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Abstract

MicroBooNE is a liquid argon time projection chamber which has been running in the Booster

Neutrino Beam at Fermilab since 2015. The primary goal of MicroBooNE is investigation of the

excess of electromagnetic events observed by the MiniBooNE collaboration. Due to limitations

of the Cherenkov-based particle identi�cation of MiniBooNE, this excess could be interpreted as

either photon-like or electron-like. A photon-like excess would indicate that there are processes

which are not well understood which could act as a background in neutrino oscillation measure-

ments, while an electron-like excess could indicate the presence of sterile neutrinos, the existence

of which is one of the most hotly debated questions in the �eld.

This work will outline the MicroBooNE strategy for investigation of this low-energy excess,

with particular attention given to the role of the muon neutrino sideband which is used as an

important constraint on systematic uncertainties. A procedure has been developed in order to

apply this constraint to an electron neutrino dataset, and it has been shown that the constraint

results in an improvement to the sensitivity.

In order to perform this constraint, an exclusive-state �� CC selection has been developed,

which results in 804 selected events from on-beam data. The ratio of the data with respect to

simulation is R = 0.78 ± 0.04 (stat.) ± 0.12 (syst.).

In addition, this thesis presents a �rst measurement of the longitudinal ionisation electron

di�usion coe�cient from the MicroBooNE data, which is determined to be 3.73+0.70
−0.68

cm2/s.
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ACPT Anode-or-Cathode Piercing Tracks

ADC Analogue-to-Digital Converter

APA Anode Plane Array

art The event-processing framework made use of by LArSoft (art is not an acronym)

ASIC Application Speci�c Integrated Circuit

BNB Booster Neutrino Beam

BNB+Cosmic Simulated neutrino interaction from the GENIE generator overlaying a simulated

cosmic background from CORSIKA

CC Charged-Current

CI Continuous Integration

CORSIKA Cosmic Ray Simulations for Kascade, the primary package used in the simulation of

cosmic rays

CRT Cosmic Ray Tagger, scintillator panels surrounding the MicroBooNE cryostat

DAQ Data Aquisition System

DIC Dynamic Induced Charge, a simulated dataset which makes use of a preliminary induced

charge model

DIS Deep Inelastic Scattering

EXTBNB Dataset external to the beam window, but with the same conditions placed on the

software trigger as in the on-beam dataset (BNB trigger conditions)

FEM Front End Motherboard
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GENIE Generates Events for Neutrino Interaction Experiments is used to generate neutrino in-

teractions

ICARUS Imaging Cosmic And Rare Underground Signals experiment, the far detector of SBN

LArSoft Liquid Argon Software, the software package used by LArTPCs, which is built upon

the art event-processing framework

LArTPC Liquid Argon Time Projection Chamber

LINAC Linear Accelerator

MicroBooNE Micro Booster Neutrino Experiment, the middle detector of SBN

MiniBooNE Mini Booster Neutrino Experiment, the predecessor to MicroBooNE

NC Neutral-Current

Pandora The multi-algorithm pattern recognition reconstruction framwork used in analyses in

this work

PFO Particle Flow Object, a collection of PFPs

PFP Particle Flow Particle, a reconstructed object from Pandora which corresponds to one re-

constructed particle in a PFO

PID Particle Identi�cation

PMT Photomultiplier Tube

POT Protons On Target

QE Quasi-Elastic

RES Resonant Pion Production

SBN Short Baseline Neutrino Program

SBND Short Baseline Near Detector Experiment, the near detector of SBN

TPC Time Projection Chamber
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Chapter 1

Introduction

“The story so far: In the beginning the Universe was

created. This has made a lot of people very angry

and been widely regarded as a bad move.”

Douglas Adams

The fact that neutrinos oscillate between di�erent �avours is one of the only pieces of evidence

we have for physics beyond the Standard Model of particle physics, and this alone would make

neutrino physics an area worthy of study. In addition to this, we do not know whether neutrinos

and anti-neutrinos oscillate di�erently in vacuum; if they do then this would indicate that the

charge-parity symmetry is violated in the leptonic sector, which would help to ful�ll one of the

Sakharov conditions for baryogenesis [1], one of the leading theories for the matter/anti-matter

asymmetry of the universe. We do not know the absolute scale of neutrino masses, and further,

we do not understand the mechanism by which the masses of neutrinos are generated. We do not

know whether more neutrino species exist in addition to the three that we know of, and if they

do then to what level they can help to explain dark matter in the universe. Neutrinos can also

be used to study nuclear physics e�ects, which in many cases is not well understood in neutrino

interactions. Su�ce it to say that neutrinos are an exciting probe of fundamental physics.
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1.1 Liquid Argon Time Projection Chambers: Precise and

Scalable

The �eld of neutrino physics has expanded rapidly since the Reines-Cowan experiment of the

1950s [2, 3]. This is demonstrated in Figure 1.1, where the neutrino vertex resolution of various

detectors is shown as a function of the year each detector was built. In this �gure, the experiments

are separated by type of detector, and the size of each circle scales with the size of the detector.

