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Abstract
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1 Introduction

The challenge of changepoint detection has received considerable interest in recent years;

see, for example, Rigaill et al. (2012), Chen and Nkurunziza (2017), Truong et al. (2018)

and references therein. There are many algorithms for estimating the number and location

of changepoints, for example Binary Segmentation, due to Scott and Knott (1974), and its

variants such as Circular Binary Segmentation, Wild Binary Segmentation and Narrowest-

Over-Threshold, due to Olshen et al. (2004), Fryzlewicz (2014) and Baranowski et al. (2018)

respectively; and dynamic programming approaches that minimise a penalised cost, such as

the Optimal Partitioning procedure of Jackson et al. (2005) or the PELT method of Killick

et al. (2012).

In many applications, there are computational constraints that can affect the choice of

method. We are interested in whether parallel computing techniques can be used to speed up

algorithms such as Optimal Partitioning or PELT. The application of parallelisation is vast,

with use in such areas as meta-heuristics, cloud computing and biomolecular simulation,

as discussed in Alba (2005), Mezmaz et al. (2011), Schmid et al. (2012) and Wang and

Dunson (2014) among many others. Some methods are more easily parallelisable in that it

is plain how to split a search space or other task between different nodes. These problems

are often described as ‘Embarrassingly Parallel’. For the changepoint detection problem,

binary segmentation and wild binary segmentation may be described as such. However, it is

not so straightforward to parallelise dynamic programming methods.

This article makes a new contribution to this area by suggesting two new approaches for

parallelising a penalised cost approach. In particular, we demonstrate in Section 3 that

the computational cost of dynamic programming algorithms that minimise the penalised

cost, such as PELT, can be reduced by a factor that can be quadratic in the number of

computer cores. Further, we demonstrate empirically that super-linear gains in speed are

achievable even in reasonably small sample settings in Section 4. One disadvantage with

parallelising an algorithm such as PELT is that we are no longer guaranteed to be finding

the segmentation which minimises the penalised cost. However, these approximations do

not affect the asymptotic properties of the estimator of the number and locations of the
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changepoints: in Section 3 we show that, for the change-in-mean problem, our proposed

approaches retain the same asymptotic properties as PELT.

The changepoint problem considers the analysis of a data sequence, y1, ..., yn, which is ordered

by some index, such as time or position along a chromosome. We use the notation ys:t =

(ys, . . . , yt) for t ≥ s. Our interest is in segmenting the data into consecutive regions. Such a

segmentation can be defined by the changepoints, 0 = τ0 < τ1 < . . . < τm < τm+1 = n, where

the set of changepoints splits the data into m+ 1 segments, with the jth segment containing

data-points yτj−1+1:τj .

As mentioned, we focus on a class of methods which involve finding the set of changepoints

that minimise a given cost. The cost associated with a specific segmentation consists of

two important specifications. The first of these is C(.), the cost incurred from a segment

of the data. Common choices for C(.) include quadratic error loss, Huber loss and the

negative log-likelihood (for an appropriate within-segment model for the data); see Yao and

Au (1989), Fearnhead and Rigaill (2017) and Chen and Gupta (2000) for further discussion.

For example, using quadratic error loss gives:

C(ys:t) =
t∑
i=s

(
yi −

1

t− s+ 1

t∑
j=s

yj

)2

. (1)

This cost is proportional to the negative log-likelihood for a piecewise constant signal ob-

served with additive Gaussian noise. The second specification is β, the penalty incurred

when introducing a changepoint into the model. Common choices for β include the Akaike

Information Criterion, Schwarz Information Criterion and modified Bayesian Information

Criterion; see Rigaill et al. (2013), Haynes et al. (2017) and Truong et al. (2017) and refer-

ences therein for further discussion. Finally, it is assumed that the cost function is additive

over segments. The objective is then to find the segmentation which minimises the cost. In

other words, we wish to find:

arg min
1≤τ1<...<τm≤n−1

m+1∑
i=1

[
C(yτi−1+1:τi) + β

]
. (2)
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Sometimes this minimisation is performed subject to a constraint on the minimum possible

segment length. Optimal Partitioning, due to Jackson et al. (2005), uses dynamic program-

ming to solve (2) exactly in a computation time of O(n2). Killick et al. (2012) introduced

the PELT algorithm, which also solves (2) exactly and can have a substantially reduced

computational cost. In situations where the number of changepoints increases linearly with

n, Killick et al. (2012) show that PELT’s expected computational cost can be linear in n.

However, the worst case cost is still O(n2).

The basis of these dynamic programming algorithms is a simple recursion for the minimum

cost of segmenting the first t data points, y1:t, which we denote F (t). It is straightforward

to show that for t < u:

F (u) = min
t<u
{F (t) + C (yt+1:u) + β} .

The intuition is that we minimise over all possible values for the most recent changepoint

prior to u, with the term in brackets being the minimum cost for segmenting y1:u with

the most recent changepoint at t. By setting F (0) = −β and solving this recursion for

u = 1, . . . , n, we obtain F (n), the minimum value of (2). At the same time it is possible to

obtain the set of changepoints which minimise the cost, see Jackson et al. (2005) for more

details.

One of our approaches to parallelising algorithms such as PELT will use the fact that (2)

can still be solved exactly when we restrict the changepoints to be from an ordered subset

B = {b1, . . . , bk} ⊂ {1, . . . , (n− 1)}. Let FB(bs) denote the minimum cost of y1:bs when we

restrict potential changepoints to B; this satisfies the recursion

FB(bs) = min
t<s
{FB(bt) + C(ybt+1:bs) + β} .

Using the initial condition FB(0) = −β, this gives a means of recursively calculating FB(bk).

For most cost functions, after a simple pre-processing step that is linear in n, the compu-

tational cost of solving these recursions will be, at worst, quadratic in the size of B rather
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than quadratic in n. This property is key to the near quadratic speed ups we can obtain

as we increase the number of cores. For both parallelisation methods we introduce, each

core minimises the penalised cost whilst allowing changepoints at just a subset of locations.

If we have L cores, then each core considers approximately n/L possible changepoint loca-

tions. Hence the worst-case cost of minimising the penalised cost on a given core is roughly

a factor of L2 less than that of running PELT on the full data. Furthermore, the paralleli-

sation schemes we introduce involve no communication between cores other than a single

post-processing step of the output from each core.

The general format of this paper is as follows: Section 2 introduces two means of parallelising

dynamic programming methods for solving (2), which we refer to as Chunk and Deal. In

each case, we provide a description of the proposed algorithm with practical suggestions for

implementation, followed by a short discussion of the theoretical justifications behind these

choices. We devote Section 3 to examining this latter aspect in detail. In particular, we

establish the asymptotic consistency of Chunk and Deal in a specific case with recourse to

the asymptotic consistency of the penalised cost function method. Section 4 compares the

use of parallelisation to other common approaches in a number of scenarios involving changes

in mean. We conclude with a short discussion in Section 5. The proofs of all results may be

found in the appendices and supplementary materials.

