and increase
service lead-times, especially for highly available services. Service
management is further convoluted by the introduction of virtualized
and software-based NFs (VNFs). Although VNFs provide service
flexibility and elasticity, they introduce new functional properties, like
lower performance predictability and reliability. Mixing VNF with
traditional single-purpose NFs, must take under consideration these
characteristics and requires fine-grain dynamic traffic steering mechan-
isms to ensure service liveness.

To address challenges towards flexible and agile services, multiple
standardization bodies have proposed architectures, protocols, and
control interfaces which enable seamless and dynamic function man-
agement. This section presents some popular NFV standardization
efforts, namely the ETSI NFV Management and Orchestration (MANO)
specifications (Section 5.1), the Metro Ethernet Forum (MEF) Lifecycle
Service Orchestration (LSO) (Section 5.2) architecture, exploring the
management organization of NFV solutions, and the IETF Service
Function Chain (SFC) (Section 5.3) and Segment Routing (SR)
(Section 5.4), designed to simplify the translation of service connectiv-
ity requirements into network policy.

5.1. NFV management and orchestration (NFV MANO)

The ETSI is the first SDOs to explore the applicability of the NFV
paradigm in operator infrastructures [26] and to develop Proof of
Concept [76] NFV implementations. Furthermore, ETSI leads the
design of the popular NFV MANO architecture [77]. NFV standardiza-
tion is not limited to ETSI, and other standardization bodies, like the
IETF NFVRG charter [78], the Open Platform for NFV (OPNFV)
industrial forum [64] and the TM Forum's ZOOM,3 develop MANO
reference implementations and propose extensions to the MANO
architecture.

The MANO specifications abstract the control of virtualized infra-
structures and VNF instances to external entities, like the OSS/BSS and
the service orchestrator of an operator. It is currently the most popular
NFV management framework, with numerous open-source and com-

mercial implementations. Operators explore the adoption of MANO-
compatible managements systems for various compounding reasons.
Firstly, NFV MANO is a flexible component-based architecture which
re-uses existing infrastructure management frameworks, like SDN
NOSes and the OpenStack framework. Therefore, existing components
can be extended by vendors, simplifying the development of NFV
platforms. Secondly, the maturity and relatively detailed specification
of the MANO components enable seamless interoperability between
implementations from different vendors. Thirdly, the architecture
provides by-design multiple carrier-grade features, like scalable hier-
archical control, billing, and flexible service and function lifecycle
specification.

Integration between the different functional components of the
ETSI architecture is achieved through reference points, a distributed
information plane which models state updates and control operations.
The root element of the information plane is the Network Service (NS),
which represents the service chain of a service. A NS consists of one or
more Virtual Network Functions (VNF), like firewalls or load bal-
ancers, connected using Virtual Links, while a VNF Forwarding Graph
(VNFFG) defines VNF ordering. Furthermore, a NS may include
Physical Network Functions (PNF), available in the underlying net-
work infrastructure. Finally, the MANO information model defines data
repositories of NS templates, VNF catalogues, and NFVI resources,
which simplify the specification and deployment of a NS.

For the rest of this section, we elaborate on the design of the MANO
architecture and identify some design limitations. Fig. 5 depicts a
diagram of the MANO components with the left-hand side representing
the infrastructure and the right-hand side representing the manage-
ment of the infrastructure. The architecture separates VNF manage-
ment into three distinct layers, in an effort to support by-design clean
control separation between the hosting infrastructures and the NFV
managers.

Virtualized Infrastructure Manager (VIM). The VIM provides
direct control and monitoring capabilities for a single NFV
Infrastructure (NFVI) domain to the upper layers of the MANO
architecture. VIM responsibilities include the management of the
compute, network, and storage resources of a datacenter and it exposes
interfaces for resource control and VNF image management. Current
implementations re-use existing Cloud Management Systems (CMS),
like the popular and open-source OpenStack, to realize the VIM layer.
Nonetheless, the design goals of existing CMSs cannot accommodate
some VIM requirements, like carrier-grade support, high-performance
I/O and fine-grain and timely resource control [79,80]. Currently,
OPNFV, in collaboration with ETSI, designs and develops new open-
source VIM and infrastructure virtualization platforms, that bridge this
requirement gap.

Virtual Network Function Manager (VNFM). The VNFM sits
between the NFVO and the VIM systems and is responsible for the
lifecycle management of individual VNF instances, including VNF
configuration, monitoring, termination, and scaling. VNF management
is typically realized using an Element Manager (EMS) which monitors
and reports the state of each VNF to the VNFM and is capable to
modify the configuration of the VNF. The deployment of an NFVM is
not mandatory according to the MANO specifications and the function-
ality of this layer can be implemented by the NFV orchestrator. Current
MANO frameworks either lack an NFVM or develop a very thin
adaptation layer between the NFV orchestrator and the VIM, respon-
sible to propagate VNF image deployment requests. Nonetheless, a
VNFM can enable seamless interoperability between VNF implementa-
tions from different vendors and across cloud infrastructures [81].

Network Functions Virtualization Orchestrator (NFVO). The
NFVO is responsible for the deployment and dynamic re-optimization
of network services. Effectively, the NFVO receives NS requests from
external entities, like the OSS and the service orchestrator, and
coordinates the deployment and configuration of VNF instances across
the NFVI domains. In parallel, the NFVO monitor the service perfor-

Fig. 5. ETSI NFV management and orchestration architecture.

3 https://www.tmforum.org/zoom/
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mance and dynamically re-optimizes the deployment of VNF instance
to meet the NS requirements. When creating a new NS, the NFVO
optimizes placement of VNFs whilst ensuring sufficient resources and
connectivity are available. Current NFVO implementations provide a
thin layer capable to launch and destroy VNF chains across the NFVI
domains of the operator and provide limited support for dynamic re-
optimization of the service deployment.