Neutrino physics has matured to a point where there is a desire for detectors to be both high-

precision and large in scale. This has not always been the case: initial experiments searching for

the existence of the neutrino were essentially event-counting in nature meaning that they were

not required to be precise. After the discovery phase, high-precision bubble chamber detectors

were used to study neutrino interactions and shortly after this, with the discovery that neutrinos

oscillate from one �avour to another, precision began to be sacri�ced in order to build large-scale

detectors which maximised event rate.

It is clear from Figure 1.1 that Liquid Argon Time Projection Chambers (LArTPCs, such as

ArgoNeuT [4], ICARUS [5], MicroBooNE [6], SBND [7], and DUNE [8]) strike an important bal-

ance: they are able to attain excellent vertex resolution, allowing precision cross section physics

to take place, while remaining scalable for use in oscillation physics. Importantly the output of

such detectors is digital, allowing for automated reconstruction to take place, unlike in the days

of the bubble chamber.

With the Deep Underground Neutrino Experiment (DUNE) on the horizon, and LArTPCs still

being a relatively new technology, they have naturally become a focus of signi�cant research

and development. Speci�cally, the Short Baseline Neutrino (SBN) program [7] at Fermilab has

provided invaluable experience through the MicroBooNE experiment, and will continue to do so

when the near and far detectors come online in the coming years. The new protoDUNE detec-

tors [9] will provide additional input, given that these important prototypes include signi�cant

advances after incorporating what has been learned from other liquid argon detectors such as



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Neutrino detectors presented as a function of year built and neutrino interaction vertex
resolution. The detectors are roughly separated by the technology they leveraged. In some cases
detectors fall into multiple categories. Such is the case for MiniBooNE, where both scintillation
light and Cherenkov light were used by the experiment. Where experiments have had multiple
runs in di�erent con�gurations, a dashed line connects the runs, such as in the case of IceCube
and its upgrade to use more �nely spaced digital optical modules in the DeepCore extension. The
vertical grey line indicates the year 2019.

MicroBooNE, ICARUS, ArgoNeut, and LArIAT [10].

1.2 Sterile Neutrinos: A Known Unknown

One of the known unknowns of neutrino physics is whether additional neutrino states exist, and

whether any of these additional states are sterile in nature: “do these hypothetical neutrinos feel the

weak nuclear force?”. This is not a purely theoretical question. Several experiments have claimed
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observations which could be described by non-standard neutrino oscillations with the inclusion

of additional, heavier, sterile states. One such result is the excess of low-energy �e candidates

observed by the MiniBooNE experiment [11].

1.3 Probing the Sterile Neutrino Qustion with LArTPCS

The Micro Booster Neutrino Experiment (MicroBooNE) is a LArTPC which has been built in

order to directly probe the MiniBooNE result. There are myriad reasons why this technology

is an excellent choice for this speci�c task, however it is still in its infancy compared to more

traditional detection techniques. As such, the goals of this work very much mirror the goals

of the MicroBooNE experiment: analysis techniques have been developed in order to constrain

systematic uncertainties in a search for a MiniBooNE-like excess of �e events, and work has been

undertaken to characterise detector e�ects speci�c to LArTPCs.

1.4 Thesis Outline

Chapter 2 outlines our current understanding of neutrino physics with a speci�c focus on neu-

trino oscillations. This chapter also includes a review of some anomalous results from the last

several decades, which when taken together might act to indicate that additional neutrino species

exist in addition to the three that we know about.

In Chapter 3, a review of the MicroBooNE experiment is presented. This includes information

about the beamline, the detector, and the data-taking triggers which are used.

Chapter 4 describes the main parts of the simulation, reconstruction, and calibrations that are

used in MicroBooNE data analyses.

Chapter 5 contains the original work performed in order to measure the longitudinal ionisa-

tion electron di�usion from the MicroBooNE data.

The entirety of Chapter 6 is dedicated to a description of particle identi�cation in Micro-

BooNE. This includes a description of a tuning applied to the simulation in order to compare it
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to the MicroBooNE data, and development of a new particle identi�cation algorithm, the Bragg

Likelihood algorithm. Both the tuning and Bragg Likelihood algorithm have been developed as

part of this work.

Chapter 7 outlines the original work carried out to develop a selection of �� charged-current

events with zero pions and at least one proton in the �nal state.

Chapter 8 describes the constraint of systematic uncertainties in a �e search using the ��

selection developed in Chapter 7.

Finally, Chapter 9 concludes this work.
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Chapter 2

Neutrino Physics

“Oh, it’s better not to think about this at all,

like new taxes.”

Peter Debye

2.1 Dear Radioactive Ladies and Gentlemen...

The neutrino was introduced to the scienti�c community as a “desperate remedy”. By 1930, it

had been shown by Chadwick that electrons emitted during � decay had a spectrum of energies

rather than the well de�ned energies seen in � and 
 decay [12]. Faced with this, many were

ready to abandon the principle of conservation of energy, however Wolfgang Pauli realised that

if an undetectable particle was introduced, then this could carry a portion of the energy released

[13], giving rise to the observed distribution in electron energies. Thus the idea of the neutrino

was born.