2 Parallelisation of Dynamic Programming Methods

In this section, we introduce Chunk and Deal, two methods for parallelising dynamic pro-

gramming procedures for changepoint detection. For convenience, we shall herein refer to

this exclusively as the parallelisation of PELT.

We introduce the notation PELT (yA,B) when referring to applying PELT to a dataset

yA but only allowing candidate changepoints to be fitted from within the set B. Note

that we trivially require B ⊆ A. Thus, for example, when performing PELT without any

parallelisation, we may refer to this as PELT
(
y{1,...,n}, {1, . . . , n− 1}

)
.
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In addition, we refer to the parent core as the core which is responsible for dividing the prob-

lem into sub-problems and then distributing these sub-problems to the other cores available.

It then receives the output from each core (i.e. a set of estimated changepoints) and fits a

changepoint model across the entire sequence using the results from these other cores.

Using this notation, the general setup for the parallelisation procedure then takes the fol-

lowing form:

• (Split Phase) We divide the space {1, . . . , (n− 1)} into (not necessarily disjoint) subsets

B1, . . . ,BL, where L is the number of computer cores available;

• Each of the cores i = 1, . . . , L then performs PELT (yAi ,Bi), returning a candidate

set, τ̂i, of changes, which are returned to the parent core;

• (Merge Phase) The parent core then performs PELT (y1:n,∪Li=1τ̂i), and the method

returns τ̂ , the set of estimated changes found at this stage.

Note that in the above we require ∪Li=1Ai = {1, . . . , n}. Our two methods for parallelisation

differ in how they choose A1:L and B1:L.

2.1 Chunk

The Chunk procedure consists of dividing the data into continuous segments and then hand-

ing each core a separate segment on which to search for changes. This splitting mechanism

is shown in Figure 1. One problem with this division arises from changes which can be

arbitrarily close to, or coincide with, the ‘boundary points’ of adjacent cores. This neces-

sitates the use of an overlap - a set of points which are considered by both adjacent cores

for potential changes, also shown in Figure 1. For a time series of length n, we choose an

overlap of size V (n) either side of the boundary for each core (with the exception of the first

and final cores, which can each trivially only overlap in one direction). The full procedure

for Chunk is detailed in Algorithm 1.
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Figure 1: The time series is split into continuous segments by the Chunk procedure, in this case with 5 cores

(l). An overlap is specified between the segments such that points within are considered by both adjacent

cores (r).

Data: A univariate dataset, y1:n.

Result: A set of estimated changepoint locations τ̂1, . . . , τ̂m̂.

Step 1: Split the dataset into the subsets B1, . . . ,BL such that

B1 =
{

1, . . . ,
⌊
n
L

⌋
+ V (n)

}
,

Bi =
{

(i− 1)
⌊
n
L

⌋
− V (n), . . . , i

⌊
n
L

⌋
+ V (n)

}
∀i ∈ {2, . . . , L− 1},

BL =
{

(L− 1)
⌊
n
L

⌋
− V (n), . . . , n

}
;

for i = 1, . . . , L do

On core i, find τ̂i = PELT (yBi ,Bi);

end

Step 2: Sort ∪Li=1τ̂i into ascending order;

Step 3: Calculate and return (τ̂1, . . . , τ̂m̂) = PELT
(
y1:n,∪Li=1τ̂i

)
.

Algorithm 1: Chunk for the PELT procedure

Given that Algorithm 1 executes PELT multiple times, it is not immediate that Chunk

represents a computational gain. We therefore briefly examine the speed of the procedure.
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Recall that PELT has a worst case computational cost that is quadratic in the number

of possible changepoint locations. Such a quadratic cost is observed empirically when the

number of changepoints is fixed as n increases. Taking this worst case computational cost,

the cost of the split stage is O
((

n
L

)2)
. The cost of the merge phase is dependent on the total

number of estimated changes generated in the split phase. If we can estimate changepoint

locations to sufficient accuracy, then as each change appears in at most two of the ‘chunks’,

the number of returned changes ought to be at most 2m. Thus the merge phase has a cost

that is O(m2). This intuition is confirmed later, in Corollary 3.3.1.

These calculations suggest that by increasing L we can decrease the computational cost by

a factor of close to L2. This is observed empirically for large n and few changepoints. In

situations where there are many changepoints, the computational cost for PELT can be much

faster than its worst-case cost, and the computational gains will be less.

In order to guarantee that the method does not overestimate the number of changes, some

knowledge of the location error inherent in the PELT procedure is needed. This motivates

the results of Section 3, which in turn imply various practical choices for the length of the

overlap region, V (n). In particular, using V (n) =
⌈
(log n)2

⌉
will give an effective guarantee

of the accuracy of the method. Other sensible choices for V (n) can be made based on the

trade-off between accuracy and speed (see Section 3 for details).

2.2 Deal

The Deal procedure allows each core to segment the complete data, but restricts them to

consider a subset of possible changepoint locations. This is done analogously to dealing the

possible changepoints locations to the cores: so each core will receive every Lth possible

location. A pictorial example of Deal is shown in Figure 2.

Formally, we define Qa(b, c) as the largest integer such that Qa(b, c) × b + (a mod b) < c.

The split phase then partitions {1, . . . , (n− 1)} as follows:
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B1 = {1, L+ 1, 2L+ 1, . . . , Q1(L, n)L+ 1},

B2 = {2, L+ 2, 2L+ 2, . . . , Q2(L, n)L+ 2},

. . .

BL = {L, 2L, 3L, . . . , QL(L, n)L}.

This splitting mechanism is shown in Figure 2. On the kth core, the objective function to be

minimised then becomes:

min
m,τ1,...,τm∈Bk

m+1∑
i=1

{
C(y(τi−1+1):τi) + β

}
,

as discussed in Section 1. When the estimated changepoints from each core have been found

and returned, the parent core then fits a changepoint model for the data sequence, using

only points returned from the cores as changepoint candidates.

The full procedure for Deal is detailed in Algorithm 2.

Data: A univariate dataset, y1:n.

Result: A set of estimated changepoint locations τ̂1, . . . , τ̂m̂.

Step 1: Split the dataset into subsets B1, . . . ,BL such that

Bi = {i, L+ i, . . . , Qi(L, n) + (i mod L)};

for i = 1, . . . , L do

On core i, find τ̂i = PELT (y1:n,Bi);

end

Step 2: Sort ∪Li=1τ̂i into ascending order;

Step 3: Calculate and return (τ̂1, . . . , τ̂m̂) = PELT
(
y1:n,∪Li=1τ̂i

)
.

Algorithm 2: Deal for the PELT procedure

As for the Chunk procedure, the implementation of Deal leads to computational gains.

Similar to the previous section, the worst case computational time of the split phase of

Deal will be O
((

n
L

)2)
. The speed of the merge phase is again dependent on the number
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Figure 2: The time series is distributed across a number of cores by the Deal procedure. A particular core is

given a certain collection of equally spaced points, e.g. the points denotes by crosses (l). This core will then

fit a changepoint model using only these points as candidate changes. The points estimated as changes are

returned to the parent core. These points are circled (r).

of changes detected at the split phase. We demonstrate in the proof of Corollary 3.3.1 that

the number of changes detected by each core is at most 2m, meaning that the worst case

performance of the merge phase is O (L2).