5.2. MEF lifecycle service orchestration (LSO)

The MEF is an industrial forum, responsible for the standardization
of Carrier Ethernet (CE) technologies. Furthermore, it steers the
standardization efforts for the MEF LSO [82], an architecture aiming
to improve automation in network service management. MEF extends
the MANO architecture and introduces support for end-to-end network
infrastructure management, capitalizing on the flexible control of CE
technologies. LSO targets challenges of delivering Network as a Service
(NaaS) functionalities in the operator infrastructure, such as on-
demand, agility, and heterogeneity of virtual and physical NFs. LSO
refines the service lifecycle model of the MANO standards and
introduce new lifecycle capabilities, including mechanisms to automate
network service request fulfillment, control of service resource and
scaling, enhanced performance monitor and guarantees and assur-
ances for service survivability. LSO aims to improve the time to
establish and modify services for their future Internet vision [82].
The development of the LSO standards is still in early stages and it
currently focuses on service requirement specification in order to drive
the architecture design.

5.3. Service function chain (SFC)

SFC is a recently formed IETF WG which aims to define the
architectural principles and protocols for the deployment and manage-
ment of NF forwarding graphs. An SFC deployment operates as a
network overlay, logically separating the control plane of the service
from the control of the underlying network. The overlay functionality is
implemented by specialized forwarding elements, using a new network
header. Fig. 6 presents an example deployment scenario of an SFC
domain.

An administrative network domain can contain one or more SFC
domains. An SFC domain is a set of SFC-enabled network devices
sharing a common information context. The information context
contains state regarding the deployed service graphs, the available
paths for each service graph and classification information mapping

incoming traffic to a service path. An SFC-specific header is appended
on all packets on the edges of the SFC domain by an SFC-Classifier. The
SFC-Classifier assigns incoming traffic to a service path by appending
an appropriate SFC header to each packet. For outgoing traffic, the
SFC-Classifier is responsible to remove any SFC headers and forward
each packet appropriately. Once the packet is within the SFC domain, it
is forwarded by the classifier to an SF Forwarder (SFF), an element
responsible to forward traffic to an SF according to the service function
ordering. Finally, the architecture is designed to accommodate both
SFC-aware and legacy NFs. The main difference between them is that
the SFC-aware NFs can parse and manipulate SFC headers. For legacy
NFs, the architecture defines a specialized element to manipulate SFC
headers on behalf of the service function, the SFC-Proxy. The network
overlay of the SFC architecture is realized through a new protocol layer,
the Network Service Header (NSH) [83]. NSH contains information
which define the position of a packet in the service path, using a service
path and path index identifiers, and carry metadata between service
functions regarding policy and post-service delivery.

Highly relevant for service orchestration is the control and manage-
ment interfaces of the SFC architecture. At the time of writing, the SFC
WG currently explores the SFC control channel requirements and
initial design goals [84] define four main control interfaces. C1 is the
control channel of the SFC-Classifier and allows manipulation of the
classification policy which assigns incoming traffic to specific service
paths. This control interface can be used to load balance traffic between
service paths and optimize resource utilization. C2 is a control channel
of the SFF forwarding policy and exposes monitoring information, like
latency and load. C3 is the control protocol used to aggregate status,
liveness and performance information from each NF-aware service
function. Finally, the controller can use the C4 protocol to configure
SFC-Proxies with respect to NSH header manipulation before and after
a packet traverses an SFC-unaware NF. In parallel, the WG has
proposed a set of YANG models to implement the proposed control
interfaces [85]. Furthermore, the WG has also specified a set of YANG
models for the management interface of an SFC controller [84]. This
interface provides information about the liveness of individual SFC
paths, topological information for the underlying SFC infrastructure,
performance counters and control of the fault and error management
strategies. In addition, the management interface allows external
applications to re-optimize service paths and control load balancing
policy.

At the time of writing, multiple open-source platforms introduce
SFC support. The Open vSwitch soft-switch has introduced SFC
support both in the data and the control (OpenFlow extensions) plane.
The OpenStack cloud management platform exploits the Open vSwitch
SFC support and implements a high-level SFC control interface [86].
Furthermore, the ONOS controller currently supports SFC function-
ality using VTN overlays, while ODL implements SFC support using
LISP tunnels. In addition, ONF has released recommendations for an
L4-L7 SFC architecture [87] which uses OpenFlow as the SBI of the
SFC controller and explores the applicability and required extension to
the OpenFlow abstraction to improve support for SFF elements.

5.4. Segment routing (SR)

Segment Routing (SR) [88] is an architecture for the instantiation
of service graphs over a network infrastructure using source routing
mechanisms, standardized by the IETF Source Packet Routing in
Networking (SPRING) WG [89].

SR is a data plane technology and uses existing protocols to store
instructions (segments) for the packet path in its header. SR segments
can have local or global semantics, and the architecture defines three
segments types: a node segment forwards a packet over the shortest
path towards a network node, an adjacency segment forwards the
packet through a specific router port and a service segment introduces
service differentiation on a service path. Currently, the SR architectureFig. 6. IETF SFC architecture.
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has defined a set of extensions for the IPv6 [90] and the MPLS [91]
protocols, which define protocol-compliant mechanisms to store the
segment stack and the active segment pointer in the protocol header. In
addition, to enable dynamic adaptation of the forwarding policy, the
architecture defines a set of control operations for forwarding elements
to manipulate the packet segment list and to update established paths
dynamically.

The selection of the packet path is implemented on the edge routers
of the SR domain. The architecture specifies multiple path selection
mechanisms, including static configurations, distributed shortest-path
selection algorithms and programmatic control of segment path using
SDN SBIs. The network IGP protocol can be used to provide segment
visibility between routers and a YANG management interface is defined
for SR segment information retrieval and SR routing entry control.

SR provides a readily-available framework to instantiate service
forwarding graphs. A forwarding graph can be implemented as a
segment stack and existing VNFs can be integrated with the architec-
ture by introducing appropriate support for MPLS and IPv6 SR
extensions. In comparison to the SFC architecture, SR provides a
simpler architecture which does not require deployment of new
network elements. Nonetheless, SFC provides wider protocol support
and the architecture is designed to support different data plane
technologies, while SR is closely aligned with MPLS technologies.

SR support is currently introduced in both major SDN NOSes. The
ONOS project has introduced support for SR to implement CORD, a
flexible central office architecture designed to simplify network service
management [92]. Similarly, ODL supports SR functionality using
MPLS labels and the PCE SBI module. In parallel, CISCO has
introduced SR support in recent XR IOS versions [93].

