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Abstract 

Ciz1 is a nuclear protein that associates with cyclin A – cyclin dependent kinase 2 

(CDK2) and facilitates the initiation of DNA replication. Ciz1 overexpression has been 

linked to common cancer types, including breast, colon, prostate, lung, and liver 

cancers. This suggests that identification of mechanisms that regulate Ciz1 levels may 

represent potential drug targets in cancer.  

This work identifies that CDK2 and DDK activity are required to maintain Ciz1 levels. 

Chemical or genetic inhibition of CDK2 or DDK (Cdc7-Dbf4) activity in murine 

fibroblasts reduced Ciz1 levels. Further analysis demonstrated that CDK and DDK 

activity promotes Ciz1 accumulation in G1 phase by reducing ubiquitin proteasome 

system (UPS) mediated degradation. Furthermore, Ciz1 levels are actively controlled 

by the proteasome, as inhibition of protein translation rapidly reduced Ciz1 levels, 

and this is reversed by proteasomal inhibition. The data suggest a model where Ciz1 

is regulated by opposing kinase and UPS activities, leading to Ciz1 accumulation in 

response to rising kinase activity in G1 phase, and its degradation later in the cell 

cycle. 

Significantly, human prostate adenocarcinoma (PC3) and oestrogen receptor positive 

breast cancer (MCF7) cell lines require Ciz1 for efficient proliferation. The data 

demonstrate that Ciz1 levels can be reduced with CDK2/ DDK inhibitors via 

proteasomally mediated degradation in human cancer cell lines similarly to normal 

fibroblasts. In PC3 and MCF7 cell lines, repurposing small molecule CDK2 inhibitors 

efficiently reduce Ciz1 levels, decrease E2F mediated transcription and proliferation. 

The targeted depletion of Ciz1 via CDK2/ DDK inhibition and UPS mediated 
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degradation requires a functional E3 ligase to be effective. As a first step towards 

identifying the regulatory E3 ligase(s), a biochemical fractionation and mass 

spectrometry approach revealed three putative E3 ligases: UBR5, FBXO8 and UBE2O, 

which require further characterisation. 

Taken together, this work suggests that deregulation of CDK activity or inactivation of 

UPS signalling may promote Ciz1 overexpression in specific cancers. Importantly, Ciz1 

is required for proliferation of some cancer cell lines, suggesting that approaches, 

which reduce Ciz1 levels may be of clinical benefit. Therefore, the identification of 

the regulatory mechanisms that control Ciz1 levels, represent potential targets in 

Ciz1 dependent cancers. 
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1. Introduction 

The mammalian cell cycle is divided into 4 phases, namely, growth phase 1 (G1), DNA 

replication phase (S), growth phase 2 (G2), and mitotic phase (M) (Bajar et al., 2016). 

Majority of mammalian cells can exit the cell cycle and enter the reversible dormant 

state, called quiescence (G0 phase), which is important for maintaining stem cell 

populations, tissue repair and regeneration, and homeostasis (Cheung and Rando, 

2013; Gérard and Goldbeter, 2012; Yao, 2014; Zetterberg and Larsson, 1985). 

The cell cycle is driven by sequential cyclin expression that in turn activates cyclin 

dependent kinases (CDK) required for cell cycle progression (Lim and Kaldis, 2013; 

Morgan, 1995). Starting from G1 phase, the cyclin D is expressed in response to 

mitogenic signalling (Klein and Assoian, 2008), it activates CDK4/6 and 

phosphorylates retinoblastoma protein (Rb) (VanArsdale et al., 2015). This leads to 

E2F release for cyclin E and cyclin A transcription that further phosphorylate Rb 

(Bertoli et al., 2013a; Weinberg, 1995). The hyperphosphorylation of Rb drives cell 

passage through the restriction point (RP) where cell growth becomes independent 

from mitogenic signalling. Second major event in the cell cycle is the entry to mitosis 

that is driven by cyclin B – CDK1. Cyclin B is expressed and accumulated in G2 phase 

(Figure 1.1), it binds and activates it catalytic partner CDK1 for nuclear import and 

generation of the mitotic spindle, chromosome condensation, and nuclear envelope 

breakdown (Gavet and Pines, 2010). 

The ubiquitin proteasome system (UPS) is another controlling mechanism of the cell 

cycle (Frescas and Pagano, 2008; Zhu and Mao, 2015). Both systems tightly regulate 

protein expression, activation and accumulation that is required for cell cycle 
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progression. During the cycle progression the irreversible transitions are enforced by 

collaborating CDK and UPS mediated signalling. These activities produce the 

oscillations in kinase activity required to maintain the unidirectionality of the cell 

cycle. Kinase activity rises in G1 phase, which leads to APC/C-CDH1 inactivation and 

further increase in kinase activity in S phase. This is followed by the maximal CDK 

activity in prophase and metaphase of the mitosis, which in turn phosphorylates and 

activates APC/C-CDC20 resulting in cyclin destruction and a drop in kinase activity in 

anaphase of mitosis, leading to APC/C-CDH1 re-activation (Frescas and Pagano, 2008; 

Wang et al., 2015). 

The tight control of cyclin – CDK activity and UPS is crucial for faithful cell cycle 

progression and DNA replication (Canavese et al., 2012; Frescas and Pagano, 2008; 

Kitagawa et al., 2009). The upregulation and overexpression of kinases or 

downregulation and mutation in UPS can lead to deregulated cell cycle, which can 

result in deregulation of protein levels and function, DNA replication stress, and DNA 

damage that pinpoint tumourigenesis (Benanti, 2012; Lim and Kaldis, 2013; Pal et al., 

2014; Trovesi et al., 2013; Zeman and Cimprich, 2014).  

The replication stress is defined as transient slowing or staling of replication forks in 

response to endogenous or exogenous stress. The intrinsic replication fork obstacles 

include transcribing RNA polymerases, unusual DNA structures, and oncogene 

activation. The replication stress response is essential for DNA replication machinery 

to overcome the obstacles in order to faithfully replicate genomic information (Berti 

and Vindigni, 2016). Importantly, cancer cells display increased DNA damage and rely 

heavily on replication stress responses in order to proliferate, introduce new 
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mutations, and overcome DNA damaging chemotherapy treatments (Zeman and 

Cimprich, 2014). 

Cancer biology is defined by 6 main hallmarks of cancer: increased proliferation, 

inhibition of tumour suppressors, evasion of apoptotic cell death, acquired 

immortality, stimulated angiogenesis, other tissue invasion and metastasis (Hanahan 

et al., 2000). Additional cancer characteristics have been proposed later, including 

changes in metabolism, immunosuppression, cancer promoting inflammation and 

genome instability (Hanahan and Weinberg, 2011). Overall, cancer development is a 

multistep process, and dysregulation of cyclin – CDK and UPS activities may drive a 

number of changes stimulating cancer progression. Therefore, this chapter is going 

to focus on the control of the cell cycle and DNA replication by cyclin – CDKs 

complexes and the UPS. Additionally, the consequences of deregulation in cyclin - 

CDKs and UPS activities will be discussed briefly.  

The primary focus of this work is to identify and understand the regulatory networks 

that control Cip1-interacting zinc finger protein (Ciz1) function. Ciz1 is a nuclear 

matrix protein that facilitates DNA replication initiation (Ainscough et al., 2007; 

Copeland et al., 2010; Copeland et al., 2015; Coverley et al., 2005). Deregulation of 

Ciz1 levels is linked to a number of cancers (Den Hollander and Kumar, 2006; Lei et 

al., 2016; Liu et al., 2016; Pauzaite et al., 2017; Wang et al., 2018; Wu et al., 2016; Yin 

et al., 2013; Zhang et al., 2015). However, the molecular pathway or pathways that 

control Ciz1 levels have not been determined yet. Understanding how Ciz1 is 

regulated will provide insight into the regulation of Ciz1 activity in normal cells and 
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potentially provide an understanding of mechanisms that promote Ciz1 over-

expression and accumulation in cancer cells. 

1.1. Mammalian cell cycle is driven by cyclin - CDKs 

Cyclins are expressed sequentially, starting from cyclin D in early G1 phase, then 

cyclin E in mid- G1, cyclin A in G1 - S transition, and cyclin B in G2 - M phase (Figure 

1.1) (Hochegger et al., 2008; Pines, 1999). Each cyclin associates with their cognate 

CDK to activate their catalytic kinase activity. This way the total kinase activity rises 

temporally organising cell cycle events. 

In human cells there is 20 different CDKs and 30 Cyclins (Malumbres, 2014; Wood 

and Endicott, 2018). Cyclins recognise either RxL motif or LxCxE motif, in case of 

cyclin D1, and associate with CDKs via strong hydrophobic interactions (Topacio et 

al., 2018; Wallace and Ball, 2004; Wood and Endicott, 2018). Cyclin – CDK binding 

results in physical conformational change in CDK, opening the catalytic site 

(Malumbres, 2014). In case of CDK1 and CDK2 activation, this is further stabilised by 

threonine (T160) phosphorylation by CDK activating kinase (CAK) (Lolli and Johnson, 

2005), which allows for optimal ATP and substrate binding by the enzyme (Donzelli 

and Draetta, 2003; Nurse, 1997). The final CDK activation step is dephosphorylation 

of inhibitory threonine (T14) and tyrosine (Y15) by Cdc25 family phosphatases 

(Boutros et al., 2007). 

Cyclins display preference for specific CDK enzymes; however, they are not 

completely restricted and can bind other CDKs when their partner pools are 

depleted, under stress conditions, or in vitro (Merrick et al., 2008). For instance, 

cyclin B1 can rescue the S phase progression in cyclin A2 depleted Xenopus laevis 
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(Moore et al., 2003). Different classes of CDKs perform distinct functions, such as 

driving cell cycle and transcriptional regulation (Wood and Endicott, 2018). Cyclin - 

CDK complexes are serine/threonine kinases that specifically phosphorylate the  S/T-

P-X-K/R consensus sequence, where positively charged proline (+1) fits into the 

negatively charged pocket next to the catalytic site in CDK (Lo and Uhlmann, 2011). 

 

Figure 1.1. Cell cycle is driven by the sequentially expressed cyclins and rising 
kinase activity. In early G1 phase, Cyclin D is expressed and activates CDK4/6 (blue). 
In mid- G1, Cyclin E is expressed and activates CDK2 (red), raising total kinase activity 
and driving cell entry to S phase. In late G1 – early S phase, Cyclin A is expressed 
activating CDK2 and then CDK1 in G2 phase (green). In late G2 phase, cyclin B is 
expressed activating CDK1 (orange), further increasing total kinase activity and 
driving cell entry to mitosis (Hochegger et al., 2008; Lo and Uhlmann, 2011; Pines, 
1999). 

 

1.1.1. Critical analysis of quantitative model of kinase activity driving the cell cycle 

The quantitative kinase activity model states that such rigorous cyclin expression and 

their specific kinase activation are not necessary to drive the cell cycle (Berthet et al., 

2003; Coudreuse and Nurse, 2010a; Hochegger et al., 2007; Hochegger et al., 2008; 
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Lo and Uhlmann, 2011; Malumbres, 2014; Santamaria et al., 2007). For example, the 

minimal M phase cyclin – CDK (Cdc13 – Cdc2) complex is able to drive G1 – S and G2 

– M transition in fission yeast (Coudreuse and Nurse, 2010a). Multiple cyclin - CDK 

depletion and knockout experiments have provided large amount of evidence stating 

that mitotic cyclin - CDK is sufficient to drive the cell cycle. The data propose that the 

entry to S phase requires moderate total kinase activity, and the entry to M phase 

demands for high kinase activity (Figure 1.2). Both phases have their permissive 

kinase activity window and are blocked by either lower or higher activity range 

(Coudreuse and Nurse, 2010a). However, even though cyclin B alone is able to drive 

G1 – S transition in mammalian cells, it provokes early mitotic entry, thus could not 

replace other cyclins in vivo (Aleem et al., 2004; Moore et al., 2003). Therefore, 

mitotic cyclin – CDK alone can drive DNA replication and mitosis in mammalian cells; 

however, it cannot support a complete and regulated cell cycle in mammalian cells. 

 

Figure 1.2. Quantitative model of rising kinase activity driving the cell cycle. Cell 
cycle is driven by rising kinase activity, when kinase activity is low to moderate, the 
DNA replication initiates and cell enters the S phase, and when the kinase activity is 
high, the cell enters mitosis (M phase) (Hochegger et al., 2008; Lo and Uhlmann, 
2011; Pisu et al., 2015). 
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Additionally, this model fails to uphold in quiescent cells re-entering the cell cycle. 

The reason might be the residual kinase activity that is maintained in cycling cells 

(Moser et al., 2018; Spencer et al., 2013). Nonetheless, it has been shown that post-

quiescent cells depend of specific cyclin expression for initiation of DNA replication 

and the entry to S phase (Coverley et al., 2002; Thacker, 2017). This may suggest the 

reason why many of cyclin – CDK knockout mice failed to expand stem cell 

populations and were infertile (Brandeis et al., 1998; Geng et al., 2003; Geng et al., 

2007; Kalaszczynska et al., 2009; Kozar et al., 2004; Lo and Uhlmann, 2011; 

Santamaria et al., 2007). 

Finally, the quantitative kinase activity model does not explain why kinases prefer S 

phase substrates prior to M phase substrates (Lo and Uhlmann, 2011). This may be 

explained by the ratio of kinases and phosphatases during the cell cycle progression, 

also the affinity of specific substrate for kinase and phosphatase. For instance, Cdc25 

phosphatase is required to activate kinases, making phosphatase an important player 

in cell cycle progression and raising kinase activity (Boutros et al., 2007; Donzelli and 

Draetta, 2003). Additionally, the PP2A phosphatase was shown to dephosphorylate 

CDK substrates with high efficiency in interphase and its activity is downregulated in 

mitosis (Mochida et al., 2009). This way it may provide an additional layer of cell 

cycle progression control that cannot be attributed to increase in kinase activity 

alone. Finally, early in the cell cycle of budding yeast, PP2A actively counteracts CDK 

phosphorylation of their late substrates, and by preferring threonine residues, 

impose temporal separation of serine and threonine phosphorylation throughout the 

cell cycle (Cundell et al., 2016; Godfrey et al., 2017). These examples illustrate the 
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importance of phosphatases in the cell cycle that cannot be explained by 

quantitative kinase activity model alone.  

1.2. Definition of the restriction point 

This work is going to focus on G1 – S phase progression and the events underpinning 

this transition. A key regulatory event in G1 phase is the restriction point (Pardee, 

1974). It is described as a ‘point of no return’, when cells become independent from 

mitogenic signalling and fully commit to complete the cell cycle. The main regulator 

of the restriction point is the tumour suppressor retinoblastoma protein (Rb) 

(Blagosklonny and Pardee, 2002). The Rb protein either directly binds and inhibits 

transactivation domain of E2F-1 or uses E2F to bind DNA and actively suppresses 

transcription of proteins required for nucleotide metabolism and DNA synthesis in 

G1 phase (Bertoli et al., 2013b; Burke et al., 2010; Harbour and Dean, 2000; Zheng 

and Lee, 2001). The transcriptional repression is alleviated by initial phosphorylation 

by cyclin D – CDK4/6 (Kato et al., 1993; Klein and Assoian, 2008; Mittnacht, 1998; 

Ortiz et al., 2017), leading to cyclin E expression and priming of Rb for further 

phosphorylation by cyclin E – CDK2 (Kelly et al., 1998; Ohtani et al., 1995; VanArsdale 

et al., 2015). The collaboration of cyclin D - CDK4/6 and cyclin E - CDK2 leads to 

hyper-phosphorylation of Rb that weakens interactions with the E2F 1-3 family of 

transcriptions factors enabling transcription of target genes. This is the key event in 

surpassing the restriction point (Blagosklonny and Pardee, 2002; Heldt et al., 2018a; 

Mittnacht, 1998; Shen et al., 2004). 

However, more recent data show that cells may possess more than one ‘restriction 

point’ or the point when cells decide whether they will enter the cell cycle or enter 
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the quiescent state (Coller, 2007). This decision may depend on cell density, 

mitogenic signalling, kinase activity levels, or DNA damage (Barr et al., 2016; Barr et 

al., 2017; Heldt et al., 2018a; Moser et al., 2018; Spencer et al., 2013). The research 

used a fluorescent-CDK2 activity sensor that enabled analysis of single cells and 

demonstrated that cells bifurcate into two populations after mitotic anaphase 

(Moser et al., 2018; Spencer et al., 2013). Cells with low CDK2 activity exit mitosis 

into a pre-restriction state and are dependent on mitogenic signalling and are 

regulated by the restriction point in late G1. However, the cells with moderate CDK2 

activity can complete the cell cycle with no external stimuli and have a reduced 

length of G1 phase (Spencer et al., 2013). This decision depends on the levels of p21 

in mother cells that partition into daughter cells and determine their intrinsic CDK2 

activity (Moser et al., 2018). Similarly, the accumulation of p21 after the DNA 

damage in G1 phase can promote the cell cycle exit in quiescent like state that is 

inheritable by daughter cells (Barr et al., 2016; Barr et al., 2017; Heldt et al., 2018a). 

Quiescent cells have low kinase activity (Spencer et al., 2013), high levels of E3 

ligases targeting cyclin, such as Skp2 (Heldt et al., 2018a; Kossatz et al., 2004; Wang 

et al., 2011), and high levels of kinase inhibitors p21 and p27 (Barr et al., 2016; Barr 

et al., 2017; Cheng, 2000; Ladha et al., 1998). In order to re-enter the cell cycle, 

quiescent cells rely on external stimuli to drive the synthesis of G1 phase regulators 

(Gerard and Goldbeter, 2009; Gérard and Goldbeter, 2012). Therefore, the G0 cells 

take longer to reach RP and exit G1 phase by initiation of DNA replication in S phase. 

Post-quiescent cells require sustained mitogenic signalling to promote sequential 

cyclin expression and specific cyclin - CDK activation to bypass restriction point and 

enter the S phase. 
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1.3. DNA replication 

The interplay between kinase phosphorylation and ubiquitin mediated protein 

degradation is important for the temporal regulation of DNA replication. DNA 

replication can be divided in four specific phases, namely origin specification by the 

origin recognition complex (ORC), pre-replication complex (pre-RC) assembly, 

helicase activation, and replisome formation (Leonard and Me, 2013; Riera et al., 

2017; Tanaka and Araki, 2013; Yeeles et al., 2017). DNA replication licencing is 

accomplished by pre-RC assembly on the origins of replication in G1 phase (Prioleau 

and MacAlpine, 2016). It is followed by pre-initiation complex (pre-IC) formation, 

double stranded DNA unwinding, DNA replication initiation, and finally by replisome 

firing (Boos et al., 2013; Chowdhury et al., 2010; Kumagai et al., 2011; Parker et al., 

2017; Pauzaite et al., 2017; Yeeles et al., 2015; Yeeles et al., 2017). 

The proteins required for origin firing and replisome activation have been identified 

and the recapitulation of DNA replication licensing, helicase activation and 

processive DNA replication have been achieved in vitro (Deegan and Diffley, 2016; 

Deegan et al., 2016; Riera et al., 2017; Yeeles et al., 2015; Yeeles et al., 2017). 

Replication licencing starts from ORC binding to origin of replication still in G2 – M 

phase (Hoggard et al., 2013; Leonard and Me, 2013). In early G1 phase, the ORC is 

directly bound by Cell Division Cycle 6 (Cdc6), and Chromatin Licensing and DNA 

Replication Factor 1 (Cdt1) facilitates loading of Minichromosome Maintenance 2-7 

(MCM2-7) complex to putative replication origins (Deegan and Diffley, 2016; 

Duzdevich et al., 2015). This step requires ATP to promote MCM2-7 helicase loading 

onto DNA using Cdc6 and ORC ATPase activity (Figure 1.3).  
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Following the pre-RC assembly, helicase loading and activation are regulated by CDK2 

and Dbf4 - Cdc7 (Dbf4-dependent kinase, abbreviated as DDK) activities. Cyclin E – 

CDK2, in association with Cdc6 and Cdt1, is responsible for MCM2 helicase loading to 

origins of replication (Blow and Hodgson, 2002; Copeland et al., 2010; Coverley et al., 

2002; Donovan et al., 1997). It is followed by DDK phosphorylation of MCM2 leading 

to Cell Division Cycle 45 (Cdc45) loading (Deegan and Diffley, 2016; Deegan et al., 

2016; Francis et al., 2009; Montagnoli et al., 2006; Montagnoli et al., 2010; Takeda 

and Dutta, 2005), and finally CDK2 aided go-ichi-ni-san (GINS) (Sld5, Psf1, Psf2, and 

Psf3) association results in active helicase (CMG complex) assembly (Figure 1.3) 

(MacNeill, 2010). Interestingly, the CDK activity in S phase promotes MCM2 

activation, but prevents the loading of new MCM2-7 complexes (Deegan and Diffley, 

2016; Siddiqui et al., 2013; Tanaka and Araki, 2013); this way preventing DNA re-

replication. 

The Ciz1 protein associates to nuclear matrix via its C – terminal and directly binds 

Cdc6 (Ainscough et al., 2007; Copeland et al., 2010; Copeland et al., 2015). This 

potentially contributes to the regulation of the initiation phase of DNA replication, as 

Ciz1  binds to cyclin E - CDK2 and then to cyclin A - CDK2 to recruit CDK2 to its targets 

at pre-IC (Copeland et al., 2010; Copeland et al., 2015; Coverley et al., 2005) (Figure 

1.3).  
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Figure 1.3. Formation of replication complex. The origin recognition complex (ORC) 
binds to origin of replication, Cdc6 directly binds the origin and Cdt1 brings MCM2-7 
complex to form pre-replication complex. Cooperating cyclin E – CDK2 and DDK 
promote Cdc45, MCM2-7, and GINS (CMG) loading this way activating MCM2 
helicase activity and forming DNA replication initiation complex. The polymerases 
and PCNA loading completes the replisome assembly that is activated by kinase 
phosphorylation (Deegan et al., 2016; Pauzaite et al., 2017; Riera et al., 2017; Yeeles 
et al., 2015; Yeeles et al., 2017). Ciz1 is a nuclear matrix protein binding to Cdc6 and 
facilitating cyclin E – CDK2 then cyclin A – CDK2 recruitment to replication complex 
(Copeland et al., 2010; Copeland et al., 2015; Coverley et al., 2005). 
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The final step in CDK - dependent replisome activation is the loading of proliferating 

cell nuclear antigen (PCNA) and DNA polymerases: Polymerase α priming the DNA 

synthesis, Polymerase ε for leading-strand, and Polymerase δ for lagging-strand 

synthesis (Leman and Noguchi, 2013). The mammalian DNA replication involves 

plethora of accessory proteins aiding DNA replication that are not covered here. 

During replication complex assembly, the pre-RC is disassembled as origins are 

activated and pre-replication complex assembly is inhibited in order to prevent re-

replication (Truong and Wu, 2011). The prevention of DNA re-replication involves 

tight collaboration between kinase phosphorylation and UPS. First, sequential 

dissociation of Cdc6 and Cdt1 from chromatin leads to the first MCM2-7 complex 

loading, it is followed by the second Cdc6, Cdt1 and ORC dissociation facilitating the 

second MCM2-7 ring closure (Riera et al., 2017; Ticau et al., 2015; Ticau et al., 2017). 

The Cdc6 protein is phosphorylated by Cyclin E – CDK2 then by Cyclin A – CDK2 that 

leads to either exclusion from the nucleus or ubiquitylation by SCF-CDC4 in order to 

prevent re-replication (Hwang et al., 2014). In addition, Cdt1 is phosphorylated by 

Cyclin A – CDK2, leading to its dissociation from ORC and polyubiquitylation by SCF-

SKP2 and CRL4-CDT2 E3 ligases and UPS mediated degradation (Kim and Kipreos, 

2007; Kim et al., 2008; Liu et al., 2004). The ORC is phosphorylated by cyclin A – CDK2 

that promotes its dissociation from the chromatin (Lee et al., 2012). Phosphorylation 

of ORC stimulates ubiquitylation by SCF-SKP2 and consequential degradation by the 

proteasome (Mendez et al., 2002). 

These data suggest that temporal separation of the events leading to origin licencing 

and firing is tightly regulated by kinase activity and ubiquitin proteasome system. 
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Both systems collaborate in timely protein loading onto the chromatin and their 

dissociation in order to prevent re-replication. Additionally, the kinases and UPS 

regulate each other in order to reach S phase permissive kinase activity after the 

origin licencing has been completed.  

1.4. Ubiquitin proteasome system 

To ensure temporal control of cell cycle progression the ubiquitin proteasome 

system (UPS) is another crucial cell cycle regulator. Indeed, the oscillation of cyclins 

during the cell cycle progression would be impossible without cyclin degradation by 

UPS (Benanti, 2012). The UPS is composed of 2 main parts: specific substrate 

recognition that promotes ubiquitylation of lysine within the substrate using an ATP 

dependent enzymatic cascade, and indiscriminate degradation of polyubiquitylated 

substrates by the 26S proteasome core (Bard et al., 2018; Myung et al., 2001). 

Ubiquitin is a highly conserved protein consisting of 76 amino acids (Akutsu et al., 

2016; Swatek and Komander, 2016; Wagner et al., 2011; Weber et al., 1987). The 

complexity and specificity of ubiquitylation signal comes from eight linkages ubiquitin 

can form on itself with its 7 lysine residues (K6, K11, K27, K29, K33, K48, and K63) and 

its N – terminal (Grice et al., 2015). Each type of linkage forms different binding 

surfaces providing diverse functions. Further complexity is dictated by the formation 

of poly-ubiquitin chains, ubiquitin can be linked through either the same lysines that 

is called homotypic chains, or different lysine residues, which further can form mixed 

or branched structures that are called heterotypic chains (Akutsu et al., 2016; Meyer 

and Rape, 2014; Sadowski et al., 2012).  
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The covalent attachment of the ubiquitin leads to various outcomes of 

ubiquitylation, such as protein degradation, transcriptional activation, cell signalling, 

endocytosis, and cell death (Pickart, 2001; Swatek and Komander, 2016). The 

ubiquitin chain length and branchiness define the regulatory role of ubiquitylation 

(Meyer and Rape, 2014; Swatek and Komander, 2016). The main outcome of poly-

ubiquitylation via K11 and K48 is proteolytic degradation in 26S proteasome (Chau et 

al., 1989; Jin et al., 2008; Meyer and Rape, 2014; Nathan et al., 2013; Yau et al., 

2017). The mono-ubiquitylation and polyubiquitylation of M1 and K63 are linked 

with assembly of signalling complexes, endocytic trafficking, inflammation, 

translation and DNA repair (Spence et al., 1995; Tokunaga et al., 2009; Wang et al., 

2001; Yau and Rape, 2016). Recently, the APC/C specific K11/K48-branched chains 

were described as a main quality control mechanism of aggregation prone proteins 

(Yau et al., 2017). These K11/K48-branched chains lead to rapid degradation in the 

26S proteasome. 

The general function of 26S proteasome is protein homeostasis and stress response 

(Bard et al., 2018). The proteasome is composed of the 20S core particle and the 19S 

regulatory particle (Bedford et al., 2010). The 19S regulatory part recognises 

ubiquitylated proteins and catalyses the de-ubiquitylation, thus ubiquitin recycling. 

The active peptidase site resides in chamber of the barrel-shaped 20S core particle 

that degrades the protein into short peptide sequences that are further digested into 

amino acids by cellular peptidases, and recycled as building blocks for new protein 

synthesis. 
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The first reaction in the ubiquitylation is the ubiquitin activation by the ubiquitin 

activating enzyme (E1) (Figure 1.4). This process requires the hydrolysis of ATP to 

AMP and PPi in order to link glycine-76 of ubiquitin and cysteine residue of the E1 

enzyme via high energy thioester bond (Schulman and Wade Harper, 2009). The 

second step of the chain reaction is to transfer the ubiquitin from E1 enzyme to the 

ubiquitin conjugating enzyme E2 via transthiolation reaction (Stewart et al., 2016). 

The E2 enzyme has previously been considered to be a simple ubiquitin carrier; 

however, an increasing amount of evidence suggests that N and C terminal regions, 

flanking the cysteine residue in the active site, contribute to the binding of specific E3 

enzymes, substrate selection and specificity (Burroughs et al., 2008; Pickart, 2001; 

Van Wijk et al., 2009). The third step of the ubiquitylation reaction is the linkage of 

ubiquitin protein to the specific substrate. The reaction is catalysed by ubiquitin 

protein ligase E3 that aids in ubiquitin transfer from E2 enzyme onto specific 

substrate (Myung et al., 2001). In many cases, such as HECT and RBR E3s, the transfer 

involves ubiquitin binding to E3 by thiol linkage and subsequent generation of amide 

isopeptide bond between glycine-76 of ubiquitin and ε (epsilon) amino group of 

lysine residue of the substrate (Morreale and Walden, 2016; Van Wijk et al., 2009). 

Nonetheless, in RING E3s, the ubiquitin protein is transferred directly from E2 to the 

substrate and is only catalysed by E3 ligase (Morreale and Walden, 2016; Myung et 

al., 2001; Pickart, 2001).  
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Figure 1.4. The chain of enzymatic reactions involved in substrate ubiquitylation. 
The E1 (ubiquitin activating enzyme) generates high energy thioester bond between 
E1 and ubiquitin. The ubiquitin is transferred onto E2 (ubiquitin conjugating enzyme). 
The E2 binds E3 (ubiquitin protein ligase) and the specific substrate. The ubiquitin is 
transferred either directly from E2 to the substrate, or to E3 and then to the 
substrate. The reaction can be repeated in order to generate poly-ubiquitin chain. 

 

There are 8 different E1 enzymes (Schulman and Wade Harper, 2009), 40 of E2 

conjugating enzymes (Stewart et al., 2016), and approximately 600 - 700 of E3 ligases 

identified in humans so far (Morreale and Walden, 2016). The substrate specificity is 

defined by collaborating E2s and E3s. Typically, the UPS is classified according to their 

E3 ligases. The E3 complexes are separated into three different classes, namely RING 

E3s that have RING (Really Interesting New Gene) or U-box domain, HECT E3s that 

have HECT (homologous to the E6AP carboxyl terminus) domain, and RBR E3s that 

have two RING domains separated by another in between RING domain (Morreale 

and Walden, 2016). 
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1.5. CDK and UPS activities temporally control cell cycle events 

The cell cycle is driven by sequentially expressed cyclins and oscillating kinase activity 

(Figures 1.1 and 1.2). However, the temporal separation of cyclin expression and 

rising kinase activity would not be possible without UPS (Bassermann et al., 2014). 

For instance, the timely degradation of the cyclins, such as cyclin B upon the mitotic 

exit, and cyclin dependent kinase inhibitors, such as p21 and p27 in G1 to S 

progression, is key in the successful cell cycle progression (Figure 1.5) (Bassermann et 

al., 2014; Skaar and Pagano, 2009). 

The main UPS complexes, involved in the cell cycle regulation, are SCF (SKP/CUL1/F-

box) and APC/C (anaphase promoting complex or cyclosome) that are multi-subunit 

cullin RING E3 ligases (Skaar and Pagano, 2009). The SCF complex is composed of 

CUL1 scaffold, which binds to RING finger protein RBX1, this way creating platform to 

bind E2s and SKP1/2 adaptor protein that in turn binds F-box protein that recognises 

the phosphorylated substrate (Nakayama and Nakayama, 2006; Skaar and Pagano, 

2009; Skaar et al., 2013). Out of 70 identified F box proteins, three groups FBXWβ 

(TRCP1/2), FBXL (SKP1/2), and FBXO target cell cycle controllers, thus, have been 

linked with the cell cycle control (Zheng et al., 2016). F-box proteins have plethora of 

targets driving cell cycle, such as FBXWβ targets Emi1, Cdc25A/B, Wee1, and Cyclin 

D; FBXL targets p21, p27, p57, cyclin D, cyclin A, cyclin E, Cdh1; and FBXO targets 

cyclin B, cyclin D, p53, Chk1 (Davis et al., 2014; Frescas and Pagano, 2008; Nakayama 

and Nakayama, 2006; Pal et al., 2014; Skaar and Pagano, 2009; Wang et al., 2011; 

Zheng et al., 2016). Therefore, either mutations or overexpression in F-box protein 

family may lead to deregulated cell cycle that is a hallmark of cancer. 
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The APC/C is structurally related to SCF consisting of RING finger protein APC11, 

CUL1 related scaffold protein APC2, another 11 subunits with no clearly identified 

functions, and the activator that is responsible for substrate specificity (Arnold et al., 

2015; He et al., 2013; Nakayama and Nakayama, 2006; Skaar and Pagano, 2009). The 

key cell cycle associated regulators of APC/C are CDC20 and CDH1 (Da Fonseca et al., 

2011; Hein and Nilsson, 2016; Huang et al., 2001; Lee et al., 2015). The CDC20 is 

active in metaphase to anaphase of mitosis, is responsible for spindle assembly 

checkpoint, and degrades S and M phase cyclins for M phase exit (Wang et al., 2015). 

Similarly, CDH1 is active from late mitosis to late G1 phase, targets M phase cyclins 

for mitotic exit, and maintains low CDK activity in G1 phase by degradation of S 

phase and M phase cyclins (Arnold et al., 2015; Huang et al., 2001) (Figure 1.5).  

SCF and APC/C have distinct activities and their activity oscillates during the cell 

cycle. SCF is active from late G1 phase up to early mitosis (Bassermann et al., 2014; 

Nakayama and Nakayama, 2006). However, the activity of APC/C is restricted to M – 

G1 phase, CDC20 being mainly responsible for mitotic exit and CDH1 for 

maintenance of G1 phase (Benanti, 2012; Vodermaier, 2004).  
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Figure 1.5. The cell cycle is driven by kinase and UPS activities. A) DNA replication 
events are temporally controlled by rising kinase activity and decreasing APC/C 
activity, and mitotic exit is driven by rapid degradation of cyclins and CDK, and 
recovery in APC/C activity (Nakayama and Nakayama, 2006; Vodermaier, 2004; Zhu 
and Mao, 2015). B) In M - G1 phase APC/C-CDH1 is active, it degrades SCF-SKP2, this 
way p21 and p27 accumulates and inhibits Cyclin A – CDK1/2, Cyclin B – CDK2 
activity. In G1 – S transition, CDH1 is phosphorylated, APC/C-CDH1 is inhibited by 
EM1, SCF-SKP2 accumulates, and degrades p21 and p27 phosphorylated by Cyclin E – 
CDK2, kinase activity rises (Bornstein et al., 2003; Huang et al., 2001; Lu and Hunter, 
2010). In G2 – M, APC/C-CDC20 is phosphorylated and activated by Cyclin A – CDK1/2 
and Cyclin B – CDK1, it degrades Cyclin A, APC/C-CDH1 activity is recovered, it further 
degrades Cyclin A and Cyclin B, kinase activity drops in the end of mitosis, and cell 
cycle is reset (Arnold et al., 2015; Frescas and Pagano, 2008; Hein and Nilsson, 2016; 
Huang et al., 2001; Wang et al., 2015). 

 

The interplay between the kinase activity and ubiquitin proteasome system drives 

the cell cycle (Figure 1.5). The transitions in the cell cycle are promoted by CDK 

activity that also drives transitions in the activities of the UPS that promotes cyclin 

degradation to maintain directionality in the cell cycle.  APC/C-CDH1 targets cyclin A, 

cyclin B, and SCF-SKP2 in early G1. Cyclin E – CDK2 phosphorylates CDH1 leading to 

Emi1 binding that inactivates APC/C-CDH1 at the G1 – S transition (Cappell et al., 
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2018) followed by the degradation of CDH1 by the SCF-SKP2 complex (Vodermaier, 

2004). This induces the rising CDK activity due to inactivation of APC-CDH1 and  

phosphorylation of p21 and p27 leading to SCF-SKP2 mediated degradation 

(Bassermann et al., 2014). As cyclin - CDK activity rises in G1 phase, CDH1 is 

phosphorylated at the G1/S transition that facilitates further accumulation of cyclin 

A. Phosphorylated CDH1 is a substrate for SCF-SKP2 that promotes degradation of 

CDH1 and contributes to the transition from G1 phase into S phase (Arnold et al., 

2015; Benanti, 2012; Hein and Nilsson, 2016; Vodermaier, 2004). The quantitative 

increase in CDK activity in G1 phase is mediated by destruction of the CDK inhibitor 

proteins p21 and p27, which are phosphorylated by cyclin E – CDK2 in order to be 

targeted by SKP2 (Bornstein et al., 2003; Lu and Hunter, 2010). 

Later in the cell cycle rising activity of cyclin A – CDK1/2 and cyclin B – CDK1 leads to 

APC/C-CDC20 phosphorylation and activation (Qiao et al., 2016). APC/C-CDC20 

degrades cyclin A that leads to de-phosphorylation and reactivation of APC/C-CDH1 

(Robbins and Cross, 2010). APC/C-CDH1 further degrades cyclin A and cyclin B, re-

setting low kinase activity for the second round of DNA replication initiation 

(Simpson-Lavy et al., 2015). 

1.6. The deregulation in CDK and UPS in tumourigenesis 

CDK and UPS activities coordinate tempo-spatial regulation and ensure precise 

orchestration of the cell cycle progression (Bassermann et al., 2014; Nakayama and 

Nakayama, 2006; Rizzardi and Cook, 2012). Therefore, deregulation either in CDK 

activity or ubiquitin mediated protein degradation can lead to dysregulation of cell 

cycle control. Inactivation or hyper-activation of both CDK and UPS activities are 
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commonly associated with deregulation of cell cycle and uncontrolled cell 

proliferation in cancer. 

Any modification in cyclin – CDK pathway, such as overexpression of cyclin, 

downregulation of CDK inhibitors, mutations that render CDK to become insensitive 

to inhibition, and downregulation of cyclin degradation may lead to a loss of normal 

cell cycle control, increased cellular proliferation and promote tumorigenesis 

(Canavese et al., 2012; Deshpande et al., 2005; Santamaria and Ortega, 2006). For 

instance, a number of major cancers, such as breast, lung, cervix, endometrial, 

pancreatic, and colon, have been linked to cyclin E overexpression and SCF-Fbw7 

loss-of-function mutations that targets cyclin E for degradation (Davis et al., 2014; 

Hwang and Clurman, 2005; Kitagawa et al., 2009; Welcker and Clurman, 2008). A 

plethora of molecular pathways are involved in cyclin E and Fbw7 driven 

tumourigenesis, but it is known that deregulation in both causes chromosomal 

instability and tumorigenesis (Welcker and Clurman, 2008). 

The overexpression of SKP2 E3 ligase leads to downregulation of CDK inhibitors in G1 

– S transition (Kitagawa et al., 2009; Nakayama and Nakayama, 2006; Wang et al., 

2011). However, mitotic and G1 UPS regulators APC/C-CDH1 and –CDC20 display a 

more complex phenotype. Both CDC20 and CDH1 can be either overexpressed or 

inactivated by mutation/ deletion in different tumour types (Bassermann et al., 2014; 

Benanti, 2012; Huang et al., 2001; Lee et al., 2015; Nakayama and Nakayama, 2006; 

Skaar and Pagano, 2009). These data illustrate the importance of individual cancer 

type analysis and specification down to a molecular and proteomic level. 



Chapter 1: Introduction 

24 
 

1.7. The Cip1-interacting zinc-finger protein 1 (Ciz1) aids the initiation of DNA 

replication 

1.7.1. Ciz1 discovery and structure 

The Cip1-interacting zinc-finger protein 1 (Ciz1) was first discovered and cloned from 

human B cells with modified yeast two hybrid system using cyclin E – p21 

(Cip1/Waf1) as a bait (Mitsui et al., 1999). Additionally, it was cloned and 

characterised independently for the second time in human medulloblastoma 

(Warder and Keherly, 2003). Both pieces of research provided evidence for tissue 

specific expression of Ciz1, namely in the kidney, testis, pancreas and brain; 

nonetheless, the protein is expressed abundantly in various tissues and cell types 

(Mitsui et al., 1999; Warder and Keherly, 2003).  

Human Ciz1 shares 70 % identity with murine Ciz1 and much of the characterisation 

work has been performed in murine and human systems (Ainscough et al., 2007; 

Copeland et al., 2010; Copeland et al., 2015; Coverley et al., 2005; Mitsui et al., 1999; 

Warder and Keherly, 2003). Ciz1 is only conserved in vertebrates and mammalia  and 

is composed of two glutamine-rich domains, three zinc finger domains, the acidic 

domain, and MH3 domain homologous to nuclear matrix protein Matrin 3 (Coverley 

et al., 2005; Mitsui et al., 1999; Warder and Keherly, 2003). Matrin 3 has matrin 3 

type zinc finger (MH3 domain) that has been linked with pre-mRNA splicing and DNA 

binding (Ainscough et al., 2007). Ciz1 is conserved between human and mouse by 

more than 80% in its N - and C – terminal regions. However,  the conservation 

between human, mouse, reptilian and bird is mainly conserved in N – terminal and 

zinc finger domains (Coverley et al., 2005). Ciz1 was shown to bind DNA directly via 
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consensus sequence. However, Ciz1 also associates with the nuclear matrix fraction 

and is not released from the chromatin fraction after DNase I digestion (Ainscough et 

al., 2007; Warder and Keherly, 2003). Nuclear matrix is a dynamic structure 

maintaining shape of the nucleus and the spatial organization of chromatin (Barboro 

et al., 2012; Wilson and Coverley, 2013). Nuclear matrix associates with the 

chromatin and its composition depends on cell type, cell cycle phase and level of 

differentiation. Proteins in nuclear matrix regulate DNA replication and repair, gene 

expression, RNA transport, cell signalling and differentiation, cell cycle regulation, 

apoptosis and carcinogenesis. 

 

Figure 1.6. Schematic of Ciz1 gene translated regions and protein structure. 
Diagram shows murine Ciz1 translated exons (numbered), reported spicing events 
(exons 4, 6, 8, and 14) are shaded in grey (Dahmcke et al., 2008; Greaves et al., 2012; 
Higgins et al., 2012; Rahman et al., 2007). DNA replication domain (N471) is labelled 
in yellow and red (exons 2-9 and part of 10) (Copeland et al., 2010; Copeland et al., 
2015), nuclear matrix binding domain in grey (exon 10-17) (Ainscough et al., 2007). 
CDK phosphorylation sites in replicatory domain of Ciz1 are labelled in black (T138, 
T144, T187, T192, T293, S331) (Copeland et al., 2015). Cyclin binding domains are 
labelled in blue ovals, dark blue binds cyclin E and cyclin A and is required for Ciz1 
DNA replication initiation activity, light blue binds cyclin A (Copeland et al., 2015). 

 

1.7.2. Ciz1 function in initiation of DNA replication 

Ciz1 is a nuclear protein that co-localises with nascent DNA replication sites and 

associates with the nuclear matrix fraction (Ainscough et al., 2007; Coverley et al., 

2005; Mitsui et al., 1999; Warder and Keherly, 2003). Ciz1 was found to bind 

detergent resistant nuclear fraction, that resists extraction with high salt and 
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nuclease treatments, consistent with the nuclear matrix association (Ainscough et al., 

2007). Analysis of the domain structure of Ciz1 identified that the C terminal domain 

anchors Ciz1 to the nuclear matrix (Ainscough et al., 2007). The N terminal of Ciz1 

was shown to promote DNA replication initiation, but cannot bind the nuclear matrix 

(Copeland et al., 2010; Coverley et al., 2005). 

