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Abstract:

The present work focuses on the development of novel multicomponent organic-inorganic 

hydrogel composites for bone tissue engineering. For the first time, combination of the organic 

components commonly used in food industry, namely whey protein isolate (WPI) and gelatin 

from bovine skin, as well as inorganic material commonly used as a major component of 

hydraulic bone cements, namely α-TCP in various concentrations (0-70 wt.%) was proposed.  

The results showed that α-TCP underwent incomplete transformation to calcium-deficient 

hydroxyapatite (CDHA) during preparation process of the hydrogels. Microcomputer 

tomography showed inhomogeneous distribution of the calcium phosphate (CaP) phase in the 

resulting composites. Nevertheless, hydrogels containing 30-70 wt.% α-TCP showed 

significantly improved mechanical properties. The values of Young's modulus and the stresses 

corresponding to compression of a sample by 50% increased almost linearly with increasing 

concentration of ceramic phase. Incomplete transformation of α-TCP to CDHA during 

preparation process of composites provides them high reactivity in simulated body fluid during 

14-day incubation. Preliminary in vitro studies revealed that the WPI/gelatin/CaP composite 

hydrogels support the adhesion, spreading, and proliferation of human osteoblast-like MG-63 

cells. The WPI/gelatin/CaP composite hydrogels obtained in this work showed great potential 

for the use in bone tissue engineering and regenerative medicine applications.

Keywords: whey protein isolate; gelatin; calcium phosphate; hydrogel composites;
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1. Introduction

Hydrogels due to their structural similarity to the natural extracellular matrix (ECM), high water 

content and high permeability for oxygen, nutrients and metabolites have been extensively 

studied in tissue engineering. However, using hydrogels for this application is still limited 

primarily because of relatively low mechanical strength. What is more, many hydrogels do not 

exhibit biological activities that are necessary to facilitate tissue regeneration. Therefore, recent 

efforts are focusing on the development of multifunctional hydrogels with enhanced mechanical 

properties and controlled biological functions. One approach is to combine various materials to 

obtain multicomponent hydrogels (1). The second possibility is to modify hydrogel matrix with 

ceramic particles to produce composite materials. These multicomponent systems can better 

mimic the native ECM, as they consists of multiple structural and functional constituents. In 

this study, the combination of the above-mentioned approaches was proposed. Three-

component hydrogels, consisting of whey protein isolate (WPI) as a main hydrogel matrix 

component, gelatin (Gel) as a matrix modifier, as well as alpha-tricalcium phosphate (α-TCP) 

as ceramic filler, were produced.

Whey proteins constitute 20% of all proteins in milk and include mainly β-lactoglobulin (β-Lg), 

α-lactalbumin (α-La) and smaller amounts of glycomacropeptide (GMP), immunoglobulins 

(Igs), bovine serum albumin (BSA), lactoferrin (LF), lactoperoxidase (LP), and proteose 

peptone (PP) (2). Whey proteins are considered as a by-product of cheese manufacturing, hence 

they are extremely inexpensive and abundantly available in various forms (concentrates, 

hydrolysates, and isolates). They are used widely in food industry primarily as an emulsifying, 

thickening, gelling, foaming, and water-binding agent. The whey derivates are also used in 

pharmaceutical and cosmetic products as pigments (2),(3). Heat treatment of an aqueous solution 

of whey protein isolate above 60 °C results in unfolding of the proteins followed by the 

formation of bonds between them, leading to the formation of the a three-dimensional network  
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filled by water - hydrogel (2). Biodegradability and ability of WPI to form a hydrogel without 

the use of chemical cross-linking agents makes it attractive for use in biomedical applications. 

WPI hydrogels can be used as bioresponsive carriers for controlled release of biomolecules and 

drugs, as they exhibit good pH-sensitivity (4). Furthermore, our previous research indicated that 

the WPI dissolved in cell culture medium support proliferation of human osteoblast-like Saos-

2 cells and human neonatal dermal fibroblasts (FIB), and also enhance osteogenic 

differentiation of human adipose tissue-derived stem cells (ASC). (5). This suggests that WPI 

can be promising component of hydrogels for bone tissue regeneration.

Gelatin is produced by thermal denaturation or physical and chemical degradation of collagen. 

Due to its biocompatibility, non-immunogenic properties, high availability, and low cost, 

gelatin is used in the pharmaceutical and biomedical applications as microspheres, capsules, 

wound dressing and surgical absorbent pads. In order to overcome its limitations including high 

degradation rate in aqueous environment and weak mechanical properties, chemical 

crosslinking agents, such as formaldehyde, glyoxal, glutaraldehyde, genipin, and 

transglutaminase, are used (6),(7). Since, gelatin contains Arg-Gly-Asp (RGD) sequences that 

promote cell adhesion and spreading, it has been blended with other polymers (e.g. chitosan, 

alginate, PVA, starch/chitosan) to obtain hydrogels with improved biological activity (8)–(11).