6. Challenges and future directions

A variety of industry challenges remain for the standardization of
key orchestration technologies. Some of the protocol solutions dis-
cussed in this paper are immature and will require further investigation
and development before they can be operationalized and used by
operators. In some cases, new forwarding mechanisms lack sufficient
security and operational considerations required for complex and
large-scale environments. The rest of this section outlines areas of
new research and standardization efforts and their importance for
network service orchestration.

6.1. In-operation analysis and network telemetry

he increasing demand for dynamic resource, function and con-
nectivity provision in an orchestrated infrastructure can increase
network incidents and unregulated network changes. The success of a
service orchestrator depends on its ability to measure the network
performance, to assess service quality using a small set of metrics and
to provide network diagnosis and root cause analysis during service
disruptions. In parallel, the orchestrator must support network re-
source scheduling which can adapt to near real-time service demands
(“in-operation”) [94].

To investigate network problems or identify the severity of major
network events or interruptions, a network health index or network key
performance index (KPI) or key quality index (KQI) is required.
Generating the KPI or KQI would require data collection from various
data sources using a set of automated communication processes and
transmit them to one or more data aggregation services. This process is
known as network telemetry.

The data collected from data sources include network performance
data, network logging data, network warning and defects data, network
statistics and state data, and network resource operation data (e.g.,
operations on RIBs and FIBs). The process and ability to normalize the
data to derive several end-to-end network composite metrics that
reflect the network performance and quality from different perspec-

tives, like network diagnosis, network performance, network QoS,
network security. These end-to-end metrics can then be used for in-
operation planning.

6.2. Orchestrator scalability

The size and scale of service orchestration interfaces manifest a
complex distributed computing system. Operator infrastructures con-
tain multiple computational resources (i.e., CPU, memory, storage, and
function) that are connected via the network and together they perform
a task. Logical centralization for the infrastructure control and manage-
ment systems, where a group of control elements exposes a unified and
centralized abstraction to the layer above, has become a key design
goal.

The CAP theorem [95] identifies three characteristics that are
universally desirable, but cannot be met concurrently by any distrib-
uted system: Consistency, describes the ability of the system to respond
identically to a request no matter which element receives the request;
Availability, describes the ability of the system to always respond to a
request; and Partition Tolerance, describes the ability of the system to
function uninterrupted when nodes or communications links fail.

An orchestrator will act on request and connect to the various
control elements. Tolerance to loss of connectivity from the orches-
trator and various controllers is typically not discussed by most of the
technologies discussed in this survey paper. The consistency, avail-
ability and partitioning issues may be solved by clustering critical
components and duplicating databases, but large-scale resource pool-
ing and state synchronization challenges will need to be addressed in
the protocol and architecture design phase. It is critical for SDO to
understand the consistency, performance and resilience requirements
of each orchestration interface and define operational semantics for
control operation.

6.3. Security and trust

The traditional attack vectors on traffic flows, switches, and
functions, and recovery and fault diagnosis, have resulted in new
security issues that are specific to SDN and NFV [96,97]. The features,
capabilities and services outlined in our survey will introduce faults and
risks that expose network infrastructure to threats that did not
previously exist, or were ring-fenced by single OSS platforms, and
are significantly more serious, with a greater potential for harm.
Furthermore, security flaws can result when an open source project
has a weak security focus (often the result of critical technology with
too few reviewers and maintainers). This result has manifested recently
in OpenSSL (HeartBleed), and is now being addressed through the
Linux Foundation critical infrastructure project (for OpenSSL,
OpenSSH and NTPd).

In co-operative controller environments or orchestrators that are
capable of directly accessing and manipulating another technology or
administrative domain controller, the risks associated with one com-
promised entity are now compounded, as attackers are able to attack a
single resource control point. This is distinct from a larger number of
autonomous assets in a completely distributed control architecture.
Automation via orchestration is a double-edged sword; it offers
flexibility to implement new, innovative and market-driven applica-
tions but it also opens the door to malicious and vulnerable applica-
tions. A sufficient Trust Model must be developed for SDN-based and
NFV-based infrastructures, implementing robust authentication and
enforcing different authorization levels during application registration
to the orchestrator, in order to limit the exposure to misconfiguration,
and malicious intent.

6.4. Service modeling

An important step towards effective network services orchestration
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is the development of models which capture the resource requirements,
configuration parameters, performance metrics and fault management
of network services. These models can drive the development of the
interfaces between applications, service consumers and the service
orchestrator. Standardizing a common set of service models can enable
orchestrator-application interoperability between operators and ad-
dress limitations arising in the deployment of services that span across
multiple administrative domains.

Efforts towards service modeling are fairly recent and their out-
comes are still limited. We identify two relevant SDO efforts: the
Topology and Orchestration Specification for Cloud Applications
(TOSCA) from the Organization for the Advancement of Structured
Information Standards (OASIS) and the IETF NETCONF Data
Modeling Language (NETMOD) WG. The TOSCA technical committee
(TC) recently expanded its scope with a new goal to model VNF
network services. At the time of writing, the TC has released a draft
model [98], closely aligned with the information points in the ETSI
MANO architecture. The IETF NETMOD WG provides a richer
portfolio of model specifications, developed using the YANG [99] data
modeling language. The respective models can be classified in two
broad categories: network element models and network service models
[100]. Relevant to network service modeling are the latter models, but
the scope of these models remains limited and primarily focuses on
connectivity services.

One of the key challenges towards network service modeling, is the
definition of unified configuration and management VNF interfaces.
Effectively, the interface between the VNF EMS layer and the VNFM
service currently lacks standardization. VNF appliances comes in many
different shapes and sizes and operate across all network layer. The
high dimensionality of VNF interfaces can significantly impair auto-
mation in service orchestration. Relevant efforts in cloud computing
have deliver frameworks, like Ansible [101] and Chef [102], which
simplify the deployment of web services for large scale systems using
configuration template. These systems provide cookbooks containing
service recipes which abstract and automate web service and VM
configuration. These approaches should be revisited and adapted in the
context of network service deployment and configuration practices.