The working model suggests that Ciz1 promotes the initiation of DNA replication by 

directly binding to Cdc6 this way coming in close proximity to origins of replication 

and pre-replication complex (Copeland et al., 2015; Pauzaite et al., 2017). Ciz1 

interacts with cyclin E in mid G1 phase and is displaced by cyclin A at the G1 – S 

transition. It was therefore proposed that Ciz1 contributes to timely and efficient 

delivery of cyclin – CDK2 complexes to the origins of replication (Copeland et al., 

2015). The activity of Ciz1 is regulated by CDK mediated phosphorylation of Ciz1. The 

full length murine Ciz1 has 14 CDK phosphorylation sites, and the minimal N terminal 

fragment (N471), that maintains replication activity, has 6 CDK sites (Copeland et al., 

2015). Three CDK sites have been shown to regulate Ciz1 DNA replication function 

(T144, T192 and T293). Their inhibitory activity is additive, with phosphomimetic 

mutations within Ciz1, preventing cyclin A - CDK2 binding and its replicative function. 

The model proposes that Ciz1 responds to increasing CDK activity by acquiring 

phosphorylation at multiple sites, preventing its DNA replication activity. It has been 

proposed that it contributes to prevention of DNA re-replication in high CDK activity 

contexts (Copeland et al., 2015).  
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1.7.3. Role of Ciz1 in tumourigenesis 

Ciz1 overexpression and alternative splicing is associated with common tumour types 

that include four most common cancers: breast, colorectal, prostate and lung 

cancers. There is an increasing amount of evidence on how alternative splicing or 

overexpression of Ciz1 can lead to cancer. For instance, the alternative splicing of 

exon 4 has been identified in Ewing tumour (Rahman et al., 2007; Rahman et al., 

2010). Additionally, the alternative splicing at junction between exon 14 and 15 has 

been found in small cell and non-small cell lung cancers, and has been termed Ciz1 b-

variant. Ciz1 b-variant has been identified as a potential biomarker for lung cancer 

and targeting of this cancer specific splice variant reduces tumour size in xenograft 

models (Coverley et al., 2017; Higgins et al., 2012). Finally, the alternative splicing in 

exons 8-12 has been identified as a signature in early stage solid tumours of breast 

and colon cancers (Swarts et al., 2018).  

Although overexpression and differential splicing of Ciz1 is associated with 

tumorigenesis, the precise molecular mechanisms that mediate increased 

proliferation is yet to be determined. In addition, the signalling networks that 

regulate Ciz1 accumulation remain to be fully elucidated. There are distinct 

mechanisms proposed in specific cancers, but as yet there is no consensus for the 

mechanism whereby Ciz1 contributes to tumour growth. However, there is a 

common observation that Ciz1 is required for the proliferation of liver, prostate, 

gallbladder, colorectal, lung, and breast cancers (Den Hollander and Kumar, 2006; 

Den Hollander et al., 2006; Higgins et al., 2012; Lei et al., 2016; Liu et al., 2015; Liu et 

al., 2016; Wu et al., 2016; Yin et al., 2013; Zhang et al., 2015). 
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In breast cancers, Ciz1 protein has two distinct activities that promote proliferation. 

Ciz1 interacts with Dynein Light Chain 1 (DLC1), and facilitates sequestering of p21 

from the nucleus, potentially increasing CDK2 activity that promotes cell cycle 

progression. In addition, Ciz1 enhances oestrogen receptor (ER) transactivation 

activity by aiding ER recruitment to the target genes, while being upregulated by ER 

signalling itself (Den Hollander and Kumar, 2006; Den Hollander et al., 2006). 

Therefore, overexpression of Ciz1 induces oestrogen hypersensitivity in breast 

cancers, that forms a positive feedback loop increasing Ciz1 expression (Den 

Hollander and Kumar, 2006; Den Hollander et al., 2006). 

Additionally, Ciz1 overexpression has been shown to promote hepatocellular cancer 

(HCC) growth, migration and metastasis in vitro and in vivo. Ciz1 interacts with 

transcriptional factor YAP (Hippo-Yes-Associated Protein), and Ciz1 overexpression 

leads to increased interaction between YAP/TEAD and increased signalling of 

YAP/TAZ transcription factors. This transcriptional network promotes expression of 

cyclin E and connective tissue growth factor (CTGF) enhancing cell proliferation and 

tumour growth (Lei et al., 2016; Wu et al., 2016). 

Further, Ciz1 overexpression has been correlated with prognosis of colorectal cancer 

(Wang et al., 2014; Yin et al., 2013). In colorectal tumours Ciz1 was present at higher 

levels in tumour when compared with adjacent normal tissues. In this context, Ciz1 

levels were a prognostic marker for survival (Wang et al., 2014). The depletion of 

Ciz1, in Ciz1 overexpressing colon cancer cell line (RKO), leads to inhibition of cell 

proliferation and colony formation, and the increase in apoptosis. 
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Moreover, the level of Ciz1 has been shown to be elevated in gallbladder cancers 

(GBC) when compared with adjacent tissues (Zhang et al., 2015). Ciz1 interacts with 

the T cell factor (TCF4) and activates β-catenin/TCF expression of c-Myc, Snail, and 

Cyclin D, promoting tumour growth and migration in vitro and in vivo. In prostate 

carcinoma, Ciz1 levels directly correlate with the aggressiveness of the tumour (Liu et 

al., 2015). The depletion of Ciz1 reduces cell proliferation by inhibiting cells in G1 

phase, decreases colony formation in vitro and tumour grown in vivo. 

Finally, most recent data have identified Ciz1 as a contributor to angiogenesis. 

Overexpression of Ciz1 in vascular cells of lung squamous cell carcinoma (Zhou et al., 

2018) and haemangioma of the tongue (Wang et al., 2018) has been correlated with 

cancer growth and migration. 

In regards to hallmarks of cancer (Hanahan and Weinberg, 2011; Hanahan et al., 

2000), Ciz1 contributes to a number of cancer driving characteristics. Ciz1 has been 

shown to increase cellular proliferation (Coverley et al., 2017; Den Hollander and 

Kumar, 2006; Den Hollander et al., 2006; Higgins et al., 2012; Lei et al., 2016; Liu et 

al., 2015; Wu et al., 2016; Yin et al., 2013; Zhang et al., 2015). Ciz1 may aid in evasion 

of tumour suppressors by either activating oncogene expression and activity (Den 

Hollander et al., 2006) or sequestering them from their targets (Den Hollander and 

Kumar, 2006; Mitsui et al., 1999). Ciz1 has been demonstrated to contribute to 

cancer cell migration in vitro and invasiveness in vivo (Liu et al., 2016; Wang et al., 

2014; Wang et al., 2018; Yin et al., 2013; Zhang et al., 2015; Zhou et al., 2018). Ciz1 

aids tumour vascularisation in case of lung squamous cell carcinoma (Zhou et al., 

2018) and haemangioma of the tongue (Wang et al., 2018). The depletion of Ciz1 in 
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cancer cells increased apoptosis showing that Ciz1 overexpression may inhibit cancer 

cell death (Higgins et al., 2012; Wang et al., 2014; Yin et al., 2013).  

In summary, either the deregulation of Ciz1 function by alternative splicing or 

overexpression of Ciz1 may contribute to deregulation of the cell cycle progression - 

a common early event in tumourigenesis (Coverley et al., 2017; Den Hollander and 

Kumar, 2006; Den Hollander et al., 2006; Higgins et al., 2012; Lei et al., 2016; Liu et 

al., 2016; Pauzaite et al., 2017; Rahman et al., 2007; Rahman et al., 2010; Swarts et 

al., 2018; Wang et al., 2014; Wu et al., 2016; Yin et al., 2013; Zhang et al., 2015; Zhou 

et al., 2018). Multiple pathways of Ciz1 contribution to tumourigenesis have been 

identified suggesting that Ciz1 aids deregulation of transcriptional pathways 

regulated by ER and YAP/TAZ transcription factors that are associated with 

tumourigenesis (Den Hollander and Kumar, 2006; Den Hollander et al., 2006; Lei et 

al., 2016). In addition, there is evidence that Ciz1 may also contribute to 

dysregulation of the cell cycle via p21 sequestration and activation of CDK2 activity. 

1.7.4. Association of Ciz1 with other disorders 

In addition to its association with promotion of tumorigenesis, Ciz1 has been 

implicated in neurodegenerative disorders (Khan et al., 2018; Xiao et al., 2016; Xiao 

et al., 2018), X chromosome inactivation (Ridings-Figueroa et al., 2017; Sunwoo et al., 

2017; Yamada et al., 2015) and cardiac repair mechanisms (Bageghni et al., 2017). 

The alternative splicing of exon 8 of Ciz1 has been linked to Alzheimer’s disease 

(Dahmcke et al., 2008); however, as yet there is no further study of Ciz1 in 

Alzheimer’s disease. This may be explained by the recent observation that Ciz1(-/-) 

mice expressed profound oxidative damage in the brain, which is known as one of 
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the main drivers of neurodegenerative disorders (Khan et al., 2018). In Ciz1 null 

murine model, loss of Ciz1 was associated with mild motor dysfunction, cell cycle 

abnormalities and genetic stress, but no severe effects on development or fertility 

have been observed (Xiao et al., 2016; Xiao et al., 2018). This may be explained by 

the change in protein expression in Ciz1(-/-) cells that potentially rescue the normal 

phenotype. However, more profound effect has been observed in aged Ciz1 null mice 

(Khan et al., 2018). The Ciz1(-/-) mice had motor and cognitive deficits, extensive DNA 

and oxidative damage, vascular impairment, inflammation, and cell death in brain 

tissues. The embryonic fibroblasts of Ciz1 null mice presented with hypersensitivity 

to γ-irradiation, high DNA damage, deregulation of cell cycle, and increased 

apoptosis (Khan et al., 2018). These data suggest that Ciz1 has a profound effect on a 

number of cell functions, and that any deviation from normal Ciz1 levels may lead to 

a range of pathologies. 

In addition, Ciz1 has been shown to interact with X inactive specific transcript (Xist) 

RNA via its E repeats in order to facilitate its localisation on X chromosome and X 

chromosome silencing in female cells (Ridings-Figueroa et al., 2017; Sunwoo et al., 

2017). The ablation of Ciz1 in female mice leads to abnormalities and enlargement of 

lymphoid tissues, such as spleen and lymph nodes, as well as hyper-proliferation of B 

and T lymphocytes (Ridings-Figueroa et al., 2017). This phenotype resembles non-

Hodgkin follicular type lymphoma supporting the notion that normal levels of Ciz1 

can act as a tumour suppressor (Nishibe et al., 2013). These data demonstrate that 

Ciz1 may contribute to various pathways in cell proliferation and development, and 

again emphasise that normal Ciz1 levels are important in orderly cell cycle and tissue 

homeostasis. 
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1.8. Aims 

Normal Ciz1 levels play key role in orderly cell cycle progression, DNA replication 

initiation and prevention from re-replication, DNA repair, and normal organ and 

tissue development. Various pathways of Ciz1 involvement in the cell cycle and 

pathology development have been proposed. Majority of researchers agree that 

overexpression or depletion in Ciz1 leads to abnormalities. However, there is no data 

available on the regulation of Ciz1 levels in the cell so far. Therefore, this work aims 

to identify the molecular pathway or pathways that regulate Ciz1 levels.  

 The phosphorylation of Ciz1 has been shown to contribute to Ciz1 activation 

and inactivation (Copeland et al., 2010; Copeland et al., 2015). However, the 

role for CDK mediated phosphorylation of Ciz1 in regulation of CIz1 

accumulation has not been determined. Therefore, a temporal analysis of 

Ciz1 phosphorylation will be performed and the role of CDK mediated 

phosphorylation for Ciz1 accumulation will be determined.  

 Further, previous data have linked Ciz1 deregulation with cancer 

development. In this work, cancer cell lines are going to be screened for Ciz1 

dependency and Ciz1 stability is going to be assessed in these cancer cell 

lines.  

 Cancer cell lines that are capable in reducing Ciz1 levels after kinase inhibitors 

would have to possess functional ubiquitin – proteasome mediated protein 

degradation mechanism. Therefore, using an in vitro ubiquitylation assay, the 

putative E3 ligase(s) activity that may target Ciz1 for degradation will be 

identified.  
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 Finally, as CDK activity contributes to accumulation and upregulation of Ciz1 

levels, phosphatase activity that removes CDK mediated phosphorylation of 

Ciz1 may contribute to Ciz1 down-regulation. Therefore, the phosphatases 

responsible for Ciz1 de-phosphorylation will be identified.  

 

Knowing that normal Ciz1 levels are essential in normal cell cycle and development, it 

is important to determine the molecular pathway of Ciz1 level regulation. These data 

may provide new opportunities in cancer therapies, for instance, targeting kinases, 

E3 ligases or phosphatases that are responsible for Ciz1 levels. Additionally, 

establishing Ciz1 regulatory mechanism may provide some insight whether certain 

therapies would be effective in certain tumours.  
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2. Materials and methods 

2.1. Tissue culture 

2.1.1. Culturing transformed 3T3 fibroblasts 

NIH-3T3 and D-3T3 cells were grown in the Dulbecco’s modified Eagles Media (D-

MEM) (Gibco) medium with 10% foetal calf serum (FBS) (Labtech) and 1% penicillin-

streptomycin-glutamine (Gibco) in 37 °C incubator with 4% CO2, and were 

dissociated for passaging with 0.1% of Trypsin in 1x Dulbecco's Phosphate-Buffered 

Saline (DPBS) (both Gibco) for 1 minute at 37 °C.  

Mouse embryonic fibroblasts (3T3) were cultured at 50 – 70 % confluency and 

passaged every 24 – 48 hours. To produce synchronised 3T3 cells, contact inhibition 

and serum starvation was used. Cells were maintained at approximately 30 – 50 % in 

confluence, media changed and left for 48 hours to reach 100 % confluence. Media 

was then replaced and cells were cultured for a further 48 hours (Ainscough et al., 

2007; Copeland et al., 2010; Copeland et al., 2015; Coverley et al., 2005). The cells 

were then released into fresh medium at lower density in order to stimulate cell 

cycle re-entry (Holley and Kiernan, 1968). 

2.1.2. Culturing cancer cell lines 

Cancer cell lines, PC3 (human prostate cancer cell line), SW480, and SW620 (primary 

and metastatic human colorectal carcinoma cell line, respectively) were kept at 50-

70% confluency in D-MEM with 10% foetal calf serum (FBS) (Labtech) and 1% 

penicillin-streptomycin-glutamine (Gibco) (Hole, 2006; Ma et al., 2014; Tai et al., 

2011). The breast cancer cell lines MCF7 and T47D were kept at 80-90% confluency in 
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RPMI 1640 medium (Gibco) with 10% foetal calf serum (FBS) (Labtech) and 1% 

penicillin-streptomycin-glutamine (Gibco) (Azizi et al., 2010). Where indicated, cancer 

cell lines were synchronised in S phase using a double thymidine protocol. Cells were 

treated for 24 hours with 2.5 mM thymidine (Sigma Aldrich), released for 8 hours 

into fresh media and a second thymidine incubation for 16 hours (Chen and Deng, 

2018). To synchronise cells at the early M phase cells were treated with 2.5 mM 

thymidine for 24 hours, released into fresh medium for 3 hours, followed by a 10 

hour nocodazole (100 ng/ml) treatment (Knehr et al., 1995). 

2.2. Immunofluorescence 

To determine cell synchrony, cells were pulse labelled with ethynyl deoxyuridine 

(EdU) (Invitrogen) thymidine analogue and fluorescently labelled using the Click-it 

reaction adding Alexa Fluor 555 Azide. Click-iT™ EdU Cell Proliferation Assay Cocktail 

(Invitrogen) was used, which provides the tool for visualising cells that entered S 

phase and are actively replicating the DNA, and Click-IT reactions were performed 

according to manufacturer’s instructions. The pulse label length was 30 minutes for 

quantitation by fluorescence microscopy and 1 hour for flow cytometry experiments 

(Section 2.11). Visualisation of DAPI (Vector Laboratories) and EdU labelled cells was 

performed using either fluorescence microscopy (Zeiss Scope.A1) or confocal 

microscopy (Zeiss LSM880). 

2.3.  RNA extraction and RT-qPCR 

Total RNA was purified from cells using PureLink® RNA Mini Kit (Ambion) according 

to manufacturer’s instructions. The quantitation of transcript abundance was 

performed using ONE STEP qPCR kit (Invitrogen) using 25 ng of total RNA and 
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Taqman primer pairs (Thermo Fisher Scientific) for Ciz1 (Mm00503766, Hs00967155), 

cyclin E1 (Mm00432367, Hs01026536), cyclin E2 (Mm00438077, Hs00180319), cyclin 

A2 (Mm00438063, Hs00996788), Dbf4 (Mm01324087), Cdc7 (Mm00438122), GAPDH 

(Mm03302249, Hs02758991), and 18S (Mm03928990, Hs03003631) using a FX96 

Touch™ Real-Time PCR Detection System (BIO-Rad).  Program used: cDNA production 

at 50.0°C - 15min, DNA polymerase activation at 95.0°C - 2min, 40 cycles of 95.0°C - 

15s, 60.0°C - 30s, and dissociation at 95°C – 60s. 

2.4. Drug treatments  

The asynchronous cell population, 50-70% in confluency, were treated with small 

molecule inhibitors (Table 2.1) 4 hours prior to cell harvesting. Synchronous cells 

were treated for 4 and 8 hours as indicated in the figures. The cells were 

synchronised with thymidine (2.5 mM) and nocodazole (100 ng/ml) at 50 % in 

confluency. The cells were treated with 50 µg/ml of cycloheximide for endogenous 

Ciz1 stability experiments, and with 100 µg/ml of cycloheximide for GFP – Ciz1 

stability experiments for the time intervals indicated in the figures. 
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Drug Target IC50 in 
cell-free 
assays 

Concentration Provider 

Palbociclib 
(PD0332991) 
Isethionate 

CDK4 
CDK6 

11nM  
16nM  

10μM Sigma Aldrich 

PHA-767491 
dihydrochloride 

Cdc7 10nM 10μM Sigma Aldrich 

XL-413 
hydrochloride 

Cdc7 3.4nM 10μM Selleckchem 

Roscovitine CDK2 0.7μM 30μM Sigma Aldrich; 
Selleckchem 

CVT-313 CDK2 0.5μM 10μM Santa Cruz 
Biotechnology 

MG132 Proteasomal 
Inhibitor 

1.2μM 10μM Sigma Aldrich 

Cyclohexamide Eukaryotic 
protein 
translation 
inhibitor 

 50 - 100 μg/ml 
(175 – 350 μM) 

Sigma Aldrich 

Thymidine G1-S 
synchrony 

 2.5 mM Sigma Aldrich 

Nocodazole M synchrony 0.21-
0.65μM 

100 ng/mL  
(0.33 μM) 

Sigma Aldrich 

 

Table 2.1. Summary of small molecule inhibitors used in this study. The table 
indicates the drugs used in the experiments, their main targets, activity expressed as 
IC50, concentration used in the experiments, and supplier. 

 

2.5. Protein harvesting and western blotting 

Cells were scrape-harvested in 1 x PBS with 1 mM DTT, 1 mM PMSF protease 

inhibitor, and total phosphatase inhibitor cocktail Set V (Calbiochem). Samples were 

dissolved in 4X SDS loading dye with bromophenol blue, and resolved on 4 – 15% 

gradient gels (Bio-Rad) or hand poured 10 % SDS-PAGE gels using the Bio-Rad mini-

protean system. 10 % gels were run at 150 V constant voltage and precast gels were 

run at 200 V constant voltage. Protein were transferred onto nitrocellulose 

membrane using semi-dry transfer (10 % ethanol, 0.3 M Tris-Base, 10 mM CAPS, 0.02 
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% SDS). Eight sheets of blotting paper, nitrocellulose membrane, and protein gel 

were soaked in transfer buffer. The nitrocellulose membrane and protein gel were 

sandwiched between four sheets of blotting paper, and run for 90 minutes at 

constant current of 1 mA per 1 cm2. The membrane was probed with specific 

antibodies (Table 2.2) in 1 x TBS, 1 % BSA buffer with 0.1 % Tween, 4 °C overnight. 

Protein was quantified against its actin load control using Bio-Rad Image Lab 

Software. The band intensity on western blot was converted into relative number, 

the protein number was divided by actin number giving relative quantity. The control 

was then equalised to 1, every sample was divided by the relative control number 

showing relative variation from control. 
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Antibody Concentration Provider 

Ciz1-N471 1:1000 Covalabs 

pCiz1-T293 1:500 Covalabs 

pCiz1-S331 1:250 Covalabs 

Cyclin E (HE12) 1:500 Abcam 

Cyclin A (CY-1A) 1:500 Sigma Aldrich 

Dbf4 ab116613 1:500 Abcam 

MCM2 (BM28) 1:500 BD Transduction Lab 

pMCM2-ser53 A300-756A 1:500 Bioscience Bethyl 

Laboratories 

pMCM2-ser40/41 

ab70371 

1:500 Abcam 

Actin (AC15) 1:2500 Sigma Aldrich 

RB ab181616 1:500 Abcam 

pRB-ser811 ab109399 1:500 Abcam 

pRB-ser780 (D59B7) 1:250 Cell Signalling 

Technologies 

RB (XZ55) 1:250 BD Pharmingen  

Cdc7 (DCS-341) 1:200 Invitrogen 

His 6x (4E3D10H2 / E3) 1:2500 Invitrogen 

HRP anti-mouse 

secondary 

1:5000 Sigma Aldrich 

HRP anti-rabbit secondary 1:5000 Sigma Aldrich 

HRP anti-goat secondary 1:5000 Sigma Aldrich 

Alexafluor 680nm goat 

anti-rabbit IgG secondary  

1:5000 Invitrogen 

IR dye 800nm goat anti-

mouse IgG secondary 

1:5000 Li-Cor 

 

Table 2.2. List of antibodies. The table includes antibodies used in the experiments, 
their clone numbers, the concentration used, and supplier. 
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2.6. Nucleofection of cell lines 

Mouse fibroblasts were synchronised in G0 by serum starvation and contact 

inhibition. Synchronised cells were transfected at the time of release with anti-cyclin 

A2 siRNA (s63506), co-transfected with anti-cyclin E1 siRNA (s63521) and anti-cyclin 

E2 siRNA (s63524), or co-transfected using anti-Cdc7 siRNA (s63747) and anti-Dbf4 

siRNA (s77567) (Ambion) in Cell Line Nucleofector® Solution R for NIH3T3 (Amaxa® 

Cell Line Nucleofector® Kit R; Lonza protocol). The cells were transfected with 

Nucleofector® program U-030 for NIH3T3. The cells were harvested at 20 hours after 

the transfection with Cyclin E1,2 and Cdc7-Dbf4 siRNA, and 24 hours after 

transfection with cyclin A2 siRNA. Asynchronous 3T3 cells 50-70% in confluence were 

transfected with 1 µg of plasmid for protein overexpression. 

The thymidine synchronised human cancer cell lines were transfected with anti-Ciz1 

siRNA (s24488) (Ambion) upon the release from thymidine block. The Cell Line 

Nucleofector® Solution V was used for PC3 (program T-013), SW480 (L-024), MCF7 

(P-020), and T47D (X-005) (Amaxa® Cell Line Nucleofector® Kit V; Lonza protocol). 

The cells were harvested after 24 hours for protein and RNA analysis, and 24, 48, and 

72 hours for flow cytometry analysis as indicated in the figures. 

2.7. Site directed mutagenesis using whole plasmid mutagenesis 

Whole plasmid mutagenesis was used to perform alanine and aspartic acid 

substitutions in Ciz1 at CDK2 phosphorylation sites T144, T192, T293, and S331 of 

Ciz1 (Appendix 1). Mutagenesis was performed using 100 ng of pEGFPC1-Ciz1 and 

primers in Table 2.3. 
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The Pfu Ultra II (Stratagene) was used for PCR reaction using the following program: 

initial denature at 94°C – 5 min,  followed by 30 cycles of 94 °C – 15 s, 55 °C – 30 s, 68 

°C – 5 min, and the final extension at 72 °C for 7 min. The PCR product was treated 

with 1 µl of Dpn1 (NEB) for 1 hour at 37 °C, transformed into Top10 competent cells, 

and grown on LB plates with 50 µg/mL of Kanamycin. The single colonies were 

expanded, plasmid purified using GeneJET Plasmid Miniprep Kit (Thermo Fisher 

Scientific), and confirmed by sequencing (Eurofins).  

CDK2 

site 

Point 

mutation 

Primer Sequence 

T144 Alanine Forward CCACCCCAGATGGTCgCCCCAAATCTGCAGC 

Reverse GCTGCAGATTTGGGGcGACCATCTGGGGTGG 

Aspartic acid Forward CCACCCCAGATGGTCgaCCCAAATCTGCAGC 

Reverse GCTGCAGATTTGGGtcGACCATCTGGGGTGG 

T192 Alanine Forward CCCTCTTCCACCgCCCCCAATCGCAAG 

Reverse CTTGCGATTGGGGGcGGTGGAAGAGGG 

Aspartic acid Forward CCCTCTTCCACCgaCCCCAATCGCAAG 

Reverse CTTGCGATTGGGGtcGGTGGAAGAGGG 

T293 Alanine Forward CCAAAGCAGACACAGgCCCCGGATCGGCTGCCT 

Reverse AGGCAGCCGATCCGGGGcCTGTGTCTGCTTTGG 

Aspartic acid Forward CCAAAGCAGACACAGgaCCCGGATCGGCTGCCT 

Reverse AGGCAGCCGATCCGGGtcCTGTGTCTGCTTTGG 

S331 Alanine Forward GCACAGACACAGACCgCTCCAGAGCACTTAGCG 

Reverse CGCTAAGTGCTCTGGAGcGGTCTGTGTCTGTGC 

Aspartic acid Forward GCACAGACACAGACCgaTCCAGAGCACTTAGCG 

Reverse CGCTAAGTGCTCTGGAtcGGTCTGTGTCTGTGC 

 

Table 2.3. Side directed mutagenesis primers. Primers used in whole plasmid 
mutagenesis in order to introduce alanine or aspartic acid point mutations in CDK2 
phosphorylation sites of Ciz1. The lower case indicates nucleotide substitutions 
introduced via whole plasmid mutagenesis leading to the change in amino acid. 
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2.8. Translational inhibition with Cycloheximide 

In order to determine endogenous Ciz1 stability, the inhibitor of translocation step in 

elongation - cycloheximide (Schneider-Poetsch et al., 2010) was used at 

concentration of 50 µg/ml in asynchronous 3T3 cells at 50-70% in confluence. The 

cells were incubated with cycloheximide 0 – 8 hours and harvested every 2 hours as 

indicated in the figures. For analysis of stability of the overexpressed exogenous GFP-

Ciz1, GFP-Ciz1-AAAA/DDDD, and GFP-Ciz1-S331A/D, the cells were treated with 100 

µg/ml of cycloheximide 8/ 24 hours after transfection with 1 µg of GFP plasmid. Cells 

were incubated with cycloheximide for 0 – 8 hours and harvested every 2 hours as 

indicated in the figures. 

2.9. CRISPR-Cas9 protocol 

The guide sequences (Table 2.4) were introduced in Linearized GeneArt® CRISPR 

Nuclease Vector containing Cas9 and CD4 reporter according to manufacturer’s 

instruction (Invitrogen). One Shot® TOP10 chemically competent E. coli were 

transformed with the plasmid and guide sequence verified by DNA sequencing using 

U6 Forward Primer (Eurofins). To produce the requisite mutations within the Ciz1 

gene, single strand oligonucleotide directed mutagenesis was performed using 

approximately 100 base pair single stranded oligodeoxynucleotide (ssODN) 

sequences (Table 2.5) that contained point mutations (lower case) that were 

complementary to the region surrounding the PAM site to enable homologous 

recombination.  
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CDK site Direction Guide sequence 

T192 Forward 5’-ACTCACCTTGCGATTGGGGGgtttt-3’ 

Reverse 5’-CCCCCAATCGCAAGGTGAGTcggtg-3’ 

T293 Forward 5’-ACCAAAGCAGACACAGACCCgtttt-3’ 

Reverse 5’-GGGTCTGTGTCTGCTTTGGTcggtg-3’ 

S331 Forward 5’-AGACCCAGCCAAAGCTGCTGgtttt-3’ 

Reverse 5’-CAGCAGCTTTGGCTGGGTCTcggtg-3’ 

 

Table 2.4. The list of synthesised single strand guide sequences (Eurofins). 
Approximately 20 nucleotide complementary sequences next to NGG PAM site were 
synthesised with -gtttt-3’ and –cggtg-3’ overhangs for ligation to Linearized GeneArt® 
CRISPR Nuclease Vector. The PAM sequence (NGG) is not involved in the guide 
sequence. 

 

CDK site Mutation ssODN 

T192 Alanine CCACTCAGGGAGGAACACCCAGAAACAGGCCAGAgCCCCCgCTg
CCgCCgCCCCCAATCGCAAGGTGAGTAGTGCTTTGAGTGGAACA
GCTCAGCAGG 

Aspartate CCACTCAGGGAGGAACACCCAGAAACAGGCCAGAgaCCCCgaTg
aCgaCgaCCCCAATCGCAAGGTGAGTAGTGCTTTGAGTGGAACA
GCTCAGCAGG 

T293 Alanine GCAAGGGTCCAGCCTCAGACCCAGATGACAGCACCAAAGCAGA
CACAGgCCCCGGATCGGCTGCCTGAGCCACCAGAAGTCCAAATG
CTGC 

Aspartate GCAAGGGTCCAGCCTCAGACCCAGATGACAGCACCAAAGCAGA
CACAGgaCCCGGATCGGCTGCCTGAGCCACCAGAAGTCCAAATG
CTGC 

S331 Alanine GCAGATCCAGACCCAGCCAAAGCTGCTGAGGCAGGCACAGACA
CAGACCgCTCCAGAGCACTTAGCGCCCCAGCAGGATCAGGTAGA
GCCACAGGTAC 

Aspartate GCAGATCCAGACCCAGCCAAAGCTGCTGAGGCAGGCACAGACA
CAGACCgaTCCcGAGCACTTAGCGCCCCAGCAGGATCAGGTAGA
GCCACAGGTAC 

 

Table 2.5. The list of single strand ODN sequences with point mutations. 
Approximately 100 nucleotide single strand ODN sequences were synthesised 
(Eurofins). The nucleotide substitutions are labelled in lower case leading to changes 
in amino acid sequence when translated.  
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The Cas9 endonuclease cuts double strand genomic DNA and CRISPR-Cas9 system 

utilises single strand ODN sequence as a template for homology directed repair of 

the DNA break (Cong et al., 2013; Paquet et al., 2016; Prykhozhij et al., 2017). Site 

directed mutagenesis was performed using 1 µg of CRISPR-Cas9 expression vector 

and 2.5 µL of 50 µM ssODN. They were co-transfected into 3T3 embryonic mice 

fibroblast cells using 100 µl of transfection reagent Kit-R (Lonza), via electroporation 

using Nucleofector™ program U-030 (Lonza). The cells transfected with the GeneArt® 

CRISPR Nuclease (CD4 Reporter) Vector were enriched using Dynabeads® CD4 

magnetic beads (Invitrogen), and were plated in 96 well plate using limited serial 

dilution method that each well contained single cell. 

Wells containing single cell colonies were identified after two weeks, expanded and 

the genomic DNA was extracted using 50 μl of QuickExtract™ DNA Extraction 

Solution (Epicentre – Lucigen). The sequences of interest were PCR amplified using 

One Taq Quick-Load 2x Master Mix (New England BioLabs), 94°C- 30s, 30 cycles of 

94°C - 30s, 68°C - 30s, 68°C - 60s, final extension of 68°C - 5min. The primers for PCR 

amplification were For1 CCCTGGATAAGAGGGTCCCCTC and Rev1 

GGGTATGGCTAAAGTCACATTGAGACC for T192 region, and For2 

GGAACTGGGTCAAAGGCCTCTGGG and Rev2 CTGGGCCTGCTTCTGTGACTGCGT for 

T293 and S331 regions. The restriction enzymes were selected using NEBcutter V2.0 

(www.neb.com) in order to determine the locations of cutting sites in amplified 

region and the specificity for point mutations. The sequences were screened by 

digestion with restriction enzymes that identified desired mutations Bsp1286I for 

T192A, Hpy99I for T192D, Eco0109I for T293A, PpuMI for T293D, BsrBI for S331A, 

and BsoBI for S331D (Table 2.6). Restriction digests were performed according to 
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manufacturer’s instructions. Products were analysed by electrophoresis using 1% 

Agarose Gel, and clones that showed efficient digestion were inserted into the 

TOPO10 Blunt cloning vector (Zero Blunt® TOPO® PCR Cloning Kit – Thermo Fisher 

Scientific).  DNA was sequenced from multiple clones using M13 For/Rev primers by 

Eurofins Scientific. 

Site of the point 
mutation 

Point mutation specific 
restriction enzyme 

Fragment size (base pairs) 

T192 Bsp1286I WT 59 + 513 = 572 

Alanine 59 + 271 + 242 = 572 

Hpy99I WT 572 

Aspartic acid 338 + 234 = 572 

T293 Eco0109I WT 247 + 316 = 591 

Alanine 247 + 68 + 276 = 591 

PpuMI WT 591 

Aspartic acid 318 + 273 = 591 

S331 BsrBI WT 591 

Alanine 430 + 161 = 591 

BsoBI WT 591 

Aspartic acid 443 + 158 = 591 
 

Table 2.6. The list of the restriction enzymes used for identification of specific point 
mutations introduced via CRISPR-Cas9 and HDR. The table identifies the CDK 
phosphorylation sites of Ciz1 that were targeted by CRISPR-Cas9, point mutation 
specific restriction enzymes that were selected for identification of point mutations, 
and the fragment size that was expected in case of wild type or successful point 
mutation. 

 

2.10. MTT assay 

Cells were seeded in 96 well plates, 5000 cells/ well in 200 µl of D-MEM. After 24 hr, 

the D-MEM was replaced with 100 µl of phenol red free D-MEM (Gibco) with 10 % of 

MTT prepared in 1 x PBS from Vybrant TM MTT Cell Proliferation Assay Kit 

(Invitrogen). The cells were incubated for 4 hr at 37°C, then insoluble purple 

formazan was dissolved with 50 µl of DMSO (Sigma), and absorbance value for 0 hr 
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control was read at 540 nm using Tecan Absorbance Reader.  The same procedure 

was repeated at indicated time points after Ciz1 depletions. 

2.11. Flow cytometry 

Cells were pulse labelled with 10 µM EdU (Invitrogen) for 1 hour prior to harvesting 

by trypsinisation. EdU labelled cell pellets were washed 3 x with 500 µl 1 % BSA in 1 x 

PBS, fixed with 4 % PFA for 15 min, washed 3 x, permeabilised with 0.5 % Triton X-

100 for 20 minutes, and washed 2 x with 1 % BSA. Cells were protected from light 

and incubated for 30 minutes on ice with Click-iT™ EdU Cell Proliferation Assay 

Cocktail (Invitrogen) containing Alexa Fluor 488 Azide. Cells were washed 2 x with 1 

% BSA and 1 x with PBS, and stained with 100 µg/ml of Propidium Iodide in 0.1 % 

Triton x-100 in PBS. Cells were analysed with Beckman Coulter CytoFLEX using FITC 

(525/40) and PE (585/42) channels. 

2.12. Apoptosis assay 

One million cells, determined via counting using haemocytometer and bright field 

microscopy, were harvested and washed in 1 x PBS, and in 1 x annexin-binding buffer 

(FITC Annexin V/Dead Cell Apoptosis Kit, Thermo Fisher Scientific). The cells were 

incubated with 5 μl of FITC annexin V in 195 μl of binding buffer at the room 

temperature for 15 min. The samples were washed with binding buffer, and stained 

with 20 μg/ml of propidium iodide (PI) in binding buffer. The samples were analysed 

with CytoFLEX using FITC (525/40) channel for apoptotic cells and PE (585/42) 

channel for necrotic cells. 
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2.13. E-Ciz1-His6x purification 

2.13.1.  E-Ciz1-His6x cloning into pET-28a vector 

pGEX-6P-3 plasmid with E-Ciz1 insert was amplified with forward primer For 5’ 

GGCCCCATGGgcATGCTGCAAAGAGCTTTGCTCC 3’ containing a GGCC clamp, the NcoI 

restriction site (CCATGG) and 2 nucleotides to maintain frame; and reverse primer 

Rev 5’ GGCCGTCGACGGTTTTGAGGCGTGTTGAGCG 3’ with SalI restriction 

endonuclease site (GTCGAC). The PCR reactions were performed using the following 

conditions: 10 s – 98°C, 30 cycles of 1 s – 98°C, 5 s – 69°C, 15 s – 72°C, and 1 min – 

72°C, using Phusion Flash II DNA Polymerase 2 x Master Mix, 1 µM of each primer, 

and 1 µg of plasmid template. This produced a PCR product for ECiz1 flanked by 

restriction sites to aid insertion into the expression vector. 

The PCR product was gel purified (GeneJET Gel Extraction Kit). The PCR product and 

pET-28a plasmid were both digested with 1 µl NcoI and SalI restriction enzymes 

(NEB), using 1 µg of PCR product or plasmid and 1 x Cut Smart buffer (NEB), and 1 µl 

of SAP (Shrimp Alkaline Phosphatase) in order to prevent re-ligation of linearized 

plasmid for 1 hour, at 37°C. 

The digests were gel purified and used in ligation reaction (Rapid DNA Ligation Kit, 

Thermo Scientific) in 1:3 molar ratio using the following approach: Vector size was 

5000 bp = 3,250,000 g/mol, thus 5.07 x 10-6 mol, and E-Ciz1 size was 2400 bp = 

1,560,000 g/mol, thus 5.13 x 10-6 mol, therefore 1:3 volume ratio was used.  

In order to confirm that the plasmid contained Ciz1 with His6 tag on C terminal, the 

Top 10 (DE3) Competent Cells were transformed with 1 µl of ligation reaction, 30 
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minutes on ice, 40 s in 42°C, 5 minutes on ice, and expanded in 200 µl of SOC growth 

medium (0.5% Yeast Extract; 2% Tryptone; 10 mM NaCl; 2.5 mM KCl; 10 mM MgCl2; 

10 mM MgSO4; 20 mM Glucose) for 1 hour in 37 °C incubator with shaking at 200 

rpm. 50 µl of medium was plated on LB agar plates containing 30 ng/ml of 

Kanamycin. The individual colonies were picked cultured in 5 ml LB broth with 30 

ng/ml of Kanamycin and incubated at 37 °C with shaking at 200 rpm overnight. The 

cultures were centrifuged 4000 rpm, and plasmids were purified from the pellets 

using GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific), and DNA sequencing 

was performed using T7 Forward and T7 Reverse primers (Eurofins). 

2.13.2.  E-Ciz1-His6x expression 

The Rosetta™ (DE3) Competent Cells were transformed with 1 µl of sequence 

verified pET-28s-ECiz1 plasmid by incubating for 30 minutes on ice, 40 seconds at 42 

°C, and 5 minutes on ice. Subsequently, 200 µl of SOC growth medium (0.5% Yeast 

Extract; 2% Tryptone; 10 mM NaCl; 2.5 mM KCl; 10 mM MgCl2; 10 mM MgSO4; 20 

mM Glucose) was added and cells were incubated for 1 hour in 37°C incubator with 

shaking at 200 rpm. The 50 µl of medium was then plated on LB agar plates 

containing 30 ng/ml of Kanamycin and 34 ng/ml of Chloramphenicol.  

The colonies were then transferred into 5 ml LB broth with 30 ng/ml of Kanamycin 

and 34 ng/ml of Chloramphenicol, and incubated at 37 °C with shaking at 200 rpm 

overnight. The culture was then transferred into 75 ml LB broth with 30 ng/ml of 

Kanamycin and 34 ng/ml of Chloramphenicol, and incubated at 37 °C with shaking at 

160 rpm overnight. The medium was then transferred to 750 ml of auto-induction 

medium (7.5 g Tryptone, 3.75 g Yeast extract, 1 mM MgSO4, 1 mM ZnSO4 (Ciz1 is a 
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zinc finger protein), 1 x 5052, 1 x NPS, 1 x trace metals, 30 ng/ml of Kanamycin and 

34 ng/ml of Chloramphenicol). 20 x NPS was composed of 0.5 M (NH4)2SO4, 1 M 

KH2PO4, 1 M Na2HPO4. 50 x 5052 had 0.5% glycerol, 0.05% glucose, 0.2% alpha-

lactose w/v, 1000 x trace metals (0.1 M FeCL3•6H2O, 1 M CaCl, 1 M MnCl2•4H2O, 1 M 

ZnSO4•7H2O, 0.2 CoCl2•6H2O, 0.1 M CuCl2•2H2O, 0.2 M NiCl2•6H2O, 0.1 M 

Na2MoO4•2H2O, 0.1 M Na2SeO3•5H2O, 0.1 M H3BO3). The culture was incubated at 

20 °C, with shaking at 120 rpm, overnight. 

2.13.3. E-Ciz1-His6x purification with Ni-NTA resign 

The culture was centrifuged at 4500 rpm for 15 minutes using JLA 8.1000 rotor 

(Beckman Coulter Avanti J-26 XP centrifuge). The bacterial cell pellet was 

resuspended in 10 ml of Ni2-NTA Buffer A (50 mM NaH2PO4, 1 M NaCl, 10 mM 

Imidazole, protease inhibitors (cOmplete, EDTA-free, Roche), 1mM PMSF), sonicated 

4 x 15 seconds at 25 - 30 microns peak to peak using probe of 1 cm in diameter in an 

ice slurry to control temperature of the cells. The lysate was centrifuged at 20,000 

rpm for 30 min using JA 25.50 rotor, and the supernatant was incubated with 250 µl 

of Ni2-NTA beads (Amintra Protein Purification Tools) for 30 min at 4 °C. The 

supernatant was removed and beads were resuspended and incubated for 1 hour at 

4 °C in 5 ml of Buffer A with 5 mM of ATP in order to unfold the protein and remove 

Hsp70 (Clare and Saibil, 2013). The beads were applied to gravity column (Thermo 

Scientific) and washed with 4 ml of Buffer A, 4 ml of 95 % of Buffer A + 5 % of Buffer 

B (50 mM NaH2PO4, 1 M NaCl, 250 mM Imidazole, protease inhibitors, 1mM PMSF), 

and protein was eluted with 2 ml of Buffer B. 
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2.13.4. E-Ciz1-His6x purification via anion exchange chromatography 

The eluted protein was then diluted down to 50 mM salt concentration with no salt 

buffer (50 mM NaH2PO4, 10 mM imidazole, protease inhibitors, 1 mM PMSF, 1mM 

DTT) in preparation for purification by FPLC using 1 ml Resource Q column (GE 

Healthcare Life Sciences). The protein was purified using an increasing salt gradient 

from low salt buffer (50 mM Tris-HCl pH 8.0, 1 mM EDTA, 50 mM KCl, 5 % glycerol, 1 

mM DTT, 0.1 mM PMSF) to a high salt buffer (50 mM Tris-HCl pH 8.0, 1 mM EDTA, 1 

M KCl, 5% glycerol, 1 mM DTT, 0.1 mM PMSF) using a linear gradient of 20 column 

volumes. Fractions were collected every 0.5 ml, flow rate 1 ml/min, 4°C, AKTA 

purifier (GE Healthcare Life Sciences). The fractions were analysed by SDS-PAGE and 

western blotting with Ciz1-N471 (Covalabs) and anti-His6x (Invitrogen, MA1-135) 

antibodies and snap frozen in 20 µl beads in liquid nitrogen. The concentration of the 

protein was determined using BCA assay (Pierce™ BCA Protein Assay Kit, Thermo 

Fisher Scientific) at 562 nm according to manufacturer’s instructions. 