Alpha-tricalcium phosphate exhibit one of the highest chemical reactivity among calcium 

phosphate (CaP) ceramics. It reacts with aqueous media to form calcium-deficient 

hydroxyapatite (CDHA) (12). α-TCP exhibits bioactivity as it is able to form direct chemical 

bond with the native bones. Some research has indicated that Ca2+ and PO4
3- ions released from 

α-TCP structure can stimulate osteogenic differentiation of the BMSCs and bone matrix 

mineralization (13). Our previous studies have indicated that α-TCP incorporated into gellan gum 

(GG) hydrogel matrix hydrolyzes to a CDHA crystals in situ during composite production. 

Addition of inorganic particles into hydrogel matrices provides widespread strategy of hydrogel 
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mineralization, supporting mechanical strength and osteogenic differentiation of bone-forming 

cells. As was suggested, α-TCP-CDHA transformation would result in mechanical interlocking 

of particles, providing additionally enhanced mechanical properties of resulting materials (14).

The novelty of this work is to apply WPI as an inexpensive and abundantly available component 

to produce composite hydrogels for biomedical applications using two-step cold- and heat-

induced gelation technique. It was hypothesized that the addition of gelatin to WPI matrix 

would allow one to obtain materials supporting cell adhesion and growth, while the 

incorporation of ceramic phase would improve their mechanical properties. We tested the effect 

of different concentrations of α-TCP in WPI/gelatin matrix on (i) the ability of α-TCP phase 

transformation to CDHA during hydrogel synthesis; (ii) morphology and distribution of 

ceramic phase within the hydrogel matrix; (iii) mechanical properties of hydrogels; (iv) 

hydrogel behavior upon incubation in simulated body fluid; and (v) in vitro human osteoblast-

like MG-63 cell response. 

2. Materials and Methods

2.1 Materials

Whey protein isolate (BiPro, Davisco Foods International Inc., USA) containing 97.7% of 

protein and 75% of β-LG in dry mass, according to the manufacturer’s specification, and gelatin 

from bovine skin type B  (Sigma-Aldrich, UK) were used. α-TCP was produced by the wet 

chemical method as described previously (12)(15). α-TCP particle size distribution was measured 

in previous work (14). 

All materials were obtained from Sigma-Aldrich, unless stated otherwise.

2.2 Production of WPI/gelatin/CaP hydrogel composites

To produce composites, 40 wt./vol.% aqueous WPI solution was mixed with gelatin powder 

(20 wt%) in ultrasonic bath (40 °C) for 30 min. Warm WPI/gelatin solution was mixed with α-
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TCP powder in 2 mL Eppendorf tubes using vortex mixer (Vortex-Genie 2, Scientific Industries 

Inc., USA) for 30 s. Tightly closed Eppendorf tubes were immersed in cold (-20 °C) ethanol to 

induce fast gelation. After 2 minutes, tubes were immediately transferred to thermoblock 

(ThermoMixer C, Eppendorf, USA) and held at 100 °C for 5 min to induce WPI thermal 

crosslinking. To ensure complete crosslinking and sterility, materials were autoclaved (121 °C 

for 30 min). After autoclaving, Eppendorf tubes containing materials were tightly closed under 

sterile conditions (in a laminar flow hood) and stored at 4 °C until further investigation. 

Materials with α-TCP of final concentrations of 20, 30, 40, 50, 60, and 70 wt% were denoted 

as WPI/Gel/20TCP, WPI/Gel/30TCP, WPI/Gel/40TCP, WPI/Gel/50TCP, WPI/Gel/60TCP, 

and WPI/Gel/70TCP, respectively.

2.3 Structural analysis

The XRD analysis of hydrogels was performed using SmartLab 9kW diffractometer (Rigaku, 

Japan)  in the 2θ range of 10–50° with CuKα radiation source and 0.008° step size in Bragg 

Brentano configuration.

FTIR spectra were recorded with the Vertex 70v spectrometer (Bruker, USA). Samples were 

prepared by the standard KBr pellet method. Spectra were collected in the middle infrared 

4000–400 cm-1 range (MIR), and 128 scans were accumulated at 4 cm-1 resolution.

Raman studies were conducted using LabRAM HR micro Raman spectrometer (Horiba, Japan). 

The exciting 532 nm laser power was set to 15 mW. The 1800 gr/mm grating with 100x 

objectives were used and 2 scans of 300 s each were accumulated.

Before XRD, FTIR, and Raman analyses, materials were frozen at -24 °C and subsequently 

subjected to a lyophylization process in order to obtain dry mass. Freeze-drying was performed 

using FreeZone 6 Liter Freeze Dry System (Labconco, USA) for 48 hours.