7. Summary

Operators currently face significant challenges to maintain profit-
ability over their infrastructures and, in parallel, support network
service innovation. Modern network infrastructures are complex
systems, comprising of heterogeneous technologies, each with different
proprietary configuration and management interfaces. Given the
relatively long deployment times and static nature of existing customer
services, the network service deployment and management is achieved
using limited cross function collaboration, system focused and top-
down command and control.

A key goal for operators is the development of new network service
orchestration mechanisms which provide convergence between net-
work technologies, automation in the deployment and management of
network service and flexible and cross-layer resource control and
provision. Towards this goal, new technological paradigms, including
SDN and NFV, and new network architectures, such as SFC and SR,
provide the opportunity to augment elasticity, programmability, inter-
operability and agility in the control and management of operator
infrastructures and reduce CAPEX and OPEX.

This paper surveyed the standardization activities carried out in the
recent years in the context of network service orchestration, in an effort
to aid researchers and practitioners to understand the capabilities of
the relevant technologies. We presented a simple architectural model
for network service orchestration and we identified two principal
elements in the management and control of operator infrastructures:
network and NF orchestration. For each element, we presented the
predominant architectural specifications and elaborated on the inter-

faces that each technology provides. Finally, we examined a number of
future directions for the relevant SDO.
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1. Introduction 
The broadcast industry is in a time of significant change which is impacting the way we design, 
deploy and operate broadcast and contribution network infrastructure.  

As the number of consumer media consumption devices continues to increase exponentially, 
whether to watch live television or on-demand content, the pressure on the broadcast network 
operator to deliver fast, secure, and reliable connective capacity across the contribution and 
distribution infrastructure increases. 

Although the contribution and distribution network share common technology requirements, 
distinct objectives must still be defined. Contribution networks need to support seamless, 
resilient, uncompressed and real-time transmission of multi-format production content. 
Distribution networks must also scale, but to support a wide variety of low bit-rate streams, as 
consumer electronics manufacturers push 4K Smart TVs into the home, and sell High Dynamic 
Range-equipped TVs, creating consumer demand for Ultra High Definition (UHD) content to 
view on Internet connected TVs. 

 

Figure 1: UHD Shipments from DIGITIMES Research 2014 

 

 
exponentially and the revenue we receive to carry the traffic is not growing at the same 

(Principal Member of the Technical Staff, Verizon). 

This paper provides a view into media and broadcast, contribution and 
distribution laboratory efforts. We outline how the technology and economics of 

shows and conferences, are already impacting the way we consider requirements, design and 
deploy network infrastructure. We conclude with our future research objectives for continued 
development of media and broadcast network infrastructure.  
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2. Media & Broadcast Goals, Stakeholders and Infrastructure  
The reader of this paper is no doubt familiar with broadcast, contribution and distribution 
network types. This paper may interchange the terms occasionally as key infrastructure 
components are shared across multiple network types.   

As British Telecom operates multiple network types, we are subject to a variety of market forces 
that we must balance. These may be categorized into the stakeholders (i.e., producers, 
broadcasters, content and distribution operators, and consumers). These perspectives and 
requirements are sometimes shared, where unique to a specific stakeholder we will endeavor to 
underline the fact. 

This paper will refer to network and infrastructure, i.e., the hardware and software resources 
enabling network connectivity, communication, operations and management of broadcast 
services. Deployment scenarios include in-facility (studios, production sites and broadcast 
plants) and Wide-Area Networks interconnecting media locations.         

2.1 Leveraging an Economy of (Network) Scale  

Broadcasters are challenged with increasing capacity demand, reducing service setup times 
and competitive pressures. The need for innovation is focused on finding more cost efficient 
ways of moving high volumes of data, and in particular the need to address the current 
dependence on expensive, dedicated hardware and processors. 

 (Senior R&D Engineer at BBC 
Research & Development). 

A leading organization in this search for solutions based on cheaper, generic Ethernet and IT 
hardware has been British Telecom, working independently initially but then with a growing 
group of other operators from around the world. 

potential for generic processors to shift packets and got into various discussions as to 
what sort of packets; you know packet performance was obviously the main parameter 
of interest. We then got into more detailed discussion with Intel [about five] years ago 

Chief Data 
Networks Strategist, British Telecom). 

The development of these exploratory collaborations between operators and vendors was a 
significant precursor to the current move towards commodity-based Ethernet switching. In these 
early stages the main focus was on finding innovative ways to use cheaper, generic Ethernet 
hardware using a centralized controller as an alternative to the more costly dedicated network 
hardware, running proprietary chips and proprietary software. These current provisions were 
costly in part because the vendors could lock-in operators through the lack of interoperability of 
their hardware and software solutions with others on the market. 

I
switches and servers . One of 
the thin
lock- Head of Technology 
Exploration, Telefonica). 
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This lock-in effect is a legacy of the layering that evolved since privatizations took place and the 
vendors took an increasingly important role in R&D. The rapid improvements in generic 
switching and processors and their proven, cost effective use in large data centers makes them 
an attractive alternative, provided that their performance is satisfactory. 

 T
coming down, being able to take advantage of that, which you can do much more in a 

Principal Member of the Technical Staff, Verizon). 

If infrastructure begin to look more like data centers, with commodity hardware managing the 
networks in place of distributed, specialist hardware, the costs of operating such networks will 
tumble as they have done with Cloud platforms. 

Although the focus appears to be on commissioning of new hardware, the rapid obsolescence 
of existing specialist hardware is another important issue: 

I
leave equipment a Chief 
Network Services Architect, British Telecom). 

With commodity-based Ethernet and virtualized functions the full-life cost of hardware drops 
significantly, and costs savings may be passed onto the content consumer.  

2.2 Ensuring Infrastructure Flexibility 

In addition to hardware cost considerations, there are long term broadcast service implications 
that the new approaches must allow. As well as shifting the primary technological core of 
network infrastructures, there must be a shift towards the use of software-based network 
functions, in place of hardware reliant functions. 

more flexible in responding t Distinguished Network Architect, 
AT&T). 

The importance of deployment speed is emphasized within BT, an important internal driver for 
change by providing a clear indication of just how much faster and more responsive they want 
services to be: 

Chief 
Data Networks Strategist, British Telecom). 