2.14. N471-Ciz1 purification 

The pGEX-6P-3-Ciz1-N471 plasmid was confirmed by sequencing with pGEX forward 

and reverse primers and it was transformed into BL-21 E. coli competent cells. The 

cells were grown on LB agar containing 100 µg/ml of Ampicillin and a single colony 

picked and cultured in LB medium (10 hours in 5 ml then 24 hours in 75 ml) for 

inoculation of ZY media for protein expression. The culture was centrifuged at 4500 

rpm for 15 minutes and the pellet was resuspended in wash buffer HBS (50mM 

HEPES pH7.8, 135 mM NaCl, 3 mM EDTA, 1mM DTT, protease inhibitors (Roche) and 

1mM PMSF). The suspension was sonicated, centrifuged (section 2.13.2), and the 
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lysate was bound to the Glutathione Sepharose 4B beads (GE life sciences) for 1 hour 

at 4 °C. The beads were washed with 10 ml of HBS buffer for 5 times, and with 5 ml 

of 3C cleavage buffer (50 mM Tris HCl pH 7.0, 150 mM NaCl, 2 mM DTT) for 3 times. 

The beads were incubated with 10 µl of 3C prescission protease (Sigma Aldrich) in 1.5 

ml of 3C cleavage buffer over night at 4 °C with rotation. After digestion, the GST tag 

remains bound to the Glutathione beads and cleaved Ciz1-N471 protein was eluted 

from a microcentrifuge filter column. The purity was evaluated using SDS-PAGE and 

coomassie staining. Finally, the concentration was determined by the BCA assay. The 

protein beads were snap frozen in liquid nitrogen. 

2.15. Biochemical identification of E3 ligases and phosphatases 

2.15.1.  In vitro ubiquitylation assay 

In vitro ubiquitylation assays were performed using 200 ng of Ciz1 protein, 0.1 µg E1, 

0.04 µg 9 x E2 (UbcH2, His-UbcH3, UbcH5a, UbcH5b, UbcH5c, His-UbcH6, UbcH7, 

UbcH8, His-UbcH10) (a gift from Dr Jason Parsons, University of Liverpool), and 

recombinant His6x-ubiqutin. Reactions were performed using 1 x ubiquitylation 

buffer (25 mM TrisHCl pH 8.0, 5 mM MgCl2, 200 µM CaCl2, 1 mM DTT, 10 µM 

MG132), 4 mM ATP, 5 µg Ubiquitin wild type (Ub WT) dissolved in JPDB buffer (50 

mM TrisHCl pH 8.0, 50 mM NaCl, 1 mM EDTA, 10% Glycerol). The E3 activity was 

mediated using 0 - 8 µg HeLa whole cell extract (WCE), Phosphocellulose column flow 

through (P150), or Phosphocellulose column binding fraction (P1000). The 15 µl 

reactions were incubated for 1 hour at 37 °C with shaking at 800 rpm. The proteins 

were separated on 10% SDS-PAGE gel, TGS buffer, 2 hours, 125 V (Thermo Fisher), 

transferred onto PVDF membrane (1 x TG buffer (2.5 mM Tris, 19.2 mM glycine, pH 
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8.3), 20% methanol), 1 hour, 20 V, and blocked in 50% Odyssey blocking buffer in 

PBS. The membrane was probed with Ciz1-N471 1:1000 (Covalabs) and His6x 1:1000 

(Invitrogen, MA1-135) in Odyssey blocking buffer in PBS with 0.1% Tween. Active 

fractions were determined by analysis of western blotting showing Ciz1 poly-

ubiquitylation levels. Where Ciz1 showed higher molecular weight species, fractions 

were further purified by sequential chromatography steps. 

2.15.2. In vitro phosphatase assay 

The recombinant Ciz1-N471 protein was in vitro phosphorylated using the 

recombinant cyclin A – CDK2 added in 1:10 ratio (2 µM of Ciz1 – N471 and 0.2 µM of 

cyclin A – CDK2). The phosphorylation reaction (50mM HEPES pH = 7.8, 20 mM 

MgCl2, 10 mM ATP, 1 mM DTT) was incubated for 30 min at 37 °C, 500 rpm. 

The 200 ng of the phosphorylated pCiz1-N471 was added to reactions in phosphatase 

buffer (25 mM TrisHCl pH 8.0, 5 mM MgCl2, 200 µM CaCl2, 1 mM DTT, 10 µM MG132, 

4 mM ATP, 90 µM Roscovitine) with 0-8 µg HeLa whole cell extract (WCE), 

Phosphocellulose column flow through (P150), or Phosphocellulose column binding 

fraction (P1000) (as in section 2.15.1). Active fractions were determined by analysis 

of phospho-T293-Ciz1 levels. Where phospho-T293 Ciz1 levels were reduced, 

fractions were further purified by sequential chromatography steps. 
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2.15.3.  Ion exchange column (20 ml) 

The 50 ml P1000 fraction for E3 ligase identification and P150 fraction for 

phosphatase assay of 1 M KCl were dialysed in 4 litres of low salt buffer (50 mM KCl, 

50 mM TrisHCl, 1 mM EDTA, 5% Glycerol, 1 mM DTT) overnight at 4°C. The fraction 

was run through Mono S column (SP Sepharose HP) (E3 ligase assay) of 20 ml bed 

volume (poured by Jason Parsons), and Mono Q (phosphatase assay) flow rate 1 

ml/min, 80 fractions of 4 ml, salt gradient from 50 mM KCl to 1 M KCl. The 500 µl of 

each even fraction was concentrated down to 50 µl (20 min, 14,000 g) and 2 µl of 

each concentrated fraction was used in in vitro ubiquitylation/phosphatase assay and 

analysed by western blotting as described before. The rest of Mono S/Q fractions 

were stored in -80°C. 

2.15.4.  Size exclusion chromatography (SEC) 

The 3 x 4 ml active fractions (Mono S – ubiquitylation, Mono Q – phosphatase) were 

thawed, protein fractions were pulled and concentrated down to 500 µl at 10,000 

rpm. They were run through Superdex 200 10/300 GL 20ml size exclusion 

chromatography column (GE Healthcare Life Sciences) using SEC buffer (50 mM 

TrisHCl pH 8.0, 50 mM KCl, 1 mM EDTA, 5% Glycerol, 1 mM DTT, 0.1 mM PMSF), 0.5 

ml/min flow rate, 40 x 0.5 ml fractions. The activity of even fractions (2 µl) was tested 

in in vitro ubiquitylation/phosphatase assay and western blotting, and the rest was 

stored in -80°C. 
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2.15.5.  Analytical ion exchange column (1 ml) 

The 500 µl fractions were pulled together and diluted 1:2 with no salt buffer (50 mM 

TrisHCl pH 8.0, 1 mM EDTA, 5% Glycerol, 1 mM DTT, 0.1 mM PMSF) in order to 

achieve 50 mM salt concentration. The 5 ml of sample was loaded onto 1 ml Mono S 

5/50 GL (E3 ligase identification experiments) and Mono Q 5/50 GL (phosphatase 

identification assays) (GE Healthcare Life Sciences), and eluted using 50 mM to 1 M 

salt gradient over 40 x 0.5 fractions, 0.3 ml/min flow rate. Each fraction (2 µl) was 

tested in ubiquitylation/phosphatase reaction, and two active fractions expressing 

ubiquitylation activity (after MonoS) and phosphatase activity (after MonoQ) were 

selected for Mass Spec analysis. 

2.16. Methods for LC-MS analysis of FPLC fractions 

2.16.1.  Sample preparation 

10 µl of Strataclean bead slurry was added to each sample and vortexed for 1 min. A 

low speed 2,000 x g centrifugation for 2 min pelleted the beads and the protein-

depleted supernatant was carefully removed. The beads were re-suspended in 1 mL 

of wash buffer (25 mM ammonium bicarbonate (ambic)) and the centrifugation step 

repeated. The wash step was repeated twice and the beads then re-suspended in 80 

µl of 25 mM ambic. 5 µl of 1 % (w/v) Rapigest (Waters) in 25 mM ambic was added 

and samples heated at 80 °C for 10 minutes. DTT (5 µl of 9.2 mg/mL in 25 mM ambic) 

was added and samples heated at 60 °C for 10 min. Iodoacetamide (5 µl of 33 mg/mL 

in 25 mM ambic) was added and the samples incubated in the dark at RT for 30 min. 

5 µl of 0.2 mg/mL trypsin in 50 mM acetic acid added and samples incubated at 37°C 

overnight. 



Chapter 2: Materials and Methods 

56 
 

The following day the digests were acidified by the addition of 0.5 µl of TFA and 

incubated for 45 min at 37 °C (to hydrolyse Rapigest). Samples were centrifuged at 

17,200 x g for 30 min and the clarified digests transferred to total recovery vials for 

LC-MS analysis.  

2.16.2.  LC-MS/MS analysis 

Data-dependent LC-MSMS analyses were conducted on a QExactive quadrupole-

Orbitrap mass spectrometer coupled to a Dionex Ultimate 3000 RSLC nano-liquid 

chromatograph (Hemel Hempstead, UK). Sample digest (2-6 µl) was loaded onto a 

trapping column (Acclaim PepMap 100 C18, 75 µm x 2 cm, 3 µm packing material, 

100 Å) using a loading buffer of 0.1% (v/v) TFA, 2% (v/v) acetonitrile in water for 7 

min at a flow rate of 9 µL/min.  The trapping column was then set in-line with an 

analytical column (EASY-Spray PepMap RSLC C18, 75 µm x 50 cm, 2 µm packing 

material, 100 Å) and the peptides eluted using a linear gradient of 96.2% A (0.1% 

[v/v] formic acid): 3.8% B (0.1% formic acid in water: acetonitrile [80:20] [v/v]) to 

50% A: 50% B over 30 min at a flow rate of 300 nL/ min, followed by washing at 1% 

A: 99% B for 5 min and re-equilibration of the column to starting conditions.  The 

column was maintained at 40°C, and the effluent introduced directly into the 

integrated nano-electrospray ionisation source operating in positive ion mode.  The 

mass spectrometer was operated in DDA mode with survey scans between m/z 300-

2000 acquired at a mass resolution of 70,000 (FWHM) at m/z 200.  The maximum 

injection time was 250 ms, and the automatic gain control was set to 1e6.  The 10 

most intense precursor ions with charges states of between 2+ and 5+ were selected 

for MS/MS with an isolation window of 2 m/z units.  The maximum injection time 
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was 10 ms, and the automatic gain control was set to 1e5.  Fragmentation of the 

peptides was by higher-energy collisional dissociation using normalised collision 

energy of 30%.  Dynamic exclusion of m/z values to prevent repeated fragmentation 

of the same peptide was used with an exclusion time of 20 sec. 

2.17. Statistical analysis 

The significance of the results was measured by either the paired sample two-tailed 

t-test using Microsoft Excel 2010 or the one-way post-hoc Tukey ANOVA using IBM 

SPSS Statistics 24 as indicated in each figure. The results were considered statistically 

significant when p-value was ≤0.05. The significance value p≤0.05 was labelled as * in 

the graphs and tables, p≤0.01 as **, and p≤0.005 as ***. Each figure presents at least 

3 experimental repeats and graphs show the mean ± Standard Deviation (S.D.). 

2.18. Immunoprecipitation experiments 

NIH-3T3 cells were transfected by electroporation with 1 μg of His-ubiquitin and HA-

ubiquitin plasmids (present from Dr Jason Parsons). For His6-Ubiquitin and Ni2+-NTA 

immobilisation (IMAC), cells were scrape harvested in lysis/wash buffer (1 x PBS pH 

7.4 (Sigma Aldrich), 1 x complete protease inhibitors, 100 mM NaCl, and 10 mM 

imidazole), 24 hours after transfection +/- 4 hour treatment with 10 μM MG132. 

Sample was incubated with 0.5 % Triton X-100 for 5 min on ice and centrifuged at 

10,000 rpm for 5 min. 30 μl of Ni2+-NTA resin was washed with 500 μl of wash buffer 

for 3 times in the spin column, column was closed, the supernatant (soluble protein) 

made up to 400 μl with wash buffer was added to the column, and incubated at 4 °C 

with rotation for 1 hour. The resin was washed with 500 μl of wash buffer by 

centrifuging at 1,000 g for 1 min for 4 times. The columns were closed, 60 μl of 4 x 
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SDS loading buffer was added to the beads, boiled at 95 °C for 10 minutes, column 

plug removed and bound fraction collected. The Ciz1-Ubiquitn was analysed by 

western blotting using Ciz1 antibody. For HA-Ubiquitin Anti-HA Agarose (Thermo 

Scientific) immunoprecipitation, cells were scrape harvested in lysis/ wash buffer (1 x 

PBS, 1 x complete protease inhibitors, 1 mM DTT), and protein containing extract 

was prepared with Triton X-100. 20 μl of Anti-HA Agarose was washed 3 times, and 

cell extracts were incubated with agarose for 1 hour. Sample was washed 3 times 

with wash buffer, boiled in 60 μl of 4 x SDS loading buffer and collected (bound 

fraction). 
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3.1. Evaluation of Ciz1 expression levels in synchronised populations of 3T3 cells 

Ciz1 abundance has been shown to be important in cell cycle progression (Coverley 

et al., 2005), as well as in tumourigenesis, radiation sensitivity, X chromosome 

silencing, and maintenance of epigenetics (Den Hollander et al., 2006; Higgins et al., 

2012; Pauzaite et al., 2017; Stewart et al., 2019; Sunwoo et al., 2017; Yamada et al., 

2015; Yin et al., 2013; Zhou et al., 2018). In order to investigate the mechanisms that 

regulate Ciz1 protein accumulation and stability, a murine model was used. With 

respect to cell cycle, regulation and functional analysis of Ciz1 in the 3T3 murine 

embryonic fibroblasts have been most extensively studied (Ainscough et al., 2007; 

Copeland et al., 2010; Copeland et al., 2015; Coverley et al., 2002; Coverley et al., 

2005; Ridings-Figueroa et al., 2017; Stewart et al., 2019). This system enables cell 

cycle synchronisation by contact inhibition and serum starvation (Holley and Kiernan, 

1968; Zetterberg and Larsson, 1985). The use of contact inhibition enables dissection 

of events from G1 to S phase without perturbing the system with chemical cell cycle 

inhibitors that can induce stress responses (Copeland et al., 2010; Coverley et al., 

2002; Coverley et al., 2005). The initial aim was to use synchronised 3T3 cells to 

determine whether Ciz1 expression is cell cycle regulated. 

In order to analyse the cells in G1 – S transition, 3T3 cells were synchronised in G0 

phase and released in fresh medium. Progression through cell cycle was monitored 

by EdU, a thymidine analogue that enables detection of nascent DNA using CLICK-IT 

chemistry (Figure 3.1). The EdU positive cells were quantified by determination of all 

nuclei (DAPI, blue) and the percentage of S phase cells (EdU, red) (Figure 3.1: B). To 

confirm the EdU profile, the flow cytometry analysis of cells pulse labelled with EdU 
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and counterstained with propidium iodine (PI) was performed (Figure 3.1: C). Figure 

3.1 shows that cells enter S phase at around 14-16 hours after release from G0 phase 

with 40-45 % of cells being in S phase at 24 hours after release. 

Figure 3.1. Cell cycle synchronisation of 3T3 cells from G1 into S phase. A) Contact 
inhibited 3T3 cells were released from quiescence and followed into S phase by EdU 
incorporation. Representative confocal microscope images show merged EdU 
(555nm) and DAPI (405nm) fields between 12 - 24 hour after release from G0 phase. 
Scale bar indicates 10 µm. B) Quantitation of EdU positive cells (S phase) in relation 
to total DAPI stained nuclei (%). Error bars represent mean ± S.D., n=6. C) 
Multiparameter flow cytometry dot plot showing EdU intensity (y-axis) vs total DNA 
(x-axis) for asynchronous cell and synchronous cells 12, 16, 20 and 24 hours after 
release from quiescence. G1 (2N), S phase, and G2 (4N) populations are indicated on 
the asynchronous dot plot. 

 

3.2. Defining the restriction point in post-quiescent 3T3 cells 

G1 phase can be separated into 2 distinct stages. In early G1 phase cells respond to 

mitogen stimulation to grow and in late G1 phase cells no longer require mitogenic 

stimulation to progress through the cell cycle. The point in G1 where cells no longer 

require mitogens is referred to as the restriction point (RP) (Pardee, 1974; Zetterberg 

and Larsson, 1985). Recent evidence suggests that mammalian cells have two 
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possible exit-to-quiescence points that depend on residual CDK2 activity. If the cells 

have low p21 and moderate CDK2 activity upon mitotic exit, they enter the G1 phase 

and pass through the cell cycle independently from mitogenic signalling (Spencer et 

al., 2013). However, if the cells have high p21 levels, they enter a G0-like state with 

low CDK2 activity and hypo-phosphorylated Rb. These cells become dependent on 

mitogenic signalling and the restriction point that is more commonly described.  

Quiescent 3T3 murine fibroblasts re-enter the cell cycle with low CDK2 activity and 

hypo-phosphorylated Rb (Barr et al., 2017; Heldt et al., 2018b; Moser et al., 2018). In 

order to identify the timing of the restriction point, cells were released from G0 into 

serum supplemented medium (Figure 3.2).  30 minutes prior to each time point, cells 

were placed in serum free medium containing EdU. This revealed that the cells 

became serum independent for replication after 14-15 hours after G0 release, which 

is consistent with other studies (Coverley et al., 2002).  

 

Figure 3.2. Determination of the restriction point. The 3T3 cells were inhibited in G0 
phase by contact inhibition and nutrient starvation, the cells were released into fresh 
medium with serum (blue line) and then placed into serum free medium 30 minutes 
prior each time point (red line). The cells were pulse labelled with EdU and EdU 
positive nuclei quantified (%). The arrow indicates the approximate timing of the 
restriction point (RP). Error bars represent mean ± S.D., n=3. 
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3.3. Ciz1 protein expression and mRNA transcription 

Ciz1 promotes DNA replication initiation in vitro and in vivo (Copeland et al., 2010; 

Copeland et al., 2015; Coverley et al., 2005). The DNA replication function is 

dependent on Ciz1 protein levels and is regulated by CDK mediated phosphorylation 

(Copeland et al., 2015). Ciz1 is phosphorylated at multiple residues and phospho-

specific antibodies are available for 2 CDK sites (consensus motif S/TPXK/R), 

phospho-threonine (pT293, TPNR) and phospho-serine (pS331, SPEH). To determine 

the kinetics of Ciz1 expression and site specific phosphorylation, a synchronised 

population of cells was monitored from G0 to S phase (Figure 3.3: A).  

 

Figure 3.3. Ciz1 protein accumulation and transcription.  A) The 3T3 cells were 
synchronised, samples were analysed at indicated time points after release from 
quiescence (0 – 24 hours) and probed with Ciz1, pCiz1-S331, pCiz1-T293, Cyclin E, 
Cyclin A, Dbf4 specific antibodies. Actin was used as a loading control. B) Total RNA 
was extracted and quantified by RT-qPCR using gene specific primers (Section 2.3). 
The mRNA levels are shown relative to GAPDH mRNA, and transcript levels 
standardised to those of quiescent cells in G0 (0 hour). Each time point represents 3 
experimental repeats with 3 technical repeats in each, showing mean ± S.D. 
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Western blot analysis revealed that Ciz1 protein accumulated during G1 and 

increased into S phase. Ciz1 accumulation correlated with cyclin A accumulation and 

phosphorylation at T293 from 16 hours, suggesting that Ciz1 phosphorylation could 

potentially promote Ciz1 accumulation. The increase in Ciz1 levels correlated with 

cyclin A expression and T293 phosphorylation, and its phosphorylation on S331 site 

resembled cyclin E expression. These findings were consistent with the temporal 

separation of CDK2 activation by cyclin E and then cyclin A (Coverley et al., 2002). 

Ciz1 protein expression is temporally regulated in G1 phase and protein 

accumulation correlates with known G1 – S regulators Cyclin E, Cyclin A, and Dbf4 

(lanes 4-6). Cyclin E, Cyclin A, and Dbf4 are transcriptionally regulated by the E2F-Rb 

pathway. Next the transcript levels for E2F regulated transcripts and Ciz1 were 

compared (Figure 3.3: B). This RT-qPCR analysis of mRNA levels from G0 to S phase 

(0-24 hours) revealed that cyclin E1 and E2 transcription peaked up to 15-20 fold, 

cyclin A2 10-fold, Dbf4 increased 6-fold, and Ciz1 increased 1.3-fold. The relatively 

small change in Ciz1 transcript levels suggests that post-translational regulation may 

contribute to Ciz1 accumulation. 

3.4. Ciz1 is destabilised by kinase inhibition in asynchronous 3T3 population 

To assess the role of CDK activity for the accumulation of Ciz1 levels in G1 phase, 

small molecule kinase inhibitors were used. Initially, asynchronous 3T3 cells were 

treated for 4 hours with CDK4/6i – PD-0332991 (palbociclib), DDKi - PHA-767491, and 

CDK2i – Roscovitine.  

The  IC50 of CDK4/6 inhibitor PD-0332991 is 11 nM for CDK4 and 16 nM for CDK6 in 

in vitro kinase assays (Fry et al., 2004). The IC50 of DDK inhibitor PHA-767491 is 10 
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nM for Cdc7 in cell free and on average 3.17 µM in 61 cell lines (Montagnoli et al., 

2008; Natoni et al., 2011; Sasi et al., 2014). Further, the IC50 of CDK2 inhibitor – 

Roscovitine is 0.7 μM in cell free assays (Ali et al., 2009). Therefore, the 

concentrations of kinase inhibitors were selected and tested accordingly, choosing 

the concentration range providing the effect in molecular level, but leaving the cells 

phenotypically unchanged and viable. 

 

Figure 3.4. Ciz1 levels are reduced by inhibition of CDK2 (Roscovitine) and DDK 
(PHA-767491). A) Asynchronous population of 3T3 were treated with kinase 
inhibitors 10 µM CDK4/6i – PD-0332991, 10 µM DDKi - PHA-767491, and 30 µM 
CDK2i – Roscovitine for 4 hours. Immunoblots were probed with Ciz1, pCiz1-T293, 
pCiz1-S331, Cyclin E, Cyclin A, and Actin antibodies. B) The quantitation of Ciz1 
protein in relation to Actin loads, presented as the mean ± S.D. The significant 
difference between control and treatment was observed after DDKi - PHA-767491 
and CDK2i – Roscovitine treatment (one-way ANOVA Tukey’s post-hoc test: PHA-
767491 p<0.01, Roscovitine p<0.01 (**), where n=4). 
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Interestingly, PHA-767491, Roscovitine, and Palbociclib reduced Ciz1 levels (PHA-

767491 p<0.01, Roscovitine p<0.01, PD-0332991 NS, n=4) encouraging the further 

research into the dependence of Ciz1 accumulation from phosphorylation. Further, 

the phosphorylation of Ciz1 on CDK2 phosphorylation site T293 site was significantly 

reduced after DDKi – PHA-767491 and CDK2i – Roscovitine treatments, and 

marginally reduced on S331 site. This finding was unexpected at first, as PHA-767491 

is widely described as DDK inhibitor rather than CDK2 inhibitor. However, there is 

literature available stating that PHA-767491 has 20-fold lower affinity for CDK2 (IC50 

of 200 nM) (Montagnoli et al., 2008), that may be responsible for the effect on Ciz1 

stability via inhibition of CDK2. This will be further characterised in Chapter 5. 

3.5. A model of Ciz1 phosphorylation and accumulation analysis using small 

molecule kinase inhibitors 

The accumulation of Ciz1 in G1 phase correlates with the expression of cyclin E and A 

that mediate the rising CDK activity gradient at the G1 – S transition (Figure 3.3) (Lo 

and Uhlmann, 2011; Pisu et al., 2015). To fully characterise the contribution of 

specific cyclin - CDK complexes the following experimental strategy was designed 

(Figure 3.5). In murine 3T3 cells released from quiescence, restriction point occurs  

between 14-16 hours after release (Figure 3.2) and this time point correlates with 

the initial accumulation of Ciz1 (Figure 3.3). To assess the role of cyclin D - CDK4/6 

activity in promotion of Ciz1 accumulation, cells will be treated with PD-0332991 

prior to restriction point. DDK activity (PHA - 767491 and XL - 413) and cyclin E - CDK2 

activity (Roscovitine and CVT-313) will be inhibited prior to restriction point. As CDK 

activity increases post-restriction, DDK and CDK activity will be inhibited from 16 to 
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20 hours post-release that coincides with the G1/S transition. Analysis of each time 

point will assess the requirement for CDK or DDK activity during the G1/S transition. 

 

Figure 3.5. The model of active kinase complexes and Ciz1 accumulation in G1 – S 
transition and experimental overview. A) Experimental overview. 3T3 cells were 
synchronised in G0, released into fresh medium, and treated with 10 µM of CDK4/6 
inhibitor – PD-0332991, Cdc7-Dbf4 (DDK) inhibitors - 10 µM of PHA-767491 and 10 
µM of XL-413, and CDK2 inhibitors – 30 µM of Roscovitine and 10 µM of CVT-313 at 
the time points indicated. B) 3T3 cells were treated with kinase inhibitors at 12 hours 
after G0 release and were 30 min pulse EdU labelled prior every time point indicated. 
The cells were quantified counting EdU positive calls against DAPI counterstained 
total nuclei using confocal microscope, each dot presents the mean ± S.D., n=6. 

 

In order to understand the effect of kinase inhibitors on cell cycle progression,  

synchronised 3T3 cells were treated with CDK4/6, DDK, and CDK2 inhibitors at 12 

hours after G0 release (Figure 3.5: B). All kinase inhibitors reduced S phase entry, 

with DDKi – PHA-767491, and CDK2 inhibitors being most efficient. This is consistent 

with the requirement of rising kinase activity for successful DNA replication (Parker 

et al., 2017; Takeda and Dutta, 2005; Yeeles et al., 2015). 
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3.6. Phosphorylation of Ciz1 promotes its accumulation in pre-restriction point 

cells 

The effect of CDK and DDK inhibition on Ciz1 protein levels was determined in pre-

restriction point cells. To ensure that selected kinase inhibitors were targeting the 

proposed kinases, two kinase inhibitors were used for DDK (PHA-767491 and XL-413) 

and CDK2 (Roscovitine and CVT-313). The XL-413 inhibitor was shown to be more 

specific for Cdc7 with IC50 of 3.4 nM in vitro, and 2.7 µM for Colo-205 cells (Koltun et 

al., 2012; Sasi et al., 2014). Similarly, CVT-313 has fewer off target effects than 

Roscovitine and has an improved IC50 of 0.5 µM in vitro, and for cell application of 

6.25 µM (Faber and Chiles, 2007). The distinct CDK2 and DDK inhibitors with different 

chemical backbones were selected to minimise potential crosstalk with off-target 

pathways (Maddox, 2016; Sun et al., 2016; Wynn et al., 2011).  

Thorough analysis of kinase inhibition at 12-20 hr after G0 release revealed that Ciz1 

was reduced by both DDK and both CDK2 inhibitors (PHA-767491 p<0.01, Roscovitine 

p<0.01, CVT-313 p<0.05), however, the XL-413 did not significantly affect Ciz1 

accumulation (Figure 3.6: A and B). Interestingly, CDK4/6 inhibition had no effect and 

even increased Ciz1 levels in late G1 phase.  
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Figure 3.6. Inhibition of CDK or DDK activity reduces Ciz1 protein levels, but not 
Ciz1 transcription, in pre-restriction point cells. A) 3T3 cells were treated with small 
molecule kinase inhibitors from 12-20 hr after release from G0. Western blot analysis 
with Ciz1, pCiz1-T293, pCiz1-T293, Cyclin E, Cyclin A, and Actin antibodies. B) 
Quantitation of Ciz1 protein against actin load control, presented as the mean ± S.D., 
p<0.01 for PHA-767491 and Roscovitine, p<0.05 for CVT-313, One Way ANOVA, Post 
Hoc Tukey, SPSS, n=6 for PHA-767491 and Roscovitine, n=3 for PD, XL, and CVT. C) 
Cells were treated with kinase inhibitors 12 - 24 hours. Ciz1 mRNA was quantified 
using RT-qPCR against GAPDH, and plotted using control as 1, n=3 (3 technical 
repeats in each of 3 experimental repeats). 
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Analysis revealed that PHA-767491 treatment reduced Ciz1 phosphorylation on both 

CDK2 phosphorylation sites T293 and S331, which contrasted with XL-413 that did 

not affect Ciz1 phosphorylation and led to a moderate decrease in Ciz1 levels that 

was not statistically significant (Figure 3.6). These observations support the 

hypothesis that phosphorylation of Ciz1 at T293 and S331 increases Ciz1 levels. 

Finally, pre-RP analysis revealed further distinct effects for DDK inhibitors PHA-

767491 and XL-413. PHA-767491 was a potent inhibitor of T293 phosphorylation and 

abolished cyclin A accumulation (Figure 3.6: A, column 2: lanes 3 and 5), whereas XL-

413 did not affect either cyclin A levels or Ciz1 phosphorylation. Indeed, PHA-767491 

showed differential effects to the DDK inhibitor XL-413, yet produced a similar effect 

to the CDK2 inhibitors Roscovitine and CVT-313. This is consistent with the published 

inhibitory effect of PHA-767491 on CDK2 that is 20-fold lower than its IC50 for Cdc7 

(IC50 of 10 nM for Cdc7, 34 nM for CDK9, and 200 nM for CDK2) (Montagnoli et al., 

2008; Montagnoli et al., 2010; Natoni et al., 2011; Natoni et al., 2013; Vanotti et al., 

2008). 

Finally, the Ciz1 transcript analysis revealed that Ciz1 transcription was not affected 

by DDK and CDK2 inhibition (Figure 3.6: C). This further suggests that the 

downregulation of Ciz1 protein levels depends on post-translational Ciz1 regulatory 

pathways rather than Ciz1 transcription. 

3.7. CDK2 and DDK inhibition destabilises Ciz1 levels post-restriction point 

Next, the role of CDK and DDK activity in promoting Ciz1 accumulation was assessed 

in post-restriction point cells. Synchronised 3T3 cells were treated with CDK4/6i – PD-

0332991, DDKi – PHA-767491, and CDK2i – Roscovitine 16 – 20 hours after G0 
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release to assess the role of kinase activity for Ciz1 accumulation in post-RP cells 

(Figure 3.7).  

 

Figure 3.7. Ciz1 levels are reduced by inhibition of CDK2 or DDK in post-restriction 
point murine fibroblasts. A) G0 synchronised cells were treated with small molecule 
kinase inhibitors 16 – 20 hours after G0 release. WB of protein samples probed with 
Ciz1, pCiz1-T293, pCiz1-S331, Cyclin E, Cyclin A, and Actin antibodies. B) Quantitation 
of Ciz1 protein level against Actin loading control, presented as the mean ± S.D., 
significance measured with One-Way ANOVA, Post Hoc, Tukey, p<0.01 for PHA-
767491 and Roscovitine, n=4. 

 

Analysis of post-restriction point cells revealed that DDKi - PHA-767491 and CDK2i – 

Roscovitine efficiently reduced Ciz1 levels (p<0.01, n=4). However, CDK4/6i – PD-

0332991 did not affect Ciz1 levels (Figure 3.7), possibly due to the limited CDK4/6 

activity in late G1 phase. Both PHA-767491 and Roscovitine inhibitors prevented 

phosphorylation on T293 site (Figure 3.7: lane 3). In contrast to results shown for 

pre-restriction point cells, cyclin A levels were less affected after CDK2 or DDK 

inhibition 16 – 20 hour treatment (Figure 3.7: lane 5). In pre-restriction point cells, 

this may prevent establishment of the CDK2 positive feedback loop to activate E2F1-

3 (Bertoli et al., 2013b). Ciz1 expression is not affected by CDK4/6 kinase inhibition 
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(Figure 3.6: C), yet PHA-767491 and Roscovitine prevent phosphorylation of Ciz1 at 

T293 and reduce Ciz1 protein levels (Figure 3.7). This indicates that phosphorylation 

of Ciz1 may regulate Ciz1 accumulation post-restriction point. 

In addition, phosphorylation of Ciz1 at S331 was not affected by CDK2 or DDK 

inhibition in post-restriction point cells (Figure 3.7), suggesting that S331 was 

phosphorylated earlier in the cell cycle. S331 phosphorylation might contribute to its 

accumulation in early G1 phase promoting stabilisation of the protein. Taken 

together the data suggest that during G1 phase, Ciz1 accumulation is dependent on 

the activities of DDK and CDK2, as inhibition of CDK or DDK activity reduces Ciz1 

levels.  This implicates CDK and DDK pathways in the regulation of Ciz1 levels from 

early and late G1 phase.  

3.8. Ciz1 is stabilised by phosphorylation after the entry to S phase 

To evaluate whether kinase inhibition reduces Ciz1 levels at the G1/S transition, the 

late G1/ early S phase time point 20 – 24 hours after G0 release was selected. At this 

time point 32.6 % of cells are already in S-phase (Figure 3.1). Western blot analysis 

revealed that inhibition of CDK2 activity using 2 chemical inhibitors reduced Ciz1 

levels. This reduction in Ciz1 levels correlates with the significant reduction in Ciz1 

phosphorylation at T293 (Figure 3.8). This suggests that CDK mediated 

phosphorylation of Ciz1 is required to maintain its protein levels in S phase.  
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Figure 3.8. CDK2 phosphorylation stabilises Ciz1 in S phase. A) Synchronised 3T3 
cells were treated with CDK2 inhibitors Roscovitine (Ros) and CVT-313 (CVT) from 20 
– 24 hours after G0 release. Western blots were probed with Ciz1, pCiz1-S331, pCiz1-
T293, Cyclin E, Cyclin A, and Actin. B) Quantitation of Ciz1, pCiz1-S331, pCiz1-T293 
level against Actin loading control, for Roscovitine treatment, presented as the mean 
± S.D., significance measured with One-Way ANOVA, Post Hoc, Tukey, p<0.05 for 
Ciz1; p<0.001 for pCiz1-T293, n=3. C) as for B, but for CVT-313 treatment. 

 

3.9. Genetic depletion of G1 – S regulators reduces S phase entry 

The data presented thus far, utilised small molecule inhibitors to evaluate the 

requirement for CDK and DDK activity in regulation of Ciz1 levels. Due to a high 

degree of structural similarity in protein kinases, there is invariably cross talk with 

other kinase families (Breen and Soellner, 2015; Davis et al., 2011; Klaeger et al., 

2017; Knight and Shokat, 2005; Wynn et al., 2011; Zhang et al., 2009). To support and 

complement the small molecule dataset, siRNAs were used to provide an alternative 

method to reduce specific DDK or cyclin-CDK complexes during cell cycle re-entry 

from quiescence. Synchronised murine fibroblasts were transfected with siRNAs 
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against Cdc7-Dbf4, cyclin E1,2 or cyclin A2 and the effect on cell cycle progression 

and Ciz1 accumulation was determined (Figures 3.9 and 3.10). 

 

Figure 3.9. Genetic depletion of G1 – S transition regulators reduce S phase entry. 
A) G0 synchronised 3T3 cells were transfected with anti- Cdc7-Dbf4, Cyclin E1,E2, and 
Cyclin A2 siRNAs, harvested 20 hours after release for Cdc7-Dbf4 and cyclin E1,E2, 
and 24 hours after release for cyclin A2 analysis. mRNA levels were quantified by RT-
qPCR relative to GAPDH. One Way ANOVA were performed using Post Hoc analysis 
using the Tukey method, p<0.001, n=6 (3 technical repeats in each experimental 
repeat). B) Percentage of S phase (EdU positive) cells were determined at indicated 
time points for each siRNA and control and show mean ± S.D., n=6. 

 

To confirm the efficacy of the depletion, transcript levels were quantified by RT-qPCR 

relative to GAPDH (Figure 3.9: A). This revealed that Dbf4, Cyclin E1,2, and Cyclin A2 

mRNA levels were reduced to less than 20%. Cdc7 transcripts were not reduced as 

efficiently and required a dual treatment with anti- Cdc7 and Dbf4 siRNA to affect 

cell cycle progression (Figure 3.9: B). Cell cycle re-entry from G0 was assessed by EdU 

incorporation and showed that the efficiency of S phase entry was reduced by at 

least 80% after all depletions (Figure 3.9: B). 

 



Chapter 3: Identification of the networks that regulate Ciz1 accumulation during G1 phase 

75 
 

3.10. Ciz1 is destabilised by G1 – S regulator depletion 

To determine whether Ciz1 protein level was destabilised after genetic depletions of 

G1 – S regulators, western blot analysis was performed on transfected cells. The 

investigation revealed that on average Dbf4 protein level was reduced down to 30%, 

cyclin E was down to 50-60%, with a high variance between experiments and 

antibodies used. However, the success of cyclin E depletion could be indirectly 

determined by almost complete ablation of cyclin A expression after cyclin E1, E2 

depletion, which is cyclin E – CDK2 dependent. Cyclin A was completely abolished 

(p<0.01 for all, n=4) (Figure 3.10: A and B). 

The Ciz1 levels were reduced in all cases (Figure 3.10: A and C), consistent with small 

molecule inhibitor studies, which showed that kinase activity was required for Ciz1 

accumulation. Interestingly, Cdc7-Dbf4 co-depletion did not affect Ciz1 

phosphorylation on T293 or S331 sites (Figure 3.10: A, column 1, lane 1-3), but was 

still able to destabilise Ciz1 accumulation by 30 %. This may suggest that Ciz1 is 

phosphorylated on multiple sites by DDK and CDK that collaboratively contribute to 

its stability and accumulation. Importantly, similar results were achieved using 

different sequences of siRNA against the same targets (only one is shown on western 

blot). 
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Figure 3.10. Ciz1 is destabilised by G1 – S regulator depletion. A) Western blot 
analysis of control and siRNA depleted samples at 20 hours after Cdc7-Dbf4 and 
cyclin E1,E2 siRNA transfection, and 24 hours after cyclin A2 siRNA transfection as 
indicated. B) Quantitation of Dbf4 protein after anti-Cdc7-Dbf4 siRNAs co-
transfection, Cyclin E protein after anti-Cyclin E1,E2 siRNAs co-transfection, and 
Cyclin A after anti-Cyclin A2 siRNA transfection. Protein levels shown standardised to 
actin showing mean ± S.D., n=4 (statistical significance analysis performed with One-
Way ANOVA, Post Hoc, Tukey, p<0.01 for all, n=4). C) Quantitation of Ciz1 protein 
levels relative to actin load controls showing mean ± S.D., p<0.05 for all, n=4.  
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3.11. Ciz1 is regulated by the proteasome in asynchronous and synchronised 3T3 

cells 

The data presented in this chapter demonstrate that Ciz1 levels are lower in CDK2 or 

DDK inhibited cells in G1 phase. This effect could be mediated by either reduced cell 

cycle progression after CDK and DDK inhibition or perhaps through an active process 

that leads to degradation of Ciz1 levels. To assess the potential role for the 

proteasome in regulation of Ciz1 levels, cells were treated with a combination of 

Roscovitine and the proteasome inhibitor MG132 (Figure 3.11).  

 

Figure 3.11. MG132 recovers Ciz1 levels destabilised by kinase inhibitors in 
asynchronous population. A) Asynchronous 3T3 were treated with 30 µM of 
Roscovitine and 10 µM of MG132 at 70 % confluency for 4 hours. Immunoblot 
showing Ciz1, pCiz1-T293, pCiz1-S331, RB, pRB-S780, Cyclin E, Cyclin A, and Actin. B) 
Quantitation of Ciz1 protein levels. Protein levels presented standardised to actin 
showing mean ± S.D., where n=3. Statistical significance analysis performed with 
One-Way ANOVA, Post Hoc, Tukey, p<0.05. 
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In asynchronous 3T3 cells, Roscovitine efficiently reduced Ciz1 levels (Figure 3.11: A). 

The levels of pT293 and pS331 were reduced suggesting efficient CDK inhibition. 

Similarly, the level of Rb phosphorylation (S780) was also reduced. Importantly, the 

levels of Ciz1 were significantly recovered by addition of MG132, suggesting that the 

proteasome promotes degradation of Ciz1 after inhibition of CDK activity (Figure 

3.11: B).  

Following this observation, a more detailed analysis of CDK and DDK inhibition in G1 

phase was performed using PHA-767491 and Roscovitine with or without MG132 

(Figure 3.12). Using synchronised cells the results revealed more profound 

destabilisation of Ciz1 after CDK or DDK inhibition. Significantly, the reduction of Ciz1 

after kinase inhibition could be efficiently reversed by proteasomal inhibition (Figure 

3.12). Consistent with the previous findings in synchronised cells, S331 

phosphorylation was not significantly affected by kinase inhibitors (Figure 3.12: A 

and C, lanes 2), suggesting that this site was phosphorylated earlier in the cell cycle. 

However, the Ciz1 T293 phosphorylation was efficiently reduced similar to earlier 

experiments (Figures 3.6 - 8) and was unaffected by proteasomal inhibition. Similarly, 

cyclin A levels were significantly reduced by PHA-767491 and Roscovitine (Figure 

3.12: A and C, lanes 3 and 5), and were only marginally recovered by proteasomal 

inhibitor.  
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Figure 3.12. Proteasomal inhibition recovers Ciz1 levels after kinase inhibition. 3T3 
were synchronised and treated 12 – 20 hour after G0 release. A) WB of cells treated 
with PHA-767491 +/- MG132 as indicated. B) Quantitation of Ciz1 levels against actin 
control. Protein levels presented standardised to actin showing mean ± S.D., where 
n=4. (**) shows p<0.01 for control vs PHA-767491 and PHA vs PHA+MG132, 
significance was measured by One-Way ANOVA, Post-Hoc, Tukey, n=4. C) as in A 
except for Roscovitine. D) as for B but for Roscovitine, n=4. 

 

Next, to assess if inhibition of CDK activity promotes proteasomally mediated 

degradation in late G1 and early S phase, CDK2 inhibitors (Roscovitine and CVT-313) 

with and without MG132 were added from 20 – 24 hours after G0 release. The 

results showed that CDK2 inhibition reduced Ciz1 levels (Figure 3.13: A and C). In 

addition, proteasomal inhibition significantly recovered Ciz1 level (p<0.05) that was 

reduced with CDK2 inhibition (Figure 3.13). This suggests that Ciz1 accumulation is 

regulated by opposing CDK and ubiquitin ligase activities.  