We remark that while the Chunk and Deal procedures do not inherit the exactness of PELT

in finding the optimal solution to (2), they nevertheless track the true optimum very closely,

as seen by the empirical results in Section 4.

3 Consistency of Parallelised Approaches

Our two methods, Chunk and Deal, are no longer guaranteed to minimise (2). Thus we turn

to the question as to whether, regardless, the estimates of the number and location of the

changepoints they give still retain desirable asymptotic properties. We investigate for the

canonical change-in-mean model with infill asymptotics.
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This corresponds to our time series, y1, ..., yn, having changepoints corresponding to propor-

tions θ1, ..., θm, for some fixed m, such that, for a given n, the changepoints τ1, ..., τm are

defined as τi = bθinc ∀i. For the asymptotic setting we consider, take θ1:m to be fixed.

With this framework in place, we note that the consistency results for Chunk and Deal we

develop in Section 3.1 require one particular result not provided by Killick et al. (2012),

namely consistency of PELT for the change in mean setting.

Proposition 3.1. We consider the change in mean setting for the univariate time series:

Yi = δi + µk, for τk−1 + 1 ≤ i ≤ τk and k ∈ {1, ...,m+ 1}, (3)

where µk 6= µk+1, for k ∈ {1, ...,m} and (δ1, ..., δn) are a set of centered, independent and

identically distributed Gaussian random variables with known variance σ2. Take a series with

m changes and true changepoint locations τ1, ..., τm (where 0 < τ1 < ... < τm < n). Apply

the PELT procedure, minimising squared error loss, with a penalty of β = (2 + ε)σ2 log n,

for any ε > 0, to produce an estimated set of m̂ change locations 0 < τ̂1 < ... < τ̂m̂ < n.

Then, for any α > 0, P(Eαn )→ 1 as n→∞, where:

Eαn =

{
m̂ = m; max

i=1,...,m
|τ̂i − τi| ≤

⌈
(log n)1+α

⌉}
.

Proof : See Section 2 of the Supplementary Materials.

This result indicates that the probability of PELT mis-specifying the number of changes, or

the location of the true changes by more than a log-power factor, tends to 0 asymptotically.

Note that this is with the Schwarz Information Criterion penalty in this setting, namely

2 (1 + ε)σ2 log n. Whilst this proposition, and the related results given in the next section,

assume the data have Gaussian distributions with common variance, it is straightforward to

extend the results to sub-Gaussian random variables, or allow the variance to vary across

the time-series provided the variance is upper-bounded. In the latter case we would need to

replace σ2 in the condition for the penalty with the maximum value the variance could take.
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Proposition 3.1 also extends naturally to the same problem in the multivariate setting with

d dimensions, with a penalty of (d+ 1) (1 + ε)σ2 log n (see Section 2 of the Supplementary

Materials for details). For the univariate case, the proof of Proposition 3.1 follows a similar

pattern to that of Yao (1988), though we relax Yao’s condition that an upper bound on the

estimated number of changes is specified a priori.

3.1 Consistency and Computational Cost of Chunk and Deal

We now extend the consistency result in the unparallelised setting to obtain equivalent

results for Chunk and Deal. If we fix the number of cores, L, as we increase n, many of the

asymptotic results would follow trivially from existing results. For example, if we consider

the Chunk approach and fix L as n increases then consistency would follow directly by the

consistency of the analysis of data from each of the cores. Thus, in the following, we allow the

number of cores to potentially increase as n increases, and use L (n) to denote the number

of cores used for a given sample size n.

Theorem 3.2. For the change in mean setting specified in (3), assume that for a data series

of length n we have L(n) cores across which to parallelise a changepoint detection procedure,

and an overlap of V (n) between adjacent cores. For any α > 0 define Eαn as for the previous

results. In addition to the assumptions of Propsition 3.1, assume that L(n) = o(n) with

L(n)→∞, that there exists a γ > 1 such that V (n)/ (log n)γ →∞ and V (n) = o(n). Then

estimates from the Chunk procedure applied to a minimising the least squared error under a

penalty of β = (2 + ε)σ2 log n, satisfy P(Eαn )→ 1 as n→∞.

Proof : See Appendix.

In our simulation study we set V (n) =
⌈
(log n)2

⌉
which satisfies the condition of the theorem.

Theorem 3.3. If L(n) ≥
⌈
(log n)1+α

⌉
, then the same result as for Theorem 3.2 holds with

the Deal parallelisation procedure.

Proof : See Appendix.
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Note that the conditions on L(n) are stronger for Deal than for Chunk, with a lower bound

corresponding with the maximum location error inherent in the event Eαn . We believe the

constraint on L(n) is an artefact of the proof technique. Intuitively we would expect the

statistical accuracy of Deal to be larger for smaller L(n); as, for example, L(n) = 1 corre-

sponds to optimally minimising the cost. Practically, setting L(n) = d(log n)e is unlikely to

be problematic for typical values of n, a notion which we confirm empirically in Section 4.

Finally, given these results, we are now in a position to give a formal statement on the worst

case computational cost for both Chunk and Deal, when the computational cost of setting

up a parallel environment is assumed to be negligible.

Corollary 3.3.1. Under the change in mean setting outlined in Proposition 3.1, with proba-

bility tending to 1 as n→∞, the worst case computational cost for Chunk when parallelising

the PELT procedure using L(n) computer cores is O
(

max

((
n

L(n)

)2
,m2

))
, while for Deal

the worst case cost is O
(

max

((
n

L(n)

)2
, (L(n))2

))
, compared to a worst case cost of O(n2)

for unparallelised PELT.

Proof : See Appendix.

In the best case, we achieve a computational gain which is quadratic in L(n). These results

also show there is a limit to the gains of parallelisation as we continue to increase the number

of cores. This is particularly true for Deal, where larger values of L(n) can lead to more

candidate changepoints considered in the merge phase. For large L(n) the cost of the merge

phase will then dominate the overall cost of the Deal procedure. Setting L(n) ∼ n
1
2 in

Corollary 3.3.1 guarantees a worst case computational cost of O(n) for both Chunk and

Deal, no matter the performance of PELT. We emphasise again that this result ignores

the cost of setting up a parallel environment, which can lead to PELT performing better

computationally for small n. Therefore, we now conduct a simulation study in order to

understand the likely practical circumstances in which parallelisation is a more efficient

option.

13



4 Simulations

We now turn to consider the performance of these parallelised approximate methods on

simulated data.

While these suggested parallelisation techniques do speed up the implementation of the dy-

namic programming procedure underlying, say, PELT, the exactness of PELT in resolving (2)

is no longer guaranteed. We therefore compare parallelised PELT with Wild Binary Segmen-

tation (WBS), proposed by Fryzlewicz (2014), a non-exact changepoint method which has

impressive computational speed. To implement WBS, we used the wbs R package of Bara-

nowski and Fryzlewicz (2015).