In addition to this aspect of flexibility, we also see real benefits to both operators and customers 
of being able to delay purchasing decisions. 

e not committed to the 
Chief Data Networks 

Strategist, British Telecom). 

We will have the ability to select and install software-based network functions) at 
the time and place they are most needed, without having to try and predict what might be 
needed ahead of time. In addition functionality can be scaled up, scaled down or repurposed in 
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the event of changing demand without the need to redeploy engineers into the field, or incur 
both the economic and environmental cost of hardware removal. 

The long term flexibility goals stated include a desire to create a true software infrastructure for 
broadcast networks, both wide-area and in-facility. The separation of hardware and software 
supply chains eliminates the de-facto lock-in associated with proprietary hardware, and at the 
same time it creates a potentially much more capable and competitive software-based 
broadcast network. It will encourage new entrants and start-ups to enter the marketplace with 
innovative products tailored to the needs of broadcasters but with their roots firmly in the IT and 
data services industries.   

working, and there are issues around bringing all the different application interfaces, 
software and hardware vendors together, to have a completely functioning system 

 (Senior R&D Engineer at BBC Research & 
Development) 

Therefore we anticipate a shift in the skillsets required to design, develop, operate broadcast 
networks away from highly skilled broadcast specialists to more broadly skilled personnel with 
background in software engineering and information technology disciplines. This will include a 
greater emphasis on automation and a shift to the development and operations (DevOps) 
model.  
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3. Media and Broadcast Network Requirements  
Multiple use cases exist depending on the type and scale of media and broadcast application, 
each with a specific set of requirements and capabilities depending on the type of media 
network. We may summarize core requirements across most use cases: 

 Aggregation of multiple flows and formats across studio infrastructure 
 Broadcast industry native interface support 
 High-bandwidth connections 

Each broadcast or contribution flows have their own formats, underpinned with the use of Serial 
Digital Interfaces (SDI). There is Standard Definition (SD), High Definition (HD), and Ultra High 
Definition (UltraHD, also known as 4K). Each of these formats is typically based on a well-
defined protocol based on published standards. HD-SDI can be multiple format streams, i.e., 
1080p, 1080i or 720p. The format type specifies vertical and horizontal resolution, aspect ratio, 
pixel aspect ratio, scanning and frame rate of the content.  

The increasing use of 4K as UltraHD translates into a considerable increase in bandwidth 
consumption. As the trend to continue with yet further growth in frame rates, color depth, and 
number and quality of sound channels, only compounds the need to provide scalable high-
capacity bit-rate services.  

Additional application requirements are outlined in the following sub-sections.  

3.1 Content Capture and Encoding 

In some situations SDI must be encoded to a broad spectrum of formats for live or production 
content. One of the primary considerations with respect to selecting a format is its intended use 
or delivery platform. Once content is captured it may be encoded and forwarded across the 
network via a router, production switcher, or directly to a production server. Typically, this 
decision is handled by a Media Manager. In some cases the higher resolution content may use 
multiple outputs at the camera and need to be recompiled and synchronized at the router, 
production switcher, and encoder.  

3.2 Content Transport 

In addition to encoding, media will be ingested directly from other sources as files or flows and 
as mentioned may require encoding to traverse IP infrastructure. There are a number of well-
defined standards and protocols allow media to be encapsulated and transported across 
network infrastructure, including: 

 SD-SDI  SMPTE 259M 
 HD-SDI  SMPTE 292M 
 ETSI  ASI- TR 101 891 
 MPEG2  ISO/IEC 13818 
 MPEGTS  ISO/IEC 13818-1 
 MPEG4  ISO/IEC 14496 
 MPEG4 H.264  ISO/IEC 14496-10 
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 JPEG2000  ISO/IEC 15444-12 

3.3 Bandwidth, Compute & Storage 

Studio environments typical contain nodes with HD-SDI interfaces and 10Gb/s network cards,  
allowing for receive, transmit, encode and decode services, with centralized management.  

Multicast may be used to distribute UHD (4K) compressed video at 2160p 59.94fps, using 
H.264 encoding this would require between 800Mb/s to 1.2Gb/s per service.  

Demands by content consumers for increased video resolution, frame rate, color depth & sound 
channels, all add to bandwidth consumption for services. As indicated by the British 
Broadcasting Corporation (BBC), contribution network uses are requesting a move to near 
lossless or uncompressed video streams, these equate to: 

 HD 1080p 8bit 4:2:2 50fps uncompressed bit rate @ 3Gb/s 
 4K UHD 2160p 12bit 4:2:2 50fps uncompressed bit rate @ 10Gb/s 
 8K SHV 4320p 12bit 4:2:2 50fps uncompressed bit rate @ 48Gb/s 

3.4 Studio Media IP Evolution 

Our ultimate objective is to facilitate end-to-end IP media production. This would require a mass 
migration from dedicated synchronous interfaces to generic IP networks. The rationale for 
migration to an all IP network, running over a high-capacity optical infrastructure, is compelling: 

 Leverage the flexibility and operational experience of IP networks 
 Deliver video, audio and data from a variety of sources and formats over IP 

infrastructure, low latency, and minimal jitter   
 Efficiently utilize network resources, resource sharing where applicable   
 Elastic control of the network, setting up and tearing down occasional-use services, links 

for optimal cost-effectiveness  

If the studio production is live or recorded, it may have a slightly varying set of requirements. 
Typically content encoding and format decisions have already been made. When media is 
delivered from the field as SDI, it arrives in the facility and is encoded to a file in the house 

centre, and captured to a fil  

During production workflow, media files may need to be accessible to various production 
applications and processes and possibly need to move between storage locations. Normally the 
applications (hardware or software) for production workflow are dedicated and/or fixed, and may 
only be used part-time. If functions were entirely software based and could be efficiently 
deployed in a manner and scaled accordingly, it would provide significant cost 
savings and flexibility. However, different layers of automation to manage these applications 
and processes, with the capability to handle the file movement would also be required.  