Pauli was initially skeptical of the idea, despite having conceived of it, writing

I do not dare to publish anything about this idea, and trustfully turn �rst to you, dear

radioactive people, with the question of how likely it is to �nd experimental evidence for

such a [neutrino]
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and the idea was not considered seriously until Enrico Fermi uni�ed Pauli’s neutrino and Dirac’s

positron into a single theory [14]. This was quickly followed by the �rst calculation of the neu-

trino cross section by Bethe and Peierls [15], con�rming Pauli’s fears that the neutrino would be

almost undetectable with the technology of the time.

It would not be until the 1950s when Reines and Cowan were able to claim experimental

evidence for the “free neutrino” [2, 3]. Time would reveal that this was in fact the discovery of

the electron neutrino, �e , when the muon neutrino, �� , was discovered by Leon M. Lederman,

Melvin Schwartz and Jack Steinberger in 1962 [16], for which they were awarded the 1988 Nobel

Prize1. Given that these two particles were associated with charged leptons (e and �, respectively),

it was long hypothesised that there should be a third �avour of neutrino corresponding to the

� lepton. It was not until the year 2000 that this was experimentally veri�ed by the DONUT

collaboration [17].

The �� was the �nal lepton of the Standard Model of particle physics (SM) to be experimentally

con�rmed, and the second-to-last particle in total, only being succeeded in 2012 by the discovery

of the Higgs boson [18].

2.2 The Standard Model Neutrino

The SM describes within the framework of quantum �eld theory the uni�cation of three of the

four fundamental forces of nature: the weak nuclear force, the strong nuclear force, and electro-

magnetism. E�orts to include the �nal fundamental force, gravity, have thus far been unsuccess-

ful. Despite this, it is a monumentally successful scienti�c theory and has been experimentally

tested and veri�ed throughout the twentieth and twenty-�rst centuries.

The SM is based upon a SU (3)C×SU (2)L×U (1)Y gauge group, with C , L, and Y denoting colour

charge, left-handed chirality, and the weak hypercharge, respectively. It describes the strong,

weak, and electromagnetic interactions of fermionic particles by mediation of the relevant spin-1

gauge bosons. After Electroweak Symmetry Breaking (ESB), this gauge group is modi�ed:
1Frederick Reines would later be given the 1995 Nobel Prize for his work on neutrino physics.



CHAPTER 2. NEUTRINO PHYSICS 9

SU (3)C × SU (2)L × U (1)Y

ESB
←←←←←←←←←←←←←←←←←←←←→ SU (3)colour × SU (2)QED (2.1)

Strong interactions, mediated by one of 8 gluons (g), come from the SU (3)colour part of the

gauge group, and a�ect only quarks. Weak and electromagnetic interactions are mediated by the

charged or neutral weak bosons (W ±
, Z

0), or the photon (
 ), and are governed by the SU (2)QED

term.

Weak interactions are described within the electroweak part of the SM, only act upon particles

with a left-handed chirality. Mathematically this is equivalent to the statement that left-handed

particles transform as a doublet under SU (2)L × U (1)Y , while right handed particles transform as

a singlet,

QL =

⎛

⎜

⎜

⎜

⎝

qu

qd

⎞

⎟

⎟

⎟

⎠L

, LL =

⎛

⎜

⎜

⎜

⎝

��

�

⎞

⎟

⎟

⎟

⎠L

, quR , qdR , �R

where qu is up type quarks, qd is down type quarks, � is charged leptons of a given �avour,

and �� is the corresponding neutrino. These particles can be grouped into three generations, each

of which have the same quantum numbers but di�ering masses. These are outlined in Table 2.1.

Generation I Generation II Generation III

Quarks
(

u

d) (

c

s) (

t

b)

Leptons
(

e

�e ) (

�

�� ) (

�

�� )

Table 2.1: Table showing the three generations of particles contained within the SM. The gener-
ations have the same quantum numbers and are only di�erentiated by their masses.

Of note is that any right-handed neutrinos which might be introduced would not interact

via the weak nuclear force (as they are a singlet under SU (2)L × U (1)Y ) or the electromagnetic

force (because they are electrically neutral), and so they would not be observable. Due to this, no
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right-handed neutrino component is included in the SM. One consequence of this is that a mass

term cannot be constructed in the same way as for other fermions in the SM Lagrangian2,

mass = m( 
†

L
 R −  

†

R
 L).

For this reason, neutrinos are assumed to be massless within the SM, although neutrino

masses are a common feature of most extensions to the SM.

2.3 Neutrino Interactions

There are two terms of interest for neutrino interactions in the SM Lagrangian,

CC

�
= −

ig

√

2

∑

�=e,�,�

�̄�L /W ��L + ℎ.c., (2.2)

and

NC

�
= −

ig

2 cos �W

∑

�=e,�,�

�̄�L /Z
0

��L + ℎ.c., (2.3)

where CC

�
represents charged-current (CC) interactions which occur with exchange of a W

boson, and NC

�
represents neutral-current (NC) interactions, which instead exchange a neutral

Z boson [19]. These interaction terms can be represented as Feynman diagrams, as shown in

Figure 2.1.

In these Lagrangian terms, g denotes the weak coupling constant, �W is the Weinberg angle,

ℎ.c. is shorthand for the hermitean conjugate, and the Feynman slash notation3 has been used.