As seen for small molecule inhibition earlier (Figures 3.7 and 3.8), cyclin A level was 

less affected by CDK2 inhibition after 20 – 24 hour than after 12 -20 hour treatment 

(Figure 3.13: A and C, lane 5). This may be related to differences in cyclin expression 
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levels when CDK2 activity is inhibited prior to restriction point bypass and will be 

discussed further in Chapter 5.  

 

Figure 3.13. MG132 recovers Ciz1 levels in S phase after reduction by CDK2 
inhibitors. A) 3T3 were synchronised and treated 20 – 24 hours after G0 release. WB 
of cells treated with 30 µM of Roscovitine and 10 µM of MG132. B) Quantitation of 
Ciz1 protein against actin load control. Protein levels presented standardised to actin 
and bars show mean ± S.D., where n=3. Significance measured by One-Way ANOVA, 
Post-Hoc, Tukey, (*) p<0.05 for Control vs Ros and Ros vs Ros+MG132, n=3. C) as in A 
but for 10 µM of CVT-313. D) as in B but for CVT-313, p<0.05 for Control vs CVT and 
CVT vs CVT+MG132, n=3. 

 

3.12. Proteasomal inhibition recovers Ciz1 levels after genetic cyclin A depletion 

To complement and support the data generated using a small molecule inhibition 

approach, genetic depletion of cyclin A2 was performed using siRNA. To assess 

whether Ciz1 is degraded by the proteasome after CDK2 inhibition, cyclin A2 was 

depleted using anti-cyclin A2 siRNA and MG132 was added from 20 hours after 

release for 4 hours. Western blot analysis revealed that cyclin A expression was 

completely abolished and transcript levels were reduced by more than 90 %, showing 

successful depletion (Figure 3.14: A and C). 
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Figure 3.14. MG132 recovers Ciz1 after genetic cyclin A depletion. 3T3 cells were 
synchronised and transfected with anti-cyclin A2 siRNA at the point of release from 
G0. Cells were treated with 10 µM of MG132 20 – 24 hours after release/ 
transfection. A) WB of soluble protein 24 hours after transfection, probed with Ciz1 
and cyclin A antibodies. B) Quantitation of Ciz1 protein levels shown standardised to 
actin and bars show mean ± S.D., where n=3. Significance measured by One-Way 
ANOVA, Post-Hoc, Tukey, (**) p<0.01 for Control vs Ros, (*) p<0.05 for Ros vs 
Ros+MG132, n=3. C) Cyclin A mRNA levels were quantified control vs anti-cyclin A 
siRNA treated by RT-qPCR relative to GAPDH. One Way ANOVA was performed using 
Post Hoc analysis using the Tukey method, p<0.001, n=3 (3 technical repeats in each 
experimental repeat). 

 

In the absence of cyclin A2, Ciz1 protein levels were reduced to 50% of control levels, 

which was efficiently reversed by addition of MG132 recovering Ciz1 levels to 75-80% 

of the control levels (Figure 3.14: B). This observation supports the hypothesis that 

Ciz1 is regulated by opposing kinase and proteasomal activities.  The findings are 

consistent with a model where CDK and DDK kinase activity is required for Ciz1 

accumulation, and that inhibition of CDK or DDK kinase activity promotes 

proteasomally mediated degradation of Ciz1 as protein levels can be maintained by 
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the inhibition of the proteasome. This suggests that Ciz1 is tightly controlled by 

opposing kinase and proteasome activities in G1 phase in order to reach sufficient 

levels for DNA replication initiation in a highly controlled manner.  

3.13. Ciz1 is ubiquitylated in vivo 

To directly determine if Ciz1 is poly-ubiquitylated, two complimentary approaches 

were used. HA-tagged ubiquitin or His-tagged ubiquitin expressing plasmids were 

transfected into 3T3 cells independently (Figure 3.15). Ubiquitylated proteins were 

enriched by either immunoprecipitation (HA) or immobilized on Ni-NTA beads (His6) 

and then resolved on SDS-PAGE gel. The western blot analysis revealed the 

ubiquitylation characteristic smear pattern (Figure 3.15: A) going upwards from the 

original Ciz1 band at around 110 kDa. This implied that the multiple ubiquitin 

molecules (8 kDa) were bound onto Ciz1 increasing its molecular weight from 100kDa 

to >150 kDa, consistent with poly-ubiquitylation (Figure 3.15 A).  

 

Figure 3.15. Ciz1 is ubiquitylated in vivo. NIH-3T3 cells were transfected with 
ubiquitin-hemagglutinin (HA) or ubiquitin-histidines (His6) plasmids with or without 
10 µM MG132. A) Ubiquitylated Ciz1 was anti-HA immunoprecipitated, resolved on 
4-15% SDS-PAGE gel and probed with Ciz1 antibody. B) Ubiquitylated Ciz1 was 
immobilised on Ni-NTA resign (IMAC), resolved on 4-15% SDS-PAGE gel and probed 
with Ciz1 antibody. Red arrows indicate ubiquitylation characteristic bands. 
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Additionally, the multiple bands from 100 kDa to >150 kDa above Ciz1 protein were 

observed after Ub-His6-Ni-NTA immobilized metal affinity chromatography (IMAC) 

(Figure 3.15: B). This suggested that Ciz1 was poly-ubiquitylated or poly- mono- 

ubiquitylated in 3T3 cells, encouraging the further research in Ciz1 ubiquitylation. 

Notably, the ubiquitylation specific pattern was only observed after MG132 

treatment, which allowed its accumulation by inhibition of proteasomally mediated 

degradation. 

3.14. Discussion 

Quiescent synchronised embryonic mouse fibroblasts were used to research G1 – S 

transition in more controlled and interpretable manner. First, the kinetics of cell re-

entry from G0 was established using EdU, a thymidine analogue, which enabled 

visualising actively replicating cells that enter the S phase (Figure 3.1). This technique 

was used to determine the timing of the restriction point of post-quiescent cells 

(Moser et al., 2018; Pardee, 1974; Spencer et al., 2013). Actively replicating cells may 

not encounter G1 restriction point due to residual moderate CDK2 activity and low 

p21 upon the mitotic exit. However, the post-quiescent cells retain dependency on 

mitogenic signalling and active G1 restriction point (Figure 3.2), which was used here 

to temporally organise the G1 – S transition and analysis. 

Ciz1 protein acts as a molecular link between origins of replication and CDK2 

(Copeland et al., 2010; Copeland et al., 2015; Pauzaite et al., 2017) contributing to 

the efficiency of DNA replication initiation that occurs in G1 phase (Ainscough et al., 

2007; Coverley et al., 2005). Additionally, Ciz1 is phosphorylated by CDK, although 

only 3 of the sites have been functionally characterised. In murine Ciz1 there are 14 
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putative CDK sites that may contribute to the regulation of Ciz1 expression and 

activity.  

Here, the expression of Ciz1 was followed from quiescence to early S phase.  Ciz1 

protein levels and phosphorylation status on 2 sites (T293 and S331) were 

determined (Figure 3.3). Ciz1 protein accumulation correlated closely with its 

phosphorylation on T293 and cyclin A expression. The T293 site has been previously 

validated as a CDK site (Copeland et al., 2015), and results presented here suggest 

that increasing  cyclin A–CDK2 activity promotes T293 phosphorylation at the G1 - S 

transition (Figure 3.3). Ciz1 protein levels resembled E2F cell cycle regulators: cyclin 

E1, E2, A2, and Dbf4, accumulation in G1 phase.  Ciz1 transcription was compared 

with E2F regulated Dbf4, cyclin E1, E2, A2 (Harbour and Dean, 2000; Ohtani et al., 

1995; Yamada et al., 2002) and was found to be considerably lower than the 

canonical E2F transcripts despite protein levels mirroring cyclin A expression. The 

relatively low variation in transcript abundance of Ciz1 suggests that Ciz1 may be 

regulated post-translationally (Figure 3.3: B). 

The potential for CDK mediated phosphorylation to regulate Ciz1 accumulation in 

late G1 phase was assessed. This approach investigated 3 time points: pre-restriction 

time point (12 – 20 hours from G0 release), post-restriction point (16 – 20 hours), 

and late G1 – early S phase time point (20 – 24 hours) (Figures 3.2 and 3.5). The small 

molecule kinase inhibitor studies (Figures 3.6 - 3.8) suggested that Ciz1 accumulation 

required the activities of DDK and CDK2 during G1 phase. In addition, CDK2 mediated 

phosphorylation of T293 site correlated closely with Ciz1 stability and accumulation. 

The genetic depletion of Dbf4-Cdc7, Cyclin E1, E2, and Cyclin A2 offered similar effect 
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on Ciz1 accumulation to chemical kinase inhibitors. However, Dbf4-Cdc7 depletion 

reduced Ciz1 accumulation without affecting T293 phosphorylation (Figure 3.10), 

suggesting that Ciz1 is phosphorylated by both CDK2 and DDK on various sites that 

contribute to its stability and accumulation. This is consistent with the collaborative 

efforts of CDK2 and DDK kinases driving the cell cycle described in the literature  

(Wan et al., 2008; Yeeles et al., 2015). 

Next, the potential role of the UPS mediated degradation in regulation of Ciz1 was 

assessed. The proteasomal inhibition recovered Ciz1 levels after being destabilised 

by a lack of phosphorylation (Figures 3.11-3.14). Ciz1 proteasomal down-regulation 

was confirmed by in vivo ubiquitylation, IMAC and IP experiments, which showed 

that Ciz1 is poly-ubiquitylated in 3T3 cells (Figure 3.15). 

The emerging model for Ciz1 accumulation proposes that Ciz1 is stabilised or 

protected from degradation by rising kinase activities in G1 phase. Furthermore, in 

the absence of CDK2 or DDK activity Ciz1 is degraded by the UPS to precisely regulate 

the abundance of Ciz1. This model suggests that an imbalance in either CDK or UPS 

activity could promote an increase or decrease in Ciz1 levels. For example, 

overexpression of cyclin E or A leading to hyperactivation of CDK2, or down-

regulation of E3 ligases or the entire ubiquitin proteasome system, could lead to the 

overexpression of Ciz1 that has been linked to a number of major cancers (Den 

Hollander et al., 2006; Greaves et al., 2012; Higgins et al., 2012; Mitsui et al., 1999; 

Pauzaite et al., 2017; Yin et al., 2013; Zhou et al., 2018). 

Over-expression of Ciz1 is associated with tumour growth in xenograft models 

(Pauzaite et al., 2017; Wu et al., 2016; Yin et al., 2013; Zhang et al., 2015). 



Chapter 3: Identification of the networks that regulate Ciz1 accumulation during G1 phase 

86 
 

Importantly, in each case reducing Ciz1 levels by genetic depletion has been found to 

reduce tumour growth. This suggests that Ciz1 is a viable drug target in common 

tumour types. The analysis presented here suggests that Ciz1 is regulated by 

opposing CDK and UPS activities, and, significantly, this work has demonstrated that 

the reduction of Ciz1 can be induced using repurposed small molecule kinase 

inhibitors.  For this approach to be viable, a detailed understanding of the signalling 

mechanisms that control Ciz1 levels is required. In particular, identification of the E3 

ligase(s) would be particularly important as inactivation of the E3 ligase may lead to 

overexpression of Ciz1 is some tumour types. This mechanism was found in breast 

cancers where inactivation of PARK2 promotes overexpression of cyclin E that drives 

proliferation (Gong et al., 2014). The identification of the E3 ligase(s) that regulate 

Ciz1 will be performed using an in vitro ubiquitylation assay (Chapter 7). 

In addition, having identified that CDK mediated phosphorylation stabilises Ciz1 in 

3T3 cells, the question emerged on which specific phosphorylation sites are 

responsible for Ciz1 accumulation (Chapter 4). Site directed mutagenesis of CDK 

phosphorylation sites (S/TP) within Ciz1 may be able to identify which sites regulate 

Ciz1 accumulation in vitro. Using over-expression of exogenous Ciz1 and 

phosphomimetic aspartate or unphosphorylatable alanine mutants may provide 

insight into this process. In addition, CRISPR-Cas9 and homology directed repair 

approaches, in order to replace CDK sites with phosphomimetic aspartate or 

unphosphorylatable alanine, will be applied. This would allow identification of 

specific phosphorylation sites that contribute to Ciz1 stability and analysis of its 

effect on the cell cycle progression. 
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In addition, the differences between DDK inhibitors PHA-767491 and XL-413 have 

been observed (Figure 3.6) in context of potential CDK2 targeting by PHA-767491. In 

particular, PHA-767491 decreases both Ciz1 and cyclin A expression, whereas XL-413 

has no significant effect. Differences in PHA-767491 and XL-413 have been noted 

previously regarding their effects on cancer cell proliferation (Natoni et al., 2011; 

Rainey et al., 2017; Sasi et al., 2014). Further characterisation of the differential 

effects of PHA-767491 and XL-413 in relation to cell cycle progression, CDK2 

targeting and Ciz1 stability are required (Chapter 5).  

Ciz1 has been implied as a driver of development of certain cancer types and the 

depletion of Ciz1 reduced cancer growth in xenograft models, as well as inhibited 

cancer cell proliferation and migration (Higgins et al., 2012; Lei et al., 2016; Pauzaite 

et al., 2017; Wang et al., 2014; Wu et al., 2016; Yin et al., 2013). This suggests that 

targeting Ciz1 accumulation and stability may be of therapeutic relevance. Therefore, 

in this work a number of cancer cell lines will be screened for Ciz1 dependency, and 

treated with already existing CDK and DDK chemical kinase inhibitors. Assuming that 

some cancer cell lines depend on Ciz1 and have functional UPS, the treatment with 

small molecule kinase inhibitors would have a dual effect against proliferation. This 

would make cancer cells more sensitive to the therapies and potentially provide a 

strategy for patient stratification (Chapter 6). 

 

 



Chapter 4: Evaluation of the role of CDK mediated phosphorylation for Ciz1 stability 

88 
 

 

 

Chapter 4 

Evaluation of the role of CDK mediated 

phosphorylation for Ciz1 stability 

  



Chapter 4: Evaluation of the role of CDK mediated phosphorylation for Ciz1 stability 

89 
 

4.1. Introduction 

The temporal regulation of the cell cycle is mediated by the activities of cyclin 

dependent kinases, which impose a rising gradient of activity from G1 phase to 

mitosis (Coudreuse and Nurse, 2010b; Henderson et al., 2006; Lo and Uhlmann, 

2011; Malumbres, 2014; Pauzaite et al., 2017). The importance of protein 

phosphatases in the temporal control of protein phosphorylation has been 

demonstrated in yeast, where PP2A-Cdc55 provides temporal separation of serine 

and threonine phosphorylation status, by showing a preference for threonine 

(Cundell et al., 2016; Godfrey et al., 2017). Importantly, similar phosphorylation 

kinetics are seen with Ciz1, where S331 is phosphorylated earlier than T293, which is 

maximally phosphorylated in S phase (Copeland et al., 2015) (Chapter 3). Ciz1 is first 

phosphorylated on S331 site correlating closely with cyclin E expression in early G1 

phase and then on T293 site that resembles cyclin A accumulation in late G1 – S 

phase (Figure 3.3: A). The results presented in Chapter 3 suggest that CDK and 

potentially DDK mediated phosphorylation of Ciz1 has a protective role, preventing 

UPS mediated degradation of Ciz1 (Figure 3.6 - 8). This protective role is in addition 

to the regulatory role that controls Ciz1 DNA replication function via CDK mediated 

phosphorylation on T144, T192, and T293 sites that inhibit DNA replication function 

of Ciz1 (Copeland et al., 2015). These observations suggest that differential 

phosphorylation of Ciz1 has a profound effect on its function. The focus of this 

chapter is to determine whether phosphorylation of Ciz1 increases its stability by 

specifically reducing UPS mediated degradation in vitro and in vivo. 
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Here, the role of CDK mediated phosphorylation of Ciz1 in regulation of its stability 

will be assessed. To evaluate the role of phosphorylation for the regulation of Ciz1 

stability exogenous overexpression of GFP-Ciz1 constructs with phosphomimetic 

(aspartyl) and non-phosphorylatable (alanine) mutations will be assessed. In 

addition, CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat–

CRISPR-associated system) will be used to introduce site specific phosphomimetic 

(aspartyl) and non-phosphorylatable (alanine) mutations within the Ciz1 gene. 

4.2. CRISPR-Cas9 and homology directed repair (HDR) mediated point mutations 

in genomic Ciz1 DNA 

In order to pinpoint the function of individual CDK2 phosphorylation sites of 

endogenous Ciz1 protein, CRISPR-Cas9 was used to introduce double strand breaks; 

and homology directed repair (HDR), using a synthetic single stranded 

oligonucleotides (ssODNs), was used to introduce alanine or aspartic acid mutations 

in T192, T293, and S331 sites (Figure 4.1).  

The T192 site was chosen as it possessed multiple DDK and CDK2 phosphorylation 

sites that could have been targeted with a single ssODN. DDK sites are often located 

directly adjacent to CDK sites (Wan et al., 2008). There is currently no information 

regarding the site specificity for the DDK in Ciz1 and preliminary data supports a 

stabilising role of DDK (Figure 3.6 - 7). To establish whether T192 or adjacent putative 

CDK/ DDK phosphorylation sites were important regulatory sites, CRISPR-Cas9 was 

used with ssODN transfection and HDR. In addition, the potential regulatory effect of 

phosphorylation at position T293 was targeted, as it was shown to be 

phosphorylated late in G1 phase and it regulates Ciz1 DNA replication activity 
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(Copeland et al., 2015). Significantly, phosphorylation of T293 correlates with both 

Ciz1 and cyclin A accumulation (Figure 3.3). In addition, phosphorylation on T293 site 

was reduced by Roscovitine, CVT-313, and PHA-767491 that results in reduction of 

Ciz1 consistent with an important role in the stabilisation of Ciz1 (Figures 3.6-7). 

Finally, S331 site was selected, as it was phosphorylated early in G1 phase potentially 

leading to Ciz1 accumulation.  

 

Figure 4.1. Introduction of the point mutation (PM) by homology directed repair 
(HDR) pathway. Single-guide RNA (sgRNA) with introduced 20 nucleotide homology 
after Protospacer adjacent motif (PAM) sequence guides Cas9 endonuclease to 
target DNA. HNH and RuvC nuclease domains cut target genomic DNA 3-5 
nucleotides after the PAM (NGG) sequence introducing double stand DNA break. 
Homology directed repair (HDR) mechanism uses 100 nucleotide single-strand ODN 
sequence with point mutation surrounded by 40-50 nucleotide sequences 
homologous to genomic DNA for genomic DNA repair. 

 

The Cas9 nuclease of the type II CRISPR-Cas system (Figure 4.2: A) possesses 2 

nuclease active domains (Figure 4.1). The HNH nuclease domain cleaves 

complementary strand and RuvC-like nuclease domain introduces break in non-
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complementary strand to guide-RNA around 3-5 nucleotides from PAM sequence 

(Gasiunas et al., 2012). To introduce point mutations via RNA-guided CRISPR-Cas9 

technology, the 20 nucleotide guide sequence complementary to genomic DNA site 

of interest was incorporated into short guide RNA, which in turn was able to target 

Cas9 nuclease to PAM sites adjacent to CDK sites in Ciz1 (Figure 4.2). The cells were 

co-transfected with Cas9 plasmid and single strand ODN sequences (Table 2.5) that 

include desired point mutations in order to facilitate the introduction of mutations in 

specific sites by homology directed repair mechanism (HDR) (Figure 4.1). 

 

Figure 4.2. The type II CRISPR-Cas system. A) The CRISPR-Cas is composed of a 
complementary CRISPR RNA (crRNA), a trans-activating crRNA (tracrRNA), and the 
Cas9 endonuclease. B) The 20 nucleotide guide sequence, complementary to specific 
loci in genomic DNA, has a PAM (NGG) sequence, and is ligated in crRNA completing 
the guide RNA. The three different single-guide RNAs were designed targeting T192, 
T293 and S331 phosphorylation sites in Ciz1. 

 

4.3. Screening for CDK site specific point mutations in Ciz1 gene 

After the double strand DNA breaks were introduced by Cas9 nuclease, the ssODNs, 

carrying point mutations, were used as templates for HDR knocking-in the mutations 

in genomic DNA (Prykhozhij et al., 2017). Specific ssODNs were generated for each 
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phosphorylation site, and were carrying alanine (Gcx) or aspartic acid (GAu/c) (where 

capital letters show introduced point mutations) point mutations surrounded by 

approximately 40 nucleotide homologous regions for genomic DNA (Figure 2.5). The 

T192 ODN sequence was 99 nt in length, 5 point mutations were approximately 15-

30nt away from cutting site and the homology arms were 30 nt and 50 nt in length. 

The T293 ODN sequence was 92nt in length, the point mutation was within 10bp 

from the nuclease cutting point, the homology arms were 48 and 44 nucleotides in 

length. The S331 ODN sequence was 98nt in length, the point mutation was around 

25bp from the nuclease cutting point and the homology arms were 50 and 48 

nucleotides in length (Table 2.5). The ssODN sequences were co-transfected into the 

cells with CRISPR-Cas9 plasmid. The restriction enzymes were selected using NEB 

cutter V2.0 (www.neb.com) in order to determine the locations of cutting sites in the 

amplified region and specificity for the introduced point mutations (Table 2.6 and 

Figure 4.3). 

http://www.neb.com/
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Figure 4.3. ssODN knock-in screening using point mutation specific restriction 
enzymes. DNA was PCR amplified from purified genomic DNA and products screened 
with point mutation specific restriction enzymes to identify clones with desired 
mutations A) T192A – Bsp1286I lane 4 is partially successful with bands of expected 
size (red arrows) (Table 2.6). B) T293A – Eco0109I. C) S331A – BsrBI. D) T192D – 
Hpy99I.  E) T293D – PpuMI. F) S331D – BsoBI. 

 



Chapter 4: Evaluation of the role of CDK mediated phosphorylation for Ciz1 stability 

95 
 

PCR amplification and restriction enzyme screening allowed identification of clones 

with the potential point mutations. However, it also revealed that for each clone 

there was heterogeneity in the population. This suggested that either the restriction 

digest was incomplete, or that mutations had not been successfully introduced into 

both copies of the chromosomal DNA. In addition, there could simply be a mixed 

lineage of cells from wild type and mutant populations from single cell wells through 

contamination or oversight during the expansion phase from single cells.  

Prolonged overnight restriction digestion revealed similar results (data not shown), 

suggesting that reactions had gone to completion. To ensure that there is not a 

mixed lineage of cells, cells were diluted to single cells and expanded prior to 

restriction digest analysis that showed results identical to the original analysis. This 

left the third option suggesting that the successful point mutation was introduced in 

only one allele within one cell (Paquet et al., 2016). The haploid mutants were 

targeted for a second round of CRISPR-Cas9 treatment. In principle, repeating the 

CRISPR-Cas9 directed cleavage should target the wild type chromosomes specifically 

as there are mismatches in the guide RNA from incorporation of desired mutations. 

However, despite selecting a number of clones, screening revealed that they were 

either identical to previous cells or unhealthy and did not expand well after being 

subjected to two rounds of transfection, enrichment and CRISPR-Cas9 treatment.  

These results are consistent with the low efficiency of homologous recombination in 

mammalian cells, meaning that acquiring two successful point mutations in single 

cell is difficult. Finally, the second cutting event by left-over Cas9 may have occurred 

after the successful point mutation introduction (Hruscha et al., 2013; Kwart et al., 
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2017; Prykhozhij et al., 2017). This would lead to introduction of a point mutation via 

homologous directed repair followed by the second cut repair by non-homologous 

end joining. This way single allele would contain a point mutation and second non-

specific mutation leading to a frame shift and protein truncation. To test that, the 

amplified DNA fragments were cloned into TOPO10 Blunt cloning vector, and were 

sequenced using M13 forward and reverse primers (Figure 4.4). 

4.4. DNA sequencing of mutated sites after CRISPR-Cas9 and HDR  

The sequencing results from 3 different clones revealed that the point mutations 

were introduced into at least one of the DNA copies. However, the homology 

directed repair was not performed with high fidelity (Table 4.1). Many of the 

sequences had the point mutation introduced together with some nucleotides 

missing or looped in, producing the frame shift after the PAM – Cas9 cutting site, 

introducing Ciz1 protein truncations rather than point mutations (Table 4.1 and 

Figure 4.4). Additionally, it revealed that some cells had the wild type and mutated 

sequence, which would not allow for further research in Ciz1 protein stability and 

cellular phenotypes. Finally, in the S331A case, the full homologous recombination 

and replacement by chromosome 11 had been observed (Table 4.1), which meant 

that the genome was highly disturbed and unorganised after CRISPR-Cas9 

transfection. 
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A T192 A: introduced Alanine mutation and frame shift further in the sequence 

Query  276  GAACACCCAGAAACAGGCCAGAGCCCCCTCTTCCACCACCC  316 

            |||||||||||||||||||||| |||||||||||||||||| 

Sbjct  623  GAACACCCAGAAACAGGCCAGAACCCCCTCTTCCACCACCC  663 

 

B T192 D: TCCACCACCCCCAATCGC -> TCCGAC introduced aspartic acid 
mutation, 12 nucleotides missing, no frame shift 

Query  374     AGGAACACCCAGAAACAGGCCAGAACCCCCTCTTCC---------GA-CGCAAG  423 

               ||||||||||||||||||||||||||||||||||||          | |||||| 

Sbjct  220824  AGGAACACCCAGAAACAGGCCAGAACCCCCTCTTCCACCACCCCCAATCGCAAG  220883 

 

C T293 A: GGTC -> GGC introducing Alanine + frame shift 

Query  310   CTTCTGGTGGCTCAGGCAGCCGATCCGGGG-CTGTGTCTGCTTTGGTGCTGTCA  368 

             |||||||||||||||||||||||||||||| ||||||||||||||||||||||| 

Sbjct  1142  CTTCTGGTGGCTCAGGCAGCCGATCCGGGGTCTGTGTCTGCTTTGGTGCTGTCA  1083 

 

D T293 D: CGGGGTC -> CGGGTC introducing Aspartic acid + frame shift 

Query  312   GGACTTCTGGTGGCTCAGGCAGCCGATCCGGG-TCTGTGTCTGCTTTGGTGCCGTCA  370 

             |||||||||||||||||||||||||||||||| ||||||||||||||||||| |||| 

Sbjct  1142  GGACTTCTGGTGGCTCAGGCAGCCGATCCGGGGTCTGTGTCTGCTTTGGTGCTGTCA  1083 

 

E S331 A: TCT replaced by GCT introducing Alanine mutation, additional 12 
nucleotides, but no frame shift  

Query  474   TGCTTTGGCTGGGTCTGAGGCAGGCACAGACACAGACCGCTCCAGAGCACTTGGCG  533 

             ||            |||||||||||||||||||||||| ||||||||||||| ||| 

Sbjct  1190  TG------------CTGAGGCAGGCACAGACACAGACCTCTCCAGAGCACTTAGCG  1237 

 

F S331 D: Aspartic acid mutation and silence proline mutation introduced 

Query  495     ACACAGACCGATCCCGAGCACTTGGCGCCCCAGCAGGAT  533 

               |||||||||  ||| |||||||| ||||||||||||||| 

Sbjct  224411  ACACAGACCTCTCCAGAGCACTTAGCGCCCCAGCAGGAT  224449 

 
Figure 4.4. The representative sequences of Ciz1 phospho- sites point mutations. 
The point mutations were introduced following CRISPR-Cas9 cut in genomic DNA and 
ssODN carrying point mutation knock-in via homology directed repair. Introduced 
mutations in the regions around the PAM site are shown for A) T192 Alanine point 
mutation introduced causing frame shift after PAM. B) T192 Aspartic acid mutation 
introduced. C) T293 Alanine introduced with frame shift after PAM. D) T293 Aspartic 
acid introduced with frame shift after PAM. E) S331 Alanine introduced. F) S331 
Aspartic acid point mutation introduced. 
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ssODN used Outcome 

T192A 1) Frame shift after PAM 
2) No change 
3) Introduced Alanine mutation + frame shift further in the sequence 

T192D 1) No change 
2) No change 
3) Aspartic acid mutation 

T293A 1) CCCC is missing after PAM sequence, replacing Proline with 
Glutamate + frame shift 
2) Alanine mutation introduced + frame shift after PAM 
3) Alanine mutation introduced + frame shift after PAM 

T293D 1) Aspartic acid mutation introduced + frame shift after PAM 
2) Aspartic acid mutation introduced + frame shift after PAM 
3) GG missing, Threonine is missing + frame shift after PAM 

S331A 1) Introduced Alanine and silent Leucine mutation + 12 nucleotides, 
but no frame shift 
2) No change 
3) Recombination with chromosome 11 

S331D 1) Frame shift 
2) Aspartic acid mutation + frame shift after PAM 
3) AGCT looped in creating frame shift, CTC -> CGA mutation causing 
Leu to Arg mutation, AGA -> CGA mutation causing silent Arg 
mutation 

 

Table 4.1. Summary of point mutations introduced by homology directed repair. 
The point mutations were introduced following CRISPR-Cas9 cut in genomic DNA and 
ssODN carrying point mutation knock-in via homology directed repair. The Ciz1 
phosphorylation sites that were replaced by Alanine or Aspartic acid were T192, 
T293, and S331. The PCR amplified regions spanning the mutation sites were cloned 
into TOPO10 Blunt cloning vector and transformed into Top10 competent cells. The 
plasmids were sequenced using M13 forward and reverse primers. 

 

Overall, the homology directed repair introduced significant mutations in the process 

of knocking-in the ssODN sequence into genomic DNA. In each case, the sequencing 

results revealed that the desired mutation was not produced. In many cases there 

were unintended mutations or frame shifts introduced adjacent to PAM sequences 

that were not repaired using HDR in an orderly manner. Finally, as we were unable to 

produce the desired mutations, the further investigation of the role of site specific 

phosphorylation of Ciz1 was not possible. 
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4.5. Endogenous Ciz1 stability after translational inhibition 

In order to determine if CDK mediated phosphorylation promotes Ciz1 stability, it is 

necessary to determine its stability in the absence of protein production. Protein 

synthesis was inhibited by addition of 50 µg/ml of cycloheximide to murine 3T3 cells 

and Ciz1 levels were monitored every 4 hours after translation inhibition. This 

revealed that Ciz1 levels were reduced by 60% after 4 hours and by 90% after 8 hours 

(Figure 4.5 A and B), indicating that Ciz1 was a labile and dynamic protein.  

Next, to determine if Roscovitine (CDK2 inhibitor) or PHA-767491 (DDK inhibitor) 

enhanced the Ciz1 destabilisation, cells were incubated with both cycloheximide and 

kinase inhibitors. Roscovitine and PHA-767491 addition did not increase degradation 

of Ciz1 where Ciz1 production had been prevented (Figure 4.5: C, lane 1). 

Cycloheximide treatment also reduced cyclin A levels (Figure 4.5: C, lane 3), 

potentially reducing CDK2 activity in the presence of cycloheximide. Indeed, 

treatment with cycloheximide alone reduces phosphorylation of Ciz1 at T293, a 

verified CDK site within Ciz1. Significantly, this phosphorylation site correlates with 

Ciz1 abundance in synchronised 3T3 cells (Figure 3.3). 
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Figure 4.5. Ciz1 is a labile protein rapidly degraded after translational inhibition. A) 
Western blot of asynchronous 3T3 cells that were treated with 50 µg/ml of 
translational inhibitor cycloheximide for time points indicated. B) Ciz1 protein 
quantitation against actin loading control, each dot presents the mean ± S.D., n=3. C) 
WB of synchronised 3T3 were treated with 50 µg/ml of Cycloheximide, 30 µM of 
CDK2i - Roscovitine, 10 µM of DDK/CDK2i – PHA-767491, and 10 µM of proteasomal 
inhibitor MG132 20 – 24 hours after G0 release. 

  

Importantly, inhibition of the proteasome promotes recovery of Ciz1 and cyclin A to 

similar levels to controls in all contexts. This recovery of Ciz1 and cyclin A by 

proteasomal inhibition suggests that both proteins are regulated by UPS mediated 

degradation (Chapter 3). 

Overall, this analysis revealed that Ciz1 is labile protein, which could be rapidly 

degraded after translational inhibition. Inhibition of protein synthesis results in 

reduced cyclin A levels that correlated with a reduction in CDK mediated 

phosphorylation of Ciz1 at a potentially key regulatory site T293, leading to a 

reduction in Ciz1 levels (Figure 4.5: C). However, because of the concomitant cyclin A 
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and Ciz1 reduction after inhibition of protein synthesis it is difficult to separate the 

contribution of kinase activity in this context.  

4.6. Evaluation of the role of phosphorylation at 4 CDK sites within Ciz1 

To minimise complexity and potential crosstalk between perturbations in CDK 

activity and Ciz1 levels after inhibition of protein synthesis, the effect of 

phosphomimetic or non-phosphorylatable mutations within Ciz1 were assessed. Ciz1 

has 6 putative phosphorylation sites (T138, T144, T187, T192, T293, and S331), 3 of 

which have been functionally characterised (T144, T192, and T293) and inhibit Ciz1 

DNA replication function when phosphorylated (Copeland et al., 2015). In addition, 

S331 site, which is phosphorylated early in G1 phase prior to T293 phosphorylation, 

potentially suggests that it may play a role in Ciz1 stabilisation (Figure 3.3). Whole - 

plasmid mutagenesis was performed on a GFP – E-Ciz1 construct in order to 

introduce alanine or aspartic acid mutations in either S331 site or T144, T192, T293, 

and S331 sites in combination (Appendix 1).  

The transfection of Ciz1 has been associated with cell cycle arrest in other studies. To 

ensure that the expression levels of Ciz1 were low at the point of cycloheximide 

treatment a time course of expression was performed (Figure 4.6: A). This enables 

comparison of the expression kinetics of Ciz1 and its mutants post-nucleofection. 

Transfection using the nucelofection approach (LONZA) promotes expression of 

exogenous genes more quickly than lipid based approaches. The GFP –Ciz1/ AAAA/ 

DDDD mutants were expressed in 3T3 as early as 6 – 8 hours after transfection with a 

comparable intensity (Figure 4.6: A).  
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Initial experiments 24 hours after transfection showed no discernible differences in 

Ciz1 stability after protein synthesis has been inhibited (Figure 4.6: B). This was 

different from endogenous Ciz1 degradation after cycloheximide that was reduced 

by approximately 80% after 8 hours of translational inhibition (Figure 4.5: A and B). 

Similarly inhibition of CDK2 activity also revealed no differences in Ciz1 stability with 

concomitant inhibition of protein synthesis with cycloheximide (Figure 4.5: C, 4.6: C).  

 

Figure 4.6. GFP – E-Ciz1/ -AAAA/ -DDDD overexpression profile. A) Asynchronous 
3T3 were transfected with GFP-E-Ciz1, GFP-E-Ciz1-AAAA (T144A, T192A, T293A, and 
S331A), and GFP-E-Ciz1-DDDD (T144D, T192D, T293D, and S331D) plasmids using 
nucleofector technology. Western blot analysis of cells harvested every 2 hours after 
transfection, probed with anti-N471 antibody. B) Transfected cells were treated with 
100 µg/ml of cycloheximide at 24 hours after transfection. Protein levels were 
determined by western blotting at time points indicated. C) GFP-E-Ciz1 transfected 
cells were treated with 100 µg/ml of cycloheximide (labelled as C), 30 µM of CDK2i 
Roscovitine (CR), and 10 µM of proteasomal inhibitor MG132 (CRM) 24 hours after 
transfection for the time intervals indicated. Protein levels were determined by 
western blotting after 0, 4, 8, and 12 hours of drug treatment. 
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4.7. Analysis of GFP – E-Ciz1/ S331A/ S331D stability 

To prevent overexpression of Ciz1 from potentially affecting the ability of the UPS to 

degrade Ciz1, the time point when exogenous protein was readily expressed but had 

not plateaued was used to prevent saturation of the UPS for degradation of Ciz1. In 

order to determine whether the early phosphorylation of Ciz1 at S331 site 

contributes to its stability and accumulation in G1 phase, alanine and aspartic acid 

mutations were introduced in S331 site of GFP – E-Ciz1. The GFP – E-Ciz1, 8 hours 

after transfection, was rapidly degraded down to approximately 30% after 6 hours of 

cycloheximide treatment (Figure 4.7) that was consistent with endogenous Ciz1 

degradation (Figure 4.5). These data indicate that high levels of exogenous protein at 

24 hour after transfection impaired the efficiency of Ciz1 degradation (Figure 4.6: B). 

This may be due to cell cycle arrest, inactivated UPS, or GFP-Ciz1 levels being too 

high to be affected by 100 µg/ml of cycloheximide.  

The results revealed that both mutations reduced the rate of Ciz1 degradation. This 

suggests that mutation of S331 may cause a structural change that affects 

recognition by the UPS. Additionally, it may propose that S331 site is not responsible 

for Ciz1 stabilisation and the early phosphorylation might simply mean that S331 site 

is phosphorylated by the early activated kinases, such as Cyclin E – CDK2.   
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Figure 4.7. Both GFP-E-Ciz1-S331A and -S331D reduced protein degradation. A) 3T3 
cells were treated with 100 µg/ml of Cycloheximide 8 hours after transfection with 
GFP – E-Ciz1, -S331A, and –S331D plasmids. Western blot analysis of cells harvested 
every 2 hours after translational inhibitor treatment 0 – 8 hours. B) Protein 
quantitation against actin loading control, each dot presents the mean ± S.D., n=3. 

 

4.8.  Phospho-mutant stability after translational inhibition 

Analysis of the S331 site alone did not result in a differential effect for non-

phosphorylatable or phosphomimetic mutations. Next, to evaluate all of the key 

regulatory sites identified within Ciz1, 4 phosphorylation sites were mutated to 

either alanine or aspartate to determine the relative stability of GFP – E-Ciz1, -AAAA, 

and –DDDD. Cells were transfected with each construct and cycloheximide was 

administered 8 hours after transfection when exogenous protein was already 

expressed and detectable (Figure 4.6: A). The 8 hour time course after translational 

inhibition revealed that GFP – E-Ciz1 was more readily degraded than GFP – E-Ciz1 – 
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AAAA or –DDDD mutated protein (Figure 4.8). This suggested that un-

phosphorylatable (-AAAA) and phospho-mimetic (-DDDD) mutations both stabilised 

Ciz1. These observations are not entirely consistent with the previous findings; 

however, it may have exposed an underlying problem with this approach. The 

extensive mutations may have changed protein confirmation or interactions, this 

way slowing down its degradation. In addition, an alternative possibility is that 

results could have bene confounded by different levels of expression that was not 

determined in this experimental setting. 

 

Figure 4.8. GFP – E-Ciz1 is more prone to degradation than GFP – E-Ciz1 –AAAA or –
DDDD. 3T3 cells were treated with 100 µg/ml of Cycloheximide 8 hours after 
transfection with GFP – E-Ciz1, -AAAA, and –DDDD plasmids. A) Western blot analysis 
of cells harvested every 2 hours after translational inhibitor treatment 0 – 8 hours. B) 
Quantitation of exogenous GFP - Ciz1/ -AAAA/ -DDDD protein after Cycloheximide 
treatment against loading control Actin, 0 hour is plotted as relative 1, each dot 
presents the mean ± S.D., n=3. 

 

Additionally, full length murine Ciz1 has 14 CDK phosphorylation sites (Copeland et 

al., 2015), and any of them could be responsible for endogenous Ciz1 stabilisation 

observed from small molecule chemical kinase inhibitor experiments. Therefore, 
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selecting 4 putative CDK phosphorylation sites may have not included the sites 

responsible for Ciz1 stability and accumulation that was observed in endogenous 

experiments (Chapter 3). 

4.9. Discussion 

Overall, the side directed mutagenesis (SDM) in exogenous GFP – E-Ciz1 and CRISPR-

Cas9 mediated point mutation in genomic Ciz1 DNA did not produce conclusive 

results. Both of the methods require improvement and development, such as 

analysing each phosphorylation site individually in case of SDM, and advancing in 

ssODN introduction and screening methodology in CRISPR-Cas9 technique. 

CRISPR-Cas9 technique has been described as a precise genome editing using single 

stranded template with desired point mutation. However, all clones contained 

unintended mutations, with either deletion or insertion events present. These events 

may be caused by re-cutting of the same DNA strand by left-over active Cas9 and 

repair by non-homologous end joining (NHEJ) (Cong et al., 2013; Inui et al., 2014; 

Kwart et al., 2017; Mali et al., 2013; Paquet et al., 2016). Therefore, the screening 

approach was able to identify clones with the desired insertion that was followed by 

insertion or deletion, thus introducing frameshift in the sequence and truncation in 

the protein (Figure 4.4 and Table 4.1).  

There are methods to avoid re-cutting events including introduction of a Cas9 

blocking mutation together with the point mutation of interest (Inui et al., 2014; 

Paquet et al., 2016). This may prevent the re-repair event of already successfully 

introduced template sequence. Moreover, the HDR is very rare in mammalian cells; 

therefore, introducing two successful point mutations in two different alleles in the 
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single cell is highly unlikely (Paquet et al., 2016). This may be improved by having 

desired point mutation very close to double strand break introduced by Cas9 (3 – 5 

nucleotides after PAM sequence) (Kwart et al., 2017), but this is restricted due to the 

availability of a suitably positioned PAM sequence. The efficiency of a successful HDR 

reduces by 50 % when the point mutation is located 10 nucleotides from the cutting 

site (Kwart et al., 2017; Paquet et al., 2016; Richardson et al., 2016).  

CRISPR-Cas9 technology is being developed and strategies for site directed 

mutagenesis are being evolved, there are a number of ways the knock-in of point 

mutations in Ciz1 gene could be improved. First, the means of screening could be 

advanced by adding small tag like HA next to desired point mutation in ssODN, or 

additional antibiotic resistant cassette could be incorporated in ssODN (Hruscha et 

al., 2013). This would allow the faster and more efficient screening for positive 

clones, even though not increasing the recombination efficiency. Further, chemically 

enhancing HDR by stimulating RS-1 or inhibiting SCR-7 (Song et al., 2016) could be a 

way of producing more positive clones for screening; however, it would not prevent 

the errors introduced by HDR or second cutting by Cas9. Additionally, chemical 

modifications of ssODN, such as phosphorothioate linkages at the ends of ssODNs 

have been shown to increase HDR efficiency and fidelity (Prykhozhij et al., 2017). 

Moreover, the asymmetric (36-90nt) anti-sense ssODN was shown to be more readily 

incorporated in genomic DNA (Richardson et al., 2016).  