3.4.1 Linear Contribution and Content Transport  

Our initial use cases for the lab were based on a linear contribution service, a typical 
requirement for broadcast networks. This type of service has the following key requirements: 

 Automation: request, setup, teardown of the end-to-end service 
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 Initial support for HD and 4K contributions, but capable of scaling up to 8K 
 Integrate encoding functions, scale-out storage, durability, adaptive performance, self-

healing capabilities  
 Supports high frame rates and other developing formats that exceed client expectations 

and requirements 

The media flows are expected to be IP-based and support both live, linear TV programs and 
transport of media content files for production.  

 broadcast video contribution links are typically based on data 
connections via Ethernet or SDH, with variable data rates up to 200Mb/s compressed, or 3Gb/s 
uncompressed. We therefore designed our infrastructure to support anything from a few 
100Mb/s to 10Gb/s, based on a control architecture capable of evolving beyond 100Gb/s. 
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4. Applied SDN and NFV for Converged Architecture 
Current networks consist of switches and routers using traditional distributed control planes and 
a data plane technologies. Ensuring network efficiency is limited in such networks as 
intelligence is distributed across many switches or routers and often involves complex protocols 
and procedures. By contrast, in an SDN network, with or without OpenFlow, we tend to use a 
centralized control plane (or Controller). This entity is directly responsible for establishing the 
paths or flows directly, and the data planes perform simple packet matches, forwarding, 
replication or dropping actions.  

A Controller, per domain (administrative or technology) discovers, organizes and layers multiple 
services across infrastructure. Programmable control facilitates network behavior to be 
implemented and modified quickly and cohesively: automation techniques may be used to set 
up end-to-end services, with flexibility beyond the initial deployment, and with the capability to 
modify paths and network function nodes to be modified (torn down, resized, relocated) at any 
time particularly in response to rapid changes in the operational environment. This includes 
revised network conditions, fluctuations in the resource location or availability, and in the event 
of partial or catastrophic failure. 

The advent of NFV is used to leverage Information Technology (IT) virtualization techniques to 
migrate entire classes of network functions typically hosted on proprietary hardware onto virtual 
platforms based on general compute and storage servers. Each virtual function node is known 
as a Virtualized Network Function (VNF), which may run on a single or set of Virtual Machines 
(VMs), instead of having custom hardware appliances for the proposed network function.  

Furthermore, this virtualization allows multiple isolated VNFs or unused resources to be 
allocated to other VNF-based applications during weekdays and business hours, facilitating 
overall IT capacity to be shared by all content delivery components, or even other network 
function appliances. Industry, via the European Telecommunications Standards Institute (ETSI), 
has defined a suitable architectural framework, and has also documented a number resiliency 
requirements and specific objectives for virtualized media infrastructures.  

Utilizing the benefits of enabling technologies, i.e. SDN control principles and NFV-based 
infrastructure, we have the potential to fundamentally change the way we build, deploy and 
control broadcast services built on top of flexible optical networks allowing dynamic and elastic 
delivery and high-bandwidth broadcast and media resources.  
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5. British Telecom Media and Broadcast Laboratory  
BT has built a research laboratory to explore the potential impact of SDN & NFV on networks 
required to carry high bandwidth broadcast video traffic. The lay-out is depicted in the figure 
below which shows our intentions to do research on the various aspects of building end-to-end 
video contribution networks. Video creation at HD and UHD rates produces multi-Gb/s SDI 
formats that require (optional) compression and conversion into Ethernet before progressing 
into the network. From here we have the options of using labelled or white-box switches, both 
effectively setting up high bandwidth Ethernet circuits across a core network. There is also an 
option to include IP routers in the network  used to handle compressed video flows with lower 
bandwidths.  

Traditional Network Management System (NMS) platforms lack the flexibility to fully enable our 
test infrastructure so we needed to look towards the architecture and principles defined by the 
Software Defined Networking (SDN) architecture developed and ratified by the Open 
Networking Foundation (ONF). These core SDN architectural principles offer a variety of 
possibilities when looking to plan, control, and manage flexible network resources both centrally 
and dynamically. Solutions exist that encompass direct control of switching resources from a 
central orchestrator, distributed control through a set of controllers, or devolved control through 
a hybrid with an active control plane. 

The advent of Network Functions Virtualization (NFV) has also provided the ability to deploy 
network functions on virtualized infrastructure hosted on commodity hardware, decoupling 
dedicated network function from proprietary hardware infrastructure. Consequently this allows 
network function to be instantiated from a common resource pool and to exploit performance 
predictability where dimensioning remains stable whatever the use of virtualized hardware 
resources. Emboldened with the suitable control and orchestration tools, these virtual and on-
demand capabilities could have a significant impact on how broadcast infrastructure is 
managed. 

The optical cloud comprises a combination of optical switches, amplifiers and fiber. The 
switches here are Reconfigurable Optical Add-Drop Multiplexers (ROADM) which have at their 
heart Wavelength Selective Switch (WSS) technology. These route wavelength channels from 
any input to any output fibre and can be switched in just a few seconds.  

Sitting above the hardware are a range of controllers, able to control each of the network 
elements  for example there is a controller whose job is to interface to the optical cloud. These 
controllers provide inputs to an orchestrator which has now a centralised view of all the network 
resources. Applications can take advantage of this SDN-based network orchestration and we 
have demonstrated a Scheduler application that can request on-demand large bandwidth pipes 
set up at specific times and durations.  

The figure below presents our initial view of this idealised architecture.  
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Figure 2:  British Telecom Media & Broadcast Idealised View 

One key purpose of the laboratory is to compare proprietary and more open methods to control 
networks like this. In the extreme case, assuming all the equipment provides OpenFlow means 
of control, open source software such as Open Daylight may be used to create complex 
behaviours, interlinking optical and electrical switches from multiple vendors.  

The laboratory has had a great deal of use assessing the potential of the various SDN 
approaches available. It is absolutely essential to try out these concepts in a laboratory, as this 
is the only way to discover the potential issues involved when trying to do complex network 
coordination.  

5.1 BT M&B Lab Architecture 

Typically the purpose of a functional architecture is to decompose a problem space and 
separate distinct and discrete functions into capabilities so we could identify the components 
required and the functional interactions between components. We must consider the core 
requirements that are shared across contribution and distribution networks, as well as the 
specific capabilities of each environment.  