In addition to separating out neutrino interactions by whether they are charged or neutral

current, GeV-scale interactions are often broken into three distinct types which can be separated

by the energy regime in which they operate. The three main categories of interaction are quasi-

elastic (QE), resonant (RES), and deep inelastic (DIS), and examples of each of these are shown in
2The † here refers to the hermitean conjugate, or conjugate transpose of the �eld.
3
/A = 


�
A�
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e-
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𝝂e
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e-

Z0

Figure 2.1: Charged-current and neutral-current interaction Feynman diagrams.

Figure 2.2.

𝝂𝝁

u
u
d
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𝝁-

d
d
u

n
p

(a) ��CC QE interaction

𝝂𝝁

W+

𝝁-

d
d
u

n

u
d
d
d
u

𝞹+

n
𝞓+

(b) ��CC RES interaction

𝝂𝝁

W+

𝝁-

d
d
u

n

X

(c) ��CC DIS interaction

Figure 2.2: Diagrams showing examples of �� CC QE, RES, and DIS interactions.

Quasi-Elastic Interactions

Quasi-elastic interactions occur when an incoming neutrino interacts with a nucleon, modifying

the �avour of one of the constituent quarks, and often knocking the nucleon out of the nucleus.

An example for this type of interaction is shown in Figure 2.2a, where an incoming �� interacts
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with a neutron, changing the �avour of one quark from d to u, and producing a �− and a proton

in the �nal state.

Resonant Interactions

Resonant events occur when the incoming neutrino interacts with a nucleon, exciting it into a

resonant state, which then decays into some �nal state, most often to a nucleon and a single pion,

as shown in Figure 2.2b.

Deep Inelastic Interactions

Deep inelastic interactions happen when the neutrino imparts a lot of energy to a quark in a

nucleon, causing the breakup of the nucleon and a shower of hadronic particles to emerge from

the interaction point. This is shown in Figure 2.2c.

The predicted �� CC neutrino cross section is shown as a function of energy in Figure 2.3.

Here, the three components are shown separately along with a total predicted cross section and

neutrino cross section measurements from a large number of experiments.

2.4 Neutrino Oscillations

During the 1960s, neutrino observatories with a focus of detecting neutrinos originating from the

Sun stumbled upon a problem: the number of neutrinos detected were in direct contradiction to

models of thermonuclear fusion in standard solar models which had been validated by results in

helioseismology [21, 22]. This problem was further aggravated when a similar discrepancy was

found in measurements of atmospheric neutrinos [23].

Inspired by a similar process in the neutral kaon system (K 0 � K̄
0, see reference [24]), Bruno

Pontecorvo began to formulate a solution to this problem by assuming neutrinos could change

from one �avour to another4 through a process dubbed neutrino oscillations. Oscillations from
4Pontecorvo initially developed this idea through � � �̄ oscillations, with �avour oscillations coming slightly
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Figure 2.3: Predicted cross sections as a function of energy �� CC for quasi-elastic, resonant, and
deep inelastic interactions taken from [20], overlayed with data from a wide range of experiments.

electron neutrinos into either muon or tau neutrinos would then explain the de�cit in observed

electron neutrinos at neutrino observatories. This idea was further developed by Maki, Nakagawa

and Sakata in 1962 [25], and given a standard derivation by three pairs — Fritzsch and Minkowski

[26], Eliezer and Swift [27], and Bilenky and Pontecorvo [28].

In the standard formalism, the neutrino �avour states can be represented as a linear superpo-

sition of mass states, and equivalently (assuming the unitarity of the mixing matrix, U ) the mass

states can be thought of as a linear superposition of �avour states,

|��⟩ = ∑

j

U
∗

�j
|�j⟩ , |�j⟩ = ∑

�

U�j |��⟩ . (2.4)

Here, and in the rest of this chapter, Greek indicies (� , �) are used to represent the neutrino

�avour states, while Latin indicies (i, j) are used to represent neutrino mass states, and U repre-

later.
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sents the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix,

U�j =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Ue1 Ue2 Ue3

U�1 U�2 U�3

U�1 U�2 U�3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (2.5)

which can be parameterised as three two-dimensional rotation matrices. When this parameteri-

sation is used, three mixing angles are introduced which describe the mixing between the three

neutrino mass states. The three rotation matrices are often referred to as the atmospheric (�23),

reactor (�13), and solar (�12) mixing angles. Using sij = sin(�ij), cij = cos(�ij), U�j may be written

U�j =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0

0 c23 s23

0 −s23 c23

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

c13 0 s13e
i�CP

0 1 0

−s13e
−i�CP

0 c13

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

c12 s12 0

−s12 c12 0

0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (2.6)

where the �CP parameter, located in the reactor sector, is an additional Charge-Parity (CP) phase.

If �CP ≠ 0, � , then this indicates that the CP symmetry is violated in the leptonic sector5, and so

neutrinos and anti-neutrino oscillations would be expected to oscillate di�erently in vacuum.