2.4 Nondestructive micro-computed tomography (μCT) imaging
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Materials were imaged in Eppendorf tubes with a laboratory X‐ray source at the CT Lab of the 

Institute for Photon Science and Synchrotron Radiation at the Karlsruhe Institute of Technology 

(Karlsruhe, Germany). For X‐ray tomography acquisitions, a microfocus X-ray tube (XWT-

225-SE X-ray worX, Germany) with a tungsten target was set to 60 kV voltage and to 15 W 

target power. The source-object distance and source-detector distance were adjusted to 100 and 

1710 mm, respectively, with a spatial resolution of 11 μm and a field of view of 23,8 × 23,8 

mm2. For each measurement, a series of 2048 projection images were taken over a 360° angular 

range with an exposure time of 5 s. The three‐dimensional (3D) volumes were reconstructed 

with Octopus software. Segmentation of particles agglomerates was done using the Shanbhag 

thresholding method. Rendering and visualization of segmented agglomerates in 3D was 

performed by means of Amira 5.4.5 software.

2.5 Mechanical testing

Cylindrical samples of 9 mm diameter and 18 mm height were tested in uniaxial compression 

using a universal testing machine Inspect Table Blue 5 kN with 5 kN load cell 

(Hegewald&Peschke, Germany). The loading rate of compression was 5 mm min−1 and the pre-

load force was 1 N. The Young's modulus (EC) was calculated from the initial linear part of the 

slope of the stress–strain curve. Furthermore, the stresses corresponding to compression of a 

sample by 50% (σ50%) was determined. Mechanical parameters were calculated by averaging 

ten measurements and were expressed as mean ± standard deviation (SD).

2.6 Mineralization studies in SBF

Simulated body fluid (SBF) was prepared according to Kokubo (16). WPI/Gel, WPI/Gel/20TCP, 

WPI/Gel/40TCP, WPI/Gel/60TCP, and WPI/Gel/70TCP hydrogels were incubated in SBF 

solution at 37 °C in separate containers for 7 and 14 days under sterile conditions. The ratio of 

the composite hydrogel’s weight (g) and solution’s volume (ml) was 1/100. Afterwards the 

materials were taken out of SBF, frozen at -24 °C and subsequently subjected to a 
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lyophylization process in order to obtain dry mass. Freeze-drying was performed using 

FreeZone 6 Liter Freeze Dry System (Labconco, USA) for 48 hours.

After incubation in SBF, hydrogels were analyzed using XRD and FTIR methods as described 

above. Before and after incubation in SBF, microstructure of the  hydrogels was determined 

using SEM (Nova NanoSEM 200 FEI Europe Company). Materials were analyzed after coating 

with a thin conductive carbon layer. The changes in Ca and P concentration in the SBF was 

monitored using an ICP-OES technique (Plasm 40, Perkin Elmer, USA). For all sample groups, 

n = 3.

2.7 In vitro biological characterization with osteoblastic cells

Materials were cut to 1 mm thick slices in sterile conditions and placed in a 48-well culture 

plate. Human osteoblast-like MG-63 cells (Sigma Aldrich, USA) was seeded on materials in a 

concentration of 10.5 × 103 cm-2 in 1 ml of culture media. DMEM culture media (Sigma 

Aldrich, USA) was supplemented with 10% FBS (Thermo Fisher Scientific, USA) and 

penicillin/streptomycin (100 IU/ml, 100 µg/ml; Sigma Aldrich, USA). Cell cultivation was 

performed for 3 or 7 days under conditions of 37 °C and 5% CO2.

Cell adhesion, morphology and proliferation were observed by confocal microscopy. The cells 

were rinsed with PBS and fixed in -20 °C 70% ethanol for 10 min. After fixation, the materials 

were rinsed with PBS and cell nuclei were stained with Hoechst 33342 (final concentration of 

0.5 µg/ml; blue color, wavelength max λex = 350 nm, λem = 461 nm; Thermo Fisher Scientific, 

USA) and cell cytoplasm with Texas Red C2 maleimide (final concentration of 50 ng/ml; red 

color, wavelength max λex = 595 nm, λem = 615 nm;  Thermo Fisher Scientific, USA) diluted in 

PBS for 15 min in dark conditions. The materials were rinsed twice with PBS before 

microscopy. Images were taken using a ZEISS LSM 880 confocal microscope.
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Cell viability and proliferation were determined using CellTiter 96 AQueous One Solution Cell 

Proliferation Assay (MTS; Promega, USA). 3 samples for each sample group and time interval 

were used. The materials were rinsed with PBS and cultured in a 0.5 ml of a mixture (1:6) of 

the MTS kit with DMEM without phenol red (Sigma Aldrich, USA) supplemented with 10% 

FBS for 2 hours under cell culture conditions. Absorbance was measured at a 490 nm 

wavelength by plate reader Infinite M200 Pro (Tecan, Switzerland).