Simulated time series with piecewise normal segments were generated. Five scenarios, with

changes at particular proportions of the time series, were examined in detail in the study.

For a time series length of 100000, these scenarios are shown in Figure 3.

Different lengths of series for each of the five scenarios - keeping the changepoints fixed

at particular proportions in the time series as per the asymptotic regime outlined at the

beginning of Section 3 - were used to examine the statistical power of PELT, Chunk, Deal

and WBS under 200 replications for the error terms. In addition, four change magnitudes

(∆µ = 0.25, 0.5, 1 and 2) were used to examine the behaviour of the algorithms in each

of the scenarios as ∆µ was increased. When using PELT, Chunk and Deal, we assumed a

minimum spacing between consecutive changes of at least two points.

The number of false positives (which were counted as the number of estimated changes more

than dlog ne points from the closest true change) and missed changes (the number of true

changes with no estimated change within dlog ne points), as well as the maximum observed

location error and average location error across all repetitions were measured. Finally, the

average cost of the segmentations (using mean squared error) generated by the methods

relative to the optimal given by PELT were recorded.

As can be seen from Tables 1 - 4, Chunk and Deal closely mirror WBS and PELT in

statistical performance in finding approximately the same number of changes in broadly
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Figure 3: Five scenarios under examination in the simulation study. From top to bottom are scenarios A,

B, C, D and E with 2, 3, 6, 9 and 14 true changes respectively.
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similar locations. This was particularly evident in situations where the length of the series

was 105. Here, the performance of Chunk and Deal becomes indistinguishable from PELT

and WBS in most cases. However, as the number of changes and series length was increased,

WBS was generally outperformed by both Chunk and Deal in terms of location accuracy.

One additional aspect of note is that WBS was generally slightly more effective than the

cost function based approaches at detecting the full set of changepoints in the scenarios with

very short segments lengths (B, D and E) - see Table 4 for the full picture.

From Table 4, we note that, in practice, Deal often outperforms Chunk in terms of computa-

tional speed for a given number of cores. This is due to the fact that the Deal procedure will

rarely perform at the worst case computational speed during the split phase (which typically

dominates the computation time), as one of the candidates around a true change is very

likely to be chosen as a candidate changepoint (see the proof of Theorem 3.3). This means

that more candidates for the most recent changepoint are pruned than for Chunk. PELT

was observed to be the fastest method for the smallest value of n across all scenarios. It was

at the larger values of n where the super-linear gains in speed of Chunk and Deal became

apparent, as can also be seen in Figure 4, which indicates that both Chunk and Deal exhibit

a super-linear gain in speed in most situations. The exception to this is the use of the Chunk

algorithm in Scenario E, which has a comparatively large number of true changepoints. As

a result of this, the maximum segment length in the series in Scenario E remains similar in

both the PELT and Chunk settings, even as the number of cores is increased. Hence, the

computation gains here are less impressive.

An additional point of interest from Tables 4 and 4 is that PELT generally outperforms

Chunk and Deal computationally when the time series is of length 103 or 104. This is due to

the fact that the setting up of the parallel cluster takes around 1 second to complete, while

the PELT algorithm takes significantly less time than this for shorter data sequences.

Finally, from Table 4, both Chunk and Deal are seen to track PELT very closely in terms of

the final cost of the model. This appears to be particularly true for the datasets of greater

length, where the average cost seen under both Chunk and Deal was seen to be the same as

PELT (up to our stated precision) for almost all situations we investigated. In light of the
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behaviour seen from Tables 1- 4, however, this should not be surprising.

Caution should be exercised when discussing these results in the context of the general

statistical performance of Chunk and Deal, as only the value of L = 4 was tested.

All simulations were run in R using a Linux OS on a 2.3GHz Intel Xeon CPU. Simulations

were run in batches of 20, grouped by length of series and detection method. When testing

the PELT procedure, each job within a batch was assigned a separate core without any

parallelisation or external packages involved. For Chunk and Deal, although jobs were again

run in batches of 20, each was assigned the number of cores across which the algorithm was to

be parallelised. (This was 4 in all cases except to run the simulations to generate Figure 4.)

Parallelisation was implemented using the doParallel and foreach packages of Calaway et al.

(2018) and Calaway and Weston (2017) respectively. Note that the doParallel package uses

multiprocessing as opposed to multithreading.
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Average False Alarms Length = 103 Length = 104 Length = 105

∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A PELT 0.65 0.72 0.24 0.01 1.36 0.72 0.15 0.00 1.28 0.59 0.10 0.00

(2 changes) Chunk4 0.67 0.87 0.21 0.01 1.49 0.72 0.16 0.00 1.29 0.59 0.10 0.00

Deal4 0.64 0.69 0.22 0.01 1.35 0.72 0.15 0.00 1.28 0.59 0.10 0.00

WBS 0.54 0.66 0.29 0.08 1.20 0.66 0.16 0.00 1.26 0.59 0.10 0.00

B PELT 0.17 0.26 0.15 0.01 0.75 0.46 0.14 0.00 0.98 0.83 0.09 0.00

(3 changes) Chunk4 0.15 0.24 0.16 0.01 0.70 0.46 0.14 0.00 0.98 0.83 0.09 0.00

Deal4 0.16 0.27 0.15 0.01 0.75 0.46 0.14 0.00 0.98 0.83 0.09 0.00

WBS 0.15 0.25 0.19 0.07 0.55 0.45 0.12 0.02 0.97 0.93 0.24 0.10

C PELT 0.87 1.01 0.68 0.12 2.79 2.08 0.37 0.00 3.94 1.89 0.20 0.00

(6 changes) Chunk4 0.89 1.00 0.73 0.15 2.66 2.11 0.37 0.00 3.96 1.88 0.19 0.00

Deal4 0.84 1.02 0.69 0.12 2.81 2.08 0.36 0.00 3.94 1.89 0.20 0.00

WBS 0.86 1.23 1.07 0.23 2.73 2.40 0.66 0.08 4.11 2.17 0.53 0.11

D PELT 1.03 1.17 0.61 0.09 3.42 2.83 0.60 0.11 5.16 2.73 0.43 0.00

(9 changes) Chunk4 1.02 1.16 0.63 0.12 3.10 2.81 0.60 0.10 5.14 2.73 0.43 0.00

Deal4 1.01 1.11 0.60 0.09 3.41 2.83 0.61 0.11 5.16 2.73 0.43 0.00

WBS 0.97 1.27 1.01 0.17 3.20 3.10 0.90 0.20 5.42 3.26 0.79 0.17

E PELT 0.94 1.16 0.64 0.07 3.93 3.64 0.86 0.07 8.12 4.07 0.59 0.05

(14 changes) Chunk4 0.99 1.27 0.91 0.30 3.85 3.64 0.90 0.10 8.16 4.06 0.59 0.05

Deal4 0.92 1.15 0.65 0.09 3.91 3.63 0.86 0.07 8.11 4.07 0.59 0.05

WBS 1.01 1.67 1.24 0.24 3.86 4.23 1.24 0.18 8.14 4.50 1.08 0.18

Table 1: The average number of false alarms recorded across all 200 repetitions for each of the 5 scenarios