By making use of the time-dependent Schrödinger equation, it can be shown that the prob-

ability for a neutrino of �avour � to oscillate into a neutrino of �avour � in a vacuum is given

by

P��→��
= |∑

j

U
∗

�j
U�j exp

(
−1.27i

Δm
2

j1
L

E )
|
2
, (2.7)

the full derivation for which can be found in reference [29]. Importantly, the magnitude of the

neutrino mass-squared di�erence parameters (Δm2

21
and Δm2

31
, where Δm2

j1
= m

2

j
− m

2

1
) controls

the frequency of the oscillation, while the magnitudes of the mixing angles (�12, �23, and �13,
5The violation of CP in the leptonic sector is a particularly interesting open question in neutrino physics due to

its relevance to baryogenesis. Baryogenesis is one of the leading hypotheses for the matter/anti-matter asymmetry
of the universe, however in order for it to be valid several conditions must be met; these are known as the Sakharov
conditions [1]. One such condition is that CP violating processes exist. It is known that CP violation exists in the
quark sector, but not in the quantities necessary for baryogenesis to be valid, meaning leptonic CP violation would
be an important discovery. Neutrino oscillations are the main method currently used to probe this question.
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Normal Ordering (best �t) Inverted Ordering (Δ� 2 = 4.7)

bfp ± 1� 3� range bfp ± 1� 3� range

�12 33.82
+0.78

−0.76
31.61 → 36.27 33.82

+0.78

−0.76
31.61 → 36.27

�23 49.6
+1.0

−1.2
40.3 → 52.4 49.8

+1.0

−1.1
40.6 → 52.5

�13 8.61
+0.13

−0.13
8.22 → 8.99 8.65

+0.13

−0.13
8.27 → 9.03

�CP 215
+40

−29
125 → 392 284

+27

−29
196 → 360

Δm
2

21

10
−5eV2 7.39

+0.21

−0.20
6.79 → 8.01 7.39

+0.21

−0.20
6.79 → 8.01

Δm
2

3�

10
−3eV2 2.525

+0.033

−0.032
+2.427 → +2.625 −2.512

+0.034

−0.032
-2.611 → −2.412

Table 2.2: The global picture of neutrino oscillation parameters under the 3 neutrino assumption
from the NuFit collaboration [37]. Note that this is shown without constraints from the Super-
Kamiokande atmospheric data. Results are shown under the assumption of normal ordering and
of inverted ordering, although there is a slight preference for normal ordering.

contained within the elements of U ), control the magnitudes of the oscillations.

Experimental evidence for neutrino �avour oscillations was provided in the late 20th century

by the Super-Kamiokande collaboration [30] and the Sudbury Neutrino Observatory collabora-

tion [31], collaborators from which were awarded the 2015 Nobel Prize in Physics. Since then,

the �eld has rapidly worked towards constraining the values of the mixing parameters.

The three-�avour neutrino paradigm has been probed by a number of experiments. In recent

years, Daya Bay [32] was able to precisely measure �13, while results on the atmospheric mixing

parameters (Δm2

32
and �23) and �CP have been primarily from T2K [33], NO�A [34], IceCube [35],

and MINOS [36]. A global analysis of neutrino data has been performed by the NuFit collaboration

[37], giving the current global best �t of the oscillation parameters which are found in Table 2.2.

It is clear from equation 2.7 that there are two parameters which are able to be tuned in

neutrino experiments, the baseline, L, and the neutrino energy, E. In practice, these parameters

always appear as L/E, and so this is the characteristic variable which is discussed in many neutrino

oscillation experiments. Oscillation probabilities as a function of L/E are shown for �� → �e ,

�� → �� , and �� → �� transitions in Figure 2.4.
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Figure 2.4: Neutrino oscillation probabilities for �� → �e , �� → �� , and �� → �� transitions.
�� is chosen as the initial �avour as experimental setups using a neutrino beam typically use an
intense �� source.

Figure 2.4 indicates that for L/E values relevant for neutrino beam experiments, the �� → ��

transition is preferred to the �� → �e transition, however appearance searches6 mainly make use

of �e appearance due to the high energies required for a �� to produce the heavy � lepton, and

the short lifetime of such a heavy particle meaning that these interactions are often di�cult to

identify in a detector. To date, the �� has only been observed by three collaborations: DONUT

[17], OPERA [38], and more recently, IceCube [39].

An important consideration of the oscillation probability presented in Equation 2.7 is that it is

unbounded from above, meaning in principle any number of neutrinos may be added. The num-

ber of light active7 neutrino �avour states is constrained by the width of the Z boson, measured

at the Large Electron-Positron Collider (LEP) as described in reference [40], and shown in Figure

2.5. This, however, does not constrain neutrinos which do not undergo electroweak interactions

— so-called sterile neutrinos.

6Neutrino oscillation analyses are characterised as either looking for disappearance of some fraction of the neu-
trino �avour produced by the neutrino source, or by appearance of a neutrino �avour di�erent to that of the initial
neutrinos produced at the neutrino source.

7Those neutrino �avours which undergo electroweak interactions.
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Figure 2.5: Measurements of the hadron production cross section near the Z resonance, taken
from reference [40]. The three curves represent the prediction in the SM given the existence of
2, 3, or 4 light active neutrino �avours.