2.8 Statistical analysis

The results were analyzed using one-way analysis of variance (ANOVA) with Duncan post hoc 

tests, which were performed with Statistica 13.1 (Dell Inc., USA) software. The results were 

considered statistically significant when p<0.05.

3. Results

3.1 Structural analysis

Figure 1. XRD patterns (A), FTIR (B) and Raman (C) spectra of the WPI/gelatin/CaP 

hydrogels. XRD reflexes characteristic of hydroxyapatite are indicated by doted lines. 
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XRD analysis, as well as FTIR and Raman spectroscopies indicated the transformation of α-

TCP to CDHA in all composite hydrogels. XRD patterns of composite materials (Fig. 1A) 

revealed a number of new reflexes characteristic of HA (10.78°, 25.90°, 28.91°, 31.72°, 32.17°, 

32.85°, 39.78°, 49.46°, 53.27° 2θ). Their intensities increased with increasing initial content of 

α-TCP in composites. The pattern of WPI/gelatin hydrogel exhibits a hump in the range of  15°-

30° 2θ, characteristic of the amorphous structure. A hump is also observed for composite 

materials containing lower initial content of α-TCP. Its intensity gradually decreases with 

increasing content of inorganic phase in composites. 

In the FTIR spectrum of α-TCP (Fig. 1B), the strongest bands at the 900–1200 and 500–650 

cm-1 regions are attributed to the vibrations of PO4
3- groups. Band at 956 cm−l is characteristic 

of symmetric P–O stretching (ν1) mode. In the ranges of 986-1062 cm−l and 551-610 cm−l 

antisymmetric P–O stretching (ν3) and antisymmetric O–P–O bending (ν4) mode occur, 

respectively (17),(18). In the FTIR spectra of WPI/gelatin/CaP hydrogel composites, bands 

characteristic of hydroxyapatite are present. Double, sharp bands in the range of 563-603 cm-1 

and strong band at 1030 cm-1 with a shoulder at 1095 cm-1 arise from the anti-symmetric O–P–

O bending (ν4) and antisymmetric P–O stretching (ν3) vibrations of PO4
3- groups in HA, 

respectively (19). Furthermore, the weak band at 865 cm-1 derives from P–O(H) stretching 

vibrations of HPO4
2-, indicates the presence of CDHA (20),(21). The intensities of bands 

characteristics of HA/CDHA increase with increasing initial content of α-TCP in materials.

The Raman spectrum of α-TCP exhibits strong double bands at 964 and 972  cm-1 with a 

shoulder at 954 cm-1, corresponding to the symmetric P–O stretching (ν1) mode (Fig. 1C). Weak 

bands at the ranges of 420-450 cm-1, 998-1077 cm-1, and 563-620 cm-1 can be assigned to 

symmetric O–P–O bending (ν2), antisymmetric P–O stretching (ν3), and antisymmetric O–P–O 

bending (ν4) vibrations of PO4
3- groups in α-TCP, respectively (17),(18). The Raman spectra of 

WPI/gelatin/CaP hydrogel composites reveal bands characteristic of hydroxyapatite. Bands at 
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962 and 1046 cm−l derive from P–O stretching modes (ν1 and ν3, respectively), while bands at 

420 and 589 cm-1 arise from O–P–O bending modes (ν2 and ν4, respectively) (21),(22). The 

intensities of bands characteristics of HA increase, while the bands derived from α-TCP 

diminish with increasing initial content of α-TCP in materials. Also new band at 3570 cm-1 

corresponding to the stretching mode of –OH group in the CDHA lattice was observed for 

composites containing 40-70 wt.% α-TCP (23). 

3.2 Mechanical testing

Figure 2. Compressive strength at 50% strain σ50% (A) and compressive modulus EC (B) of the 

WPI/gelatin/CaP hydrogel composites.

The presence of 20 wt.%  α-TCP in the composite hydrogel (WPI/Gel/20TCP) did not affect 

significantly the compressive strength at 50% strain and compressive modulus (Figs. 2A-2B). 

Composites containing 30-70 wt.% α-TCP showed improved mechanical properties – σ50% and 

EC increased almost linearly with increasing concentration of ceramic phase. WPI/Gel/70TCP 

showed more than 7.5-fold increase in EC and more than 3.5-fold increase in σ50% compared to 

unmodified hydrogel. The results clearly indicate that by the modification of WPI/gelatin 

hydrogels with different amounts of α-TCP the stiffness and compressive strength can be tuned 

in a wide range.
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Interestingly, the presence of CaP phase in hydrogel matrix resulted an improvement of the 

mechanical properties, despite the increased porosity (Fig. 4).