One of the main reasons why characterising Ciz1 phosphorylation sites individually 

has proven to be complicated is that the murine Ciz1 possesses 14 putative CDK2 

phosphorylation sites and a number of DDK sites as well (Copeland et al., 2015). The 
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chemical kinase inhibition and genetic depletion of kinase regulators prevented 

general phosphorylation of Ciz1 on multiple sites. Knowing that kinases collaborate 

and enhance each other’s efficiency (Montagnoli et al., 2006; Pisu et al., 2015; Wan 

et al., 2008), the extensive lack of phosphorylation may have been the reason of the 

reduced Ciz1 stability and accumulation, rather than the phosphorylation of one 

specific site. Additionally, there are 10 sites that have not been evaluated in this 

work, which may include the regulatory sites that prevent UPS mediated 

degradation. In addition, there is also a formal possibility that CDK2 and DDK are not 

directly affecting Ciz1 stability by phosphorylating Ciz1. Phosphorylation of a 

component of the proposed UPS regulator could regulate its activity or substrate 

specificity. Further work is required to determine how CDK and the UPS contribute to 

regulation of Ciz1 stability.  
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5. Characterisation of the differential activities of Cdc7-Dbf4 (DDK) inhibitors 

XL-413 and PHA-767491 

Since the discovery that the first oncogene was a protein kinase in 1970s, the 

research on kinase inhibition as a potential therapy has developed significantly 

(Bhullar et al., 2018; Collett and Erikson, 1978). The use of kinase inhibitors as a 

therapy was initially criticised due to off-target and toxic effects, acquired drug 

resistance, and a lack of specificity and selectivity due to the structural conservation 

of kinases (Davies et al., 2000; Fabbro et al., 2015; Noble et al., 2004). The human 

kinome consists of approximately 538 kinases and 99 % of kinase inhibitors under 

investigation today compete for ATP binding site (Breen and Soellner, 2015). This site 

is highly conserved across 518 human kinases, thus making it challenging to achieve 

high selectivity and specificity for small molecule inhibitors (Zhang et al., 2009). 

However, the discovery of highly selective kinase inhibitors Imatinib and Desatinib 

for the treatment of BCR-ABL driven acute myeloid leukaemia (AML) and the 

significant clinical efficacy of this approach has fuelled further interest in small 

molecule kinase inhibitors (Bhullar et al., 2018; Lombardo et al., 2004; Shah et al., 

2004). Currently, there are 37 FDA approved small molecule kinase inhibitors, 31 are 

used in cancer therapy (Bhullar et al., 2018). Further, more than 150 small molecule 

kinase inhibitors are in clinical trials and this accounts for 25% of all pharmaceutical 

research and development performed at present (Bhullar et al., 2018; Klaeger et al., 

2017; Knight and Shokat, 2005; Zhang et al., 2009). 

The use of small molecule Cdc7 inhibitors has enabled interrogation of the role of 

DDK in regulation of DNA replication origin activation. In Xenopus cell free DNA 
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replication systems, PHA-767491 blocks helicase activation step, thereby blocking 

initiation of DNA replication (Poh et al., 2014). PHA-767491 specifically inhibits the 

initiation phase of DNA replication, but does not inhibit the elongation phase of DNA 

synthesis (Montagnoli et al., 2008). Both PHA-767491 and XL-413 affect replication 

fork progression (Rainey et al., 2017; Rodriguez-Acebes et al., 2018), but by differing 

mechanisms. PHA-767491 inhibits initiation of DNA replication; whereas, XL-413 

affects fork progression without affecting initiation of DNA replication (Alver et al., 

2017). Importantly, chemical biology approaches using an analogue sensitive Cdc7 

mutant (Cdc7as) showed that Cdc7 is an essential gene that is required to 

phosphorylate the MCM2-7 helicase, and to promote initiation of DNA replication 

(Rainey et al., 2017). This phenotype was achieved with very high XL-413 

concentrations; however, still failed to explain the reduction in replication fork speed 

seen after the XL-413 challenge. 

Consistent with its role in promoting cell cycle progression, Cdc7 is commonly 

overexpressed in breast, colon, and lung tumours (Bonte et al., 2008; Montagnoli et 

al., 2008). Therapeutic targeting of Cdc7 may be an approach in cancer therapy, as 

Cdc7 inhibition selectively kills cancer cells without promoting apoptosis in healthy 

cells (Montagnoli et al., 2004; Montagnoli et al., 2010). DDK inhibition promotes cell 

cycle arrest in normal cells and increases apoptosis in cancer cell lines and xenograft 

models (Jin et al., 2018; Natoni et al., 2011; Natoni et al., 2013). However, there are 

distinct differences in potency of the DDK inhibitors PHA-767491 and XL-413 in 

cancer cell lines. XL-413 displays higher affinity for DDK. Atomic structures for PHA-

767491 and XL-413 bound to DDK revealed more contacts between XL-413 and DDK 

providing a molecular basis for its improved potency and selectivity (Hughes et al., 
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2012). XL-413 is a potent inhibitor of Colo-205 proliferation in vitro and in xenograft 

models (Koltun et al., 2012), but its activity is limited in other cancer cell lines relative 

to PHA-767491 (Sasi et al., 2014). Comparison of PHA-767491 and XL-413 in cancer 

cells lines suggest that differences in potency may be related to bioavailability or 

specificity (Montagnoli et al., 2008; Natoni et al., 2011; Natoni et al., 2013; Sasi et al., 

2014). 

The effect of the pyrrolopyridine PHA-767491 on Ciz1 stability was significant and 

correlated with that of CDK2 inhibitors (Chapter 3). Therefore, the second selective 

Cdc7 inhibitor (XL-413), which has a different chemical backbone was selected to 

confirm that the effect was due to DDK inhibition (Koltun et al., 2012). The 

benzofuropyrimidinone XL-413 shares similar inhibition potency and affinity towards 

Cdc7 with PHA-767491 (Rainey et al., 2017; Sasi et al., 2014). However, in Ciz1 

stability studies, PHA-767491 consistently reduced Ciz1 levels, whereas XL-413 had 

no significant effect (Chapter 3). In addition, PHA-767491 was more efficient in 

inhibiting cell cycle than XL-413. PHA-767491 was found to reduce Ciz1 

phosphorylation on the CDK specific (S/TPxK/R) threonine 293 (Copeland et al., 2015) 

and cyclin A levels (Figure 3.6). To further investigate the differences in activity, the 

effect of PHA-767491 and XL-413 were evaluated in normal 3T3 fibroblasts.   

5.1. PHA-767491 and XL-413 display different effects on cell cycle progression 

PHA-767491 and XL-413 are Cdc7-Dbf4 (DDK) inhibitors with similar inhibitory 

constants for DDK in vitro (IC50 10 nM and 3.4 nM respectively) (Hughes et al., 2012; 

Koltun et al., 2012; Vanotti et al., 2008), but with distinct effects on DNA replication 

and cancer cells (Rainey et al., 2017; Sasi et al., 2014). This raised the question 
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whether PHA-767491 and XL-413 displayed differential activities due to PHA-767491 

having additional off target effects. Therefore, thorough analysis of the cell cycle 

progression after PHA-767491 and XL-413 treatment was performed (Figure 5.1). 

 

Figure 5.1. Different effect of PHA-767491 and XL-413 on cell cycle progression. A) 
3T3 cells were synchronised in G0 and treated with 10 µM of PHA-767491 (PHA) and 
10 µM of XL-413 (XL) 12 - 24 hours after release. Cells were pulse labelled with EdU 
30 minutes prior each time point indicated. S phase cells were quantified using 
confocal fluorescence microscopy DAPI stained total nuclei and expressed as 
percentage. Data show mean ± S.D., where n=6. Blue arrow shows the time point (12 
hours) of kinase inhibitor (KI) treatment. B) Multiparameter flow cytometry dot plot 
of asynchronous NIH-3T3 were treated with 10 µM of PHA-767491 and 10 µM of XL-
413 for 24 hours, pulse labelled with EdU showing replicating DNA (y axis), fixed and 
counter-stained with propidium iodine (PI) showing total DNA (x axis). Numbers on 
the chart show proportion (%) of S phase cells for each condition. 
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Both kinase inhibitors reduced S phase entry in synchronised 3T3 cells re-entering 

the cell cycle from quiescence with PHA-767491 reducing S phase cells by 80 % and 

XL-413 by 50 % (Figure 5.1: A). This observation was verified by addition of both DDK 

inhibitors to asynchronous NIH-3T3 cells for 24 hours. Cells were pulse labelled with 

EdU and analysed by flow cytometry (Figure 5.1: B). The analysis showed that PHA-

767491 reduced S phase entry by 70-80 % for NIH-3T3. However, XL-413 treatment 

increased the total amount of cell in S phase by 40 % (Figure 5.1: B, lane 3). This may 

indicate less efficient progression through S phase leading to an enrichment of cells 

in S phase and demonstrated that S phase entry is not inhibited by XL-413. 

Interestingly, flow cytometry after XL-413 treatment revealed reduced EdU - Alexa 

Fluor 488 fluorescence intensity relative to control cells, consistent with less DNA 

replication. Other studies, that have investigated the effects of XL-413 on DNA 

replication fork progression, found that reduced replication rates were compensated 

by the increased number of origins fired and potentially increased replication fork 

length (Montagnoli et al., 2008; Rainey et al., 2017). Overall, EdU incorporation 

analysis revealed the distinct effects for PHA-767491 and XL-413 with respect to the 

cell cycle progression and the proportion of cells entering the S phase.  

5.2. PHA-767491 and XL-413 efficiently reduce DDK activity, but only PHA-

767491 reduces CDK2 activity 

In order to explore why PHA-767491 was more efficient in inhibiting replication 

origin firing than XL-413, key DDK mediated phosphorylation events that regulate 

helicase activation were monitored. The phosphorylation of MCM2 at pS53 is 

mediated by DDK and is a key regulatory site for the activation of MCM2-7 helicase 
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activity (Montagnoli et al., 2006). In addition, a second DDK/CDK site, pS40/pS41 

(Tsuji et al., 2006), was monitored during the G1 – S transition (Figure 5.2).  

 

Figure 5.2. Distinct PHA-767491 and XL-413 activities in Rb phosphorylation. A) 3T3 
cells were synchronised in G0 and treated with 10 µM of PHA-767491 and 10 µM of 
XL-413 from 12 - 20 hours after release. Western blot probed with Ciz1, p-Ciz1-T293, 
MCM2, pMCM2-ser40/41, pMCM2-ser53, Rb, pRb-ser811, Dbf4, Cyclin E, Cyclin A, 
and Actin antibodies. B) The quantitation of pRb-ser811 relative to total Rb control. 
Bar chart presents mean ± S.D., n=3. Significance measured using paired two-tailed 
Student’s T-test, (*) p≤0.05. C) RT-qPCR analysis of E2F transcript cyclin A2 after 12-
20 hour kinase inhibition. Transcript levels are displayed relative to GAPDH, bars 
present mean ± S.D., n=3 each with 3 technical repeats. 

 

Both inhibitors reduced MCM2 phosphorylation with PHA-767491 being slightly 

more potent. This suggests that both inhibitors PHA-767491 and XL-413 were 

effective in inhibiting DDK specific phosphorylation of MCM2 at sites pS40/41 and 

pS53. Importantly, Ciz1 and cyclin A protein levels were significantly reduced by PHA-
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767491 treatment relative to control and XL-413 treated cells. Ciz1 accumulation 

correlates with cyclin A expression (Figure 3.1) and cyclin A phosphorylation of T293-

Ciz1 is closely linked with total Ciz1 levels (Figure 5.2, 5.3, 3.6, and 3.7). The 

correlation between Ciz1 levels and cyclin A levels may be related to a reduction in 

cyclin A-CDK2 activity that is required for the accumulation of Ciz1 (Figure 3.3). Cyclin 

A levels are transcriptionally regulated by Rb-E2F pathway. As CDK mediated 

phosphorylation of Rb is required for E2F mediated transcription of cyclin A2 (Bertoli 

et al., 2013b; Mittnacht, 1998), this suggests that PHA-767491 may target CDK2 

activity in addition to DDK. Importantly, the data demonstrated a reduction in Rb 

phosphorylation at CDK site S811 in PHA-767491 treated cells (Figure 5.2: A, B). This 

is consistent with previously demonstrated PHA-767491 targeting of multiple 

kinases, such as Cdc7, CDK9, and CDK2 (Montagnoli et al., 2008; Natoni et al., 2011; 

Natoni et al., 2013; Vanotti et al., 2008). Conversely, XL-413 treatment did not 

significantly affect Ciz1, cyclin A or Rb phosphorylation (Figure 5.2: lanes 1, 7, and 

10). Therefore, XL-413 and PHA-767491 have distinct activities that differentially 

affect CDK signalling networks by inhibition of Rb phosphorylation at S811. The 

reduction in cyclin A levels suggests that PHA-767491 may inhibit CDK2 activity 

thereupon affecting Ciz1 accumulation. This was not observed after XL-413 

treatment consistent with a more specific inhibitory activity of XL-413 with fewer off 

target effects (Koltun et al., 2012). 

In order to determine whether PHA-767491 influences cyclin A2 transcription, 

synchronous 3T3 cells were treated with PHA-767491 and XL-413 12–20 hours after 

release. This revealed that PHA-767491 reduced cyclin A2 transcription by at least 

90% (Figure 5.2: C, blue bars). The combination of a reduction in Rb phosphorylation 
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and reduced transcription of cyclin A2 suggests that PHA-767491 may be inhibiting 

CDK2 activity and thereby reduces E2F mediated transcription. This off-target activity 

of PHA-767491 has been noted previously with an in vitro IC50 of 200 nM for CDK2 

(Montagnoli et al., 2008).  

5.3. PHA-767491 is a potent DDK and CDK2 inhibitor 

In order to determine the potency of PHA-767491 in inhibiting CDK2 during G1 

phase, DDK inhibitors PHA-767491 and XL-413 were titrated between 1 - 10 µM. 10 

µM of PHA-767491 inhibited phosphorylation at DDK phospho- sites pS40/41 and 

pS53 of MCM2 as well as on CDK2 phospho- site S811 of Rb (Figure 5.3). However, 1 

and 5 µM of PHA-767491 did not reduce Rb phosphorylation significantly (Figure 5.3: 

B). In comparison, XL-413 reduced phosphorylation of pS40/41 and pS53 in MCM2, 

but did not affect Rb phosphorylation. In addition, PHA-767491 reduced 

phosphorylation of Ciz1 at the CDK specific site T293 and also reduced total Ciz1 

levels at 5 and 10 µM. However, Ciz1 levels and phospho-T293 level were not 

affected by XL-413 treatment (Figure 5.3: A, lanes 1 and 2). Similarly, PHA-767491 

significantly reduced levels of cyclin A at concentrations greater than 1 µM (Figure 

5.3: A, lane 10), which was striking relative to XL-413 that did not affect cyclin A. 

Additionally, PHA-767491 was more potent (5 – 10 µM) in preventing MCM2 

phosphorylation on S40/41 site (Figure 5.3: A, lane 4), potentially through dual 

inhibition of DDK and CDK2 that is required for phosphorylation of S40 and S41 

respectively. These data are consistent with the notion that PHA-767491 acts on 

both DDK and CDK2 kinases, leading to a greater reduction in S40/41 

phosphorylation than that exhibited by XL-413 inhibitor. The data here suggest that 
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PHA-767491 may be a potent DDK and CDK2 inhibitor effective in a low 

concentration range (1 - 10 µM). 

 

Figure 5.3. PHA-767491 is a potent DDK and CDK2 inhibitor. A) Synchronised 3T3 
were treated 12 – 20 hours after G0 release. WB of cells after 8 hours of 1, 5, and 10 
µM PHA-767491 and XL-413 treatment, probed with Ciz1, pCiz1-T293, MCM2, 
pMCM2-ser40/41, pMCM2-ser53, Rb, pRb-ser811, Dbf4, Cyclin E, Cyclin A, and Actin 
antibodies. B) pRB-ser811 protein quantitation relative to total Rb protein control, 
taking control as relative 1. Bars present mean ± S.D., n=3. Significance was 
measured by paired two-tailed Student’s T-test, (*) p≤0.05 for 10 µM PHA-767491 vs. 
control. 

 

5.4. PHA-767491 displays a similar inhibitory activity to classical CDK2 inhibitors 

Roscovitine and CVT-313 

To determine whether PHA-76749 is inhibiting CDK2 activity and Rb-E2F mediated 

transcriptional regulation, PHA-767491 and XL-413 were directly compared with 
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CDK2 inhibitors Roscovitine and CVT-313. CDK2 inhibition has been shown to inhibit 

Rb phosphorylation, thus reducing E2F mediated transcription of cyclins in G1 phase 

(Bertoli et al., 2013b; Leone et al., 1999). Using synchronised 3T3 cells that were 

treated with PHA-767491, XL-413, Roscovitine, and CVT-313 from 12 – 20 hours after 

release from quiescence, showed that PHA-767491 reduced MCM2 phosphorylation 

on S40/41 with the same efficiency as Roscovitine and CVT-313 (Figure 5.4).  

 

Figure 5.4. PHA-767491 inhibits Rb phosphorylation and cyclin A expression 
consistent with inhibition of CDK2. Western blot analysis of synchronised 3T3 cells 
treated with 10 µM of PHA-767491, 10 µM of XL-413, 30 µM of Roscovitine, and 10 
µM of CVT-313 12 – 20 hours after G0 release probed with MCM2, pMCM2-ser40/41, 
pMCM2-ser53, Rb, pRb-ser811, Dbf4, Cyclin E, Cyclin A, and Actin antibodies. 

 

However, the effect of XL-413 was limited, possibly due to targeting only the S40 site. 

In addition, MCM2 levels were reduced by PHA-767491, Roscovitine, and CVT-313 as 

seen elsewhere (Thacker, 2017). The reduction in MCM2 levels may contribute to the 

reduction in pS40/41 and pS53 observed by western blotting (Figure 5.4). This 

analysis also revealed that PHA-767491 inhibited Rb phosphorylation on S811 site, 
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and completely abolished cyclin A expression, consistent with the CDK2 inhibitors 

Roscovitine and CVT-313 (Figure 5.4). This indicates that PHA-767491 inhibitory 

activity mirrors those of CDK2 inhibitors. Importantly these effects are not seen after 

XL-413 treatment highlighting their differential activities. 

5.5. PHA-767491 inhibits E2F-Rb mediated transcription consistent with off 

target CDK2 inhibition 

The principle difference in activity between PHA-767491 and XL-413 appears to be 

related to the regulation of the Rb-E2F pathway (Figure 5.2-5). This activity may be 

related to the increased potency of PHA-767491 preventing cell cycle progression 

from G1 to S phase that were not observed with XL-413 (Figure 5.1). To directly 

determine if PHA-767491 inhibits Rb-E2F transcription, synchronised pre-restriction 

point 3T3 cells were treated with 1, 5 or 10 µM of PHA-767491, XL-413, and 

compared with CDK2 inhibitors CVT-313 and Roscovitine. The E2F regulated 

transcripts: cyclin E1, cyclin E2, and cyclin A2, were quantified with specific Taqman 

probes using RT-qPCR (Figure 5.5).  

The results were consistent to the published IC50 values of kinase inhibitors. CVT-313 

inhibits CDK2 with IC50 of 500 nM (Brooks et al., 1997), Roscovitine – 650 nM 

(Lauren, 1997), and PHA-767491 – 200 nM (Hughes et al., 2012; Montagnoli et al., 

2008). The analysis revealed that PHA-767491 was as efficient as CDK2 inhibitors in 

reducing cyclin transcription at high concentrations (10 µM) (Figure 5.5: left column), 

it was comparable with CVT-313 at mid concentrations (5 µM) (Figure 5.5: middle 

column); however, Roscovitine seemed to be less effective at its mid concentration 

(15 µM) to that of PHA-767491 or CVT-313. Only CVT-313 was able to inhibit E2F 



Chapter 5: Characterisation of the differential activities of Cdc7-Dbf4 (DDK) inhibitors XL-413 and PHA-767491 

121 
 

transcription at 1 µM concentration (Figure 5.5: right column), possibly due to being 

highly selective for CDK2, thus even low concentration of CVT-313 was sufficient to 

inhibit E2F transcription (Brooks et al., 1997). XL-413 did not significantly reduce E2F 

regulated transcription (Figure 5.5).  

 

Figure 5.5. PHA-767491 is a potent E2F-Rb transcriptional pathway inhibitor. 3T3 
cells were synchronised and treated with 1, 5, and 10 µM of PHA-767491, XL-413, 
CVT-313, and 3, 15, and 30 µM of Roscovitine 12 – 20 hours post – G0. RT-qPCR 
analysis of cyclin E1, E2, and A2 relative to GAPDH. Box-and-whisker plots showing 
mean, upper and lower quartiles, whiskers showing maximal and minimal values, and 
asterisks showing outliers outside the range. Data shown are 3 experimental 
replicates consisting of 3 technical repeats per experiment. 
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PHA-767491 inhibited E2F pathway in the concentration range of 5 - 10 µM 

(p<0.001), Roscovitine at 30 µM (p<0.001) and cyclin A2 transcription at 15 µM 

(p<0.001), and CVT-313 in a range of 1 – 10 µM (p<0.001) (Table 5.1). Overall, the 

results revealed that PHA-767491 was a potent CDK2 inhibitor that affected Rb-E2F 

mediated transcription with similar potency to the CDK2 inhibitors Roscovitine and 

CVT-313. However, XL-413 did not reduce E2F regulated transcription, displaying a 

different inhibitory activity to PHA-767491.  

Inhibitor treatment  
12-20hr post G0 release 

Transcript Relative Quantification 

Cyclin E1 Cyclin E2 Cyclin A2 

DDKi PHA-767491 10µM P<0.001 *** P<0.001 *** P<0.001 *** 

DDKi PHA-767491 5µM P<0.001 *** P<0.001 *** P<0.001 *** 

DDKi PHA-767491 1µM P=0.977 P=1.000 P=0.689 

DDKi XL-413 10µM P=0.344 P=0.988  P<0.001 *** 

DDKi XL-413 5µM P=1.000 P=0.266  P=0.587 

DDKi XL-413 1µM P=0.589  P=0.889  P=1.000 

CDK2i Roscovitine 30µM P<0.001 *** P<0.001 *** P<0.001*** 

CDK2i Roscovitine 15µM P<0.05 * P=0.837 P<0.001*** 

CDK2i Roscovitine 3µM P=1.000 P=0.991  P=0.982  

CDK2i CVT-313 10µM P<0.001 *** P<0.001 *** P<0.001 *** 

CDK2i CVT-313 5µM P<0.001 *** P<0.001 *** P<0.001 *** 

CDK2i CVT-313 1µM P<0.001 *** P<0.001 *** P<0.001 *** 
 

Table 5.1. Statistical analysis of PHA-767491, XL-413, Roscovitine, and CVT-313 in 
reducing E2F regulated transcription. Post-G0 3T3 were treated with 1, 5, and 10 µM 
of PHA-767491, XL-413, CVT-313, and 3, 15, and 30 µM of Roscovitine 12 – 20 hours. 
The transcription was analysed with RT-qPCR relative to GAPDH. The significance of 
cyclin E1, E2, and A2 transcription after drug treatment vs. control was measured 
using SPSS, One-Way ANOVA, Post-Hoc Tukey, analysis, where n=3 experimental 
replicates, each with 3 technical repeats. 

 

The results shown here demonstrate that XL-413 is a selective DDK inhibitor and 

does not have off-target effects via inhibition of CDK2 (Figure 5.2 and 5.3) or E2F 

mediated transcription (Figure 5.5). The analysis also suggests that CVT-313 is more 

potent CDK2 inhibitor than the earlier generation Roscovitine, consistent with 
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published IC50 values and selectivity for CDK2 (Brooks et al., 1997; Lauren, 1997). In 

addition, PHA-767491 is more effective CDK2 inhibitor than Roscovitine, showing an 

increased potency in inhibition of Rb phosphorylation and E2F mediated 

transcription of cyclin E1, E2, and A2 (Figure 5.5). 

5.6. The effect on E2F-Rb transcription is not due inhibition of CDK9 - RNA 

Polymerase II transcriptional activity 

PHA-767491 is a dual kinase inhibitor with IC50 of 10 nM for Cdc7 and 34 nM for 

CDK9 (Montagnoli et al., 2008; Vanotti et al., 2008). PHA-767491 has been shown to 

inhibit CDK9 in chronic lymphocytic leukaemia (CLL) and multiple myeloma models 

(Natoni et al., 2011; Natoni et al., 2013). PHA-767491 exhibits cytostatic and 

apoptotic activities that have been explained by PHA-767491 targeting both Cdc7 

and CDK9. CDK9 enhances RNA polymerase II activity at elongation step (Bowman 

and Kelly, 2014; Hahn, 2004; Kim et al., 2002; Phatnani and Greenleaf, 2006). The 

CDK9 phosphorylation of RNA polymerase II is conserved in all eukaryotes and is 

essential for CDK12 activity in higher eukaryotes (Bowman and Kelly, 2014). As PHA-

767491 could be affecting E2F1-3 mediated transcription by inhibition of CDK9 and 

potentially reducing the activity of RNA polymerase II, it was speculated that PHA-

767491 may inhibit CDK9 mediated RNA Polymerase II phosphorylation at serine 2, 

this way inhibiting global transcription (Natoni et al., 2011; Natoni et al., 2013). 

To ensure that PHA-767491 effect on E2F transcription was not due to the inhibition 

of CDK9 mediated phosphorylation of RNA polymerase II, the RT-qPCR analysis was 

repeated using 18S rRNA as a control instead of GAPDH. The rationale for this 

experiment was that GAPDH mRNA is transcribed by RNA polymerase II, while 18S 
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rRNA is produced by RNA polymerase I. Given that PHA-767491 inhibits CDK9 with 

nanomolar affinity (34 nM) (Montagnoli et al., 2008; Natoni et al., 2011; Natoni et al., 

2013), the reduction in E2F1-3 transcripts may be due to a reduction in RNA 

polymerase II activity globally. To mitigate for the potential confounding effect of 

PHA-767491 inhibition of RNA polymerase II global transcription, the RNA 

polymerase I transcript 18s rRNA was used as a standard for comparison of transcript 

levels. The RT-qPCR analysis using 18S rRNA as a control was performed and the 

results were compared to the quantitation using GAPDH (Figure 5.6). 

 

Figure 5.6. PHA-767491 affected E2F transcription by inhibiting CDK2 rather than 
CDK9. A, B, C, and D) 3T3 were synchronised and treated with 1, 5, and 10 µM of 
PHA-767491, XL-413, CVT-313, and 3, 15, and 30 µM of Roscovitine 12 – 20 hours 
post – G0 as indicated. RT-qPCR analysis of cyclin E1, E2, and A2 transcription relative 
to GAPDH (blue) and 18S rRNA (red) controls. Bars present mean ± S.D., 3 
experimental repeats each with 3 technical repeats. 

 



Chapter 5: Characterisation of the differential activities of Cdc7-Dbf4 (DDK) inhibitors XL-413 and PHA-767491 

125 
 

This approach showed that there were no significant differences in transcript levels 

after relative quantitation using either GAPDH mRNA or 18s rRNA. PHA-767491 does 

not appear to have mediated any effect on transcript levels via inhibition of CDK9 at 

concentrations less than 10 µM. Therefore, the data presented here are consistent 

with PHA-767491 mediated inhibition of CDK2 that results in suppression of E2F1-3 

mediated transcription. This off-target inhibition may contribute to the increased 

potency of PHA-767491 relative to XL-413 and also potentially explains different 

effects on G1/S transition (Figure 5.1). 

5.7. Genetic depletion of Cdc7-Dbf4 does not inhibit E2F transcription 

In order to confirm that PHA-767491 effect on E2F transcription was not due to its 

inhibition of DDK activity, gene specific siRNAs were used to co-deplete Cdc7-Dbf4 in 

3T3 cells (Figure 5.7: A, B: lanes 6 and 7). The genetic depletion of DDK would provide 

an alternate means of specifically reducing Cdc7-Dbf4 activity, enabling 

determination of the effect on cell cycle progression and transcription due to DDK 

inhibition. Cyclin E1, E2, and A2 protein levels and transcription were monitored 

after depletion of Cdc7 and Dbf4 (Figure 5.7: B and C). RT-qPCR analysis revealed that 

Cdc7 mRNA level was down to 50% and Dbf4 mRNA was below 20% (Figure 5.7: A); 

however, depletion of Dbf4 and Cdc7 did not significantly affect cyclin transcription 

(E1: p = 0.759, E2: p = 0.177, A2: p = 1.000, n=3) (Figure 5.7: B). This was consistent 

with the western blot analysis of the whole cell extract and detergent resistant 

chromatin fraction, which showed that cyclin E and cyclin A protein levels remained 

unchanged (Figure 5.7: C, lanes 8 and 9).  
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Figure 5.7. Cdc7-Dbf4 co-depletion does not reduce E2F transcription. A) 3T3 were 
synchronised and co-transfected with anti-Cdc7 and anti-Dbf4 siRNAs upon release 
from G0. RT-qPCR analysis of control siRNA and Cdc7 and Dbf4 siRNA treated cells 20 
hours after transfection relative to GAPDH. Box-and-whisker plot shows mean, upper 
and lower quartiles and whiskers show data range, where n=3 (3 experimental 
replicates, each with 3 technical replicates). B) as for A, except for Cyclin E1, E2, and 
A2 transcription. C) WB of whole cell extracts and chromatin fraction, +/- 
transfection, probed with MCM2, pMCM2-ser40/41, pMCM2-ser53, Rb, pRb-ser811, 
Cdc7, Dbf4, Cyclin E, Cyclin A, and Actin antibodies. 

 

In addition, the western blot analysis revealed that Cdc7-Dbf4 co-depletion reduced 

MCM2 phosphorylation on S40/41 and S53 DDK phosphorylation sites consistent 

with PHA-767491 and XL-413 results. However, the Rb phosphorylation was not 

affected on S811 after Cdc7-Dbf4 co-depletion (Figure 5.7: C). This suggests that 

phosphorylation of Rb at S811 does not require DDK activity and that Rb can be 

efficiently phosphorylated by CDK2 despite the reduction in DDK activity. These 
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observations are consistent with the results of XL-413 mediated inhibition of DDK 

(Figure 5.2 and 5.3). However, genetic depletion of DDK revealed distinct effects 

from those observed with PHA-767491 (Figure 5.3: lane 5), which reduced Rb-S811 

phosphorylation (Figures 5.2 and 5.3). These data suggest that PHA-767491 is a 

potent DDK and CDK2 inhibitor (Montagnoli et al., 2008) and efficiently inhibits E2F 

transcription with similar efficacy to Roscovitine and CVT-313 (Figure 5.5). 

5.8. Discussion 

The characterisation of small molecule kinase inhibitors is crucial in order to progress 

the research into clinical studies. The comprehensive and thorough analysis of the 

small molecule inhibitor molecular targets and phenotypic effects is key in reducing 

the amount of drugs that fail pre-clinical studies. In addition, identifying the off-

target effect can reduce undesired toxicities, side-effects, and rejection in clinical 

trials (Dambach et al., 2016; Hoelder et al., 2012; Schenone et al., 2013). Further, 

identifying additional targets and effects of small molecule inhibitors may be useful 

in generating novel therapies.  

Due to the distinct activities on the cell cycle progression and Ciz1 stability (Chapter 

3), this chapter focused on the comparison between two potent DDK inhibitors, PHA-

767491 and XL-413. Here it has been shown that PHA-767491 is more efficient in 

inhibiting G1 - S transition than XL-413 (Figure 5.1). However, XL-413 reduces EdU 

fluorescence and prolonged treatment of 24 hours promotes accumulation of cells in 

S phase. These observations are similar to others that have demonstrated that XL-

413 reduces origin firing due to inhibition of MCM2 phosphorylation on serine 53 

and serine 40 (Montagnoli et al., 2008), and reduces rate of S phase progression 
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(Conti et al., 2007; Rainey et al., 2017). Indeed, the speed of replication forks has 

been shown to increase in order to compensate for the reduction in origin firing after 

PHA-767491 and XL-413 challenge; however, high concentration of DDK inhibitors 

still reduce S phase progression (Montagnoli et al., 2008; Rainey et al., 2017). 

Both PHA-767491 and XL-413 significantly reduce MCM2 phosphorylation on serine 

53 and serine 40/41 sites (Figure 5.2) and this inhibition is concentration dependent 

(Figure 5.3). In addition, PHA-767491 also inhibits CDK2 mediated phosphorylation of 

MCM2 serine 41, resulting in a more potent reduction in phosphorylation at this site. 

Similarly, PHA-767491 inhibits Rb-S811 phosphorylation and reduces cyclin A protein 

levels (Figure 5.2, 5.3, and 5.4). Analysis of the E2F regulated transcripts revealed 

that PHA-767491 inhibited transcription of cyclin E1, E2 and A2 genes at micromolar 

concentrations. Importantly, it was shown that PHA-767491 prevents efficient Rb 

phosphorylation consistent with RT-qPCR results and with a reduction in E2F 

mediated transcription.  

Rb-E2F pathway regulated transcripts: cyclins E1, E2 and A2, have been quantified 

and analysed after the increasing concentration of PHA-767491 and XL-413 (Figure 

5.5). PHA-767491 alone inhibits E2F transcription with the similar micromolar 

efficiency as CDK2 inhibitors, Roscovitine and CVT-313. The transcript analysis has 

been confirmed using RNA polymerase II transcript GAPDH mRNA and RNA 

polymerase I transcript 18S rRNA to relatively quantify E2F transcripts abundance 

(Figure 5.6). This reduces the confounding effect of the reduced global RNA 

polymerase II transcription due to inhibition of CDK9 by PHA-767491 (Natoni et al., 

2011; Natoni et al., 2013). These results clearly demonstrate that PHA-767491 
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reduces E2F regulated transcripts and cyclin A protein levels with the same potency 

as CDK2 inhibitors (Figure 5.4). 

The genetic co-depletion of Cdc7 – Dbf4 has no significant effect on E2F 

transcription, Rb phosphorylation on CDK2 site, or cyclin A protein accumulation 

(Figure 5.7). This is consistent with DDK function in MCM2 phosphorylation to initiate 

DNA replication, but not Rb-E2F pathway (Chuang et al., 2009; Francis et al., 2009; 

Montagnoli et al., 2006; Montagnoli et al., 2010; Sasi et al., 2014; Tsuji et al., 2006). 

Taken together the results suggest that PHA-767491 has significant off target effects 

via CDK2 inhibition. These effects may contribute to the increased efficacy in 

reducing cancer cell proliferation (Giacinti and Giordano, 2006; Harbour and Dean, 

2000; Zhu and Mao, 2015).  

Overall, the reduction of DNA replication initiation has been observed with PHA-

767491 and less with XL-413 (Figure 5.1). This is consistent with their role in 

phosphorylating MCM2 (Tsuji et al., 2006). However, the degree of restriction in G1 

phase after PHA-767491 can only be explained by additional inhibition of CDK2 

mediating its effect at both the transcriptional levels via the Rb-E2F pathway and the 

inhibition of helicase activation (Montagnoli et al., 2008; Rainey et al., 2017). The 

additional inhibition of CDK2 could explain the distinct effects of PHA-767491 and XL-

413 observed in Ciz1 stability and accumulation experiments (Chapter 3), where 

PHA-767491 reduced Ciz1 levels with the same efficiency to CDK2 inhibitors and XL-

413 had a limited success. 

The data presented here offers a potential mechanism to explain the enhanced 

cytotoxic effect of PHA-767491 relative to XL-413 in cancer cell lines (Sasi et al., 
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2014). PHA-767491 inhibits both DDK and CDK2 kinase activities in micromolar 

concentrations. Thus, PHA-767491 potentially affects cell cycle progression via a dual 

inhibition of DDK and CDK2 networks that regulate restriction point bypass, helicase 

activation and initiation of DNA replication. This also explains why PHA-767491 

prevents initiation of DNA replication, whereas XL-413 does not. The initiation phase 

of DNA replication requires both DDK and CDK2 activities, and the requirement for 

DDK mediated activation of helicase activation occurs earlier (Deegan and Diffley, 

2016; Diffley, 2004; Siddiqui et al., 2013; Yeeles et al., 2015; Yeeles et al., 2017). 

These observations suggest that PHA-767491 has potentially significant anti-

proliferative effects and provides a basis for the reinterpretation of results generated 

using this inhibitor. Finally, a critical analysis of the effect of PHA-767491 in cancer 

cell lines with respect to the potential inhibition of the Rb-E2F axis is required. This 

may provide a more detailed understanding of differences in XL-413 and PHA-767491 

cytotoxic effects in cancer cells. 
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6.1. Introduction 

Conventional anti-cancer chemotherapeutic drugs target cell proliferation, DNA 

replication and mitotic microtubule assembly (Jackson et al., 2007; Ke and Shen, 

2017). Despite being the first line therapy, chemotherapeutic agents target dividing 

cells and this non-selective approach is associated with severe side effects and 

reduced quality of life. Therefore, there is a need to improve the efficacy of 

conventional drugs and reduce side effects to improve patient tolerance to 

treatments. This may be achieved by the rational targeting of angiogenesis, signalling 

cascades, splice variants or gene fusions, inhibitors of apoptosis, and promotion of 

differentiation pathways (Blattman and Greenberg, 2004; Herr and Brummer, 2015). 

A number of molecularly targeted anticancer therapies have been approved, 

including the blockade of receptor tyrosine kinases (RTK) using antibodies or small 

molecules that inhibit RTK activity. These include targeted strategies against human 

epidermal growth factor receptor 2 (HER2) in breast cancer and epidermal growth 

factor receptor (EGFR) in non-small cell lung cancer (Eliyatkin et al., 2016; Hirsch et 

al., 2016; Perez et al., 2017). However, targeted therapies come at higher cost and 

are often associated with cancer cells developing resistance mechanisms (Pantziarka 

et al., 2014; Shakhnovich, 2018). 

Current research focuses on potential ways to make cancer therapies more 

successful and cost efficient. Strategies to reduce costs include data sharing, patient 

stratification, early diagnosis and re-purposing of existing drugs (Edginton and 

Models, 2018; Ledford, 2008; Shakhnovich, 2018). The main benefits of drug 

repurposing are knowledge on drug pharmacokinetics, bioavailability, toxicities, and 
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dosing that reduces the length of clinical trials. It is imperative to understand the 

molecular mechanisms that underpin tumorigenesis in order to develop rationally 

designed small molecules for the treatment of cancers. However, this approach has a 

long lead-time to clinical use of the compound, typically of the order of 15 to 20 

years. This process can be reduced to 3-12 years and reduce costs by greater than 

50% when existing drugs are repurposed to target novel molecular pathways for 

cancer therapy (Hernandez et al., 2017; Ke and Shen, 2017; Klaeger et al., 2017; Liu 

et al., 2018; Pantziarka et al., 2014; Yoo et al., 2017). 

A number of cancers have been shown to depend on Ciz1 for proliferation, 

migration, aggressiveness, and high Ciz1 levels are associated with poor patient 

outcomes (Den Hollander and Kumar, 2006; Higgins et al., 2012; Nishibe et al., 2013; 

Pauzaite et al., 2017; Yin et al., 2013; Zhang et al., 2015; Zhou et al., 2018). Ciz1 

overexpressing cancers belong to the most prevalent cancer types including 

colorectal, gallbladder, prostate, breast, liver, and lung cancers. Significantly, the 

depletion of Ciz1 has been shown to inhibit tumour growth in xenograft models and 

cancer cell proliferation and migration in vitro (Higgins et al., 2012; Lei et al., 2016; 

Wu et al., 2016; Zhang et al., 2015). Therefore, representative cancer cell lines were 

selected to test for Ciz1 dependency for proliferation and viability. The aim was to 

identify Ciz1 dependent cancer cell lines and to determine whether Ciz1 levels could 

be decreased by CDK and DDK inhibitors in human cancer cell lines. The cancer cell 

lines screened for Ciz1 dependency were androgen independent prostate 

adenocarcinoma PC3 (Tai et al., 2011), primary colon cancer cell line SW480, and the 

metastatic SW620 from the same patient (Maamer-Azzabi et al., 2013). Additionally, 

the oestrogen (ER), progesterone (PR) and other hormone receptor positive, Rb 
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positive, and HER2 negative breast cancer cell lines MCF7 and T47D were analysed 

(Aka and Lin, 2012; Azizi et al., 2010; Bosco et al., 2007; Radde et al., 2015). 

In murine fibroblasts, disruption of CDK2/DDK activity and expression promotes UPS 

mediated degradation of Ciz1 (Chapter 3). This observation suggests that CDK or DDK 

inhibitors may be repurposed to reduce Ciz1 levels through shifting the equilibrium 

of opposing CDK and UPS networks that regulate Ciz1 abundance (Figure 6.1).  

 

Figure 6.1. Model of opposing regulation of Ciz1 protein levels by CDK and DDK 
kinase activity and UPS mediated degradation. A) Normal Ciz1 levels are regulated 
by CDK and DDK phosphorylation stabilising Ciz1 and protecting it from degradation, 
thus positively contributing to Ciz1 accumulation in G1 phase. Ciz1 level is down-
regulated by UPS mediated degradation, providing tight regulation of Ciz1 
abundance in the cell cycle. B) Increased CDK activity may lead to Ciz1 hyper-
phosphorylation, which in turn leads to Ciz1 over-accumulation facilitating increased 
rate of Ciz1 dependent cancer proliferation. C) Mutations and loss-of-function in UPS 
responsible for normal Ciz1 degradation leads to over-accumulation of Ciz1 
contributing to tumourigenesis. 
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In this model, the targeting of CDK/DDK activity may increase the rate of UPS 

mediated degradation of Ciz1. Here the feasibility of utilising small molecule CDK or 

DDK inhibitors to reduce Ciz1 levels is assessed. In addition, the effect of CDK and 

DDK inhibition in suppression of the Rb-E2F pathway will be determined. The 

molecular characterisation of this effect of CDK2 and DDK inhibition may be the first 

step towards the preclinical investigations for the rational targeting of Ciz1 levels.  

6.2. Kinase inhibition reduced Ciz1 levels in cancer cell lines 

The clinical use of CDK4/6 inhibitors has demonstrated the efficacy of kinase 

inhibition for treatment of oestrogen receptor (ER+) positive and human epidermal 

growth factor receptor 2 (HER2-) negative breast cancer (Asghar et al., 2017; Lynce et 

al., 2018; Pernas et al., 2018; VanArsdale et al., 2015). The observation that Ciz1 is 

regulated by opposing CDK activity and UPS mediated degradation suggests that 

CDK2 inhibition may shift this equilibrium promoting UPS mediated degradation of 

Ciz1 (Chapter 3, Figure 6.1). Ciz1 has both tumour suppressor activities in normal 

levels and facilitates the growth of tumours when over-expressed (Higgins et al., 

2012; Nishibe et al., 2013; Ridings-Figueroa et al., 2017; Sunwoo et al., 2017; Wu et 

al., 2016; Yin et al., 2013). This suggests that the reduction of Ciz1 levels in cancers 

may reduce proliferation. To determine whether CDK2i and DDKi can be used to 

reduce Ciz1 levels in cancer cell lines, PC3 and SW480 cell lines were used. 

Preliminary data in asynchronous colorectal (SW480, SW620, and Caco-2), prostate 

(PC3), cervical (HeLa), and breast carcinoma (MCF7, T47D, and BT549) cell lines, that 

were treated with PHA-767491, Roscovitine, and CVT-313 for 24 hours, revealed 

some reduction in Ciz1 levels (data not shown). To assess whether there are cell cycle 
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specific effects of CDK/DDK inhibitors, early G1 phase synchronised cells were 

produced. Cells were synchronised at the metaphase checkpoint and treated for 8 

hours from 4 – 12 hours after M phase release. These conditions are analogous to 

the data shown for G1 phase progression in murine fibroblasts (Chapter 3). PC3 and 

SW480 cells were treated with DDK inhibitors (PHA-767491 and XL-413) and CDK2 

inhibitors (Roscovitine and CVT-313) between 4 – 12 hours after the release from the 

nocodazole block. The results revealed that all inhibitors, except XL-413, significantly 

reduced Ciz1 levels in cancer cells (Figure 6.2).  