2.5 The Global Sterile Neutrino Picture

Sterile neutrinos are introduced in many extensions to the SM, as they are necessarily right-

handed, meaning that a standard Dirac mass term can then be included, giving rise to neutrino

masses. As a particle which would only interact with SM particles gravitationally and through

neutrino oscillations, they are also often cited as a dark matter candidate.

Experimental results in the search for sterile neutrinos come from a variety of experimental

setups, with di�erent signal channels. Searches have been performed with reactor, accelerator,

and atmospheric experiments, and for both charged-current and neutral-current interactions.

These results are fraught with tension, with several collaborations reporting results consistent

with sterile oscillations, and others reporting constraints with varying con�dence limits.

This section will outline a non-exhaustive list of sterile neutrino search results from the late

20th and early 21st century.
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Muon e/𝛾 𝞹0

Figure 2.6: Image showing how particle identi�cation is performed using Cherenkov light.

2.5.1 Results from Accelerator Experiments

LSND

The Liquid Scintillator Neutrino Detector (LSND) was a combined scintillation/Cherenkov de-

tector which ran from 1993-1998 in the neutrino beam from the LAMPF proton accelerator at

Los Alamos National Laboratory. For the main �̄� → �̄e analysis, LSND used neutrinos from �
+

decay-at-rest (DAR), resulting in a well-understood spectrum of neutrino energies.

The Particle Identi�cation (PID) in the detector was performed by making use of the shape

of the cone of Cherenkov light produced by charged particles moving faster than the speed of

light in the detector material. A muon passing through the detector will produce a stable ring,

an electron or a photon will produce a more fuzzy ring, and a � 0 will produce two photon-like

rings. This is shown in Figure 2.6. Note here that separating out electrons from photons is a very

di�cult task in detectors which use Cherenkov light for their PID. This is particularly a problem

in the case that one photon from a � 0 decay exits the detector, leaving a single photon which may

be mistaken for a �e candidate.

LSND observed an excess of �̄e candidates in the data over the expected background at a

level of 3.8� [41, 42, 43], as shown in Figure 2.7. If this is interpreted as an excess from neutrino

oscillations, then this corresponds to a Δm2 of approximately 1 eV2. Given that, as shown in Table

2.2, global �ts place the two known mass-squared splittings in the 10−5 eV2 and 10−3 eV2 regions,
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this interpretation necessitates an additional neutrino mass state.

Figure 2.7: Beam excess (beam-o� subtracted event count) as a function of L/E from the LSND
collaboration [42]. Here the green and red shaded regions represent the expected backgrounds,
while the blue shaded region represents assumed neutrino oscillations with a Δm2 of ∼ 1 eV2.

MiniBooNE

The Mini Booster Neutrino Experiment (MiniBooNE) experiment was designed to explicitly test

the LSND result, and has been running in the Booster Neutrino Beam (BNB) at Fermi National

Accelerator Laboratory (FNAL) since 2002. Importantly, the baseline and beam energy place

this near the same L/E value as LSND, and so it is able to explore the same phase space as its

predecessor. It, like LSND, is a combined scintillator/Cherenkov detector, allowing for the same
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style PID method.

MiniBooNE also saw an excess of data over the predicted backgrounds (4.7� , [44, 11]), al-

though at a slightly lower energy, meaning that there is slight tension between the results of

the two experiments (although this tension is somewhat reduced with the expanded dataset pre-

sented in reference [11]). Figure 2.8 shows the excess of events as a function of reconstructed

neutrino energy in both neutrino (2.8a) and anti-neutrino mode (2.8b).

The best �t points in Figure 2.8 are independent �ts to the neutrino and anti-neutrino data

under the 2� oscillation assumption, and it is clear that the anti-neutrino �t is signi�cantly better

than the neutrino mode �t.

(a) Neutrino mode running (b) Anti-neutrino mode running

Figure 2.8: MiniBooNE results with expanded running (12.84 × 1020 POT in neutrino running
mode, and 11.27 × 1020 POT in anti-neutrino running mode). Taken from reference [11].

Both neutrino and anti-neutrino mode data have signi�cant backgrounds at low energy mostly

due to � 0 mis-identi�cation and Δ → N
 decay. Both backgrounds here are photon-like. Given

that the Cherenkov-style PID cannot easily di�erentiate these from electrons, this is something

which raises suspicion. An open question from MiniBooNE is whether the observed excess is

electron-like or photon-like.
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KARMEN

The KARMEN experiment performed a �̄e search in a �̄� beam produced by the ISIS synchotron

at the Rutherford Appleton Laboratory in the United Kingdom. Like LSND, it was a scintillator

detector, but unlike LSND, it was segmented. KARMEN is particularly interesting because it, like

LSND, used muon DAR as a source of muon neutrinos.

KARMEN observed 15 candidate �̄e events, which is consistent with the 15.8 events expected

from background [45]. Performing a likelihood �t to the data results in a 90% con�dence interval

which is shown in Figure 2.11. It is notable that the two data sets are compatible assuming a Δm2

of between 0.2 and 1.0 eV2, or a Δm2 near to 7 eV2.

Null Results

In addition to the KARMEN null results, several other experiments have reported null results.

ICARUS [46] and NOMAD [47] have set bounds by looking for �e appearance in a �� beam, while

null results in the �� disappearance channel have been found by MiniBooNE and SciBooNE [48,

49], MINOS [50], MINOS and Daya Bay [51], CCFR [52], and IceCube [35].