3.3 µCT examination

Figure 3. µCT analysis of the WPI/gelatin/CaP hydrogels - 3D rendering.

3D µCT reconstructions of WPI/gelatin/CaP composite hydrogels are shown in Figure 3. The 

slices extracted from the bottom, middle and top position of each tomography reconstruction 

are presented in Figure 4. It can be seen that CaP phase was distributed inhomogeneously 

throughout the hydrogel matrices (Figs. 3 and 4). Regions of CaP phase in resulting composites 

were much larger than α-TCP particles introduced during hydrogel preparation process. The 

incorporation of CaP phase in WPI/gelatin matrix generated material porosity. The porosity 

increased with increasing distance from the bottom position of the composite hydrogels.
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Figure 4. µCT analysis of the WPI/gelatin/CaP hydrogels - transverse sections extracted from 

the bottom, middle and top position of each sample.
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3.4 Mineralization studies in SBF

Figure 5. XRD patterns (A) and FTIR spectra (B) of the WPI/gelatin/CaP hydrogels after 14-

day incubation in SBF. XRD reflexes characteristic of hydroxyapatite are indicated by doted 

lines. 

XRD and FTIR analyses showed further formation of CDHA phase in the composites upon 

incubation in SBF for 14 days. In the case of composite with the lowest initial content of α-TCP 

(WPI/Gel/20TCP), the presence of reflexes characteristic of α-TCP after incubation was not 

observed. XRD analysis of other materials revealed that intensities of reflexes characteristic of 

HA were significantly higher compared to those before soaking in SBF (Fig. 5A). Furthermore, 

they became more intense than reflexes arise from α-TCP.

FTIR spectra of all composites after incubation in SBF exhibit bands characteristic of vibrations 

of PO4
3- groups in CDHA, namely double, sharp bands in the range of 563-603 cm-1, strong 

band at 1030 cm-1 with a shoulder at 1095 cm-1, as well as weak band at 865 cm-1 derives from 

P–O(H) stretching vibrations of HPO4
2- (Fig. 5B). XRD pattern and FTIR spectrum of WPI/Gel 

hydrogel did not show any significant changes after incubation in SBF.
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Figure 6. SEM images of the WPI/gelatin/CaP hydrogels before and after 14-day incubation in 

SBF at 5 000× magnification (scale bar 10 µm) and at 10 000× magnification (scale bar 5 µm 

– colored frames).

SEM images of WPI/gelatin/CaP hydrogels before and after 14-day incubation in SBF are 

shown in Figure 6. After incubation, WPI/gelatin hydrogel showed significantly higher porosity 

and surface area than material before soaking in SBF, indicating degradation process of polymer 

matrix. Rouabhia et al. showed that WPI-based films underwent almost complete degradation 

within 60 days after subcutaneous implantation into Balb/c mice (24). Because of different 

resorption time of individual components (WPI, gelatin, CaP phase), resulting composite 

hydrogels may show multistep degradation process in vivo. Furthermore, EDX analysis 

revealed that WPI/gelatin hydrogel was enriched in small amount of Ca after incubation (data 

not shown). In the case of WPI/gelatin/CaP composites, CaP spherical particles embedded in 

porous, polymer matrix were observed. Porosity of the composites decreased with increasing 
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initial content of α-TCP. Also incubation in SBF resulted in the reduction of material porosity. 

In the case of WPI/Gel/60TCP and WPI/Gel/70TCP composites, rod-shaped crystals, 

characteristic of HA derived from α-TCP (25), were visible after 14-day incubation in SBF.  

Figure 7. Changes of Ca (A) and P (B) concentrations in the SBF during 14-day incubation of 

WPI/gelatin/CaP hydrogels.

The changes in the concentrations of Ca and P in the SBF during 14-day incubation of 

WPI/gelatin/CaP hydrogels are shown in Figs. 7A-7B. For all hydrogels, Ca and P 

concentration decreased over incubation time, however the highest reduction was noticed 

within first 7 days. WPI/Gel material showed the lowest consumption of Ca and P from SBF, 

while in the case of composite hydrogels, the decrease, especially after 7 days, is inversely 

proportional to the initial content of α-TCP in the materials. This is due to the fact that 

concentration of calcium and phosphate ions in SBF was affected both by α-TCP dissolution 

and their consumption resulting from CDHA formation in materials. 

3.5. In vitro osteoblastic cell response

Metabolic activity of the human osteoblast-like MG-63 cells cultured for 3 and 7 days in direct 

contact with hydrogels, corresponding to the number of cells, is shown in Figure 8. After 3-day 

culture, there was no significant difference between WPI/gelatin material and WPI/gelatin/CaP 
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composite hydrogels, while after 7 days, the cells cultured on composite materials showed 

significantly higher metabolic activity. Furthermore, proliferation rate of osteoblastic-like cells 

cultured in direct contact with materials containing α-TCP was higher compared to WPI/Gel 

hydrogel. Cell number on materials containing α-TCP particles after both culture periods was 

on a similar level.