A, B, C, D and E. A false alarm is defined as an estimated changepoint which is at least d(log n)e points

from the closest true changepoint.
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Average Num. Missed Length = 103 Length = 104 Length = 105

∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A PELT 1.78 1.14 0.22 0.01 1.38 0.71 0.14 0.00 1.28 0.59 0.10 0.00

(2 changes) Chunk4 1.95 1.39 0.21 0.01 1.56 0.72 0.15 0.00 1.29 0.59 0.10 0.00

Deal4 1.78 1.15 0.22 0.01 1.38 0.71 0.14 0.00 1.28 0.59 0.10 0.00

WBS 1.84 1.29 0.22 0.01 1.45 0.66 0.16 0.00 1.26 0.59 0.10 0.00

B PELT 2.63 2.06 1.19 1.02 2.47 1.94 1.22 0.00 2.45 0.86 0.09 0.00

(3 changes) Chunk4 2.65 2.15 1.22 1.03 2.48 1.95 1.22 0.00 2.45 0.86 0.09 0.00

Deal4 2.63 2.08 1.19 1.03 2.47 1.95 1.25 0.00 2.44 0.86 0.09 0.00

WBS 2.65 2.13 1.29 0.91 2.51 1.95 1.06 0.01 2.43 1.02 0.16 0.01

C PELT 5.55 4.87 2.29 0.95 4.85 2.08 0.37 0.00 3.94 1.89 0.20 0.00

(6 changes) Chunk4 5.69 4.99 2.56 1.00 5.01 2.11 0.37 0.00 3.96 1.88 0.19 0.00

Deal4 5.54 4.87 2.38 0.98 4.88 2.08 0.36 0.00 3.94 1.89 0.20 0.00

WBS 5.57 4.71 1.22 0.08 4.90 2.36 0.56 0.03 4.05 2.08 0.48 0.04

D PELT 8.26 7.10 4.67 2.80 7.51 4.39 1.78 0.74 6.43 2.76 0.44 0.00

(9 changes) Chunk4 8.40 7.19 4.78 2.98 7.67 4.43 1.79 0.73 6.43 2.75 0.44 0.00

Deal4 8.26 7.07 4.68 2.87 7.53 4.40 1.81 0.74 6.45 2.76 0.44 0.00

WBS 8.22 6.66 2.65 0.66 7.79 4.57 1.07 0.07 6.48 3.21 0.67 0.02

E PELT 13.0 11.8 9.43 7.62 12.3 7.75 3.54 2.29 9.90 4.75 0.82 0.20

(14 changes) Chunk4 13.2 12.1 9.91 8.04 12.4 7.89 3.63 2.40 9.95 4.75 0.82 0.20

Deal4 13.0 11.9 9.53 7.71 12.3 7.78 3.54 2.29 9.89 4.76 0.82 0.20

WBS 13.1 11.2 6.09 1.53 12.3 7.46 2.51 0.16 10.2 5.00 0.97 0.04

Table 2: The average number of missed changes across all 200 repetitions for each of the 5 scenarios A, B,

C, D and E. A missed change is defined as a true changepoint for which no estimated change lies within

d(log n)e points.
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Average Location Error Length = 103 Length = 104 Length = 105

∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A PELT 58.0 18.6 5.04 1.23 70.1 11.5 3.25 1.19 46.0 11.7 3.21 1.26

(2 changes) Chunk4 51.2 18.8 3.16 1.24 90.3 12.1 3.35 1.18 47.4 11.7 3.21 1.26

Deal4 61.0 15.5 3.21 1.23 57.3 11.5 3.25 1.19 46.0 11.7 3.21 1.26

WBS 86.2 34.7 12.7 10.7 52.4 12.3 3.40 1.20 46.0 12.1 3.18 1.26

B PELT 70.3 31.5 11.7 3.74 76.1 42.8 3.66 1.25 47.5 12.1 3.00 1.27

(3 changes) Chunk4 77.5 37.2 12.5 1.16 72.3 41.6 3.59 1.24 47.0 12.1 3.00 1.27

Deal4 70.3 32.9 11.8 3.77 74.6 41.6 3.65 1.24 47.1 12.0 3.00 1.27

WBS 59.9 38.7 17.4 13.8 32.2 11.0 3.25 1.52 47.4 14.4 5.82 3.07

C PELT 25.9 15.0 4.38 1.53 64.2 11.9 3.29 1.23 50.3 12.5 3.04 1.23

(6 changes) Chunk4 26.3 14.1 4.53 1.77 60.9 12.7 3.29 1.23 50.7 12.4 3.01 1.24

Deal4 25.5 14.8 4.38 1.54 64.3 12.0 3.28 1.23 50.3 12.5 3.04 1.23

WBS 21.8 14.1 5.87 2.51 65.1 17.7 5.79 1.88 80.7 24.0 5.62 1.93

D PELT 18.9 10.4 3.57 1.43 58.3 13.2 3.52 1.47 86.0 11.7 3.32 1.25

(9 changes) Chunk4 19.6 10.9 3.71 1.54 63.6 13.8 3.68 1.47 86.8 11.6 3.32 1.25

Deal4 18.8 9.90 3.57 1.44 56.6 13.2 3.53 1.47 86.2 11.7 3.32 1.25

WBS 17.6 10.4 4.41 4.12 58.3 20.0 5.29 1.76 199 20.4 6.47 2.39

E PELT 13.0 8.68 3.78 1.44 51.7 13.3 3.60 1.39 50.9 12.7 3.48 1.44

(14 changes) Chunk4 15.0 9.88 4.91 2.09 65.8 15.0 4.14 1.73 52.0 12.6 3.48 1.44

Deal4 12.9 9.01 3.78 1.44 51.4 13.3 3.64 1.39 50.8 12.8 3.48 1.44

WBS 13.7 9.67 4.20 2.58 56.9 17.1 9.05 1.64 70.6 36.3 5.18 1.90

Table 3: The average location error between those true changes which were detected by the algorithms and

the corresponding estimated change across all 200 repetitions for each of the 5 scenarios.
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Mean Time Taken Length = 103 Length = 104 Length = 105

(s) ∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A PELT 0.06 0.06 0.05 0.05 1.61 1.44 1.47 1.49 108 107 113 109