Results from IceCube and MINOS/Daya Bay are presented in Figures 2.9 and 2.10, respectively.

Allowed Phase Space

If the LSND and MiniBooNE results are to be interpreted as neutrino oscillations, then theΔm2
>>

Δm
2

31
, Δm

2

21
, and so the neutrino oscillation can, to a �rst approximation, be reduced to a two

neutrino scenario:

P��→��
= sin

2
(2�) sin

2
(1.27 × Δm

2
×

L

E

), (2.8)

and the data can be �t to extract the mixing angle, � , and mass-squared splitting,Δm2. Because

the baselines of these experiments are relatively short, matter e�ects can be neglected to �rst

order. The resulting allowed region from this procedure is shown in Figure 2.11.
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Figure 2.9: The IceCube 90% and 99% con�dence levels, shown with the 99% and 68% CL sensitivity
bands. The region to the right of the curve is excluded, meaning that IceCube is able to rule out
the allowed MiniBooNE/SciBooNE region to 99% con�dence. Figure taken from reference [35].

Here, the LSND 90% and 99% con�dence level (CL) contours are shown shaded in blue and

grey respectively, with the MiniBooNE allowed regions shown as solid lines overlaying this. In

addition to this, the KARMEN 90% CL constraint is shown as a dashed black line, and the OPERA

exclusion curve is shown as a solid grey line. Of note is that the MiniBooNE best �t point (black

dot) is ruled out by OPERA at 90% CL, although it is still allowed by KARMEN.
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Figure 2.10: The 90% con�dence level for the combined �t of MINOS, Daya Bay, and Bugey-3
data. Figure taken from reference [51]

2.5.2 Results from Gallium Experiments

As a part of their calibrations campaigns, the SAGE and GALLEX Gallium experiments had ar-

ti�cial radioactive sources (37Ar , and 51
Cr ) placed within them [53]. These sources decay via

electron capture,

e
−
+
37
Ar →

37
Cl + �e , (2.9)

e
−
+
51
Cr →

51
V + �e , (2.10)

producing neutrinos of speci�c energies which can then be detected via

�e +
71
Ga →

71
Ge + e

−
. (2.11)
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Figure 2.11: Allowed region for MiniBooNE with best �t point, overlaying the allowed LSND
region. The KARMEN and OPERA 90% con�dence levels are also shown.

The measured rate over the predicted rate is shown in Figure 2.12. Taking the weighted

average of the four measurements indicates that there is a de�cit in the ratio, equivalent to R =

0.85 ± 0.05, meaning the number of events is approximately 2.8� smaller than the prediction.

One possible explanation for this discrepancy is short baseline active-to-sterile oscillations, with

a Δm2 of approximately 1eV2.



CHAPTER 2. NEUTRINO PHYSICS 25

Figure 2.12: Rate results from the SAGE and GALLEX experiments, taken from reference [53].
The shaded region shows the weighted average of the four measurements.

2.5.3 Results from Reactor Neutrino Experiments

Many reactor neutrino experiments have operated over the past several decades, with some

prominent examples being CHOOZ [54], KamLAND [55] and Daya Bay [56].

Initial analysis of reactor neutrino data found no evidence for sterile neutrino oscillations,

however a re-analysis of reactor neutrino data in 2011 revealed that there was a de�cit in the

data with respect to an updated prediction at the level of ∼ 6% [57]. This is shown in Figure 2.13.

Here, the data points are the ratio of observed events compared to prediction, the red line is the

predicted number of events under a three-neutrino oscillation paradigm, and the blue line is the

predicted number of events under the assumption of an additional mass state for which Δm2
>> 1

and sin2(2�) = 0.12, shown for illustration purposes only.

More recently, the NEOS [58] and DANSS [59] collaborations have performed measurements

of the ratios of the number of events as a function of baseline, rendering them insensitive to

uncertainty around the �̄e �ux from reactors. Both experiments observe a spectral distortion

which is oscillation-like (see Figure 2.14) and a combined �t of the data from the two experiments

results in the no-oscillation hypothesis being disfavoured with respect to the sterile neutrino
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Figure 2.13: Results from reactor neutrino experiments, taken from reference [57]. The data
points represent the ratio of observed to predicted events. The red line represents the predicted
number of events under the assumption of a three-neutrino model. The blue line includes an
additional mass state with Δm2

>> 1 and sin2(2�) = 0.12 for illustrative purposes.

oscillation hypothesis at 3.3� [60].

The Daya Bay experiment has also performed a sterile neutrino search [61], but found no

evidence for a signal.

2.5.4 Global Fits

The picture for sterile neutrinos is nothing if not murky. Several groups have undertaken the

task of producing global �ts to assess the compatibility of the di�erent data sets. Results from

one such global �t are shown in Figure 2.15. These results are separated into �e/�̄e appearance

(2.15a), which are dominated by LSND and MiniBooNE, ��/�̄� disappearance (2.15b), the strongest

limits for which come from IceCube and MINOS/MINOS+, and �̄e disappearance, for which NEOS

and DANSS contribute the strongest constraints.