Figure 8. Metabolic activity (assessed by MTS assay) of the MG-63 cells cultured for 3 and 7 

days in direct contact with WPI/gelatin/CaP hydrogels. Statistically significant differences (p 

<0.05) relative to the hydrogel unmodified with CaP are indicated by asterisk * (differences 

were detected only for 7-day culture).
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Figure 9. Confocal microscopy images of MG-63 cells cultured for 3 and 7 days in direct 

contact with hydrogels. Stained by Hoechst 33342 (nuclei, blue) and Texas Red C2 maleimid 

(cell cytoplasm, red). Scale bar 100 µm (magnification 20×).
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Confocal microscopy images (Fig. 9) revealed that human osteoblast-like MG-63 cells were   

evenly distributed and attached to the surfaces of WPI/gelatin material and WPI/gelatin/CaP 

composite hydrogels just after 3-day culture. Cells exhibited well-spread and flattened 

morphology. Furthermore, many interconnections between cells were established through 

cellular extensions, allowing cell communication. After 7 days of culture, the number of cells 

was higher, especially on the surfaces of composite hydrogels, which is consistent with the 

results from metabolic activity measurement. MTS and microscopy results indicated that the 

WPI/gelatin/CaP composite hydrogels support the adhesion, spreading and proliferation of 

cells. Further studies are needed to explore cell behavior (e.g. differentiation process of bone-

forming cells) in direct contact with resulting hydrogels.

4. Discussion

α-TCP, in the form of fine powder, is widely used as the major component of various hydraulic 

calcium phosphate cements (CPCs). The setting reaction of CPCs is based on the hydrolysis of 

α-TCP according to the following equation:

3Ca3(PO4)2 + H2O → Ca9(PO4)5(HPO4)OH

α-TCP in the presence of water or phosphate solutions dissolves and precipitates as CDHA, 

similar to bone hydroxyapatite (12). However, there are not many studies concerning the use of 

α-TCP as a component of composite hydrogels. In our recent work, it has been shown that α-

TCP can be used to obtain self-gelling, injectable hydrogels based on polysaccharide gellan 

gum (GG). α-TCP transformed to CDHA and also served as delivery vehicle for slow release 

of Ca2+ to enable GG internal crosslinking (14). Recently, collagen/α-TCP composite hydrogels 

were produced using low temperature printing process (26). However, for induction of α-TCP-

CDHA transformation, incubation in phosphate buffer saline (PBS) at 37ºC for 24 h was 

conducted. In turn, Goto et al. showed that hydrothermal treatment of PVA/α-TCP hydrogels 

at 120 ºC accelerates complete α-TCP-CDHA transformation (25). In contrast to our work, 
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complete phase transformation in PVA-based composites may result from longer hydrothermal 

processing (6 h). Retarded α-TCP-CDHA transformation in WPI/Gel/20TCP and 

WPI/Gel/30TCP composites may be related to a low amount of α-TCP and thus reduced Ca2+ 

and PO4
3- concentrations resulting in low degree of supersaturation with respect to CDHA. This 

was additionally accompanied by high viscosity of hydrogel matrix which slows down the 

diffusion speed of both ions (27).

Modification of hydrogel matrices with inorganic particles is  a common strategy for improving 

mechanical properties of the materials. One of the most frequently used inorganic modifier is 

hydroxyapatite. Traditionally, HA/hydrogel composites have been fabricated by simple 

physical mixing of preformed HA particles with polymer solution. HA (nano)particles 

entrapped in the three-dimensional hydrogel network resulted in a significant improvement of 

compressive strength and modulus (28)–(30). However, the approach proposed here, concerning 

incorporation of highly reactive α-TCP particles followed by their in situ transformation to 

CDHA during hydrogel preparation process, may lead to more effective mechanical 

interlocking of inorganic phase in hydrogel network compared to preformed HA particles. In 

the case of α-TCP-based cements, the hardening mechanism results from the entanglement of 

the precipitated CDHA crystals. Therefore, when α-TCP-CDHA transformation occurs inside 

the hydrogel matrix, tightly connected organic-inorganic network would be formed (27). This 

may result in higher mechanical strengths, stiffness, and hardness of resulting composite 

hydrogels.