The DDK specific phospo-S53 in MCM2 was reduced after both DDK inhibitors PHA-

767491 and XL-413 (Figure 6.2: A and B, lane 4). Additionally, CDK2 specific 

phosphorylation of Ciz1 (pT293-Ciz1) and Rb (pS811-Rb) was reduced after PHA-

767491, Roscovitine, and CVT-313 treatments (Figure 6.2: A and B, lanes 2 and 6). 

This suggests that PHA-767491 inhibits both DDK and CDK2 activity in cancer cell 

lines consistent with the observed effect in murine 3T3 fibroblasts (Chapters 3 and 

5). Further, cyclin A levels were reduced after PHA-767491, Roscovitine, and CVT-313 

inhibition (Figure 6.2: A and B: lane 9). This suggests that, similarly to normal 

fibroblasts, CDK2 inhibitors and PHA-767491 affect regulation of Rb-E2F pathway 

that is required for efficient G1 phase progression. However, XL-413 efficiently 

reduces MCM2 S53 phosphorylation but does not affect cyclin A expression.  
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Figure 6.2. Kinase inhibition reduces Ciz1 levels in PC3 and SW480 cancer cells. A) 
Cell cycle synchronised PC3 cells were treated with 10 µM of PHA-767491, 10 µM of 
XL-413, 30 µM of Roscovitine, and 10 µM of CVT-313 4 – 12 hours after release from 
M phase. Western blot of PC3 cells harvested after 8 hours of kinase inhibition 
probed with Ciz1, pCiz1-T293, MCM2, pMCM2-ser53, Rb, pRb-ser811, Dbf4, Cyclin E, 
Cyclin A, and Actin antibodies. B) as for A but for SW480 cells. C) Quantitation of Ciz1 
levels in PC3 cells relative to actin loading control, control plotted as relative 1. Bars 
present mean ± S.D., n=3. Significance measured with One-Way ANOVA, Post Hoc, 
Tukey, (*) p<0.05 for PHA, Ros, and CVT. D) as for C except for SW480, (*) p<0.05 for 
PHA, (**) p<0.01 for Ros and CVT. 
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6.3. Ciz1 is degraded by the UPS after CDK2 or DDK inhibition in PC3 and SW480 

cancer cell lines 

The model presented here suggests that Ciz1 is regulated by opposing activities of 

CDK/ DDK and UPS mediated degradation (Figure 6.1).  This model suggests that 

inhibition of kinase activity may reduce Ciz1 protein levels. Therefore, targeting CDK2 

activity to reduce Ciz1 levels may provide with the novel therapeutic means to target 

Ciz1 dependent cancers. For kinase inhibitor therapy to be successful in Ciz1 

dependent cancers, the UPS mediated Ciz1 degradation mechanism should be 

functional. Only cells possessing functional UPS could degrade Ciz1 effectively after 

kinase inhibition treatment. Consequently, it is important to determine whether 

cancer cell lines retain functional UPS and are able to recover Ciz1 levels (Figure 6.3).  
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Figure 6.3. Ciz1 recovery with MG132 in PC3 and SW480 cancer cell lines. A) WB of 
PC3 cells that were synchronised in M phase and treated with 10 µM of PHA-767491, 
10 µM of XL-413, 30 µM of Roscovitine, and 10 µM of CVT-313  with or without 10 
µM of MG132 4 – 12 hours after release. B) Quantitation of Ciz1 levels for PC3 cells 
relative to actin load control. Bars present mean ± S.D., n=3. Significance measured 
by One-Way ANOVA, Post Hoc, Tukey, (*) p<0.05 for PHA. C and D) as for A except 
for SW480, (*) p<0.05 for PHA, Ros, and CVT.  

 

To determine whether kinase inhibition increases the rate of proteasomal mediated 

degradation of Ciz1, the prostate cancer cell line PC3, and the colorectal cancer cell 

line SW480 were treated with kinase inhibitors with or without MG132 (Figure 6.3). 

In PC3 cells, proteasomal inhibition promoted recovery of Ciz1 in PHA-767491 

treated cells, but did not in XL-413, Roscovitine or CVT-313 treated cells. The 

statistically significant recovery of Ciz1 after PHA-767491 suggests that the 

proteasome is functional in PC3 cells.  This may reflect differences in the activity of 
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each inhibitor used and the complexity of molecular pathways exploited by different 

cancer cell lines. In all cases where Ciz1 levels are affected, there was a reduction in 

phosphorylation of CDK2 site T293-Ciz1 (Figure 6.3). The T293 phosphorylation 

correlated closely with Ciz1 levels, consistent with the earlier observations in murine 

fibroblasts (Chapter 3). CDK2 and DDK inhibition in the colorectal cell line SW480 

were consistent with results obtained in normal fibroblasts (Figure 6.3: C, D; Chapter 

3). In SW480 cells, Ciz1 levels were reduced after all drug treatments, and 

significantly recovered with proteasomal inhibition in PHA-767491, Roscovitine, and 

CVT-313 treated cells (Figure 6.3). In addition, in SW480 cells, PHA-767491, 

Roscovitine, and CVT-313 treatment resulted in reduced cyclin A levels and reduced 

phosphorylation of T293 within Ciz1.  

The data presented so far demonstrate a strong correlation between Ciz1 

phosphorylation at T293 and Ciz1 stability. In addition, the reduction in cyclin A levels 

suggests that kinase inhibition potentially affects the Rb-E2F pathway that requires 

further investigation. Here, the reduction of cyclin A after kinase inhibition correlated 

with the loss of T293 phosphorylation that was not recovered by proteasomal 

inhibition. Further, Ciz1 recovery with proteasomal inhibitor varied greatly between 

cell lines, potentially indicating the heterogeneity of molecular pathways cancer cells 

utilise in order to proliferate. However, each cell line tested here demonstrated a 

reduction of Ciz1 levels after CDK2 or DDK inhibition that was recovered by 

proteasomal inhibition with one or more of inhibitors tested. These results suggest 

that the E3 pathway that regulates Ciz1 is intact in the cell lines tested as the Ciz1 

levels were recovered to some extent after being downregulated by kinase 

inhibition.  
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6.4. CDK2 inhibitors reduced E2F transcription in cancer cell lines 

As CDK2 and DDK inhibition reduced cyclin A levels (Figure 6.3), this suggests that 

kinase inhibition may be affecting the transcription of E2F regulated genes. 

Importantly, cell lines used for this analysis (PC3, SW480, and SW620) are Rb positive 

cancer cell lines. In murine fibroblasts, PHA-767491, Roscovitine, and CVT-313 

efficiently reduced E2F transcripts (Figures 5.5 and 5.6). Therefore, E2F regulated 

transcripts cyclin E1, cyclin E2, and cyclin A2 mRNA were quantified by RT-qPCR after 

CDK2 and DDK inhibition in cancer cell context (Figure 6.4, Table 6.1).  

 

Figure 6.4. Roscovitine, CVT-313 and PHA-767491 inhibit E2F transcription in cancer 
cells. A) Synchronised PC3 cells were treated with 10 µM of PHA-767491, 10 µM of 
XL-413, 30 µM of Roscovitine, and 10 µM of CVT-313  4 – 12 hours after release. RT-
qPCR of cyclin E1, E2, and A2 relative to GAPDH, control is plotted as 1, bars show 
mean ± S.D., 3 experimental with 3 technical repeats in each. B) as for A but for 
SW480. C) as for A but for SW620.  
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p values  PHA-767491 XL-413 Roscovitine CVT-313 

PC3 Cyclin E1 0.0021  ** 0.9413 0.0025  * 0.0183  * 

Cyclin E2 0.0003  ***  0.0623 0.0002  *** 0.0002  *** 

Cyclin A2 0.0475  * 0.6899 0.0422  * 0.0428  * 

SW480 Cyclin E1 0.0461  * 0.1345 0.0432  * 0.0413  *  

Cyclin E2 0.0053  ** 0.3268 0.0029  ** 0.0032  ** 

Cyclin A2 0.0032  ** 0.1140 0.0011  ** 0.0012  ** 

SW620 Cyclin E1 0.0442  * 0.1556 0.0389  * 0.0491  * 

Cyclin E2 0.0220  * 0.2489 0.0512 0.0232  * 

Cyclin A2 0.0140  *  0.8321 0.0233  * 0.0179  * 
 

Table 6.1. Quantitation of RT-qPCR analysis of cyclin E1, E2, A2 after kinase 
inhibitors. The quantitation of mRNA transcription from Figure 6.4. The statistical 
analysis was performed with student paired t-test, 3 experimental repeats with 3 
technical repeats in each. Significance (*) p<0.05, (**) p<0.01, (***) p<0.001. 

 

Similar to results seen in 3T3 cells (Chapter 3 and Figures 5.5 and 5.6), E2F mediated 

cyclin E1, E2, and A2 transcription was reduced with Roscovitine and CVT-313 (Figure 

6.4 and Table 6.1). In addition, the DDK inhibitor PHA-767491 reduced E2F mediated 

transcription of cyclin E1, E2 and A2 consistent with its off-target CDK2 inhibitory 

activity (Montagnoli et al., 2008; Montagnoli et al., 2010) (Chapter 5). The results for 

XL-413 showed that although the cyclin E1, E2 and A2 transcript levels were reduced 

in SW480, the reduction was not statistically significant (p>0.1 in all cases, Table 6.1). 

In addition, XL-413 did not affect cyclin E1, E2 or A2 expression in PC3 or SW620 

cells. These results are consistent with the earlier data showing that XL-413 does not 

affect E2F regulated transcription (Chapter 5).  

To ensure that PHA-767491 acts via CDK2 inhibition and not via CDK9 inhibition, qRT-

PCR was performed using 2 housekeeping genes: RNA polymerase II regulated 

GAPDH and 18S rRNA that is produced by RNA polymerase I (Bowman and Kelly, 

2014; Goodfellow and Zomerdijk, 2012; Hahn, 2004; Kim et al., 2002; Natoni et al., 



Chapter 6: Enhancing UPS mediated degradation of Ciz1 with small molecule DDK and CDK2 inhibitors 

143 
 

2011; Natoni et al., 2013; Phatnani and Greenleaf, 2006). The relative quantitation 

values generated using either GAPDH mRNA or 18S rRNA were not significantly 

different (Table 6.2) consistent with the hypothesis that PHA-767491 does not affect 

global transcription (Chapter 5). 

 

Figure 6.5. PHA-767491, Roscovitine, and CVT-313 inhibit E2F - Rb axis transcription 
in cancer cell lines. A) Synchronised PC3 cells were treated with 10 µM of PHA-
767491, 10 µM of XL-413, 30 µM of Roscovitine, and 10 µM of CVT-313  4 – 12 hours 
after release. RT-qPCR of cyclin E1, E2, and A2 relative to GAPDH (blue) and 18S 
(red). Control is plotted as relative 1, bars present mean ± S.D., 3 experimental with 3 
technical repeats in each. B) as for A but for SW480. 

 

 GAPDH vs 18S in PC3 GAPDH vs 18S in SW480 

Cyclin E1 Cyclin E2 Cyclin A2 Cyclin E1 Cyclin E2 Cyclin A2 

Control p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 

PHA-767491 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 

Control p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 

XL-413 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 0.3 p = 1.0 

Control p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 

Roscovitine p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 

Control p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 

CVT-313 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 p = 1.0 
 

Table 6.2. The statistical analysis of the difference between GAPDH mRNA and 18S 
rRNA. Synchronised PC3 and SW480 cells were treated with 10 µM of PHA-767491, 
10 µM of XL-413, 30 µM of Roscovitine, and 10 µM of CVT-313  4 – 12 hours after 
release. The significance of the difference of quantitation values (Figure 6.5) of RT-
qPCR of cyclin E1, E2, and A2 relative to GAPDH and 18S was analysed using One-
Way ANOVA Post-Hoc Tukey, SPSS, n=3. 
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Taken together (Figures 6.4 and 6.5), the data demonstrate that in Rb positive cancer 

cell lines CDK2 inhibitors Roscovitine and CVT-313, and DDK/CDK2 inhibitor PHA-

767491 reduced Rb-E2F regulated transcription, resulting in reduced cyclin 

expression. This effect may potentially reduce Ciz1 accumulation by reducing CDK2 

activity, predisposing Ciz1 for UPS mediated destruction in normal and cancer cell 

lines. 

6.5. CDK or DDK inhibition does not affect Ciz1 transcription in PC3 and SW480 

cancer cell lines 

In order to investigate whether CDK2 or DDK inhibitors reduce Ciz1 transcription, RT-

qPCR was performed. This revealed that Ciz1 transcript levels were not significantly 

affected by CDK2 or DDK inhibitors in PC3 and SW480 cell lines (Figure 6.6). This is 

consistent with Ciz1 transcriptional analysis after small molecule kinase inhibitors in 

murine fibroblasts (Figure 3.6: C) and is consistent with the hypothesis that Ciz1 is 

post-translationally regulated by the UPS. 

 

Figure 6.6. Ciz1 transcription is unaffected by CDK2 or DDK inhibition. A) 
Synchronised PC3 cells were treated 4 – 12 hours after release from M phase. RT-
qPCR of Ciz1 relative to GAPDH. Control is plotted as a relative 1, bars show mean ± 
S.D., 3 experimental with 3 technical repeats in each. B) as for A but for SW480. 
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6.6. CDK2 or DDK inhibition reduces cellular proliferation and S phase entry in 

Rb positive cancer cells 

Next, to determine the effect of CDK2 or DDK inhibition on cellular proliferation, M 

phase synchronised cancer cell lines were treated with CDK2 or DDK inhibitors 

between 4 – 12 hours after release. To determine the percentage of the population 

in S-phase, cells were pulse EdU labelled for 1 hour and harvested at 12 hours after 

release from mitotic block. The results revealed that all kinase inhibitors reduced S 

phase entry and that XL-413 was the least potent inhibitor (Figure 6.7: A).  PHA-

767491 reduced S phase entry by 80 – 85% between three cell lines, Roscovitine by 

90 – 95%, and CVT-313 by 75 – 80%. In all cases, PHA-767491, Roscovitine, and CVT-

313 showed statistically significant reduction in S-phase cells (PHA-767491 and CVT-

313 p<0.01, Roscovitine p<0.05). XL-413 treatment was more effective in reducing S 

phase entry in PC3 cells than in SW480 and SW620 (Figure 6.7: A), although this 

reduction was not significant (Figure 6.7: B). This is consistent to previous research 

stating that XL-413 has a limited and cell type specific activity. This difference has 

been attributed to limited XL-413 bioavailability (Sasi et al., 2014), but the data 

presented here suggest that this effect may be related to the differences in target 

specificity, as XL-413 does not affect E2F mediated transcription (Figures 6.4 and 6.5; 

Table 6.1). Overall, these data suggest that CDK2 kinase inhibitors are able to reduce 

S phase entry in Rb positive cancer cell lines (Figure 6.7), decrease E2F transcription 

(Figure 6.5), and reduce Ciz1 levels (Figure 6.2, 6.3).  
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Figure 6.7. CDK2 kinase inhibition prevents S phase entry of Rb positive cancers. A) 
Cancer cell lines were treated with 10 µM of PHA-767491, 10 µM of XL-413, 30 µM of 
Roscovitine, and 10 µM of CVT-313  4 – 12 hours after release.  Bars show the mean 
percentage of EdU positive nuclei ± S.D., where n=4. B) The significance (p value) was 
measured using One-Way ANOVA, using Tukey Post-Hoc analysis for each treatment 
against control, where n=4. 

 

6.7. PHA-767491, Roscovitine and CVT-313 reduce proliferation in PC3, SW480 

and SW620 cancer cell lines 

To further assess the effect of CDK2 and DDK inhibition on the cell cycle progression, 

flow cytometry analysis of asynchronous PC3, SW480 and SW620 cancer cell lines 

was performed after 24 hours of kinase inhibitor treatment. Cells were pulse labelled 

with EdU for 1 hour prior to harvesting and fluorescently labelled using CLICK-IT 

chemistry. This enabled both nascent and total DNA levels to be detected by flow 

cytometry (Figure 6.8).  
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Figure 6.8. PHA-767491 resembles CDK2 inhibitors in cancer cell lines. Flow 
cytometry of asynchronous PC3, SW480, and SW620 cells after treatment with 10 
µM of PHA-767491, 10 µM of XL-413, 30 µM of Roscovitine, or 10 µM of CVT-313 for 
24 hours. The cells were labelled with propidium iodide (x axis) for total DNA and 
EdU alexafluor 488 (y axis) for nascent DNA synthesis. The percentage of cells in S 
phase is shown in the top right corner. 2N presents cell population in G1 phase, 4N 
shows S and G2 phase cells. 

 

The results showed that PHA-767491, Roscovitine, and CVT-313 inhibited S phase 

entry in PC3, SW480, and SW620 cancer cell lines (Figure 6.8). In contrast, XL-413 did 

not inhibit G1 – S transition, and led to an increase in the number of S phase cells 

(Figure 6.8, third column). This may indicate a prolonged S phase, rather than a cell 

cycle checkpoint activation preventing S phase entry.  In addition, the reduction in 

fluorescence intensity on FITC (EdU 488 nm) axis after XL-413 treatment suggests 

that there was a reduction in DNA synthesis, consistent with the DNA replication 

stress (Bertoli et al., 2016; Herlihy and De Bruin, 2017; Yeeles et al., 2017; Zeman and 

Cimprich, 2014). This response was noted previously as XL-413 increased replication 
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origin firing from cryptic origins to offset the reduction in DNA replication initiation 

(Alver et al., 2017; Rainey et al., 2017). Overall, the data show that PHA-767491, 

Roscovitine, and CVT-313 efficiently reduce proliferation and S phase entry in Rb 

positive cancer cell lines.  

6.8. Identification of Ciz1 dependent cancer cell lines 

The results presented in this chapter have identified that CDK2 and DDK inhibition 

can reduce Ciz1 levels, most likely via UPS mediated degradation. In addition, CDK2 

inhibitors and PHA-767491 reduce cyclin E1, E2 and A2 expression and proliferation. 

These results suggest that CDK2 and/or DDK inhibition has multifaceted activities 

that prevent proliferation, which may include reduction of Ciz1 levels. To determine 

the effect of reducing Ciz1 levels in cancer cell lines, specific siRNA was used to 

deplete Ciz1 in several cancer cell lines. Each cell line was synchronised in S phase 

with two thymidine blocks prior to transfection with anti-Ciz1 siRNA. Post-

transfection, cells were released back into the cell cycle and cellular proliferation, 

Ciz1 levels, apoptosis and necrosis were monitored. This showed that Ciz1 was 

efficiently depleted at both the protein and mRNA level in cell lines PC3, SW480, 

MCF7, and T47D (Figure 6.9). 
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Figure 6.9. Ciz1 depletion in cancer cell lines. A, D, G, and J) WB of cells harvested 24 
hours after release and transfection, probed with Ciz1 antibody for indicated cell 
lines. B, E, H, and K) Ciz1 protein quantitation relative to actin loading control, 
control is plotted as relative 1, bars present mean ± S.D., n=3, significance measured 
by paired two-tailed t-test, (**) p≤0.01. C, F, I, and L) RT-qPCR of Ciz1 transcription 
relative to GAPDH, control is plotted as a relative 1, bars present mean ± S.D., 3 
experimental repeats with 3 technical repeats in each. Significance measured by one-
way ANOVA post-hoc Tukey, (***) p≤0.005. 
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In order to determine whether cancer cells were dependent on Ciz1 for proliferation 

and viability, EdU incorporation and Ki-67 transcript levels were used as proliferation 

markers. In addition, mitochondrial activity using MTT assay was monitored in PC3 

and SW480 cell lines (Figure 6.10). EdU incorporation was monitored from 12 – 24 

hours after siRNA depletion and showed that S phase entry was reduced by 65% at 

24 hour time point in Ciz1 depleted PC3 cells relative to control cells (Figure 6.10: A). 

These data suggest that the androgen independent prostate adenocarcinoma PC3 

cell line requires Ciz1 expression to efficiently enter the S phase, consistent with its 

role in regulation of DNA replication initiation (Coverley et al., 2005).  

In Ciz1 depleted PC3 cells, transcription of the KI-67 gene was reduced by 40% 

(Figure 6.10: C). The Ki-67 is a marker of proliferation that is transcribed in all cell 

cycle phases except quiescence and peaks prior to mitosis (Sun and Kaufman, 2018). 

In addition, there was also a reduction in metabolic activity post-depletion of Ciz1 in 

PC3 cells, with approximately 30% reduction relative to control cells (Figure 6.10: E). 

Using three independent approaches, depletion of Ciz1 reduces the number of cells 

in S phase (Figure 6.10: A), reduces KI-67 expression (p<0.05, n=3) (Figure 6.10: C), 

and decreases metabolic activity (Figure 6.10: E) consistent with a decline in cellular 

proliferation.  
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Figure 6.10. Ciz1 requirement for PC3 and SW480 proliferation. A) PC3 cells were 
synchronised by 2 x Thymidine block and transfected with anti-Ciz1-siRNA upon 
release. Cells were 1 hour pulse labelled with EdU prior time points indicated. Plot of 
percentage of EdU positive cells relative to DAPI counterstained total cells. Each dot 
shows mean ± S.D., n=3. B) same as A, but for SW480. C) PC3 cell line RT-qPCR of Ki-
67 relative to GAPDH, control plotted as a relative 1, bars show mean ± S.D., 3 
experimental repeats with 3 technical repeats in each. Significance measured by one-
way ANOVA post-hoc Tukey, (*) p≤0.05. D) same as C, but for SW480. E) PC3 cells 
MTT cell viability assay, 24, 48, and 72 hour after transfection. 24 hour time point is 
plotted as relative 0, and the time points 48 and 72 hour were plotted as an 
absorbance change after 24 hours (%), n=3 (in triplicate). F) same as E, but for 
SW480. 
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In contrast, SW480 grade II colorectal cancer cell line was not affected. Ciz1 

depletion did not reduce the proportion of cells in S-phase, KI-67 expression or 

cellular metabolism measured by the MTT assay (Figure 6.10: B, D, and F). 

Overall, these data show clear differences in PC3 and SW480 cells. The aggressive 

androgen independent PC3 cells required Ciz1 for efficient cell proliferation rate, 

cellular metabolism, and cell viability. In contrast the Grade II colorectal carcinoma 

cell line SW480 is CIz1 independent for growth and proliferation. These observations 

suggest that PC3 cells are an attractive model to evaluate small molecule inhibitors 

that reduce Ciz1 levels, with the potential exploitation in more complex models and 

clinical settings. 

6.9. Ciz1 depletion shows differential effects in Luminal A cancer cell lines T47D 

and MCF7  

Next, to further expand this analysis, the luminal A (ER+/ PR+/ HER-) breast cancer cell 

lines T47D and MCF7 (Holliday and Speirs, 2011; Radde et al., 2015) were used to 

determine the requirement for Ciz1 for cell proliferation. Both T47D and MCF7 cell 

lines retain functional oestrogen receptor (ER), which was previously shown to 

collaborate with Ciz1 in ER driven tumourigenesis (Den Hollander and Kumar, 2006; 

Den Hollander et al., 2006). MCF7 and T47D cells were transfected with anti-Ciz1 

siRNA and pulse labelled with EdU at 24, 48, and 72 hours. The cell cycle distribution 

was analysed by multiparameter flow cytometry staining for total DNA and EdU 

labelling. This approach revealed that Ciz1 depletion did not affect T47D 

proliferation. Cell cycle progression and the percentage of cells in S phase were 

indistinguishable between control and Ciz1 depleted cells (Figure 6.11: C and D).  
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Figure 6.11. Flow cytometry analysis of MCF7 and T47D showing cell cycle 
progression after Ciz1 depletion. A) The asynchronous population of MCF7 were 
transfected with anti-Ciz1 siRNA, 1 hour pulse labelled prior each 24, 48, and 72 hour 
time point. Flow cytometry multiparameter dot blot, EdU replicating cells (FITC – 488 
nm - y axis) vs. PI total DNA (PE-A - 620 nm - x axis). Number in the top right corner 
shows the proportion of cells in S phase. B) Histogram of the cell count (y axis) vs. 
EdU positive (x axis). C) as for A but for T47D. D) as for B except for T47D. 
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However, Ciz1 depletion in MCF7 cell line increased the proportion of cells in S phase 

(24 hours after the depletion: 42.16% control vs 50.78% Ciz1 depletion, 48 hours: 

35.96% vs 51.81%, 72 hours: 27.24% vs 53.33%) (Figure 6.11: A). After plotting of the 

cell count against EdU intensity, a clear accumulation of the cells in S phase was 

detected (Figure 6.11: B). The data show an increase in S phase cells after Ciz1 

depletion that may suggest increased proliferation. An alternative hypothesis to 

explain the increased number of cells in S phase could be via slowed replication or 

DNA replication stress phenotype, which can prolong S phase (Herlihy and De Bruin, 

2017; Toledo et al., 2017). 

6.10. Ciz1 depletion reduced proliferation in MCF7 breast cancer cell line 

The cell cycle profiling of MCF7 and T47D revealed differential effects. T47D cells do 

not alter their cell cycle profile after Ciz1 depletion (Figure 6.11: C and D), whereas 

the MCF7 cell line showed an enrichment of cells within S phase (Figure 6.11: A and 

B). This could reflect an increased rate of proliferation or potentially a delay in S 

phase progression due to a DNA replication stress like phenotype (Bertoli et al., 

2016; Herlihy and De Bruin, 2017; Toledo et al., 2017). To further evaluate the 

proliferation rate of MCF7 and T47D cells, KI-67 levels, a cell proliferation marker, 

were determined by qRT-PCR. The KI-67 transcription was significantly reduced in 

MCF7 cell lines after Ciz1 depletion relative to controls (p<0.05, n=3) (Figure 6.12: A) 

and slightly reduced in T47D cells, although this was not statistically significant (NS, 

n=3) (Figure 6.12: B). Further, cell viability measured by MTT assay showed a 

marginal reduction in MCF7 cells (p=0.095, n=3), but not in T47D (Figure 6.12: C and 

D). However, the reduction of mitochondrial activity was not statistically significant 
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in both cases. The enrichment in S phase cells, reduced KI-67 levels and reduced 

cellular proliferation suggest that MCF7 cells may undergo DNA replication stress 

after Ciz1 depletion. 

 

Figure 6.12. Ciz1 depletion reduces proliferation in MCF7. A) MCF7 24 hours after 
transfection with anti-Ciz1 siRNA, RT-qPCR of KI-67 relative to GAPDH, control 
expressed as relative 1, bars show mean ± S.D., significance measured using One-
Way ANOVA, Post-Hoc, Tukey, (*) p<0.05, 3 experimental with 3 technical repeats in 
each. B) as for A but for T47D, non-significant, n=3. C) MTT assay of MCF7 48 hours 
after transfection, control is plotted as 100%, non-significant, bars show mean ± S.D., 
n=3. D) as for C but for T47D. 

 

6.11. Ciz1 depletion reduces proliferation without inducing cell death  

To determine if Ciz1 depletion increased cell death, cells were labelled with Annexin 

V - alexafluor 488 and analysed by flow cytometry (Figure 6.13). Annexin V (FITC 

525/40 nm) specifically binds to phosphatidylserine externalised on the outer surface 
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of the plasma membrane during apoptosis (Monceau et al., 2004). In addition, 

propidium iodide (PE-A 585/42 nm), a membrane impermeant dye was used to label 

necrotic cells that are characterised by the loss of membrane integrity (Zhang et al., 

2018). 

 

Figure 6.13. Quantitation of apoptotic and necrotic cells after Ciz1 depletion in PC3, 
MCF7, and T47D cell lines. The cells were transfected with anti-Ciz1 siRNA, harvested 
at 48 hours after depletion and labelled with Annexin V and propidium iodine (PI). 
Multiparameter dot plot using flow cytometry shows Annexin V labelled apoptotic 
cells (x axis) and PI leaky necrotic cells (y axis). Cells scoring high on FITC axis, but low 
on PE axis were classified as the early apoptotic cells, high in both – late apoptosis, 
high in PE – necrosis, low in both – normal cells. 
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% 

PC3 
Control 

PC3  
αCiz1 

MCF7 
Control 

MCF7 
αCiz1 

T47D 
Control 

T47D 
αCiz1 

Normal  83.44 86.52 90.78 87.69 66.82 67.82 

Early 
Apoptosis  

3.95 3.68 3.36 5.67 18.9 18.17 

Late 
Apoptosis  

5.24 4.18 2.95 3.68 9.10 8.08 

Necrosis  7.37 5.62 2.91 3.06 5.18 4.93 
 

Table 6.3. The quantitation of cell fate after Ciz1 depletion in PC3, MCF7, and T47D. 
The quantitation of flow cytometry analysis in Figure 6.13. The cells were analysed 
using flow cytometry channels FITC 525/40 nm for Annexin V, and PE-A 585/42 nm 
for PI. 

 

Flow cytometry analysis of PC3, MCF7, and T47D showed that Ciz1 depletion did not 

increase apoptosis or necrosis at 24, 48, or 72 hours after the transfection (Figure 

6.13 and Table 6.3 only presents 48 hour time point). Taken together, the data 

suggest that Ciz1 has a cytostatic effect in PC3 and MCF7 that reduces proliferation 

and cellular metabolism without increasing cellular death. 

6.12. Discussion 

The aim of this chapter was to evaluate whether the hypothesis that Ciz1 is regulated 

by opposing CDK2 and UPS activities could be used to promote degradation of Ciz1 

by CDK2 inhibition. The data presented here suggest that Ciz1 levels can be 

efficiently reduced by CDK2 inhibitors Roscovitine and CVT-313, and by CDK2/DDK 

inhibitor PHA-767491 in PC3 and SW480 cancer cell lines (Figure 6.2), which is 

consistent with normal mice fibroblasts (Chapters 3 and 5). The reduction in Ciz1 

levels correlates closely to cyclin A levels and the phosphorylation at T293 site within 

Ciz1, consistent with a potential stabilising role of phosphorylation at T293 site 

(Chapter 3). In addition, PHA-767491, Roscovitine, and CVT-313 inhibitors reduce Rb-
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E2F transcription in Rb positive cancer cell lines that is responsible for cyclin 

expression (Figure 6.4 and Chapter 5). Importantly, reduced E2F transcription does 

not affect Ciz1 transcription in cancer cell lines (Figure 6.6) suggesting that Ciz1 

downregulation is post-translationally regulated. The degradation of Ciz1 after CDK2 

inhibition or PHA-767491 treatment in PC3 and SW480 cell lines is likely UPS 

mediated, as MG132, a proteasomal inhibitor, efficiently recovered Ciz1 levels in 

some cases (Figure 6.3). This suggests that PC3 and SW480 cells have a functional 

UPS that could potentially be exploited in Ciz1 reducing kinase inhibition therapies. 

However, in PC3 cells, the Ciz1 levels were recovered only after PHA-767491 

treatment, possibly indicating different drug efficacies or the complexity of molecular 

pathways utilised by various cancer cell lines. This further emphasises the 

importance of identification of the exact molecular pathway regulating Ciz1 

abundance in normal and cancer cell lines; and molecular screening of cancer cell 

lines in order to design successful therapies and predict treatment outcomes. 

Further analysis of kinase inhibition in cancer cell lines revealed that CDK2 inhibitors 

Roscovitine and CVT-313 efficiently inhibit Rb-E2F transcription (Figure 6.4) in Rb 

positive cancer cell lines. The reduced E2F transcription seen in PHA-767491 cells 

required further evaluation to ensure that results were not confounded by inhibition 

of global transcription via CDK9 – RNA polymerase II axis (Figure 6.5). Comparison of 

the relative quantitation (RQ) values for GAPDH and 18s rRNA revealed no significant 

differences (Table 6.2), consistent with the notion that the reduction in Rb-E2F 

regulated transcription was due to a reduction in CDK2 activity. The inhibition of E2F 

transcription in Rb positive cancer cell lines may be a reason for successful inhibition 
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of S phase entry and the reduction in cancer cell proliferation rate observed after 

PHA-767491, Roscovitine, and CVT-313 challenge (Figures 6.7 and 6.8).  

Normal fibroblasts and cancer cell analysis revealed that PHA-767491 is a potent 

Cdc7 and CDK2 inhibitor (Figures 6.2, 6.4, and 6.5; Chapter 5) explaining the superior 

efficiency of PHA-767491 over XL-413 in cell cycle inhibition and cancer cell killing 

(Montagnoli et al., 2008; Rainey et al., 2017; Sasi et al., 2014). This additional feature 

of PHA-767491 inhibitor could be useful in targeting various cancers relying on 

different molecular pathways for proliferation. However, the research and data 

interpretation of PHA-767491 should be performed with care, being aware of PHA-

767491 targeting the CDK2-Rb-E2F pathway. 

Given that PHA-767491, Roscovitine, and CVT-313 inhibitors efficiently reduce Rb 

positive cancer proliferation and Ciz1 levels, cancer cells were screened for Ciz1 

dependency for proliferation. This approach may help identifying cancer cell lines 

that would have increased sensitivity to kinase inhibitor therapies, affecting kinase 

activity dependent proliferation as well as Ciz1 dependent proliferation. Genetic 

depletion of Ciz1 via siRNA transfection in PC3, SW480, MCF7, and T47D cancer cell 

lines reduced Ciz1 mRNA and protein levels (Figure 6.9). The androgen receptor (AR) 

negative human prostate cancer cell line (PC3) is dependent on Ciz1 for S phase 

entry, proliferation rate and viability (Figure 6.10) that is consistent with normal 

fibroblasts and previously described prostate cancer (Liu et al., 2015; Liu et al., 2016). 

Interestingly, Ciz1 depleted ER and Rb positive breast cancer cell line MCF7 exhibited 

different phenotype, accumulating cells in S phase (Figure 6.11). Together with the 

reduced proliferation rate (Figure 6.12), it potentially suggests the replication stress 
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like phenotype in MCF7 after Ciz1 depletion (Herlihy and De Bruin, 2017; Toledo et 

al., 2017). However, there were no observed changes in S phase progression for 

T47D cells (Figure 6.11: C and D), no significant changes in KI-67 expression (Figure 

6.12: B) or cellular metabolism (Figure 6.12: D). Both MCF7 and T47D are Luminal A 

breast cancer cell lines; however, proteomic analyses have identified differential 

expression of crucial proteins for cell proliferation and survival. For instance, T47D 

expresses higher levels of cell growth, anti-apoptotic and tumourigenic genes, as well 

as carries mutated P53 (Aka and Lin, 2012; Lim et al., 2009). Contrary, the MCF7 

expresses higher amount of transcriptional repression and apoptotic genes than 

T47D, and retains wild type P53 (Aka and Lin, 2012; Lim et al., 2009; Radde et al., 

2015). These might be underlying reasons between the different response of MCF7 

and T47D to Ciz1 depletion.  

Finally, Ciz1 depletion appears to execute cytostatic effect on cancer cell lines rather 

than cause apoptosis (Figure 6.13) that has been shown previously in other cancer 

types (Lei et al., 2016; Liu et al., 2016; Wang et al., 2014; Wu et al., 2016; Yin et al., 

2013). This work shows that CDK2/DDK inhibitors PHA-767491, Roscovitine and CVT-

313 can efficiently reduce Ciz1 level in cancer cell lines that is UPS dependent. 

Additionally, kinase inhibitors successfully reduce Rb positive cancer cell 

proliferation. This may provide basis for further exploration of Ciz1 dependent Rb 

positive cancer targeting with repurposed kinase inhibitors. This approach would 

provide multifaceted targeting of cancer cell line proliferation, inhibiting kinase 

activity dependent cell cycle progression, and Ciz1 dependent proliferation. These 

data emphasise the importance of molecular cancer cell screening in order to design 

effective personalised treatment and predict potential therapy outcomes. 
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7. Ciz1 is regulated by ubiquitin proteasome system (UPS) and 

kinase/phosphatase activities 

The principle aim of this work is to better understand the regulatory mechanisms 

that contribute to the accumulation of Ciz1 protein. Identification of the signalling 

networks that regulate Ciz1 levels could possibly facilitate the molecular targeting of 

Ciz1 by repurposing small molecule inhibitors. Ciz1 accumulates in G1 phase, 

mirroring the rising CDK activity at the G1/S transition and small molecule kinase 

inhibitors can successfully reduce Ciz1 levels in normal murine fibroblasts (Chapter 3) 

and cancer cell lines (Chapter 6). Ciz1 is poly-ubiquitylated in vivo (Figure 3.15) and 

proteasomal degradation is enhanced by CDK2 inhibition (Figure 3.12 – 3.14). Having 

identified that Ciz1 is regulated by opposing CDK2/DDK and UPS activities, this raises 

the potential to target Ciz1 through the repurposing of CDK2 inhibitors to increase 

UPS mediated degradation of Ciz1. Importantly, for CDK inhibition strategies to 

reduce CIz1 levels, a fully functional UPS system is prerequisite for efficacy.  

The indirect targeting of Ciz1 levels through CDK2 inhibition requires a detailed 

understanding of the UPS system. In fact this approach requires cancer cells to 

possess functional ubiquitin proteasome system for efficient Ciz1 degradation. 

Consequently, there is a need to identify and characterise the E3 ligase(s) that target 

Ciz1 to facilitate identification of cancers that may be resistant to this strategy. This 

could provide insight and identify cancer types that may be responsive to this 

approach and potentially aid in patient stratification for selection of effective 

therapies. 
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In addition, as CDK2 mediated phosphorylation promotes accumulation of Ciz1 

through prevention of UPS mediated degradation; this suggests that the signalling 

networks could be influenced by phosphatase activities as well. CDK2 mediated 

phosphorylation of Ciz1 at position T293 mirrors the increase in Ciz1 levels (Figures 

3.3, 3.4, 3.6-8, and 3.10). Therefore, phosphatase enzymes that dephosphorylate 

Ciz1 at this site may contribute to the regulation of Ciz1 activity.  

Serine/threonine (S/T) phosphatases directly oppose S/T kinases during the cell cycle 

progression. Interestingly, more than 400 kinases are expressed in human genome, 

and they are counter-regulated by approximately 100 S/T phosphatases (Wlodarchak 

and Xing, 2016). This is achieved by the formation of highly heterogeneous 

complexes, such as PP1 class of phosphatases form approximately 400 heterodimeric 

holoenzymes, and PP2A form around 100 heterotrimeric holoenzymes (Wlodarchak 

and Xing, 2016). This variability is the reason that phosphatases are involved in every 

phase of the cell cycle, the deregulation of any element of the holoenzymes may lead 

to cancer, and the therapeutic targeting is in its infancy due to functional redundancy 

of the specific subunits (Boutros et al., 2007; Rudolph et al., 2004; Ruvolo, 2016; 

Winkler et al., 2015; Wlodarchak and Xing, 2016). 

To illustrate the multitude of functions performed by S/T phosphatases, the PP1 

phosphatase is most active in mitotic phase (Winkler et al., 2015). However, it has 

been shown to regulate phosphorylation state of Rb in G1 phase. In addition, PP1 

control timely MCM4 phosphorylation by opposing Cdc7-Dbf4 activity in S phase, PP1 

dephosphorylates Cdc25 and thereby stimulates CDK1 dephosphorylation and drives 

G2 to M transition. In mitosis PP1 regulates Aurora A and B kinase activities (Bollen 
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et al., 2009; Hiraga et al., 2014; Ludlow et al., 1993; Margolis et al., 2006; Winkler et 

al., 2015). The inhibition of PP1 has been shown to cause mitotic catastrophe and 

apoptosis of cancer cells, suggesting the selective targeting of PP1 as a potential 

cancer therapeutic (Winkler et al., 2015). Additionally, PP2A possesses more than 

300 substrates in eukaryotes, thus it regulates all major signalling pathways and cell 

cycle checkpoints, including G1 to S transition, DNA synthesis, and mitotic initiation 

(Grallert et al., 2015; Jiang, 2006; Kim et al., 2007; Kolupaeva and Janssens, 2013; 

Mochida et al., 2009; Ruvolo, 2016; Weber et al., 2015; Wlodarchak and Xing, 2016). 

PP2A displays a preference for phospho-threonine over phosphor-serine, which is 

consistent with Ciz1 phosphorylation profile (Chapter 3) (Cundell et al., 2016; 

Godfrey et al., 2017).  

The mutations and suppression in PP2A have been implied in a number of solid 

tumours and leukaemias. Therefore, PP2A is a tumour suppressor, which opposes 

overexpressed kinase activities that have been linked with a multitude of cancers  

(Bhullar et al., 2018; Klaeger et al., 2017; Perrotti and Neviani, 2013; Ruvolo, 2016; 

Zhang et al., 2009). Therefore, the pharmacological activation and restoration of 

normal PP2A function is one of the promising avenues in cancer research (Perrotti 

and Neviani, 2013; Ruvolo, 2016). 

This chapter has two aims. First, using an established biochemical fractionation 

approach to identify ubiquitin ligase(s) activity that poly-ubiquitylates Ciz1 (Section 

7.1). Next, this approach was adapted to monitor phosphatase activity of Ciz1 at a 

specific site using phospho-specific antibodies against pT293 in Ciz1 (Section 7.2). 
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These approaches aim to identify potential regulatory enzymes that contribute to 

deregulation of Ciz1 levels in cancer cells. 

7.1. Identification of putative E3 ligases that regulate Ciz1 accumulation  

In order to identify ubiquitin E3 ligases that regulate Ciz1 levels an in vitro 

ubiquitylation assay was utilised (Parsons et al., 2008; Parsons et al., 2009; Parsons et 

al., 2011). This approach uses an ubiquitin activating enzyme (E1), 9 ubiquitin 

conjugating enzymes (E2) and ubiquitin ligase activity (E3) from HeLa lysates to 

ubiquitylate the target protein (Parsons et al., 2008; Parsons et al., 2009; Parsons et 

al., 2011). Using recombinant Ciz1 and HeLa whole cell extract the aim here was to 

identify potential E3 ligases that may regulate Ciz1 using sequential chromatography 

steps to enrich for E3 proteins for identification by mass spectrometry analysis. 

In vitro ubiquitylation assays utilise recombinant proteins, therefore Ciz1 protein was 

expressed in E. coli and purified using Immobilized Metal Affinity Chromatography 

(IMAC) and anion exchange chromatography. First, the ECiz1 was PCR amplified to 

introduce NcoI and SalI restriction sites and to add 6xHis tag onto C-terminal of ECiz1 

(Figure 7.1: A and C). The 6xHis tag was added to the C-terminus, as in previous 

attempts to purify Ciz1 using an N-terminal GST tag produced a truncated Ciz1 

fragment, potentially due to proteolysis of the natively disordered N-terminal region 

of Ciz1. Utilising a C-terminal may improve yields of Ciz1 after purification. The C-

terminus is predicted to have a defined secondary structure and has domains that 

have been structurally determined, including zinc finger protein and matrin domains 

(Ainscough et al., 2007).  
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Figure 7.1. Recombinant ECiz1-His6x cloning. A) The diagram of ECiz1 cloning, 
expression and purification.  B) Amplified and linearised pET-28a vector (5364 bp) 
and ECiz1 (2400 bp) after double digestion with restriction enzymes NcoI and SalI.  C) 
The sequence of ECiz1 cloned in pET-28a obtained using T7 forward and reverse 
primers. The nucleotide sequence was translated into amino acid sequence using 
ExPASy translate (www.expasy.ch). The 6xHis tag is highlighted in light blue. 