(2 changes) Chunk4 1.48 1.49 1.37 1.13 1.90 1.89 1.83 1.54 23.9 24.0 21.1 24.1

Deal4 1.59 1.23 1.59 1.49 1.72 1.70 1.45 1.69 12.1 10.7 11.9 11.1

B PELT 0.06 0.06 0.06 0.06 2.23 2.27 2.35 2.57 147 144 154 165

(3 changes) Chunk4 1.38 1.37 1.13 1.38 1.78 1.82 1.55 1.78 23.9 24.1 24.2 31.6

Deal4 1.49 1.49 1.24 1.16 1.82 1.45 1.59 1.59 16.2 16.5 16.5 16.4

C PELT 0.06 0.05 0.04 0.03 1.23 0.94 0.93 0.88 72.2 71.8 70.7 72.1

(6 changes) Chunk4 1.48 1.13 1.38 1.48 1.84 1.50 1.73 1.85 22.3 20.0 23.2 29.7

Deal4 1.58 1.58 1.49 1.15 1.46 1.42 1.28 1.37 8.33 7.58 7.60 7.30

D PELT 0.05 0.05 0.03 0.04 1.12 0.82 0.73 0.75 60.6 55.5 56.9 55.4

(9 changes) Chunk4 1.37 1.37 1.48 1.37 1.79 1.73 1.85 1.77 22.5 22.5 19.8 29.8

Deal4 1.49 1.23 1.58 1.58 1.65 1.36 1.40 1.26 6.66 6.58 6.26 6.91

E PELT 0.05 0.05 0.04 0.04 1.03 0.69 0.63 0.58 60.9 40.0 37.2 37.7

(14 changes) Chunk4 1.42 1.38 1.48 1.37 2.15 1.65 1.74 1.65 28.8 14.3 16.0 16.0

Deal4 1.50 1.58 1.48 1.23 1.55 1.38 1.56 1.33 8.92 5.23 4.95 5.44

Table 4: The time taken across 200 repetitions for each of the scenarios in question for PELT, Chunk and

Deal (using 4 cores).
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Average Relative Gain Length = 103 Length = 104 Length = 105

In Computation Speed ∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A Chunk4 0.04 0.04 0.03 0.04 0.85 0.76 0.80 0.97 4.53 4.44 5.34 4.53

(2 changes) Deal4 0.04 0.05 0.03 0.03 0.94 0.85 1.01 0.88 8.94 9.97 9.46 9.83

B Chunk4 0.04 0.05 0.06 0.05 1.25 1.25 1.52 1.44 6.14 5.96 6.37 5.21

(3 changes) Deal4 0.04 0.04 0.05 0.05 1.23 1.57 1.48 1.62 9.05 8.71 9.34 10.0

C Chunk4 0.04 0.04 0.03 0.02 0.67 0.63 0.54 0.47 3.24 3.59 3.05 2.43

(6 changes) Deal4 0.04 0.03 0.03 0.03 0.84 0.66 0.72 0.64 8.67 9.47 9.31 9.88

D Chunk4 0.04 0.03 0.02 0.03 0.63 0.48 0.39 0.42 2.69 2.47 2.87 1.86

(9 changes) Deal4 0.03 0.04 0.02 0.02 0.68 0.61 0.52 0.59 9.10 8.43 9.08 8.01

E Chunk4 0.04 0.03 0.03 0.03 0.48 0.42 0.36 0.35 2.11 2.79 2.32 2.36

(14 changes) Deal4 0.03 0.03 0.03 0.03 0.66 0.50 0.40 0.44 6.82 7.64 7.51 6.94

Table 5: The average relative computation gain of the Chunk and Deal methods relative to the PELT

method across 200 repetitions for each of the scenarios in question. These values are calculated by dividing

corresponding values from Table 4.
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Average Cost - Optimal Length = 103 Length = 104 Length = 105

∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A Chunk4 1.70 1.57 0.03 0.01 3.17 0.05 0.01 0.00 0.00 0.00 0.00 0.00

(2 changes) Deal4 0.01 0.03 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B Chunk4 0.12 0.51 0.13 0.09 0.19 0.01 0.00 0.00 0.00 0.00 0.00 0.00

(3 changes) Deal4 0.01 0.05 0.02 0.04 0.01 0.01 0.04 0.00 0.00 0.00 0.00 0.00

C Chunk4 1.65 1.85 2.44 6.52 3.44 0.39 0.02 0.00 0.00 0.00 0.00 0.00

(6 changes) Deal4 0.03 0.04 0.07 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D Chunk4 2.30 2.23 2.90 7.44 4.10 1.13 1.42 0.01 0.10 0.00 0.00 0.00

(9 changes) Deal4 0.05 0.06 0.13 0.17 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

E Chunk4 2.41 4.02 8.43 24.2 7.45 4.21 6.75 19.7 0.10 0.00 0.00 0.00

(14 changes) Deal4 0.05 0.11 0.19 0.29 0.02 0.02 0.03 0.10 0.00 0.00 0.00 0.00

Table 6: The average cost, calculated using the log likelihood of the segments, resulting from executing

Chunk and Deal with 4 cores. This is adjusted according to the equivalent cost computed by PELT (which

is optimal).
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Figure 4: Mean computational gain (y) across 200 repetitions for Chunk and Deal compared to PELT across

a differing number of cores (x) under three specific scenarios. The lines y = x and y = x2 are shown for

comparison.
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5 Discussion

We have proposed two new methods for changepoint detection, Chunk and Deal, each based

on parallelising an existing method, PELT. These methods represent a substantial computa-

tional gain in many cases, particularly for large n. In addition, by establishing the asymptotic

consistency of PELT, we have been able in turn to show the asymptotic consistency of the

Chunk and Deal methods, such that the error inherent to all three is O (log n) in terms of the

maximum location error of an estimated change relative to the corresponding true change.

We have demonstrated empirically that an implication of this is that Chunk and Deal, while

not inheriting the exactness of PELT, do perform well in finding changes in practice.

There are other approaches to reduce the computational cost of changepoint methods, whilstl

retaining the same asymptotic statistical properties. A suggestion, made by a reviewer, is

that we could implement the Deal algorithm but with fewer candidates per core. Providing

there is at least one core with a candidate close to the true change, say within log n of it,

then under infill asymptotics of the kind discussed in Section 3 we will still detect the change

with probability tending to 1 as n increases. Our empirical experience with such a method

is that it can lose power at detecting changes in practical, non-asymptotic settings. Such a

strategy has similarities to the ideas presented in Lu et al. (2018), and could be sensible in

situations that they consider where n is exceedingly large, and it is computationally infeasible

to analyse all the data.
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Appendix

The following results will be stated with respect to a general α > 0. Theoretically, this

means that any α > 0 can be used in Algorithm 1 or Algorithm 2, however in the simulation

study detailed in Section 4, d(log n)2e was used as the overlap length (for Chunk), while the

cutoff value for closeness detailed in the merge phase (Step 3) of both procedures was taken

as d(log n)e.

Proof of Theorem 3.2: The Chunk procedure involves obtaining a set of candidate change-

points from analysing the data sent to each core, and then finding the best segmentation

using these changepoints in the merge phase. We claim that to show Chunk is consistent it

is sufficient to show that, with probability tending to 1, there will be a segmentation using

m of the candidate changepoints that gives an RSS that is within op (log n) of the RSS we

obtain for the true segmentation.