Furthermore, the use of α-TCP particles may have one more advantage over the modification 

with preformed HA particles. Calcium ions, released from α-TCP to polymer solution, can 

interact with WPI and gelatin affecting mechanical properties of composite hydrogels. On the 

one hand, the presence of Ca2+ ions in the solution increases the rate of heat induced aggregation 

of WPI proteins, including β-lactoglobulin (31),(32). On the other hand, it has been shown that the 
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carboxyl ions of gelatin can bind Ca2+ ions which further interact with PO4
3- ions, providing 

nucleation sites for nanocrystals of HA (33). Three effects that are responsible for calcium-

induced protein aggregation have been proposed: intermolecular crosslinking of adjacent 

anionic groups by the formation of protein-Ca2+-protein bridges (i); hydrophobic interactions 

induced by ion induced conformation changes (ii); reduction of the negative charge of the 

proteins by binding of Ca2+ ions (iii) (31),(34). As Ca2+ ions also bind specifically to whey proteins, 

similar mineralization mechanism of WPI would occur. Therefore, these two processes, namely 

calcium-induced protein aggregation, as well as the mineralization of gelatin and WPI, would 

improve mechanical properties of the composite hydrogels.

The issue of inhomogeneous distribution of inorganic fillers in hydrogel matrices is commonly 

known (35),(36). Inhomogeneous distribution of CaP phase in WPI/gelatin matrix may be 

attributed to aggregation of WPI induced by Ca2+ ions released from highly reactive α-TCP. 

Previous studies have shown that Ca2+ ions induce the aggregation of WPI in solution even at 

ambient temperature (34). Rapid dissolution of calcium ions would result in the formation of 

WPI aggregates around α-TCP, hindering their uniform distribution in the WPI/gelatin solution. 

Ideally, the distribution of CaP phase would be homogeneous, however, a certain 

inhomogeneity does not preclude application as a biomaterial to support bone regeneration. 

Future work should focus on improving homogeneity. One of the strategies to improve the 

distribution of ceramic fillers in polymeric matrices is their functionalization or surface 

modification (37). A second possible approach is to alter the zeta potential of the calcium 

phosphate particles by, for instance, changing the pH of solution (38). These methods may lead 

to a reduction in the degree of agglomeration of the α-TCP. Furthermore, materials with a 

gradient distribution of the CaP phase may be produced for e.g. bone-cartilage interface 

applications (39).
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Our previous studies revealed that release of Ca and P ions from GG/α-TCP hydrogels, 

containing different concentration of α-TCP (30-50 wt./vol.%), was on similar level as was 

observed in present work (14). However, α-TCP in GG-based materials showed complete 

transformation to CDHA, which is much more stable phase. High reactivity in biologically 

related fluids of resulting composite hydrogels was ensured mainly by residual α-TCP phase. 

α-TCP produced by a wet chemical method has shown high reactivity and rapid transformation 

to CDHA (12). This can lead to improvement of mechanical properties of hydrogels in the early 

stages after implantation to human body, in line with setting reaction of α-TCP -based bone 

cements, and also provide bone-bonding ability.

The reduction of Ca concentration in SBF and also the presence of small amount of Ca in 

WPI/Gel hydrogel after incubation may confirm the calcium-binding capacity of gelatin and 

WPI. It was shown that whey proteins after heat-induced aggregation bind Ca2+ ions more easily 

(40). Although XRD, FTIR, and SEM/EDX analyses did not show mineralization of WPI/Gel 

upon incubation in SBF,  calcium-binding capacity may additionally promote this process in 

composite hydrogels, where high degree of supersaturation can be induced by high solubility 

of residual α-TCP phase.

To date, the response of bone-forming cells to whey proteins dissolved in cell culture medium 

was investigated. For instance, our recent research showed that the presence of WPI stimulates 

the expression of osteogenic differentiation markers (collagen 1 and alkaline phosphatase) by 

human adipose tissue-derived stem cells in a dose-dependent manner, as well as induces 

calcium deposition by human osteoblast-like Saos-2 cells even in growth culture medium 

without osteogenic supplementation (5). Xu reported that the production of osteocalcin and 

insulin-like growth factor-I, as well as an expression of osteoprotegerin and receptor activator 

of nuclear factor-κ B ligand (RANKL) by fetal rat osteoblasts increased upon treating them 

with whey proteins (41). However, there are limited studies on cell behavior in direct contact 
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with whey protein-based biomaterials. Gilbert and Rouabhia et al. prepared β-lactoglobulin- 

and WPI-based films using casting method with addition of various plasticizers (42). It is worth 

mentioning that heat treatment at 80 ºC was used to denature the film-forming proteins. 

Resulting films have been shown to support attachment and growth of normal human 

keratinocytes and fibroblasts isolated from skin. Furthermore, subcutaneous implantation of the 

films into Balb/c mice revealed that materials were not toxic and immunogenic as well as did 

not provoke fibrous encapsulation (24). 