 

The 708 amino acid ECiz1 was cloned from mouse embryo derived cDNA (Coverley et 

al., 2005) that partially lacks 2, 6, and 8 exon (Ainscough et al., 2007). The ECiz1 

isoform is more efficiently expressed than the full length Ciz1 protein, which contains 

poly-glutamine motifs that may cause aggregation of proteins. Consequently, ECiz1 

was used to aid purification, by increasing Ciz1 solubility and stability (Ainscough et 

http://www.expasy.ch/
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al., 2007; Copeland et al., 2010; Coverley et al., 2005). ECiz1 was cloned into pET-28a 

vector that included a C-terminal His tag (Figure 7.1: A and B). The plasmid was 

sequenced to confirm the construct and the presence of 6xHis tag (Figure 7.1: C). 

Finally, pET-28a-ECiz1-His6x was transformed into E. coli Rosetta (DE3) competent 

cells (Figure 7.1: B). The Rosetta supplied the system with tRNAs for translation of 

rare codons to aid expression. 

7.1.1. Overexpression and purification of ECiz1-His6 

In order to determine the best strategy of ECiz1 expression, a number of conditions 

were tested. IPTG was used at different temperatures and concentrations to 

optimise expression. In addition, the autoinduction approach was utilised that used 

catabolite repression and lactose to promote expression of target proteins in mid log 

growth.  

The expression of Ciz1 by IPTG induction at 37 °C for 3 hours or at 37 °C then 

reducing temperature to 20 °C was poor (Figure 7.2). In contrast, using autoinduction 

at 20 °C for 24 hours produced a protein that was identified using coomassie staining 

(Figure 7.2, right lane). The IPTG induction and higher temperatures appeared to be 

too fast inducing insoluble inclusion body formation sequestering Ciz1.  
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Figure 7.2. ECiz1-His6 purification with Ni-NTA resign. LEFT) The induction of Ciz1 
expression with 1 mM IPTG for 3 at 37°C, and incubation of 21 hours at 20°C. RIGHT) 
The gradual autoinduction in rich ZY medium for 24 hours at 20°C. L - lysate of cells 
after sonication, FT – flow through after the  bead binding, W1 – wash 1 with 10 mM 
of Imidazole, W2 – wash 2 with 25 mM of Imidazole, P – Protein that was eluted with 
250 mM of Imidazole. The gel was stained with instant blue. 

 

Immobilized metal affinity chromatography was used to purify ECiz1-His6 (Figure 7.2). 

ECiz1 was immobilised on Ni-NTA beads and eluted using stepped imidazole washes 

(Figure 7.2). However, due to the presence of impurities the sample was diluted with 

no salt buffer, and a second purification step was performed using anion exchange 

using a 1 ml Resource Q column (Figure 7.3: A). The western blotting of fractions C1-

4 revealed that the protein was pure enough for in vitro ubiquitylation assays (Figure 

7.3: B and C). The probing with His-tag antibody revealed that the sample was still 

contaminated with predicted Escherichia coli Sly-D protein (Figure 7.3: C) that 

interacted with nickel ions (Martino et al., 2009) and was negative in charge: pI of 

4.23 vs Ciz1 pI 4.8, therefore was co-purified with ECiz1 using Resource Q column. 

The identity of impurity was not confirmed and Sly-D was only a predicted protein 

that often contaminates recombinant proteins expressed in E. coli (Mokhonov et al., 
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2018). However, the size of two proteins was significantly different to prevent the 

interference in in vitro ubiquitylation assays, thus allowing us to use it without any 

additional purification steps. 

 

Figure 7.3. Ciz1 purification with Resource Q 1 ml column. A) Picture showing the 
chromatogram of ECiz1-His6x purification. Ni-NTA purified protein was subjected to 
Resource Q 1 ml column, and eluted using KCl 50 – 1000 mM gradient, 0.5 ml / 
fraction for 20 ml gradient, gradient starts at fraction A8. Fractions and volume on x 
axis, absorbance (mAU at UV 280 nm) on y axis. Absorbance in blue line, salt 
concentration in green. The ECiz1-His6x eluted at fractions C1-4 (620 – 691.25 mM of 
KCl gradient). B) WB of C1-4 fractions probed with Ciz1 antibody, indicating ECiz1-
His6x at 120 kDa. C) WB of C1-4 fractions probed with His tag antibody, indicating 
ECiz1-His6x at 120 kDa.  
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7.1.2. In vitro ubiquitylation assay of Ciz1 

To determine whether recombinant ECiz1 protein was ubiquitylated in vitro and to 

narrow down the list of E3 ligases specifying Ciz1 for degradation, HeLa whole cell 

extract (WCE) was used as a source of E3 ligases. The WCE was subjected to a series 

of chromatography steps (Figure 7.4: A) where the ligase activity was determined in 

in vitro ubiquitylation reactions for alternate fractions. Active fractions underwent 

sequential purification steps, to further enrich for E3 ligase activity. This approach 

(Figure 7.4) enabled identification of putative E3 ligases by MS. 

 

Figure 7.4. The diagram of chromatography steps and in vitro ubiquitylation 
reaction involved in identification of E3 ligase. A) HeLa WCE was subjected to 
Phosphocellulose column, phosphocellulose binding fraction (P1000) was put though 
20 ml MonoS column, then active fractions were subjected to size exclusion column, 
then to analytical 1 ml MonoS column, and active fractions were sent for liquid 
chromatography–mass spectrometry (LC-MS/MS) analysis. B) The reaction combines 
200 ng of recombinant ECiz1-His6x, recombinant E1, 9 x E2 (UbcH2, His-UbcH3, 
UbcH5a, UbcH5b, UbcH5c, His-UbcH6, UbcH7, UbcH8, His-UbcH10) and a fraction 
from chromatography steps as a source of E3s. 
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7.1.3. Phosphocellulose fractionation of HeLa extracts identified that Ciz1 is poly-

ubiquitylated in vitro   

In order to determine the charge of the fraction ubiquitylating Ciz1, the HeLa WCE 

was subjected to 100 ml phosphocellulose ion exchange column. Two crude fractions 

were identified, namely phosphocellulose flow through fraction (P150) that had a 

negative charge and did not bind phosphocellulose column, and the positive fraction 

(P1000) that bound the column. 

To determine the E3 ligase activity present in each fraction, in vitro ubiquitylation 

assays were performed on a 2 step purification using phosphocellulose column 

producing a low salt eluate (P150) and high salt eluate (P1000). The ubiquitin ligase 

activity was determined in in vitro ubiquitylation assays. This revealed a laddering of 

bands in HeLa whole cell extract and the high salt eluate that was detected using 

both anti-Ciz1 and anti-His6 antibodies independently, consistent with poly-

ubiquitylation of Ciz1 (Figure 7.5). Importantly, the ubiquitin ligase activity was 

contained within the high salt fraction (P1000) with little activity in the low salt 

fraction (P150). Therefore the P1000 fraction was used for further fractionation using 

a 20 ml cation exchange sulphopropyl (SP) resin for fractionating of positively 

charged proteins. 
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Figure 7.5. Ciz1 ubiquitylation by phoshocellulose column fractions. Western blot of 
in vitro Ciz1 ubiquitylation reactions using 8 µg of HeLa WCE, P150 phosphocellulose 
unbinding fraction, and P1000 phosphocellulose binding fraction. The blots were 
probed with Ciz1 and His tag antibodies, and fluorescent anti-Rabbit-680nm and anti-
Mouse-800nm secondary antibodies. The blots were developed with Odyssey 
Imaging System. Red arrow indicated ECiz1-His6x recombinant protein band. His tag 
antibody also probes recombinant E1-His6x running slightly higher than ECiz1-His6x. 
Brackets show the range of poly-ubiquitylation (poly-ub) of Ciz1. 

 

7.1.4. Fractionation of high salt extracts using cation exchange chromatography  

The P1000 fraction was dialysed and loaded onto the 20 ml HiLoad MonoS 

Sepharose-SP column. The flow through was discarded and eluted proteins collected. 

Even numbered fractions were assayed for ubiquitin ligase activity in vitro for 

fractions 4-60. Fractions were collected, concentrated, protein levels quantified and 

8 µg of protein was loaded in each ubiquitylation assay. Western blot analysis of in 

vitro ubiquitylation assays revealed that fractions 24-26 had the highest 

ubiquitylation activity that was most visible using anti-His tag antibody (Figure 7.6: B, 

bottom blot). Notably, the recombinant E1 was purified with his tag as well, and E1-

His6 run slightly higher than ECiz1-His6. Nevertheless, the laddering pattern can still 

be observed in fractions 24-26 (Figure 7.6: B). Several lanes had single bands that 
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could represent ubiquitylation. Only fractions that contained poly-ubiquitylation in 

both anti-Ciz1 and anti-His antibody western blots were chosen for further analysis 

(Figure 7.6: B). Therefore, fractions 24-26 were pooled concentrated and further 

purified. 

 

Figure 7.6. Ciz1 ubiquitylation by fractions after Mono S cation exchange 
chromatography column. A) Chromatogram of MonoS fractionation, fraction 
number on x axis, UV absorbance at 280 nm (mAU) on y axis. Selected fractions 
indicated in red. B) WB after in vitro ubiquitylation assay, probed for Ciz1 (upper 
panel) and His tag (bottom) antibodies. The highest ubiquitylation intensity observed 
in 24 – 26 fractions that eluted with 335 – 358.75 mM of KCl concentration. Red 
arrow indicates ECiz1-His6x recombinant protein band. Brackets show the range of 
poly-ubiquitylation (poly-ub) of Ciz1. 

 

After dialysis and concentration, pooled fractions were loaded onto an analytical 

S200 size exclusion column (Figure 7.7). 
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Figure 7.7. Ciz1 ubiquitylation with fractions after SEC. A) The chromatogram of SEC 
fractionation, fraction and volume on x axis, UV absorbance at 280 (mAU) on y axis. 
Red – selected fractions. B) The WB grey field of fractions used in Ciz1 ubiquitylation 
assays. C) The fluorescent field of in vitro ubiquitylation assays. WB was probed with 
Ciz1 and His tag antibody, and fluorescent secondary antibodies: Rabbit 680 nm 
(red), Mouse 800 nm (green), the blots were developed with Odyssey Imaging 
System. Red arrow indicates ECiz1-His6x recombinant protein band. Brackets show 
the range of poly-ubiquitylation (poly-ub) of Ciz1. 



Chapter 7: Identification of putative Ciz1 regulators by cellular fractionation and mass spectrometry 

175 
 

The chromatogram revealed the rapid peaking of A280 starting at column void 

volume of around 8 ml (Figure 7.7: A). To identify fractions containing E3 ligase 

activity, even fractions between 8 – 40 were assayed in in vitro ubiquitylation assays. 

Fractions 18 – 20 contained the highest ubiquitylation activity, producing 

ubiquitylation characteristic multiple bands above Ciz1 with both anti-Ciz1 and anti-

His antibodies by Western blot (Figure 7.7: B and C). The Superdex200 calibration 

performed in University of Liverpool indicated that the size of the protein that eluted 

between 9 - 10 ml would be approximately 400 - 700 kDa in size, suggesting that the 

potential E3 ligase may be a large protein or working in a multimeric complex. 

Fractions 18-20 were pooled and loaded onto an analytical MonoS column for a final 

polishing step (Figure 7.8). 

 

Figure 7.8. Ciz1 ubiquitylation by MonoS 1ml fractions. A) The chromatogram of 
MonoS fractions, fractions and volume on x axis, UV absorbance at 280nm (mAU) on 
y axis. Green line shows KCl concentration gradient, brown line – conductivity, blue 
line – absorbance, and red – the fractions selected for LC-MS analysis. B) WB of in 
vitro Ciz1 ubiquitylation fractions probed with Ciz1 antibody. Red arrow indicates 
ECiz1-His6x recombinant protein band. Brackets show the range of poly-
ubiquitylation (poly-ub) of Ciz1. 
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In vitro ubiquitylation assays revealed the two main peaks at fractions 10-11 and 12-

13 (Figure 7.8: A). After in vitro ubiquitylation analysis of even fractions from 2 – 40, 

fractions 10 and 12 were selected giving the highest intensity of ubiquitylation 

characteristic banding (Figure 7.8: B). These fractions exhibited slightly different 

ubiquitylation pattern as well, potentially indicating that there is more than one E3 

ligase present, making them a good target for liquid chromatography–mass 

spectrometry analysis (LC-MS/MS).  

7.1.5. Potential E3 ligase identification via LC-MS/MS analysis 

The results of LS-MS/MS revealed 362 proteins in fraction 10 and 488 proteins in 

fraction 12 (Figure 7.9). Further analysis identified one potential E3 ligase in fraction 

10: F-box only protein 38. Two potential E3 ligase candidates were identified in 

fraction 12; namely, (E3-independent) E2 ubiquitin-conjugating enzyme, and E3 

ubiquitin-protein ligase UBR5 (Table 7.1). 

 

Figure 7.9. The chromatogram of LC-MS/MS analysis. The fraction 10 (top) and 12 
(bottom) were analysed identifying 362 proteins in F10 and 488 in F12. The 
chromatogram presents relative abundance against time. 
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Title Score Coverage MW (kDa) Calc. pI 

(E3-independent) E2 ubiquitin-
conjugating enzyme OS=Homo 
sapiens GN=UBE2O PE=1 SV=3 - 
[UBE2O_HUMAN] 

63.27 2.86% 141 5.1 

E3 ubiquitin-protein ligase UBR5 
OS=Homo sapiens GN=UBR5 PE=1 
SV=2 - [UBR5_HUMAN] 

29.26 0.54% 309 5.8 

F-box only protein 38 OS=Homo 
sapiens GN=FBXO38 PE=1 SV=3 - 
[FBX38_HUMAN] 

75.36 2.10% 133.9 6.33 

 

Table 7.1. The potential E3 ligases revealed after LC-MS/MS analysis. Table shows 
individual protein score - sum of all peptides above the threshold; coverage – 
number of amino acids in found peptide divided by total number of amino acids in 
the protein; MW – molecular weight of the protein; Calc. pI – calculated isoelectronic 
point of the protein. 

 

F-box only protein 38 is not extensively studied. Fbxo38 is 135 kDa in size and is 

predicted to target phosphorylated proteins for degradation, which is characteristic 

to the F-box E3 ligases. The hybrid E2/E3 enzyme UBE20 was shown to be 

ubiquitously expressed in various tissues preferably in central nervous system (CNS) 

and testis (Berleth and Pickart, 1996; Hormaechea-agulla et al., 2018; Klemperer et 

al., 1989), and could ubiquitylate multiple protein with consensus sequence K/R and 

VLI patches: [KR][KR][KR]-X(1,3)-[VLI]-X-[VLI]-X-X-[VLI] (Mashtalir et al., 2014). 

However, it was usually found in cytoplasm, and had a limited amount of information 

on cell cycle expression and control. Additionally, UBR5 E3 ligase was shown to 

regulate many proteins responsible for cell cycle progression, CDK9 – RNA Pol II 

mediated transcription, and DNA damage responses (Shearer et al., 2015). The UBR5 

ubiquitin ligase is proposed to have tumour suppressor activity, and was correlated 

with multiple cancers including colorectal and prostate adenocarcinomas (Kim et al., 

2010; Shearer et al., 2015).  
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Overall, this approach has identified three potential E3 ligases targeting Ciz1 for 

degradation. Further analysis of these ligases is required in order to confirm which E3 

ligase is responsible for Ciz1 degradation.  

7.2. Identification of phosphatases opposing Ciz1 regulating CDK2 activity 

7.2.1. Overexpression and purification of GST-Ciz1-N471 

In order for Ciz1 to be phosphorylated and stabilised by rising kinase activity in G1 

phase, the hypo-phosphorylated state of Ciz1 has to be re-set in the end of cell cycle. 

If Ciz1 is left in hyper-phosphorylated state, the binding to cyclin A and DNA 

proliferative activity would be inhibited (Copeland et al., 2015). 

Ciz1 has been shown to be phosphorylated by multiple kinases contributing to its 

accumulation, stability, and possibly protection from ubiquitylation and degradation. 

In the cell, CDK and opposing phosphatase activity precisely regulate the 

phosphorylation status of target proteins during the G1 – S transition. This serves to 

ensure precise temporal regulation of events and ensure that sufficient CDK activity 

is present to drive the cell cycle (Lo and Uhlmann, 2011).  

The phosphorylation of Ciz1 appears to be dynamic and increases through the G1 – S 

transition (Figure 3.3). Additionally, if phosphorylation stabilises Ciz1 and protects it 

from degradation, then phosphatases may oppose this effect down-regulating Ciz1. A 

range of cancers has been linked with mutated/deleted phosphatases leading to a 

rise in kinase activity and cellular proliferation (Bhullar et al., 2018; Khanna et al., 

2013; Wlodarchak and Xing, 2016). This could be of relevance when considering Ciz1 

overexpressing cancers. Given that Ciz1 phosphorylation contributes to its stability 
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and protects it from degradation (Chapter 3), targeting kinase opposing 

phosphatases may be a novel therapeutic avenue in Ciz1 overexpressing cancers. 

Activation and functional restoration of phosphatases is a newly emerging field in 

cancer therapies (Mastellos et al., 2013). 

To identify protein phosphatases that reverse CDK2 mediated phosphorylation of 

Ciz1 at pT293, a biochemical approach was used. This approach used the same 

sequential chromatography of the HeLa cellular extracts coupled to a novel in vitro 

phosphatase assay. In this experiment, a N-terminal Ciz1 construct that retains full 

DNA replication activity was used (Ciz1-N471) (Copeland et al., 2010; Copeland et al., 

2015). This Ciz1 construct is efficiently phosphorylated using recombinant cyclin A-

CDK2 (Copeland et al., 2015). The construct of p-GEX-6P-3-GST-Ciz1-N471 was 

acquired from Justin Ainscough’s lab and DNA sequenced to ensure the correct 

construct (Figure 7.10: A).  

GST-N471 was expressed in BL-21 E. coli cells via autoinduction in rich ZY medium for 

24 hours at 20 °C. The protein was purified using glutathione sepharose 4B resin and 

the GST tag removed by 3C PreScission Protease (Figure 7.10: B). The results revealed 

that N471 was co-purified with E. Coli HSP-70 (70 kDa) (Figure 7.10: C). The identity 

of the impurity was not experimentally confirmed; however, HSP-70 was the most 

likely candidate in E. coli expression system. HSP-70 was previously detected as a co-

purifying contaminant in other studies (Copeland et al., 2015). However, this 

impurity did not affect the in vitro phosphorylation or de-phosphorylation assays as it 

is not visible on western blots. Nevertheless, a refolding step (5 mM ATP) was 
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performed  in order to reduce HSP-70 contamination followed by anion exchange to 

further purify ECiz1-His6 (Section 7.1) (Clare and Saibil, 2013). 

 

Figure 7.10. GST-Ciz1 (N471) purification. A) Ciz1-N471 sequencing using p-Gex 
Forward and Reverse primers, translated into amino acid sequence using expasy 
translate. Labelled in pink the restriction sites SmaI and XhoI used for cloning into p-
GEX-6P-3 vector, labelled in red are first and last amino acids in N471 sequence. B) 
GST-N471 purification method. C) Coomassie stained gel showing GST-N471 bound 
to glutathione sepharose beads (-3C), after overnight cleaving with 3C protease 
(+3C), and purified protein (P). 

 

7.2.2. Validation of the phosphospecific pT293 antibody 

As phosphorylation of Ciz1 at T293 most closely correlates with Ciz1 levels (Figure 

3.3), removal of the phosphate group from this site was used to identify putative 

phosphatase activity that may contribute to regulation of Ciz1. The specificity of this 
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antibody was already determined using T293A mutations and in vitro kinase assays 

(Copeland et al., 2015). As a first step to validation of this approach, the reversibility 

of phosphorylation at T293 was demonstrated using recombinant cyclin A – CDK2 

and Lambda protein phosphatase (Figure 7.11).  

 

Figure 7.11. The T293 antibody is specific for pCiz1. In vitro phosphorylation was 
performed using recombinant Ciz1-N471, Cyclin A – CDK2, and lambda phosphatase 
as a negative control. A) Coomassie stained 10% SDS-PAGE gel showing Hsp70 at 75 
kDa, Ciz1-N471 at 60 kDa, Cyclin A (50 kDa) – CDK2 (25 kDa). Phosphorylation of Ciz1 
caused an anomalous upwards shift of pCiz1-N471. B) WB probed with T293 
antibody was specific for phosphorylated Ciz1. C) WB re-probed with Ciz1 antibody 
for total protein as a loading control. 

 

The coomassie staining revealed that pCiz1-N471 migrates anonymously when 

phosphorylated by cyclin A – CDK2 (Figure 7.11: A). Western blotting revealed that 

phosho-T293 antibody was highly specific for cyclin A-CDK2 phosphorylated Ciz1-

N471 (Figure 7.11: B), and did not cross-react with total Ciz1 or when lambda 

phosphatase was introduced into the reaction preventing phosphorylation. Finally, 

the re-probing of the same blot with Ciz1 antibody indicated that each lane had 

similar protein loads (Figure 7.11: C). These data confirmed the specificity of 
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phospho-T293 antibody for phosphorylated Ciz1, demonstrating its suitability to 

monitor dephosphorylation of Ciz1. 

7.2.3. Developing a strategy to identify phosphatase activity by classical 

biochemistry approaches 

Identification of putative regulatory phosphatases was performed using a similar 

approach to that used for identification of the regulatory E3 ligases. All 

chromatography steps were identical and the loss of phosphorylation from T293 was 

monitored by western blotting. To produce phosphorylated Ciz1 as the substrate for 

in vitro phosphatase assays, Ciz1 was phosphorylated using 200 ng of pCiz1-N471 and 

20 ng of recombinant cyclin A-CDK2. All assays have a positive control pT293-Ciz1 

and a reduction in phosphorylation at this site is used to determine fractions 

containing phosphatase activity.  The in vitro phosphatase assays have an excess of 

Roscovitine to inhibit recombinant and endogenous CDK activity that may have 

masked phosphatase activity (Figure 7.12: B). HeLa whole cell extract was used to 

provide a source of phosphatase activity that would be sequentially purified by 

classical biochemical fractionation and phosphatases identified by LC-MS/MS. 
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Figure 7.12. Strategic overview for the identification of phosphatase activity. A) A 
chain of chromatography steps used in phosphatase identification, 100 ml 
phosphocellulose, 20 ml MonoQ, 24 ml SEC, 1 ml MonoQ, LC-MS/MS. B) The diagram 
of in vitro phosphorylation assay and de-phosphorylation assay using 
chromatography fractions as a source of potential phosphatases. 

 

7.2.4. Fractionation of low salt extracts exhibiting phosphatase activity using 

anion exchange chromatography  

Initially, HeLa whole cell extract was fractionated into 2 fractions: a low salt (P150) 

and high salt (P1000) fraction using a phosphocellulose column (Figure 7.5 and 7.13). 

Protein concentration was determined for each fraction and 0, 4 and 8 µg of protein 

were used to identify phosphatase activity in vitro (Figure 7.13).  
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Figure 7.13. p-Ciz1-N471 is de-phosphorylated by phosphocellulose P150 fraction. 
The 0 – 8 µg of HeLa WCE, P150 and P1000 fractions were tested. The Ciz1-N471 was 
used as a negative control and pCiz1-N471 as a positive control. The blots were 
probed with Ciz1-pT293 antibody specific for phosphorylated Ciz1, and re-probed 
with Ciz1 antibody specific for total Ciz1 protein. The fluorescent secondary 
antibodies Rabbit 680 nm and Mouse 800 nm were used as indicated and developed 
using Odyssey Imaging System. Red arrow indicates Ciz1-N471 recombinant protein 
band. 

 

Phosphatase activity was detected in the P150 fraction eluted from the 

phosphocellulose column (Figure 7.13). To ensure that the reduction in signal was 

due to dephosphorylation of T293 and not degradation of Ciz1, total Ciz1 levels were 

determined (Figure 7.13: bottom panel). This showed that the activity was likely to 

be mediated by phosphatase activity and not due to proteolytic digestion of Ciz1. 

Subsequently, the P150 fraction was loaded onto a 20 ml MonoQ column. The eluted 

proteins were fractionated over 80 fractions and the phosphatase activity was 

determined for all even numbered fractions. This revealed a reduction of pT293 Ciz1 

signal in several fractions (Figure 7.14).  The fractions 22, 28 – 30, and 40 – 42 

showed an apparent reduction in phosphorylation (Figure 7.14: A, C, and D, upper 

blot). However, only fractions 28 – 30 showed a reduction in pT293 signal with no 

change in total Ciz1 levels. For fractions 22 and 40-42 there was a reduction in both 

pT293-Ciz1 and total Ciz1 signals, suggesting that the reduction in signal may be due 
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to proteolysis of Ciz1 (Figure 7.14: A and B, lower blot, indicated in blue outline). 

Therefore, the fractions 28 – 30 were selected for further analysis. 

 

Figure 7.14. Phosphatase activity assays of anion exchange fractions. A) WB of 
fractions 8 – 30 probed with pCiz1-T293 and re-probed with Ciz1-N471 antibodies. B) 
Fluorescent field of 8 – 30 fractions developed using Odyssey Imaging System, red for 
pCiz1-T293-Rb680nm, green for Ciz1-N471-Rb800nm antibodies, and merged fields 
of both. C) WB of fractions 34 – 56 probed for phospho-T293 and total Ciz1. D) WB of 
fractions 58 – 80. Recombinant Ciz1-N471 was used as a negative control (C-), pCiz1-
N471 as a positive control (C+). Red arrow indicates Ciz1-N471 recombinant protein 
band. 
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Subsequently, Fractions 28-30 were pooled and concentrated down to 500 µl for 

further purification by size exclusion chromatography (SEC) (Figure 7.12: A). All even 

fractions were assayed for phosphatase activity, which revealed that phosphatase 

activity was present in fractions 24 – 26 (Figure 7.15: B). The fractions eluted at 11.5 

– 13 ml of Superdex200 10/300 (24 ml) SEC (Figure 7.15: A, indicated in red), and 

predicted to be 125-250 kDa according to the Superdex200 calibration (Section 

7.1.4). Importantly, dephosphorylation of phospho-T293 did not reduce the total Ciz1 

levels (Figure 7.15). Fractions 24-26 were pooled, concentrated and loaded onto the 

final column, an analytical 1ml MonoQ anion exchange column. 

 

Figure 7.15. Phosphatase assays of SEC fractions showing phosphatase active 
fractions. A) Chromatogram of SEC, fraction number and volume on x axis, UV 280 
nm absorbance (mAU) on y axis. Selected fractions indicated in red. B) WB of 
fractions 14 – 38 probed with Ciz1-N471 pT293-Rb680nm and Ciz1-Rb800nm 
antibodies, Ciz1-N471 (C-), Ciz1-N471 pT293 (C+). Red arrow indicates Ciz1-N471 
recombinant protein band. 
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Phosphatase assays of fractions from the MonoQ column revealed that fractions 13-

16 contained the highest phosphatase activity (Figure 7.16: B). Fractions 13 and 14 

were selected for LC-MS/MS analysis, as they presented the highest absorbance and 

good resolution. 

 

Figure 7.16. Phosphatase assays of MonoQ fractions. A) A chromatogram of MonoQ 
column fractions, 1 - 40 fractions on x axis, Absorbance at UV 280 nm (mAU) on y 
axis, selected fractions indicated in red. B) WB of in vitro assays probed with pCiz1-
T293 and Ciz1 antibodies, Ciz1-N471 (-C), Ciz1-N471 pT293 (+C). Red arrow indicates 
Ciz1-N471 recombinant protein band. 

 

7.2.5. Identification of putative regulatory phosphatases by LC-MS/MS 

The LC-MS/MS analysis was performed as a service by the Centre for Proteome 

research Liverpool in collaboration with Professor Rob Beynon. Analysis of fractions 

13 and 14 identified 467 proteins and 536 respectively (Figures 7.17 and 7.18). After 

filtering the results for serine/threonine phosphatases, this identified regulatory and 

catalytic subunits for both PP2A and PP1 phosphatases in each fraction (Table 7.2 
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and Table 7.3). This suggests that both PP1 and PP2A may have de-phosphorylated 

Ciz1. This activity is consistent with PP1 and PP2A reversing CDK mediated 

phosphorylation and aiding regulation of the cell cycle (Jiang, 2006; Kolupaeva and 

Janssens, 2013; Mochida et al., 2009; Ruvolo, 2016; Weber et al., 2015; Wlodarchak 

and Xing, 2016).  

 

Figure 7.17. The chromatogram of LC-MS/MS analysis. The fractions 13 and 14 were 
analysed by LC-MS/MS. The 467 protein in F13 and 536 – F14 were identified.  

 

PP2A is active in G1 – S transition, and both PP2A and PP1 are responsible for mitotic 

exit (Grallert et al., 2015; Jiang, 2006; Johnson and Latimer, 2005; Wlodarchak and 

Xing, 2016). Both phosphatases have been described in various pathologies including 

cancer (Jiang, 2006; Kim et al., 2007; Kolupaeva and Janssens, 2013; Mochida et al., 

2009; Ruvolo, 2016; Wlodarchak and Xing, 2016). However, due to a high variability 

of the structural, regulatory, and catalytic subunits comprising the holoenzymes of 

phosphatases, it is not possible to identify the specific complexes due to this 

complexity (Figure 7.18). 

 

 



Chapter 7: Identification of putative Ciz1 regulators by cellular fractionation and mass spectrometry 

189 
 

 

Figure 7.18. The diagram of structures of serine/threonine protein phosphatases 
PP1 and PP2A. A) Protein phosphatase 1 (PP1) is composed of highly variable 
regulatory subunit (R) with more than 200 different subunits identified, and catalytic 
subunit (C) with 3 possible variations. 1 regulatory subunit was identified in fraction 
13 and 2 different regulatory subunits were identified in fraction 14; 2 catalytic 
subunits in fraction 13 and 3 in fraction 14. B) Protein phosphatase 2A (PP2A) has 
structural scaffold subunit (A) with two possible subunits identified, highly variable 
regulatory subunit (B) with more than 25 variations, and 2 different catalytic subunits 
(C). 5 regulatory subunits were identified in fraction 13 and 5 in fraction 14; 1 
catalytic subunit in fraction 13 and 1 in fraction 14 (Weber et al., 2015). 
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Description Score Coverage MW 
(kDa) 

Calc 
pI 

Serine/threonine-protein phosphatase 2A 55 
kDa regulatory subunit B alpha isoform 
OS=Homo sapiens GN=PPP2R2A PE=1 SV=1 - 
[2ABA_HUMAN] 

461.51 49.66 % 51.7 6.2 

Serine/threonine-protein phosphatase PP1-
alpha catalytic subunit OS=Homo sapiens 
GN=PPP1CA PE=1 SV=1 - [PP1A_HUMAN] 

408.38 32.73 % 37.5 6.33 

Serine/threonine-protein phosphatase PP1-
gamma catalytic subunit OS=Homo sapiens 
GN=PPP1CC PE=1 SV=1 - [PP1G_HUMAN] 

362.09 28.74 % 37 6.54 

Serine/threonine-protein phosphatase 2A 
catalytic subunit alpha isoform OS=Homo 
sapiens GN=PPP2CA PE=1 SV=1 - 
[PP2AA_HUMAN] 

267.11 32.04 % 35.6 5.54 

Serine/threonine-protein phosphatase 2A 65 
kDa regulatory subunit A alpha isoform 
OS=Homo sapiens GN=PPP2R1A PE=1 SV=4 - 
[2AAA_HUMAN] 

251.41 16.81 % 65.3 5.11 

Serine/threonine-protein phosphatase 2A 65 
kDa regulatory subunit A alpha isoform 
OS=Homo sapiens GN=PPP2R1A PE=1 SV=4 - 
[2AAA_HUMAN] 

215.45 23.06 % 41.5 4.91 

Serine/threonine-protein phosphatase 2A 55 
kDa regulatory subunit B delta isoform 
OS=Homo sapiens GN=PPP2R2D PE=2 SV=1 - 
[2ABD_HUMAN] 

208.69 19.21 % 52 6.39 

Serine/threonine-protein phosphatase 2A 56 
kDa regulatory subunit gamma isoform 
OS=Homo sapiens GN=PPP2R5C PE=1 SV=3 - 
[2A5G_HUMAN] 

172.46 11.07 % 61 6.87 

Protein phosphatase 1 regulatory subunit 11 
OS=Homo sapiens GN=PPP1R11 PE=1 SV=1 - 
[PP1RB_HUMAN] 

159.7 19.05 % 13.9 7.01 

 

Table 7.2. The serine/threonine protein phosphatases identified by LC-MS/MS. The 
catalytic and regulatory subunits of PP2A and PP1 phosphatases were identified in 
fraction 13. 
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Description Score Coverage MW 
(kDa) 

Calc
pI 

Serine/threonine-protein phosphatase 2A 55 
kDa regulatory subunit B alpha isoform 
OS=Homo sapiens GN=PPP2R2A PE=1 SV=1 - 
[2ABA_HUMAN] 

591.88 51.01 % 51.7 6.2 

Serine/threonine-protein phosphatase 2A 
catalytic subunit alpha isoform OS=Homo 
sapiens GN=PPP2CA PE=1 SV=1 - 
[PP2AA_HUMAN] 

490.46 44.34 % 35.6 5.54 

Serine/threonine-protein phosphatase 2A 65 
kDa regulatory subunit A alpha isoform 
OS=Homo sapiens GN=PPP2R1A PE=1 SV=4 - 
[2AAA_HUMAN] 

411.42 22.24 % 65.3 5.11 

Serine/threonine-protein phosphatase 2A 56 
kDa regulatory subunit gamma isoform 
OS=Homo sapiens GN=PPP2R5C PE=1 SV=3 - 
[2A5G_HUMAN] 

383.77 25.00 % 61 6.87 

Serine/threonine-protein phosphatase PP1-
alpha catalytic subunit OS=Homo sapiens 
GN=PPP1CA PE=1 SV=1 - [PP1A_HUMAN] 

379.68 26.97 % 37.5 6.33 

Serine/threonine-protein phosphatase PP1-beta 
catalytic subunit OS=Homo sapiens GN=PPP1CB 
PE=1 SV=3 - [PP1B_HUMAN] 

345.21 22.63 % 37.2 6.19 

Serine/threonine-protein phosphatase PP1-
gamma catalytic subunit OS=Homo sapiens 
GN=PPP1CC PE=1 SV=1 - [PP1G_HUMAN] 

333.8 22.91 % 37 6.54 

Serine/threonine-protein phosphatase 2A 55 
kDa regulatory subunit B delta isoform 
OS=Homo sapiens GN=PPP2R2D PE=2 SV=1 - 
[2ABD_HUMAN] 

333.67 25.17 % 52 6.39 

Serine/threonine-protein phosphatase 2A 56 
kDa regulatory subunit epsilon isoform 
OS=Homo sapiens GN=PPP2R5E PE=1 SV=1 - 
[2A5E_HUMAN] 

333.34 15.20 % 54.7 6.95 

Protein phosphatase 1 regulatory subunit 7 
OS=Homo sapiens GN=PPP1R7 PE=1 SV=1 - 
[PP1R7_HUMAN] 

300.27 25.83 % 41.5 4.91 

Protein phosphatase 1 regulatory subunit 11 
OS=Homo sapiens GN=PPP1R11 PE=1 SV=1 - 
[PP1RB_HUMAN] 

143.94 19.05 % 13.9 7.01 

Protein phosphatase 1A OS=Homo sapiens 
GN=PPM1A PE=1 SV=1 - [PPM1A_HUMAN] 

131.58 15.97 % 42.4 5.36 

 

Table 7.3. The serine/threonine protein phosphatases identified by LC-MS/MS. The 
catalytic and regulatory subunits of PP2A and PP1 were identified in fraction 14. 
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7.3. Discussion 

Overall, this work has identified that Ciz1 is regulated by opposing kinase and 

ubiquitin mediated degradation. Ciz1 protein levels are tightly controlled by rising 

CDK2/DDK kinase activities in G1 phase (Chapters 3 and 5), and is down-regulated by 

UPS (Chapter 3, 6, and 7). Ciz1 phosphorylation stabilises Ciz1, protects Ciz1 form 

degradation, or inactivates one of the components of UPS targeting Ciz1 for 

degradation (Figure 7.19: A). In order to identify the regulatory E3 ligase(s) that 

target Ciz1 cellular fractionation and LC-MS/MS was used, which identified three 

possible E3 ligases that target Ciz1, namely FBXO38, UBE2O, and UBR5.  

 

Figure 7.19. Model of Ciz1 protein level regulation by opposing activities of kinases 
vs UPS and kinases vs phosphatases. A) Ciz1 level is upregulated by rising CDK2 and 
DDK kinase activities in G1 phase (green arrow) (Chapters 3 and 5), and is 
downregulated by ubiquitin proteasome system mediated degradation (red line with 
the endpoint) (Chapters 3 and 7). The phosphorylation either protects Ciz1 from UPS, 
or inactivates UPS (red dashed line). B) Ciz1 level is upregulated by CDK2/DDK that is 
opposed by PP1 and PP2A phosphatases (red line with endpoint) (Chapter 7). C) Ciz1 
is upregulated by CDK2/DDK, and down-regulated by both UPS and phosphatases. 
Phosphatases may dephosphorylate Ciz1 for effective UPS degradation, or 
dephosphorylate and re-activate UPS (green dashed arrow) for Ciz1 degradation. 
Upregulation in kinase activity or down-regulation in UPS and phosphatase activities 
may lead to Ciz1 overexpression driving Ciz1 dependent tumourigenesis (Chapter 6). 
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In this context, the opposing kinase and phosphatase activities that modulate 

phospho-T293 levels could play an important regulatory role in Ciz1 accumulation 

(Figure 7.19: B). Using a similar biochemical approach two putative phosphatase 

regulators of Ciz1 were identified. Multiple catalytic and regulatory subunits of PP1 

and PP2A phosphatases were identified after extensive purification and enrichment 

of phosphatase activity from HeLa cells. The PP1 and PP2A phosphatases efficiently 

remove CDK2 mediated phosphorylation of Ciz1 at T293 (pT293). This is consistent 

with the requirement of Ciz1 dephosphorylation in order to re-set its cyclin A binding 

and Ciz1 DNA replicative function (Copeland et al., 2015). Also, the temporal 

separation of serine and threonine phosphorylation of Ciz1 in G1 phase (Figure 3.3) is 

consistent with PP2A’s catalytic preference for phospho-threonine over phospho-

serine (Cundell et al., 2016; Godfrey et al., 2017). Given that Ciz1 phosphorylation 

aids its accumulation in G1 phase (Chapters 3 and 5), the de-phosphorylation of Ciz1 

may increase its poly-ubiquitylation and thereby reduce Ciz1 protein levels (Figure 

7.19: B).  

The proposed model aims to integrate the potential for UPS, CDK and phosphatase 

activity regulating Ciz1 accumulation. Deregulation of CDK activity is associated with 

tumorigenesis (Barnum and O’Connell, 2014; Canavese et al., 2012; Deshpande et al., 

2005; Pauzaite et al., 2017; Vijayaraghavan et al., 2018). In a deregulated CDK 

context, we propose that high CDK activity may inactivate the E2/ E3 ligase 

responsible for Ciz1 degradation and in this way increases Ciz1 levels (Figure 7.19: A). 

The model proposed here suggests that Ciz1 is regulated by opposing kinase and 

UPS/phosphatase activities. The precise molecular mechanism is yet to be 

elucidated; however, this work led to a number of new questions that will be 



Chapter 7: Identification of putative Ciz1 regulators by cellular fractionation and mass spectrometry 

194 
 

addressed in the near future. First aim will be to determine the identity of E3 ligase 

targeting Ciz1 for degradation. Next, the interplay between UPS and CDK activity will 

require further investigation. Finally, further analysis of Ciz1 dephosphorylation is 

going to be performed. 

The regulatory molecular pathways that control Ciz1 activity are interlinked. In the 

context of Ciz1 overexpression, hyper-activation of CDK2 activity or down-regulation 

in UPS/phosphatase activities may promote Ciz1 over-expression and potentially 

drive Ciz1 dependent cancer proliferation (Chapter 6) (Figure 7.19: C). Increased CDK 

activity is a common event in cancer, which contributes to increased  cancer cell 

proliferation, evasion of cell cycle checkpoints, DNA replication stress and DNA 

damage (Bhullar et al., 2018; Caetano et al., 2014; Canavese et al., 2012; Heldt et al., 

2018a; Malumbres, 2014; Pauzaite et al., 2017; Zhang et al., 2009). In contrast, 

downregulation and loss-of-function mutations in UPS have been linked to 

tumourigenesis, cancer aggressiveness, and poor patient outcomes. There are 

increasing interest in development of UPS components as therapeutic targets and 

biomarkers for cancer detection and prognosis (Kitagawa et al., 2009; Pal et al., 2014; 

Rizzardi and Cook, 2012; Shearer et al., 2015; Sun, 2006; Zheng et al., 2016).  

This suggests potential research avenues in targeting Ciz1 overexpressing/ 

dependent cancers. This work has already explored small molecule CDK2/DDK kinase 

inhibitors in Ciz1 dependent prostate adenocarcinoma (PC3) cell line (Chapter 6). 

Targeting CDK2/DDK activity may provide two-pronged attack reducing both CDK 

activity and Ciz1 levels. The kinase inhibition therapy targeting Ciz1 levels would only 

be successful if cells possess intact UPS. This demonstrates the importance of 
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identification of E3 ligases targeting Ciz1 for degradation as well as other 

components in the future (Chapter 7). Indeed, the research in pharmaceutical 

targeting of UPS is still in its infancy, with only handful of drugs approved, such as 

Thalidomide targeting Cereblon E3 ligase in multiple myeloma and mantle cell 

lymphoma (Galdeano, 2017; Morrow and Lin, 2015; Pal et al., 2014; Weathington 

and Mallampallii, 2014). Additionally, many cancers have mutated and down-

regulated UPS leading to oncogene accumulation; therefore, contrary to kinase 

inhibition therapies, successful intervention should aim to restore UPS function 

rather than inhibit it. This may be achieved by allosteric regulation; however, 

currently only computational predictive models of UPS activation have been 

proposed (Galdeano, 2017). 