It should be noted: 

 An architecture is not a blue-print for implementation 
 Each component is an abstract functional unit  
 Functions can be realized as separate software blobs on different processors  
 Depending on resiliency requirements, functions may be replicated and distributed, or 

centralized 
 A protocol provides a realization of the interaction between two functional components 

There have been a few useful attempts to document SDN and NFV network architecture, but 
very limited research has been published on said technologies for broadcast and media 
infrastructure.  
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Therefore: 

 Our work has tried to present a blueprint for combining emerging technologies to solve 
commercial and technology requirements, we embrace SDN and NFV without becoming 
focused or obsessed with them 

 We address a range of broadcast and media network operation and management 
scenarios 

 We encompass (without changing) existing broadcast and media services 
 We highlight available existing protocols and components that may be uses for solution 

development 

Our architecture is designed and built around core SDN & NFV capabilities and their 
subsequent applicability to the broadcast contribution network and media distribution network. 
An idealized view of this model is presented below: 

 

 

Figure 3:  BT M&B Layered  View 

5.1.1 Design Considerations 

Merchant silicon  

A key principle for the lab network was to avoid complex IP switches and routers targeting 
small-volume, large feature sets, and high reliability. We identified general-purpose commodity 
off-the-shelf Ethernet platforms with merchant silicon switching ASICs. 

Centralised Control  

Control and management becomes substantially complex and expensive with distributed control 
planes. Existing routing and management protocols were not well-suited to our initial designs. 

Reduce Network Complexity 

Overall, our software architecture more closely resembles control in large-scale storage and 
compute platforms than traditional networking protocols. Network protocols typically use 
distributed soft state message exchange, emphasizing local autonomy. We were looking to use 
the distinguishing characteristics of distributed control planes via a centralized controller. 
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Optical Transport 

The optical transport layer provides the high capacity underlay fabric. The flexible optical 
network concept is attracting a lot of attention from network infrastructure providers, with the 
purpose of offering their Infrastructure as a Service (IaaS) to variety of broadcast and 
contribution consumers. 

In the future optical network virtualization technologies might allow the partitioning/aggregation 
of the network infrastructure into independent virtual resources, where each virtual resource has 
the same functionality as the physical resource, but it can be apportioned by the broadcast 
media user. Facilitating users to dynamically request, on a per need basis, a dedicated packet 
slice for each media interface when required.  

Open Application Program Interfaces 

An Open Application Program Interfaces (APIs) are important architectural components of our 
design goal. We need the capability to push or pull configuration or information directly to each 
layer of the network. This will facilitate applications being capable of interacting directly with the 
infrastructure itself.  

5.2 Functional Components 

A short description of each component, its function and the vendor or open source platform 
tested.  

Applications 

 Video Service Scheduler  

Controller  

The Controller is implemented strictly in software and is contained within its own Java Virtual 
Machine (JVM). As such, it can be deployed on any hardware and operating system platform 
that supports Java. 

 Packet Controller (Open Daylight) 

This Open Daylight project is a collaborative open source project hosted by The Linux 
Foundation. The goal of the project is to accelerate the adoption of SDN and create a solid 
foundation for NFV-based applications. The platform is an open source project with a modular, 
pluggable, and flexible SDN controller platform at its core.  

Optical Controller  

Optical Network Hypervisor is a multi-tenant capable application that creates and exposes 
abstract representations of the underlying transport network and exports that abstracted 
network to client SDN controllers. An abstracted network can be exposed as a single node or 
multiple nodes with abstract links.  

From the perspective of the exposed SDN interface the Network Hypervisor acts as one or more 
(virtual) nodes. 

Gateways 

 Media Gateways 
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 Physical solution 
 Virtual solution  

The media gateway must be capable of encoding and decoding a variety of broadcast formats.  

Optical Switching  

 Optical ROADMs  

5.3 Deployment Phases & Capabilities  

5.3.1 Phase 1 

 

Figure 4:  Phase 1 Architecture 

 

Design and build out of the Phase 1 architecture started prior to 2013. Testing began in 2014 
and by October 2014 we were able to demonstrate automated scheduling, setup and teardown 
of broadcast services across multi-layer (IP, over Open Flow, over optical)  

The initial architecture used Open Daylight 1.0 (Hydrogen) and Open Flow 1.0 interacting with a 
limited number of whitebox switches.   

Major issues were identified at this early stage of development, issues included: 

Whitebox Software  

Equipment was plagued with incompatibility problems, requiring numerous software upgrades 
and working around bugs. 

Resource discovery and inventory management 

The controller of nodes and elements in its domain needs to know about the devices, their 
capabilities, reachability, etc. Automated discovery of Open Flow switches was limited, and 
each switch would need to be configured with Controller location. Capability exchange and 
negotiation was also non-existent.  

Limited Open Flow functions (using version 1.0)  
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We would have preferred to use Open Flow 1.3 but were limited to a version that was supported 
by the widest number of switches.  

Hardware-based video encoding  

General hardware-based video encoding provide cost and performance benefits but it also 
meant we needed to select specific sites to place the encoders and add new sites or moving 
locations meant the equipment also had to move.     

Optical transport layer abstraction 

Due to a limited API, we had minimal control automation between packet and service layers, to 
the optical transport domain. It then required manual intervention to setup or tear down new 
optical connections. Abstraction of the optical layer was nothing more representative than a 
switch.  

5.3.2 Phase 2 

 

Figure 5:  Phase 2 Architecture 

 

 

Phase 2 saw a number of upgrades and enhancements to the network, these included: 

Open Daylight Upgrade 

M n Daylight. Hydrogen Virtualization Edition for data 
centers includes all the components of Base plus functionality for creating and managing Virtual 
Tenant Networks (VTN) and virtual overlays, key goals for separating different types of 
broadcast and media content and users. The second release of Open Daylight also provided 
OpenFlow1.3 protocol library support, and Open vSwitch Database (OVSDB) configuration and 
management protocol support, a key requirement for commodity switching platforms. 