The incorporation of gelatin in other polymers is one of the strategies to improve their biological 

activity. For instance, Risser et al. showed that increasing concentration of gelatin in starch-

chitosan-gelatin composite foams have a positive effect on the growth and proliferation of 

MC3T3 mouse osteoblast cells (10). In turn, the incorporation of gelatin in PVA electrospun 

nanofibers significantly improved the adhesion, spreading, and flattening of the 3T3 mouse 

fibroblasts (11). This positive effect on cell behavior can be assigned to the presence of the 

arginine-glycine-aspartic acid (RGD) integrin-binding sequence of gelatin, including the Aα-

chain and the heparin binding domain within the Bβ-chain which mediates cell-

matrix(biomaterial) interactions.

Improved metabolic activity of MG-63 cells cultured for 7 days on WPI/gelatin/CaP composites 

might be ascribed to higher stiffness compared to WPI/gelatin hydrogel. Sen et al. showed that 

the osteogenic differentiation of human mesenchymal stem cells (hMSCs) can be altered by the 

addition of calcium phosphate (β-TCP) in agarose and agarose–collagen hydrogels, as a result 

of increase in material stiffness (43). On the other hand, Ca2+ and PO4
3- ions released from α-

TCP as well as alkalization of  culture medium have been shown to enhance osteoblastic 

function (44). Furthermore, calcium-deficient hydroxyapatite (CDHA), present in composite 

hydrogels, shows easier biodegradation and higher cellular activities in comparison with 

stoichiometric hydroxyapatite (45).
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5. Conclusions and Outlook

In the present work, novel multicomponent organic-inorganic hydrogel composites were 

prepared. Composites combine components commonly used in food industry, namely whey 

protein isolate and gelatin from bovine skin, as well as inorganic material commonly used as a 

major constituent of the hydraulic bone cements, namely α-TCP in various concentrations (0-

70 wt.%). WPI was used for the first time as a component of composite hydrogels for tissue 

engineering applications. As a result of hydrolysis, α-TCP underwent incomplete 

transformation to CDHA during preparation process of hydrogels. Microcomputer tomography 

showed inhomogeneous distribution of the CaP phase in the resulting composites. Nevertheless, 

hydrogels containing 30-70 wt.% α-TCP showed significantly improved mechanical properties. 

The values of Young's modulus and the stresses corresponding to compression of a sample by 

50% increased almost linearly with increasing concentration of ceramic phase. Incomplete 

transformation of α-TCP to CDHA during preparation process of composite hydrogels provides 

them high reactivity in simulated body fluid during 14-day incubation. Preliminary in vitro 

studies revealed that the WPI/gelatin/CaP composite hydrogels support proliferation, adhesion 

and spreading of human osteoblast-like MG-63 cells. 

The WPI/gelatin/CaP composite hydrogels obtained in this work showed great potential for the 

use in bone tissue engineering applications. Taking into account fast gelation of gelatin at lower 

temperatures followed by heat-induced crosslinking of WPI, proposed material composition 

can potentially be processed using a low temperature 3D-printing technique to produce 3D 

scaffolds. However, further studies are needed to improve CaP phase distribution in 

WPI/gelatin hydrogel matrix.
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Figure 1. XRD patterns (A), FTIR (B) and Raman (C) spectra of the WPI/gelatin/CaP hydrogels. XRD reflexes 
characteristic of hydroxyapatite are indicated by doted lines. 
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Figure 2. Compressive strength at 50% strain σ50% (A) and compressive modulus EC (B) of the 
WPI/gelatin/CaP hydrogel composites. 
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Figure 3. µCT analysis of the WPI/gelatin/CaP hydrogels - 3D rendering. 
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Figure 4. µCT analysis of the WPI/gelatin/CaP hydrogels - transverse sections extracted from the bottom, 
middle and top position of each sample. 
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Figure 5. XRD patterns (A) and FTIR spectra (B) of the WPI/gelatin/CaP hydrogels after 14-day incubation in 
SBF. XRD reflexes characteristic of hydroxyapatite are indicated by doted lines. 
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Figure 6. SEM images of the WPI/gelatin/CaP hydrogels before and after 14-day incubation in SBF at 5 000× 
magnification (scale bar 10 µm) and at 10 000× magnification (scale bar 5 µm – colored frames). 
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Figure 7. Changes of Ca (A) and P (B) concentrations in the SBF during 14-day incubation of 
WPI/gelatin/CaP hydrogels. 
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Figure 8. Metabolic activity (assessed by MTS assay) of the MG-63 cells cultured for 3 and 7 days in direct 
contact with WPI/gelatin/CaP hydrogels. Statistically significant differences (p <0.05) relative to the 

hydrogel unmodified with CaP are indicated by asterisk * (differences were detected only for 7-day culture). 
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Figure 9. Confocal microscopy images of MG-63 cells cultured for 3 and 7 days in direct contact with 
hydrogels. Stained by Hoechst 33342 (nuclei, blue) and Texas Red C2 maleimid (cell cytoplasm, red). Scale 

bar 100 µm (magnification 20×). 
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