Further, the observation that Ciz1 may be dephosphorylated by PP1 and PP2A that  

reverse CDK2 mediated phosphorylation of Ciz1 suggests that inactivation of PP1 or 

PP2A would lead to Ciz1 overexpression (Figure 7.19: C). PP1 and PP2A regulate cell 

cycle progression, DNA replication and damage responses. Both phosphatases are 

deregulated in cancer (Section 7) and have been proposed as potential therapeutic 

targets (Alver et al., 2017; Grallert et al., 2015; Hiraga et al., 2014; Kim et al., 2007; 

Kolupaeva and Janssens, 2013; Margolis et al., 2006; Mochida et al., 2009; Perrotti 

and Neviani, 2013; Ruvolo, 2016; Wlodarchak and Xing, 2016).  Strategies to reduce 

Ciz1 levels would aim to stimulate PP1 and PP2A activity to increase the rate of Ciz1 

dephosphorylation. PP1 phosphatases are heterodimers composed of a catalytic and 

regulatory subunit. PP2A heterotrimer consists of scaffold and catalytic subunits that 

bind highly variable regulatory subunit, which dictates timing of enzyme activation 

and its localisation (Figure 7.18) (O’Connor et al., 2018). The therapeutic targeting of 
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phosphatases is complicated due to the plethora of subunits that can make up the 

holoenzyme and potential for functional redundancy of isoforms (Wlodarchak and 

Xing, 2016). However, there are two potential mechanisms to increase phosphatase 

activity. First, reducing or inactivating endogenous phosphatase inhibitors would lead 

to the activation of target phosphatase. Second, modulation of regulatory post-

translational modifications in phosphatases activating the desired phosphatase 

(Ahola et al., 2007; Boutros et al., 2007; Janghorban et al., 2019; Khanna et al., 2013; 

Lazo et al., 2017; Mazhar et al., 2019; McConnell and Wadzinski, 2009; O’Connor et 

al., 2018; Perrotti and Neviani, 2013; Rudolph et al., 2004; Ruvolo, 2016; Winkler et 

al., 2015).  

Several approaches that activate protein phosphatase PP2A are currently in various 

stages of research or clinical trials. For instance, Phenothiazine and SMAP bind to the 

scaffold subunit and promote conformational changes that activate PP2A. This 

approach has been shown to promote PP2A dependent apoptosis in leukaemias and 

inhibit KRAS dependent tumour growth (Gutierrez et al., 2014; Sangodkar et al., 

2017).  

This overview of pharmaceutical targeting of kinases, phosphatases and UPS 

activities, demonstrates the importance of molecular screening of cancer patients to 

identify the underlying mutations driving cancer progression and potential 

therapeutic targets. In Ciz1 dependent cancers, Ciz1 overexpression may be the 

result of upregulated kinase activity or due to loss-of-function mutations in UPS and 

phosphatases. The effective targeting of Ciz1 for UPS mediated degradation via 

inhibition of CDK2 activity would require a functional UPS system. Both deregulations 



Chapter 7: Identification of putative Ciz1 regulators by cellular fractionation and mass spectrometry 

197 
 

of the UPS and/or phosphatase activities could potentially affect the efficacy of this 

approach. Identification of tumours that have functional UPS and phosphatase 

activities would be important clinical biomarkers that would aid in patient 

stratification.  

In addition, the increase in Ciz1 level that is present and necessary for tumour 

proliferation to arise, may be a consequence of inactivation of the regulatory E3 

ligase. In this context CDK2 inhibition would not be suitable as the effect on Ciz1 

levels would be minimal. Further work is required to fully understand the interplay 

between the regulatory signalling networks that modulate Ciz1 levels and establish 

whether these networks can be targeted to reduce Ciz1 levels in a clinical setting.   
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8.1. Ciz1 level is upregulated by kinase phosphorylation in G1 phase 

The deregulation of Ciz1 levels has been linked with the defects in DNA replication, 

DNA repair, and cell cycle progression (Ainscough et al., 2007; Copeland et al., 2010; 

Copeland et al., 2015; Coverley et al., 2005; Greaves et al., 2012; Liu et al., 2016; 

Łukasik et al., 2008; Pauzaite et al., 2017). Abnormal Ciz1 levels have been identified 

in various pathologies. The overexpression of Ciz1 has been reported as a facilitator 

of tumorigenesis, cancer cell migration, tumour vascularisation, and aggressiveness 

(Den Hollander et al., 2006; Den Hollander et al., 2006; Lei et al., 2016; Wang et al., 

2014; Wu et al., 2016; Yin et al., 2013; Zhang et al., 2015). Additionally, the 

overexpression of Ciz1 and its variants have also been identified as potential 

biomarkers in cancer diagnosis (Coverley et al., 2017; Higgins et al., 2012; Wang et 

al., 2014; Zhou et al., 2018). Nonetheless, Ciz1 ablation in murine models showed 

that loss of Ciz1 increases cell sensitivity to irradiation, predisposes cells to viral 

oncogenic transformation, and increase incidence of lymphoid tumours in female 

lineages due to affecting X chromosome silencing and epigenetics (Nishibe et al., 

2013; Ridings-Figueroa et al., 2017; Stewart et al., 2019; Sunwoo et al., 2017). 

Therefore, Ciz1 may serve as a tumour suppressor at unperturbed levels, but 

overexpression of Ciz1 may have oncogenic properties. To further emphasise the 

importance of maintenance of the correct levels of Ciz1 expression, low Ciz1 

expression promotes neurodegeneration and other brain defects (Khan et al., 2018; 

Xiao et al., 2016; Xiao et al., 2018). These data suggest that Ciz1 homeostasis is 

crucial to maintain normal cell cycle progression, regulation of DNA replication, and 

tissue function. However, the molecular mechanisms that control Ciz1 levels have 

not been determined. 
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Ciz1 phosphorylation has been implied as a regulator of Ciz1 DNA replicatory activity 

(Copeland et al., 2010; Copeland et al., 2015; Pauzaite et al., 2017). The 

phosphorylation of 3 CDK regulatory sites (T144, T192, T293) has collaborative 

inhibitory effect over Ciz1 and cyclin A binding, thus over its DNA replication 

initiation activity. Ciz1 may play a role in prevention of DNA re-replication. This work 

provided basis for further research on the importance of Ciz1 phosphorylation. 

Further, previous research has shown that newly synthesised and localised Ciz1 is 

required for successful DNA replication initiation (Ainscough et al., 2007; Copeland et 

al., 2010; Copeland et al., 2015; Coverley et al., 2005). Therefore, this work focused 

on the importance of Ciz1 phosphorylation on Ciz1 accumulation and stability. 

Understanding the molecular mechanisms that regulate Ciz1 levels may allow its 

targeting in cancer. Therefore, this research focused on determining the molecular 

mechanism that regulates Ciz1 abundance in normal mice fibroblasts and human 

cancer cell lines.  

First, Ciz1 accumulation was determined in post-quiescent embryonic mice 

fibroblasts (3T3) (Figure 3.3). Ciz1 was found to accumulate through G1 phase in 

order to reach sufficient levels for initiation of DNA replication (Copeland et al., 2010; 

Copeland et al., 2015; Coverley et al., 2005). The accumulation of Ciz1 mirrors its 

phosphorylation on two CDK phosphorylation sites, threonine 293 (T293) and serine 

331 (S331). There is a strict temporal separation of phosphorylation of S331 in early 

G1, and phosphorylation of T293 in late G1 – S phase that correlates with Ciz1 

accumulation. The phosphorylation of Ciz1 at T293 inhibits Ciz1 DNA replicative 

function in order to prevent DNA re-replication (Copeland et al., 2015).  The 

phosphorylation of Ciz1 at S331 correlates with Dbf4 and cyclin E, and T293 
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phosphorylation correlates with cyclin A expression (Figure 3.3). The increase in Ciz1 

protein levels appears to be driven by post-translational modification with both CDK 

mediated phosphorylation and UPS mediated degradation contributing to the 

regulation of Ciz1 levels with little change at the transcript levels (Figure 3.3). The 

accumulation of Ciz1 correlates with E2F regulated transcripts, Dbf4, cyclin E, and 

cyclin A (Giacinti and Giordano, 2006; Harbour and Dean, 2000; Ohtani et al., 1995). 

Therefore, the relationship between increasing kinase activity and Ciz1 accumulation 

has been assessed. 

According to cyclin expression and kinase activation profiles (Figures 1.1 and 1.2) 

(Hochegger et al., 2008), post-quiescent cells have been treated with specific small 

molecule kinase inhibitors to target the relevant cyclin-CDK and DDK complexes 

throughout G1 phase (Figure 3.5). Ciz1 accumulation is affected by two DDK 

inhibitors PHA-767491 and XL-413 (Koltun et al., 2012; Vanotti et al., 2008), and two 

CDK2 inhibitors Roscovitine and CVT-313 (Faber and Chiles, 2007; Lauren, 1997). 

However, PHA-767491 reduces cell cycle progression more potently than XL-413. In 

addition, PHA-767491 decreases Ciz1 phosphorylation on T293 site that is more 

similar to the effect of CDK2 inhibitors Roscovitine and CVT-313 (Figure 3.6 and 3.7). 

This is consistent with the off target CDK2 activity of PHA-767491 with an IC50 of 200 

nM (Hughes et al., 2012; Montagnoli et al., 2008; Rainey et al., 2017). In murine cells, 

PHA-767491 abolishes cyclin A protein levels at 1 micoromolar concentration and 

significantly reduces E2F mediated transcription of cyclin E1, E2, and A2 with a 

similar potency to CDK2 inhibitors Roscovitine and CVT-313 (Figure 3.6, 5.4, and 5.5). 

Consistent with CDK2 inhibition, PHA-767491 inhibits retinoblastoma protein (Rb) 

phosphorylation on CDK phosphorylation site serine 811 (Figures 5.2-4) (Rubin, 
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2013). These data are consistent with PHA-767491 targeting both G1 – S kinases, 

DDK and CDK2, in micromolar concentrations (Rainey et al., 2017). 

In order to characterise the activity of PHA-767491 with respect to inhibition of the 

Rb – E2F transcription axis, the E2F regulated transcripts have been analysed after 

PHA-767491 treatment. The analysis has been performed using GAPDH mRNA and 

18S rRNA housekeeping genes. Use of both the RNA polymerase I and RNA 

polymerase II transcripts as housekeeping genes reduces the possibility that 

quantitative PCR would be affected by off-target CDK9 activity of PHA-767491 

(Natoni et al., 2011; Natoni et al., 2013). The effect of PHA-767491 on E2F 

transcription is independent from CDK9 – RNA polymerase II axis in 1 - 10 µM range 

in normal mouse fibroblasts and human cancer cell lines (Figure 5.6 and 6.11). These 

data suggest that PHA-767491 influences both DDK and CDK activities and reduces 

E2F mediated transcription that is required for cell cycle progression from G1 to S 

phase. This dual activity against both DDK and CDK2 at 1 micromolar concentrations 

may explain the superior efficacy of PHA-767491 over XL-413 in multiple cancer cell 

lines (Sasi et al., 2014).  

8.2. Genetic depletion of cyclins and DDK suggests that kinase activity is 

required for Ciz1 accumulation 

The genetic co-depletion of Cdc7–Dbf4, cyclin E1, 2, and depletion of cyclin A2 

reduces cell cycle progression through G1 - S due to limiting kinase activity and not 

activating pre-replication complex (Coudreuse and Nurse, 2010a; Hochegger et al., 

2008; Lim and Kaldis, 2013; Malumbres, 2014) (Figure 3.9). Additionally, the 

depletion of G1 – S regulators reduces Ciz1 protein accumulation (Figure 3.10). CDK2 
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inhibition prevents T293 phosphorylation that closely correlates with Ciz1 

accumulation. However, DDK inhibition does not affect either T293 or S331 

phosphorylation, but moderately reduces Ciz1 levels, suggesting that Ciz1 

accumulation may require multiple phosphorylation events by various kinases in G1 

phase.  These observations are consistent with the quantitative theory that states 

that increasing CDK activity is sufficient to coordinate all of the phases of the cell 

cycle (Figure 1.2) (Coudreuse and Nurse, 2010a; Hochegger et al., 2008).  

Additionally, many cellular processes depend on the collaborative kinase activity 

including helicase activation. Here DDK and CDK phosphorylate MCM2 at serine 

40/41. Cyclin E – CDK2 phosphorylates serine 41 priming MCM2 for second 

phosphorylation on serine 40 by DDK (Montagnoli et al., 2006). The accumulation of 

Ciz1 requires continuous kinase activity and phosphorylation on multiple sites 

throughout G1 phase that is achieved by the collaboration of multiple kinases.  

8.3. Ciz1 de-phosphorylation by phosphatases 

This work shows that Ciz1 phosphorylation leads to Ciz1 accumulation in G1 phase 

(Chapter 3). These data add to published work on phosphorylation importance for 

Ciz1 DNA replication activity (Copeland et al., 2015) and are consistent with a model 

that kinase activity plays key role in Ciz1 abundance. Ciz1 phosphorylation by CDK 

and DDK and its dephosphorylation by PP1 and PP2A suggest that there is a complex 

network of regulators that regulate Ciz1 accumulation and potentially activity. 

Various subunits of PP1 and PP2A phosphatases have been identified by purification 

of fractions that maintain phosphatase activity and mass spectrometry (Figures 7.12-

17, Table 7.2 and 7.3). Both PP1 and PP2A phosphatases are implicated in cell cycle 
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regulation, with PP1 being most active in mitosis where it contributes to the 

complete dephosphorylation of the retinoblastoma protein (Kolupaeva and Janssens, 

2013). PP2A is active throughout the entire cell cycle and responds to various stimuli 

(Grallert et al., 2015; Kolupaeva and Janssens, 2013; Weber et al., 2015). Therefore, 

both phosphatases could target CDK2 phosphorylation site threonine 293 of Ciz1 that 

has been tested. 

Multiple catalytic, regulatory and scaffold subunits were identified with mass 

spectrometry for both PP1 and PP2A (Figure 7.17, Tables 7.2 and 7.3) that will be 

characterised in the future. A number of PP2A phosphatases have been shown to 

oppose CDK phosphorylation throughout the entire cell cycle, and display a 

preference for phospho-threonine over phospho-serine enforcing a temporal order 

to phosphorylation (Cundell et al., 2016; Godfrey et al., 2017; Hein et al., 2017). The 

identification of PP1 and PP2A phosphatases is consistent with their roles in 

opposing CDK mediated phosphorylation and the temporal order of Ciz1 

phosphorylation, starting with S331 in early G1 phase and threonine phosphorylation 

later in G1 (Figures 3.3 and 8.1).   
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Figure 8.1. Model of Ciz1 phosphorylation/dephosphorylation in G1 – S transition. 
Ciz1 is phosphorylated on multiple sites (representative S331 and T293) by multiple 
kinases (CDK2 and DDK) in G1 phase leading to its accumulation (light blue shading). 
Ciz1 accumulation mirrors rising kinase activity (light red shading) in G1 phase 
(Chapter 3) (Bertoli et al., 2013b; Coudreuse and Nurse, 2010a; Hochegger et al., 
2007). Ciz1 phosphorylation on different sites is temporally separated, S331 is 
phosphorylated prior T293, that is potentially regulated by phosphatase PP1/PP2A 
(light green) (Cundell et al., 2016; Godfrey et al., 2017) (Chapter 7). 

 

Overall, these data suggest that Ciz1 phosphorylation and accumulation is tightly 

controlled by opposing activities of kinase phosphorylation and phosphatase de-

phosphorylation. Upregulated kinase activities and downregulated phosphatase may 

lead to over-accumulation of Ciz1 that contributes to Ciz1 dependent cancer 

proliferation (Figure 7.19). Small molecule kinase inhibition is a fast growing field in 

cancer research (Jorda et al., 2018; Klaeger et al., 2017; Knight and Shokat, 2005; 

Noble et al., 2004; Wynn et al., 2011; Zhang et al., 2009). However, the stimulation 

and recovery of downregulated phosphatase activity is a new emerging avenue in 

cancer research with a number of drugs in pre-clinical research (Boutros et al., 2007; 



Chapter 8: General discussion 

206 
 

Khanna et al., 2013; Lazo et al., 2017; Mazhar et al., 2019; McConnell and Wadzinski, 

2009; Perrotti and Neviani, 2013). This suggests that Ciz1 overexpressing cancers 

may be targetable by combination of therapies. However, the exact composition of 

the phosphatase holoenzymes should be identified. Additionally, full length murine 

Ciz1 has 14 CDK phosphorylation sites that may contribute to Ciz1 stability. 

Therefore, the specific function of each phospho- site and their specific phosphatases 

should be determined in order to use them as therapeutic targets. 

8.4. Ciz1 is downregulated by ubiquitin proteasome system in G1 phase 

The ubiquitin proteasome system is a primary protein degradation mechanism in 

mammalian cells (Melvin et al., 2013). The UPS is essential in oscillation of protein 

levels during cell cycle progression. For instance, APC/C-CDH1 is responsible for 

targeting mitotic cyclins for degradation in order to maintain low kinase activity in G1 

phase (Huang et al., 2001; Nakayama and Nakayama, 2006; Vodermaier, 2004). In 

early G1 phase, APC/C-CDH1 targets SCF-SKP2 for degradation maintaining low 

kinase activity. However, during G1 – S transition, APC/C-CDH1 is phosphorylated by 

G1 phase cyclin-CDK complexes, the SCF-SKP2 is activated targeting CDK inhibitors 

for degradation, which leads to the increase in kinase activity driving the cell cycle 

(Benanti, 2012; Frescas and Pagano, 2008; Nakayama and Nakayama, 2006; Skaar 

and Pagano, 2009; Vodermaier, 2004). These data suggest that the cell cycle 

progression is tightly regulated by interlinked kinase and UPS pathways, which is 

consistent with Ciz1 regulation by opposing kinase and UPS activities observed here 

(Chapter 3). 
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Ciz1 accumulates in G1 phase and this increase mirrors the rising CDK activity as the 

cell cycle progresses towards S phase (Figure 3.3). The data presented here has 

demonstrated that Ciz1 levels can be reduced via CDK2 inhibition using small 

molecule inhibitors (Figures 3.6-8) and through siRNA mediated depletion of cyclin E 

and cyclin A2 (Figure 3.10). The reduction of Ciz1 is due to UPS mediated degradation 

of Ciz1 that is enhanced after CDK2 inhibition (Figures 3.8, 3.11-14). This process is 

reversible by proteasomal inhibition, demonstrating that Ciz1 levels are regulated by 

CDK2 mediated phosphorylation and UPS mediated degradation (Figure 3.11-14). 

The UPS regulates Ciz1 levels from pre-restriction point (Figure 3.12) and post-

restriction point (Figure 3.13) in G1 phase. Perturbation of CDK2 activity in this 

window promotes Ciz1 degradation consistent with a model where Ciz1 abundance is 

regulated by opposing kinase phosphorylation and proteasome mediated 

degradation (Figure 6.1). This is consistent with global control of G1 – S progression 

by rising kinase activity and reduction of APC/C activity (Figures 1.2 and 1.5) (Frescas 

and Pagano, 2008; Hochegger et al., 2008; Nakayama and Nakayama, 2006; Rizzardi 

and Cook, 2012). 

Ciz1 has been poly-ubiquitylated in in vivo experiments (Figure 3.15), suggesting that 

the UPS was responsible for Ciz1 degradation. Using an in vitro ubiquitylation system 

and biochemical fractionation of HeLa cell lysates have revealed three putative 

regulators of Ciz1: F-box only protein 38 [FBX38_HUMAN], (E3-independent) E2 

ubiquitin-conjugating enzyme [UBE2O_HUMAN], and E3 ubiquitin-protein ligase 

UBR5 [UBR5_HUMAN] (Table 7.1). There is limited amount of published literature 

available on FBX38, only that it is 134 kDa in size, aid phosphorylated protein 

ubiquitylation and degradation, and is positively linked with neuronal projection 
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development. F box proteins typically recruit phosphorylated substrates to SCF 

ubiquitin ligase complex (Skaar and Pagano, 2009; Skaar et al., 2013; Skowyra et al., 

1997). However, further work is required to determine whether the phosphorylation 

of Ciz1 may protect Ciz1 from degradation or phosphorylation of E3 ligase may 

inactivate E3 ligase/ any UPS component, thus diminishing Ciz1 ubiquitylation 

efficiency. 

UBE2O is a hybrid E2/E3 ligase that displays both ubiquitin conjugating and ligation 

functions (Ullah et al., 2018; Yokota et al., 2001). The UBE2O is a predominantly 

cytoplasmic 141 kDa protein, that contains a nuclear localisation sequence (NLS) for 

nuclear transport, and could therefore potentially target Ciz1 in the nucleus 

(Mashtalir et al., 2014). The UBE2O possesses multiple phosphorylation sites that are 

suggested to regulate its function (Liang et al., 2017) that would fit with observation 

that cyclin A – CDK2 phosphorylation reduced efficiency of Ciz1 ubiquitylation. 

UBE2O targets many proteins including AMPKα2 (Vila et al., 2017), BMAL1 (Chen et 

al., 2018), c-Maf (Ullah et al., 2018), and MLL (Liang et al., 2017). UBE2O can catalyse 

mono-ubiquitylation, poly mono-ubiquitylation, and poly-ubiquitylation of proteins 

regulating the targeted protein. The mono-ubiquitylation has been implied in protein 

signalling, trafficking, and complex formation (Sadowski et al., 2012), and poly-

ubiquitylation mainly leads to proteasomal degradation consistent with Ciz1 poly-

ubiquitylation and degradation (Ullah et al., 2018). Both inactivating mutations and 

amplification of UBE2O have been linked with cancer (Chen et al., 2018; 

Hormaechea-agulla et al., 2018; Liang et al., 2017; Mashtalir et al., 2014; Ullah et al., 

2018; Vila et al., 2017; Yanagitani et al., 2017). Interestingly, UBE2O is overexpressed 

in PC3 prostate cancer cell line (Ullah et al., 2018), which is a cell line that is 
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dependent on Ciz1 for efficient proliferation (Figure 6.2 and 6.3). It has been shown 

that ablation of UBE2O delays prostate and breast tumorigenesis and cancer 

aggressiveness (Hormaechea-agulla et al., 2018; Vila et al., 2017). Therefore, further 

analysis is required in order to confirm whether UBE2O can regulate Ciz1 levels in 

vitro and in vivo.  

Third E3 ligase identified by mass spectrometry was UBR5 (Ubiquitin protein ligase E3 

component n – recognin 5), which is also known as EDD (E3 identified by Differential 

Display) (Shearer et al., 2015). The UBR5 is well characterised E3 ligase belonging to 

HECT group and recognise n – degron sequences (mainly Glycine destabilising 

residue in N – terminal) via its 70 amino acids UBR box (Tasaki et al., 2009). UBR5 is 

310 kDa, contains an NLS and is localised primarily to the nucleus. UBR5 has multiple 

phosphorylation sites that are targeted by ATM, CHK, and ERK kinases in order to 

modulate its localisation and function (Eblen et al., 2003; Henderson et al., 2006; Kim 

et al., 2007; Munoz et al., 2007; Zhang et al., 2014). UBR5 is conserved in metazoan 

lineage and is essential for mammalian development (Saunders et al., 2004; Shearer 

et al., 2015). 

Either amplification and overexpression, or point and frame shift mutations in UBR5 

gene have been linked with cancer (Kim et al., 2010; Shearer et al., 2015). The E3 

ligase has multiple partners and targets that regulate cell cycle progression, DNA 

damage checkpoint response, transcription, and apoptosis (Cojocaru et al., 2011; 

Muńoz-Escobar et al., 2015; Munoz et al., 2007; Zhang et al., 2014). Therefore, it is 

challenging to clearly state whether UBR5 is a tumour suppressor or an oncogene. 

These opposing phenotypes are mediated by depletion and overexpression of UBR5 
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that can lead to pathologies and tumourigenesis. UBR5 gene amplification has been 

linked with breast and ovarian cancers, and renders the latter to cisplatin resistance 

(Liao et al., 2017; Wang et al., 2007). The UBR5 gene is stimulated by progesterone 

receptor (PR) and in turn UBR5 upregulates PR activity (Rojas-Rivera and Hetz, 2015). 

Similarly Ciz1 promotes oestrogen sensitisation through interactions with estrogen 

receptor (ER) in breast cancer (Den Hollander and Kumar, 2006; Den Hollander et al., 

2006). However, the UBR5 has been shown to negatively regulate ER levels and 

activity in MCF7 cancer cell line (Shearer et al., 2015). In addition, the overexpression 

of UBR5 has been shown to ubiquitylate and stabilise β-catenin - TCF transcription in 

colorectal cancer (Hay-Koren et al., 2011). These data demonstrate that UBR5 is 

involved in regulation of signalling pathways and cell cycle control, and has either 

tumour suppressor or oncogene functions depending on its expression level. 

More extensive research is required to confirm which E3 ligase targets Ciz1. This 

would require E3 ligase overexpression and genetic depletion monitoring how it 

affects Ciz1 levels in normal and cancer cell lines. Additionally, protein – protein 

binding experiments would be beneficial in order to confirm functional interaction 

between Ciz1 and E3. Various cancer therapies targeting E3 ligases are currently 

being developed (Sun, 2006). Therefore, identification of E3 ligase targeting Ciz1 may 

provide new avenues in Ciz1 dependent cancer therapy, or the mean of patient 

stratification according to how well would they respond to small molecule kinase 

inhibitor therapies. 
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8.5. Ciz1 expression and regulation in cancers 

Normal Ciz1 levels have been shown to temporally and spatially control DNA 

replication initiation and prevent DNA re-replication (Copeland et al., 2010; Copeland 

et al., 2015; Coverley et al., 2005). The overexpression of Ciz1 has been linked to 

major cancers, such as prostate, breast, lung, colon, and liver cancers (Den Hollander 

and Kumar, 2006; Den Hollander et al., 2006; Lei et al., 2016; Liu et al., 2015; Wang 

et al., 2014; Wu et al., 2016; Yin et al., 2013; Zhou et al., 2018). In addition, deletion 

of Ciz1 reveals that Ciz1 is a potential tumour suppressor gene as Ciz1 knockout mice 

are predisposed to lymphoproliferative disorders (Ridings-Figueroa et al., 2017; 

Sunwoo et al., 2017), DNA sensitivity to irradiation and oncogenic transformation 

(Nishibe et al., 2013), and various motor-neuron disorders in mice (Khan et al., 2018; 

Xiao et al., 2016; Xiao et al., 2018). These data suggest that Ciz1 may be a tumour 

suppressor in normal levels and an oncogene when overexpressed, and that Ciz1 is 

key in normal cell cycle progression and tissue development. 

This research has determined that aggressive prostate carcinoma, PC3 cell line, and 

oestrogen and progesterone receptor positive breast cancer, MCF7 cell line, are 

dependent on Ciz1 for cell cycle progression (Figure 6.2-5). However, the cell 

replication profiles after Ciz1 depletion differ between two cell lines. The genetic 

depletion of Ciz1 in PC3 cells inhibited initiation of DNA replication, thus entry to S 

phase (Figure 6.3). This is consistent with normal murine fibroblasts (Coverley et al., 

2005) and the plethora of data on Ciz1 depletion in cancers, including prostate 

cancer (Liu et al., 2015). However, Ciz1 depletion in PC3 cell line as well as in MCF7, 

T47D, and SW480, did not cause apoptotic cell death that has been reported in many 
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cancer cases (Lei et al., 2016; Liu et al., 2015; Wu et al., 2016; Yin et al., 2013) (Figure 

6.6). Interestingly, Ciz1 depletion prolonged S phase in MCF7 cell line, but did not 

inhibit G1 – S transition (Figure 6.4). This is consistent with Ciz1 depletion data in 

breast cancer cell lines (Den Hollander and Kumar, 2006; Den Hollander et al., 2006). 

In addition, Ciz1 depletion promoted accumulation of cells in S phase, but reduced 

global proliferation in MCF7 cells (Figure 6.4 and 6.5), suggesting that Ciz1 depletion 

causes DNA replication stress-like state (Bertoli et al., 2016; Herlihy and De Bruin, 

2017; Toledo et al., 2017; Zeman and Cimprich, 2014). However, the T47D cell line 

was not significantly affected by Ciz1 depletion (Figures 6.4 and 6.5). This may be 

explained by the differential protein expression between two breast cancer cell lines, 

T47D expressing anti-apoptotic and cell proliferation genes more than MCF7 (Aka 

and Lin, 2012; Radde et al., 2015).  

Treatment of cancer cell lines with small molecule kinase inhibitors successfully 

reduced Ciz1 levels (Figure 6.7) and similar effects were observed in normal mice 

fibroblasts (Chapters 3 and 5). Importantly, small molecule CDK2 and DDK inhibitors 

reduced G1 – S transition in retinoblastoma positive tumours (Maamer-Azzabi et al., 

2013; Martino-Echarri et al., 2014; Tai et al., 2011) (Figure 6.8 and 6.9). Further 

analysis revealed that CDK2 inhibitors and PHA-767491 downregulated the Rb – E2F 

axis consistent with observations in normal murine fibroblasts (Figures 3.5, 5.2, and 

5.5). These data suggest the potential efficacy of small molecule kinase inhibition 

therapies that could inhibit cell cycle by reducing CDK2 activity and E2F mediated 

transcription, and reduce Ciz1 levels that are required for proliferation. This may 

increase cancer cell sensitivity to kinase inhibition therapy and allow stratification of 

patients. 
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However, for CDK2 inhibitors to be effective, the UPS must be functional. The 

recovery of Ciz1 levels after proteasomal inhibition was successful only after some 

kinase inhibitor treatments and varied between different cancer cell lines (Figure 

6.13). This may indicate that functional UPS is present in these cells, but are affected 

by more complex pathways than in normal fibroblast, where significant Ciz1 rescue 

was observed after majority of the kinase inhibition treatments (Figures 3.11-14). 

Additionally, these data may suggest that some cancer cell lines would be more 

responsive to certain kinase inhibitor therapies, and emphasise the importance in 

molecular screening of cancer cells in order to determine best possible treatment 

and intervention. 

The data presented here suggest the following model to describe the molecular 

mechanisms that regulate Ciz1 protein levels (Figure 6.1). The increase in kinase 

activity during G1 phase is mediated by CDK2 and DDK (Figures 1.1, 1.2, 6.1, 8.1) 

(Gerard and Goldbeter, 2009; Hochegger et al., 2008) and their activity is proposed 

to promote accumulation of Ciz1. This rising kinase activity overwhelms phosphatase 

activity (PP1 and PP2A) and facilitates phosphorylation of Ciz1 or components of the 

UPS that regulates Ciz1 poly-ubiquitylation (Jiang, 2006; Lo and Uhlmann, 2011; 

Nakayama and Nakayama, 2006; Rizzardi and Cook, 2012; Wlodarchak and Xing, 

2016). This positively regulates Ciz1 accumulation in G1 phase by conferring stability 

or protecting it from UPS mediated degradation (Figure 3.3). Ciz1 overexpressing 

tumours may have underlying overexpression of kinases or down-regulation of UPS 

and phosphatases. This may lead to increased Ciz1 phosphorylation, over-

stabilisation and over-protection of Ciz1, and reduced protein clearing. 

Consequently, increased Ciz1 accumulation may facilitate Ciz1 dependent tumour 
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proliferation further. The main emphasis of potentially successful Ciz1 dependent 

cancer therapies could be shifting the equilibrium of kinase activity to enable 

dephosphorylation of Ciz1 or any component of UPS in order to promote Ciz1 

degradation. This work shows that repurposed CDK2 and DDK small molecule kinase 

inhibitors may be a potential therapy for Rb positive and Ciz1 dependent cancers, 

reducing cancer cell proliferation by decreasing kinase activity and by down-

regulating Ciz1 levels. 

8.6. Future perspectives/ Future work 

Tight control of kinase, phosphatase and UPS activities is crucial in the cell cycle 

progression and for the precise regulation of DNA replication. Any disturbances in 

these mechanisms may lead to deregulation in Ciz1 levels and activity that 

potentially contributes to the dysregulation of the cell cycle that is an early event in 

tumourigenesis. The next step is to characterise the E3 ligases that may regulate Ciz1 

function. Understanding these events in molecular detail will facilitate further studies 

that will fully characterise the potential of CDK2 and DDK inhibition for the regulation 

of Ciz1 dependent tumours. This will enable molecular screening of cancer cells in 

order to identify whether there are functional UPS systems that can be manipulated 

to reduce Ciz1 levels and potentially reduce proliferation of cancer cells.  

A full understanding of the interplay between complex networks of regulators would 

facilitate a rational approach to the manipulation of Ciz1 levels. For example, there 

are potentially three key regulators that contribute to Ciz1 accumulation that 

includes cyclin dependent kinases, serine/threonine phosphatase (potentially PP1 

and PP2A), and ubiquitin mediated degradation (UPS). Each regulator is a potential 
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therapeutic target for Ciz1 dependent tumours (Lazo et al., 2017; McConnell and 

Wadzinski, 2009; Ndubaku and Tsui, 2015; Sun, 2003; Vijayaraghavan et al., 2018). In 

addition, there is potential for the identification of deubiquitinating enzymes (DUB) 

that may also contribute to the regulation of Ciz1. This complex network of 

interlinked pathways contributes to Ciz1 homeostasis and a precise understanding of 

these networks is required to target Ciz1 for degradation. This further reinforces the 

importance of research on molecular mechanism of Ciz1 level regulation. 
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A 
 
 
2     CGA GCT CAG CTT CGA ATT CTG CAG TCG ACG ATG CTG CAA AGA GCT   46 
1     Arg Ala Gln Leu Arg Ile Leu Gln Ser Thr Met Leu Gln Arg Ala   15 
 
47    TTG CTC CTA CAG CAG TTG CAA GGA CTG GAC CAG TTT GCA ATG CCA   91 
16    Leu Leu Leu Gln Gln Leu Gln Gly Leu Asp Gln Phe Ala Met Pro   30 
 
92    CCA GCC ACG TAT GAC GGT GCC AGC CTC ACC ATG CCT ACG GCA ACA   136 
31    Pro Ala Thr Tyr Asp Gly Ala Ser Leu Thr Met Pro Thr Ala Thr   45 
 
137   CTG GGT AAC CTC CGT GCT TTC AAT GTG ACA GCC CCA AGC CTA GCA   181 
46    Leu Gly Asn Leu Arg Ala Phe Asn Val Thr Ala Pro Ser Leu Ala   60 
 
182   GCT CCC AGC CTT ACA CCA CCC CAG ATG GTC GCC CCA AAT CTG CAG   226 
61    Ala Pro Ser Leu Thr Pro Pro Gln Met Val Ala Pro Asn Leu Gln   75 
 
227   CAG TTC TTT CCC CAG GCT ACT CGA CAG TCT CTG CTG GGG CCT CCT   271 
76    Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro   90 
 
272   CCT GTT GGG GTC CCA ATA AAC CCT TCT CAG CTC AAC CAC TCA GGG   316 
91    Pro Val Gly Val Pro Ile Asn Pro Ser Gln Leu Asn His Ser Gly   105 
 
317   AGG AAC ACC CAG AAA CAG GCC AGA ACC CCC TCT TCC ACC GCC CCC   361 
106   Arg Asn Thr Gln Lys Gln Ala Arg Thr Pro Ser Ser Thr Ala Pro   120 
 
362   AAT CGC AAG ACG GTG CCT CTG GAA GAC AGG GAA GAC CCC ACA GAG   406 
121   Asn Arg Lys Thr Val Pro Leu Glu Asp Arg Glu Asp Pro Thr Glu   135 
 
407   GGG TCT GAG GAA GCC ACG GAG CTC CAG ATG GAC ACA TGT GAA GAC   451 
136   Gly Ser Glu Glu Ala Thr Glu Leu Gln Met Asp Thr Cys Glu Asp   150 
 
452   CAA GAT TCA CTA GTC GGT CCA GAT AGC ATG CTG AGT GAG CCC CAA   496 
151   Gln Asp Ser Leu Val Gly Pro Asp Ser Met Leu Ser Glu Pro Gln   165 
 
497   GTG CCT GAG CCT GAG CCC TTT GAG ACA TTG GAA CCA CCA GCC AAG   541 
166   Val Pro Glu Pro Glu Pro Phe Glu Thr Leu Glu Pro Pro Ala Lys   180 
 
542   AGG TGC AGG AGC TCA GAG GAG TCC ACC GAG AAA GGC CCT ACA GGG   586 
181   Arg Cys Arg Ser Ser Glu Glu Ser Thr Glu Lys Gly Pro Thr Gly   195 
 
587   CAG CCA CAA GCA AGG GTC CAG CCT CAG ACC CAG ATG ACA GCA CCA   631 
196   Gln Pro Gln Ala Arg Val Gln Pro Gln Thr Gln Met Thr Ala Pro   210 
 
632   AAG CAG ACA CAG GCC CCG GAT CGG CTG CCT GAG CCA CCA GAA GTC   676 
211   Lys Gln Thr Gln Ala Pro Asp Arg Leu Pro Glu Pro Pro Glu Val   225 
 
677   CAA ATG CTG CCG CGT ATC CAG CCA CAG GCA CTG CAG ATC CAG ACC   721 
226   Gln Met Leu Pro Arg Ile Gln Pro Gln Ala Leu Gln Ile Gln Thr   240 
 
722   CAG CCA AAG CTG CTG AGG CAG GCA CAG ACA CAG ACC GCT CCA GAG   766 
241   Gln Pro Lys Leu Leu Arg Gln Ala Gln Thr Gln Thr Ala Pro Glu   255 
 
767   CAC TTA GCG AGG CAC AGA CAC AGA CCG CTC CAG AGC ACT TAG CGC   811 
256   His Leu Ala Arg His Arg His Arg Pro Leu Gln Ser Thr End Arg   270 
 
812   AGG CAC AGA CAC AGA CCG CTC CAG AGC ACT TAG CGC CCC AGC AGG   856 
271   Arg His Arg His Arg Pro Leu Gln Ser Thr End Arg Pro Ser Arg   285 
 
857   ATC AGG TAC CCA CCC AAG CAC AGT CAC AGG AGC AGA CTT CAG ---   901 
286   Ile Arg Tyr Pro Pro Lys His Ser His Arg Ser Arg Leu Gln XXX   299 
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B 
 
1     CTT CGA ATT CTG CAG TCG ACG ATG CTG CAA AGA GCT TTG CTC CTA   45 
1     Leu Arg Ile Leu Gln Ser Thr Met Leu Gln Arg Ala Leu Leu Leu   15 
 
46    CAG CAG TTG CAA GGA CTG GAC CAG TTT GCA ATG CCA CCA GCC ACG   90 
16    Gln Gln Leu Gln Gly Leu Asp Gln Phe Ala Met Pro Pro Ala Thr   30 
 
91    TAT GAC GGT GCC AGC CTC ACC ATG CCT ACG GCA ACA CTG GGT AAC   135 
31    Tyr Asp Gly Ala Ser Leu Thr Met Pro Thr Ala Thr Leu Gly Asn   45 
 
136   CTC CGT GCT TTC AAT GTG ACA GCC CCA AGC CTA GCA GCT CCC AGC   180 
46    Leu Arg Ala Phe Asn Val Thr Ala Pro Ser Leu Ala Ala Pro Ser   60 
 
181   CTT ACA CCA CCC CAG ATG GTA GAT CCA AAT CTG CAG CAG TTC TTT   225 
61    Leu Thr Pro Pro Gln Met Val Asp Pro Asn Leu Gln Gln Phe Phe   75 
 
226   CCC CAG GCT ACT CGA CAG TCT CTG CTG GGG CCT CCT CCT GTT GGG   270 
76    Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly   90 
 
271   GTC CCA ATA AAC CCT TCT CAG CTC AAC CAC TCA GGG AGG AAC ACC   315 
91    Val Pro Ile Asn Pro Ser Gln Leu Asn His Ser Gly Arg Asn Thr   105 
 
316   CAG AAA CAG GCC AGA ACC CCC TCT TCC ACC GAC CCC AAT CGC AAG   360 
106   Gln Lys Gln Ala Arg Thr Pro Ser Ser Thr Asp Pro Asn Arg Lys   120 
 
361   ACG GTG CCT CTG GAA GAC AGG GAA GAC CCC ACA GAG GGG TCT GAG   405 
121   Thr Val Pro Leu Glu Asp Arg Glu Asp Pro Thr Glu Gly Ser Glu   135 
 
406   GAA GCC ACG GAG CTC CAG ATG GAC ACA TGT GAA GAC CAA GAT TCA   450 
136   Glu Ala Thr Glu Leu Gln Met Asp Thr Cys Glu Asp Gln Asp Ser   150 
 
451   CTA GTC GGT CCA GAT AGC ATG CTG AGT GAG CCC CAA GTG CCT GAG   495 
151   Leu Val Gly Pro Asp Ser Met Leu Ser Glu Pro Gln Val Pro Glu   165 
 
496   CCT GAG CCC TTT GAG ACA TTG GAA CCA CCA GCC AAG AGG TGC AGG   540 
166   Pro Glu Pro Phe Glu Thr Leu Glu Pro Pro Ala Lys Arg Cys Arg   180 
 
541   AGC TCA GAG GAG TCC ACC GAG AAA GGC CCT ACA GGG CAG CCA CAA   585 
181   Ser Ser Glu Glu Ser Thr Glu Lys Gly Pro Thr Gly Gln Pro Gln   195 
 
586   GCA AGG GTC CAG CCT CAG ACC CAG ATG ACA GCA CCA AAG CAG ACA   630 
196   Ala Arg Val Gln Pro Gln Thr Gln Met Thr Ala Pro Lys Gln Thr   210 
 
631   CAG GAC CCG GAT CGG CTG CCT GAG CCA CCA GAA GTC CAA ATG CTG   675 
211   Gln Asp Pro Asp Arg Leu Pro Glu Pro Pro Glu Val Gln Met Leu   225 
 
676   CCG CGT ATC CAG CCA CAG GCA CTG CAG ATC CAG ACC CAG CCA AAG   720 
226   Pro Arg Ile Gln Pro Gln Ala Leu Gln Ile Gln Thr Gln Pro Lys   240 
 
721   CTG CTG AGG CAG GCA CAG ACA CAG ACC GAT CCA GAG CAC TTA GCG   765 
241   Leu Leu Arg Gln Ala Gln Thr Gln Thr Asp Pro Glu His Leu Ala   255 
 
766   CCC CAG CAG GAT CAG GTA CCC ACC CAA ACA CAG TCA CAG GAG CAG   810 
256   Pro Gln Gln Asp Gln Val Pro Thr Gln Thr Gln Ser Gln Glu Gln   270 
 
811   ACA TCA GAG AAG ACC CAG GAC CAG CCT CAG ACC TGG CCA CAG GGG   855 
271   Thr Ser Glu Lys Thr Gln Asp Gln Pro Gln Thr Trp Pro Gln Gly   285 
 
856   TCA GTA CCC CCA CCA GAA CAA GCG TCA GGT CCA GCC TGT GCC ACG   900 
286   Ser Val Pro Pro Pro Glu Gln Ala Ser Gly Pro Ala Cys Ala Thr   300 
 
901   GAA CCA CAG CTA TCC TCT CAC GCT GCA GAA GCT GGG AGT GAC CCA   945 
301   Glu Pro Gln Leu Ser Ser His Ala Ala Glu Ala Gly Ser Asp Pro   315 
 
946   GAC AAG GCC TTG CCA GAA CCA GTA AGT GCC CAA A--   981 
316   Asp Lys Ala Leu Pro Glu Pro Val Ser Ala Gln XXX   326 
 
 

Appendix 1. Site directed mutagenesis in T144, T192, T293, and S331 Ciz1 phospho-
sites. A) The sequencing results for GFP - ECiz1 AAAA (T144A, T192A, T293A, and 
S331A) were translated using Expasy Translate. Mutated residues are highlighted in 
yellow. B) Sequencing results for GFP - ECiz1 DDDD (T144D, T192D, T293D, and 
S331D). 