This claim follows from a simple adaptation of the proof of Proposition 3.1. In that proof

we show that, with probability tending to 1, for any penalty (2 + ε)σ2 log n with ε > 0,

a segmentation with m̂ > m changepoints will have a worst penalised cost than the true

segmentation. Furthermore, any segmentation with m̂ ≤ m which is not in Eαn will miss one

or more changepoints by more than (log n)1+α and will have a worse penalised cost than

a segmentation with m̂ > m changepoints (i.e. a segmentation obtained by adding three

changepoints for each changepoint that is not estimated well enough). Thus to show our

claim we need only show that, with probability tending to 1, we do not overestimate the

number of changepoints.

Assume we use a penalised cost (2 + ε)σ2 log n for Chunk. From the argument in the proof

of Proposition 3.1 applied to the penalised cost with a penalty (2 + 2ε)σ2 log n we have that

with probability tending to 1, for all τ̂1:m̂ with m̂ > m,

RSS (y1:n; τ̂1:m̂)− RSS (y1:n; τ1:m) + (m̂−m) (2 + 2ε)σ2 log n > 0

=⇒ RSS (y1:n, τ̂1:m̂)− {RSS (y1:n; τ1:m) + op (log n)}+ (m̂−m) (2 + ε)σ2 log n > εσ2 log n+ op (log n) ,
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as required.

We now show that we will have a suitable set of candidate changepoints for the merge phase

in two steps. The first of these steps establishes that each changepoint will be estimated

within log log n.

By the set-up of Chunk each changepoint will appear in the non-overlap region of data

assigned to precisely one core. Furthermore, as L(n) → ∞ and V (n) = o(n) then for large

enough n the core that a changepoint is assigned to will have data that contains only that

changepoint.

Consider the data associated with each such core. Such a core will have data with just a single

changepoint and a minimum segment length that is at least V (n). As for sufficiently large n

V (n) > dlog ne1+γ, for some γ > 0, then, by a simple adaptation of the argument in Section

1 of the Supplementary Materials, it is straightforward to show that with probability tending

to 1 we will detect precisely one changepoint for this data. Standard results (for example,

see Lemma 3 of Yao and Au (1989)) for detecting a single changepoint from Gaussian data

shows that the error in the location is Op(1), and hence with probability tending to 1 we will

detect the changepoint within an error of log log n.

As there are a finite number of changepoints, with probability tending to 1 we will detect

precisely one changepoint with an error less than log log n for all cores with a changepoint

in the non-overlap region.

We now define, for a true segmentation of τ1:m and sequence of length n, a good set of

segmentations, H (τ1:m, n) such that:

H (τ1:m, n) = {τ̂1:m̂|m̂ = m, |τ̂i − τi| ≤ log log n for i ∈ {1, . . . ,m}} .

The second phase is to show that for any set of changepoints τ̂1:m̂ ∈ H (τ1:m, n), the max-

imum difference between the RSS for fitting changepoints at τ̂1:m and the RSS for fitting

changepoints at the true locations is Op(log log n).

Define ∆µk := |µk − µk+1|. For any appropriate τ̂1:m we have:
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RSS(y1:n; τ̂1:m)− RSS(y1:n; τ1:m) ≤
m+1∑
i=1

 1

τi − τi−1

 τi∑
j=τi−1+1

Zj

2

− 1

τ̂i − τ̂i−1

 τ̂i∑
j=τ̂i−1+1

Zj

2
+

m∑
k=1

(∆µk)
2 log log n+G,

where G depends on τ̂1:m with G ∼ N
(
0, 4σ2

∑m
k=1 (∆µk)

2 log log n
)
. Note that the first

term in this inequality does not depend on τ̂1:m and has a χ2
m+1 distribution, and so is

Op(log log n), the second term is negative and the third term is a constant mutiple of log log n.

So it only remains to check that G = Op (log log n) uniformly across all members of H. This

follows trivially from standard bounds on a Gaussian distribution together with a Bonferonni

correction over the (2 log log n)m possibilities for τ̂1:m. �

Proof of Theorem 3.3: Recall that L(n) ≥
⌈
(log n)1+α

⌉
and L(n) = o(n). The idea will

be to show that the core which is ‘dealt’ a particular true change, τi, will always return this

true change as a candidate changepoint for the merge phase. By Yao (1988), letting τ̂1:m be

a set of estimated changes which miss the true change τi by at least
⌈
(log n)1+α

⌉
, then again

by the proof of Corollary 1.2.1 the cost of this segmentation is strictly worse than the cost of

also fitting changes at the points τi−L(n) and τi+L(n). By then considering the difference:

Diff := RSS(y1:n; τ̂1:m, τi − L(n), τi + L(n))− RSS(y1:n; τ̂1:m, τi − L(n), τi, τi + L(n)),

in a similar fashion to the proof of Corollary 1.2.1, it can be shown that in probability:

Diff

L(n)
→ (∆µi−1)

2 ,

where again ∆µi−1 is the absolute change in mean at the changepoint τi. �

Proof of Corollary 3.3.1: It is sufficient to prove the following Claim regarding the number

of candidate changes each core returns.

Claim: In probability, and for any candidate set given to the cores in accordance with the

conditions of Theorem 3.2 and Theorem 3.3:
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(I): under the Chunk procedure, the maximum number of points returned for the merge

phase is bounded above by 2m,

(II): under Deal, the maximum number of points recorded as estimated changes is bounded

above by 2m for each core.

Proof of Claim:

Proof of (I): We note that when L(n) is constant, the result is immediate from the proof

of Lemma 3.1.

When L(n) → ∞, it suffices to show that across all cores which are given no true changes,

the probability of any of these cores returning a true change converges to 0. Given that the

number of cores which are given a change is fixed (and bounded above at 2m - as each change

could fall inside an overlap), the result is then immediate from the proof of Theorem 3.2.

Considering a single core with no true changes, we adapt the argument from the proof

Proposition 3.1. For a quantity Uk+1 which is distributed according to a χ2
k+1 distribution,

then by Laurent and Massart (2000):

P(Uk+1 ≥ d log n) ≤ n−
d
2
+δ, for any δ > 0.

Fitting k > 0 changes across a core will give that the residual sum of squares relative to a

fit of no changes across the same core follows a χ2
k+1 distribution. Therefore, following the

application of a Bonferroni correction across all possible placings of k changes gives that

the difference between the null fit and the best possible fit of k changes is then bounded in

probability as:

P(Diff ≥ d log n) ≤ n−
d
2
+δ ×

(
n

L(n)

)k
.

In particular, setting d = 2 (1 + ε) and δ = ε/2 as before, gives that:
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n/L(n)∑
k=1

P(Uk ≥ 2k (1 + ε) log n) ≤
n/L(n)∑
k=1

n−
(2k−1)ε

2

(L(n))k

=
n−

ε
2

L(n)

(
1− n−ε

n
L(n)L(n)−

n
L(n)

1− n−εL(n)−1

)
→ 0, ∀ε > 0,

and so scaling this by L(n):

P(A core with no true changes overfits)→ 0 ∀ε > 0.

Therefore, the computation time of the merge phase of Chunk is O(m2) in the worst case,

which along with the worst case cost from the split phase of O
((

n
L(n)

)2)
gives the worst

case computation time for the whole procedure.