 Functions Virtualization   

We also added the product of another vendor: Aperi to our network. Aperi provided 
reprogrammable FPGA based cards capable of being dynamically transformed to perform 
different functions. Those included: JPEG 2K encode/decode, uncompressed to IP 
encapsulation, hitless switching and packet generation and analysis. 
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Consideration of Service and Network Resiliency 

The testing program on the Phase 2 network underlined the need for hitless switching, again a 
key requirement for media and broadcast services. A large number (but not majority) of critical 
functional components could either be failed over/switched without interrupting existing services. 
However, the setup or teardown of services was impacted in the event of single failures of key 
components (either internal or external to the Controller). Therefore, resiliency continues to be 
an area of research and challenges for us.    

Improvement of Maintenance and Stability of Whitebox Switches  

A notably issue we saw was the time it took to load new firmware onto line interface cards. This 
could vary from a few seconds to several minutes.  

5.3.3 Phase 3 

A number of capability requirements have been identified as we move into the third phase, 
these include: 

Optical Domain Flexibility 

As our investigations and experiments continue we want to ensure the same flexibility that 
exists in the IP and Ethernet layer is available in the optical transport domain. This is non-trivial 
problem, if we pursue an open Controller architecture. Paths through an optical network are 
tricky as we consider non-linearity effects wavelength continuity, paths are often blocked and 
end-to-end optical connections be optimized in many different ways.  

Increased Bandwidth  

Bandwidth must continue to increase, but provide the flexibility requirement described 
previously. We have identified that Elastic Optical Networks (EON) may provide significant 
bandwidth flexibility by utilizing recent ITU-T flexi-grid (flexible bit rates to beyond 100Gb/s). 

Virtual Network Function (VNF) Infrastructure Management (VIM) 

Open Stack provides the tools required for managing application, compute and storage. In our 
lab this will equate to virtual media encoders, caching nodes and file storage. Initial testing has 
found that Open Stack does not currently meet important SDN & NFV requirements, such as 
distribution, networking, operational optimization, and data plane optimization. However, 
OpenStack is still under heavy development in many areas. As the platform matures, we 
anticipate that more stable and richer in functionality, allowing it to better meet SDN & NFV 
requirements.  

 

The following figure utilizes the ETSI NFV Reference Architectural Framework, and 
demonstrates a proposed converged SDN and NFV candidate architecture for Phase 3 testing. 
It identifies the  functional components and interfaces that were established for both SDN and 
NFV vendors to develop solutions and ensure interoperability:  

1. Os-Ma: an interface to OSS and handles network service lifecycle management and 
other functions 

2. Vn-Nf: represents the execution environment provided by the Vim to a VNF (e.g. a single 
VNF could have multiple VMs) 
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3. Nf-Vi: interface to the Vim and used for VM lifecycle management 
4. Ve-Vnfm: interface between VNF and Vnfm and handles VNF set-up and tear-down 
5. Vi-Ha: an interface between the virtualization layer (e.g. hypervisor for hardware 

compute servers) and hardware resources 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Candidate SDN & NFV Framework based on ETSI NFV ISG Model 

5.4 Wider Challenges and Open Questions 

5.4.1 Viability of OpenFlow for Optical Networks 

We have found OpenFlow to be very efficient for our Ethernet layer but concerns remain for its 
optical technology viability. A new set of port properties add support for Optical ports was 
introduced in OpenFlow version 1.4, they include fields to configure and monitor the transmit 
and receive frequency of a laser, as well as its power. Those new properties can be used to 
configure and monitor either Ethernet optical ports or optical ports on circuit switches. 

There is also motivation to provide additional optical transport extensions to future versions of 
OpenFlow: "Optical Transport Protocol Extensions". 

5.4.2 Underlay Network Abstraction 

Abstracted representation of each server (optical and Ethernet) layer and client layer (IP), is an 
important goal. We would like to leave each vendor to control their equipment and balance the 
decades of knowledge about how to manage complex optical parameters, engineering rules and 
non-linearity effects, whilst providing an open interface for a high-layer application to request a 
new service, resize an existing service or perform a network wide optimization.  

Generating a well-defined and understood information model for multiple forwarding 
technologies remains an elusive goal. We recognize that different organizations are working 
toward a solution but we wonder if these models will be consistent with each other.  
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5.4.3 Role of Standards and Open Source 

Our engagement and participation of Standards Development Organizations is limited. It is often 
a complex and costly affair. Open Source communities are much easier for us to engage with, 
we have immediate access to software platforms and an active and willing support community. 
Unfortunately, we also have to build interoperable networks so well defined interfaces, via 

  

The larger 
implemented in Open Source and tested by a willing community of users, creating a feedback 
loop back into the SDO to improve the developing standard.    

5.4.4 Integration of Whitebox Switching into Legacy OSS/BSS 

Initial excitement for whitebox switching was motivated by a desire for significant capex 
reductions, thus forcing the consideration of SDN. In a large complex environment like ours, and 
especially with the interworking of our OSS/BSS layers, we have yet to see viable management 
platforms for very large number of whitebox switches that would also allow integration with 
existing OSS and BSS platforms.  
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6. Findings and Conclusions 
Our efforts to design and build broadcast and contribution infrastructure based on the principles 
on SDN, NFV and related technologies are yielding exciting results. These benefits are 
manifesting as new service capabilities and flexibility, while reducing costs across multiple 
layers for the transport of media and broadcast services.  

We are able to setup and tear down end-to-end connections, via a centralized controller, 
significantly faster and with less protocol complexity compared to existing IP/MPLS broadcast 
and contribution networks. Furthermore, using OpenFlow and commodity Ethernet switches, we 
have demonstrated rapid video path switching, and clean  switching by utilizing make-before-
break mechanisms. 

Emerging optical technologies are providing a compelling answer for exponential bandwidth 
consumption, but this must not come at any economic cost. Furthermore, current optical 
networks lack elasticity and operational complexity and costs increase as they scale. We have 
identified that Elastic Optical Networks (EON) and the flexi-grid (flexible bit rate) technology 
offers important benefits and capabilities, including wavelength slicing from 100Mb/s up to 
200Gb/s, and beyond. Thus our Phase 3 testing will include components of the ITU-T and IETF 
Flexi-grid forwarding technology and Application-Based Network Operations (ABNO) controller 
framework and functional components.       

Other challenges still remain, as highlighted in section 5.4 Wider Challenges and Open 
Questions by close cooperation with industry partners, Open 
Source communities, and Standards development organizations, solutions will be found. 
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