Proof of (II): Define, for a given core under the Deal procedure:

S2 =
{
s
(1)
1 , s

(2)
1 , s

(1)
2 , s

(2)
2 , . . . , s(1)m , s(2)m

}
,

where s
(1)
i is the final point given to the core which is strictly before τi, and s

(2)
i is the first

point given to the core which is after τi. In the same way as for the proof of Proposition 3.1,

we examine the best possible segmentations which include S2 as a subset of the estimated

changepoints for a core, and show that all are rejected in favour of S2 in probability. We

then show that this is true across all cores in probability.

For a given core, suppose S3 is a set of points estimated as changes under the Deal procedure

such that S2 ⊂ S3. By construction of S2, all points in S3 ∩ Sc2 must lie in a region between

two points of S2 which also does not contain any true changes. We can therefore apply the

same argument as for Proposition 3.1 to the difference:

Diff := RSS(yA;S2)− RSS(yA;S3),

where A refers to any such region between two consecutive points of S2 which contains a

point found only in S3. Uniformly across such regions, and supposing k > 0 such estimated

changes are found within A, it can be seen that the positive term in the expression of the
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difference above is distributed as χ2
k+1. Thus letting ñ = n

L(n)
and again with recourse to the

Bonferroni correction argument as in Proposition 3.1, for a given ε > 0:

ñ∑
k=1

P(Diff ≥ 2k (1 + ε) log n) ≤
ñ∑
k=1

n−
(2k−1)ε

2

(L(n))k

=
n−

ε
2

L(n)

(
1− n−ñεL(n)−ñ

1− n−εL(n)−1

)
→ 0, ∀ε > 0.

Note that this argument does not consider segmentations which do not contain S2 as a proper

subset. In order to extend this argument, we define the following three sets of segmentations

(with respect to a given core):

GS2 = {τ̂ : |τ̂ | = 2m; τ̂2t−1 ≤ τt, τ̂2t > τt,∀t ∈ {1, ...,m}} ,

GS1 = {τ̂ : |τ̂ | ≤ 2m; |τ̂ ∩ {τt + 1, ..., τt+1}| ≥ 1,∀t ∈ {0, ...,m} ; |τ̂ ∩ {τt + 1, ..., τt+1}| = 1, t /∈ {0,m}} ,

GS0 = {τ̂ : |τ̂ | ≤ 2m; |τ̂ ∩ {τt + 1, ..., τt+1}| = 0, some t} .

Note that S2 ∈ GS2 and that the argument showing that any segmentation S3 containing

S2 is rejected uniformly in favour of S2 may be extended to any element of GS2 to show

that any segmentation with more than 2m estimated changes in total and which has at least

two estimated changes between each true change is uniformly dominated by a corresponding

element of GS2.

In the same way, let us now consider extensions from a general element, T1 ∈ GS1, where here

an extension is defined as a superset of T1 which also contains additional estimated changes

from regions between two estimated changes within T1 not containing a true change. Letting,

for example:

T1 =
{
s
(1)
1 , s

(2)
1 , ..., s

(2)
i−1, s

(k)
i , s

(1)
i+1, ..., s

(2)
m

}
⊂ S2,

for some k ∈ {1, 2} and i ∈ {1, ...,m}. Then any extensions of T1 consists of placing any

further estimated changes in any of the regions between the changes above with the exception

of either (if k = 1) the region
(
s
(1)
i , s

(1)
i+1

)
or (if k = 2) the region

(
s
(2)
i−1, s

(2)
i

)
. Let T ′1 be an

arbitrary such extension, and again let A be any region between two consecutive points of
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T1 which contains a point found only in T ′1 . As before, uniformly across such regions, and

supposing again that k > 0 such estimated changes are found within A, letting:

Diff := RSS(yA; T1)− RSS(yA; T ′1 ),

then again Diff is distributed as χ2
k+1. With recourse to the same argument as before (noting

again that any such region A will have at most ñ = n
L(n)

candidate points for the extension -

no matter which base element of GS1 we pick), and extending to other elements of GS1, we

conclude that any segmentation with more than 2m estimated changes which places just one

estimated change between two true changes in at least one case will be rejected uniformly

(and for all cores) in favour of an element of GS1.

Finally, we consider all segmentations with more than 2m changes which place no estimated

changes between two true changes in at least one case. We again compare with T0 ∈ GS0.

Letting, for example:

T0 =
{
s
(1)
1 , s

(2)
2 , . . . , s

(2)
i−1, s

(1)
i+1, . . . , s

(2)
m

}
,

for some i ∈ {1, . . . ,m}. Then any extensions of T0 consists of placing any further estimated

changes in any of the regions between the changes above with the exception of the region(
s
(2)
i−1, s

(1)
i+1

)
. Let T ′0 be an arbitrary such extension, and again let A be any region between

two consecutive points of T0 which contains a point found only in T ′0 . Then again letting:

Diff := RSS(yA; T0)− RSS(yA; T ′0 ),

then for k > 0 changes in the region A, Diff is distributed as χ2
k+1. We can again extend

this argument to extensions of other elements of GS0 to conclude that segmentations with

more than 2m changes which have no estimated changepoints between two consecutive true

changes in at least one case will be uniformly rejected in favour of an element of GS0.

Therefore, as any segmentation with more than 2m changes for any core is an extension

of an element of GS0, GS1 or GS2 (as such a segmentation must contain a region between

two consecutive true changes with at least three estimated changes), then across all cores, a

segmentation must be picked from within one of the classes GS0, GS1 or GS2 in probability.
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Thus, the maximum number of estimated changepoints that a core can return in the Deal

procedure is 2m.

The number of candidates returned for the merge phase of the Deal procedure is therefore

bounded in probability by 2mL(n), so that the maximum computation time of the merge

phase is O
(
(L(n))2

)
in the worst case, giving the total worst case computation time for the

whole procedure. �

Supplementary Materials

chunk: R function for implementation of the Chunk procedure. (.R file)

Chunk_functions: Background functions called by chunk. (.R file)

cost_calculator: Calculates the cost of a particular fit returned by any of the method.

(.R file)

cost_functions: Library of cost functions which can be entered as arguments into the main

executions of the methods for various changepoint problems (e.g. Gaussian change in

mean, change in rate parameter in the exponential setting). (.R file)

dataset_generation: Function used to generate the simulated data on which the methods

were tested in this article. (.R file)

deal: R function for implementation of the Deal procedure. (.R file)

Deal_functions: Background functions called by deal. (.R file)

extras: Contains several intermediate functions called in the course of simulation study.

(.R file)

PELT: R function for implementation of the unparallelised PELT procedure. (.R file)

performance_measure: Function called in the course of the simulation study which returns

many of the performance metrics recorded in this article. (.R file)
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README: Short instruction file detailing the best use of the accompanying .R files.

simstudyPAPERwithcost: Contains the main function for running the simulation study as

seen in this article. (.R file)

supplementarymaterials: Proofs of several of the results stated in this paper. (.pdf file)
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