If the disappearance datasets are combined and compared to the allowed region from appear-

ance searches, as shown in Figure 2.16, then it is clear that the the allowed regions are incompati-

ble. Here, the reactor neutrino datasets have been treated in two di�erent ways: the �rst assumes
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Figure 2.14: Observed spectra for the DANSS (left) and NEOS (right) experiments taken from
reference [60]. The green solid line shows the prediction for a Δm2

41
, �14 global reactor best �t,

while the dashes curves show the best �t predictions for the respective experiments.

the published �̄e �uxes to be correct, while the second allows the �ux normalisation from 235
U ,

238
U , 239Pu, and 241

Pu to �oat (the sub-dominant 238
U and 241

Pu �uxes have a 1� bound of 20%

to stop the relative sizes becoming unphysical). The appearance results are presented both with

and without the LSND decay-in-�ight data.

The conclusions of the global �t presented in reference [60] state that they rule out sterile

oscillations as an explanation of the LSND and MiniBooNE anomalies, but that they remain a

viable option for the reactor and gallium anomalies. This is mostly due to the increasing power

of the �� disappearance results in recent years.

Despite the conclusion of this global �t there are many proponents of the sterile neutrino

explanation for both LSND and MiniBooNE, and it is important that the �eld characterise the

source of the anomalous results seen in these experiments.

In order to conclusively address the question of eV-scale sterile neutrinos a three-detector

experiment is under development at Fermi National Accelerator Laboratory. This �rst detector

of this Short-Baseline Neutrino Program, MicroBooNE, has been running in the Booster Neutrino

Beam since 2015.



28 CHAPTER 2. NEUTRINO PHYSICS

(a) �e/�̄e appearance (b) ��/�̄� disappearance

(c) �̄e disappearance

Figure 2.15: Global �ts to appearance and disappearance data taken from reference [60].
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Figure 2.16: Global allowed region for appearance results including (excluding) LSND decay-in-
�ight are shown in red (pink, hashed). The limits set from disappearance datasets (�̄e , and ��/�̄�)
are shown for the free-�uxes assumption in blue, and �xed �uxes in cyan, dashed. Taken from
reference [60].
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Chapter 3

The MicroBooNE Experiment

“It doesn’t matter how beautiful your theory is... if it

doesn’t agree with experiment, it’s wrong.”

Richard Feynman

The Micro Booster Neutrino Experiment (MicroBooNE) is located at the Liquid Argon Test Fa-

cility at the Fermi National Accelerator Laboratory site, in Batavia, Illinois. MicroBooNE will act

as the middle detector of the Short Baseline Neutrino (SBN) program, along with the Short Base-

line Near Detector (SBND), and the Imaging Cosmic And Rare Underground Signals (ICARUS)

detector, which will act as the near and far detectors when they begin running. MicroBooNE re-

ceives on-axis neutrinos from the Booster Neutrino Beam (BNB), being positioned around 470m

downstream of the target. In addition to the on-axis neutrinos received from the BNB, Micro-

BooNE is able to detect o�-axis neutrinos from the Neutrinos at the Main Injector neutrino beam.

The MicroBooNE detector contains 170 tons of liquid argon within a cylindrical cryostat, and

employs a Liquid Argon Time Projection Chamber (LArTPC) as its primary detection technology,

along with a light collection system in the form of 32 PhotoMultiplier Tubes (PMTs). The cryostat

is surrounded by a Cosmic Ray Taggging system (CRT), which is composed of layers of plastic

scintillator and provides around 85% coverage.
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3.1 The Booster Neutrino Beam

The Booster Neutrino Beam (BNB) is a conventional, single-horn focused neutrino beam, which

provides neutrinos peaking in energy at around 800 MeV [62]. Historcially, the main target for

the beam has been the MiniBooNE detector.

The Fermilab Booster is a 474-meter-circumference synchotron which operates at 15 Hz. Pro-

tons with an energy of 400 MeV are injected into the booster from the Fermilab LINAC [63] and

are then accelerated to 8 GeV kinetic energy [64]. From here, proton pulses are delivered into the

target hall and onto a beryllium target with a 5 Hz average rate. An aerial view of the Fermilab

beamlines can be found in Figure 3.1.

Figure 3.1: Aerial view of the Fermilab beamlines. The Booster neutrino beamline is displayed in
red, and the path of the protons is displayed in blue. The NuMI neutrino beam is also displayed in
green. The light green circle shows the position of the MiniBooNE detector, which MicroBooNE
sits slightly upstream of.

Each 1.6 �s beam spill is expected to contain 4.5×1012 protons [7]. The protons incident on the

target induce interactions, providing a cascade of secondary particles, mainly pions and kaons.

Selected-sign particles are focused towards the beamline by use of a single focusing horn pulsed
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at 174 kA, while wrong-sign1 particles are de-focused. The selected-sign charged particles are

passed through a collimator and allowed to decay in a 50 m air-�lled decay pipe. A steel and

concrete beam stop at the end of the decay region removes the majority of secondary particles

and any remaining charged particles are absorbed by the dirt to leave a beam of pure neutrinos.

This is displayed graphically in Figure 3.2.

Proton Source Target and 
Focusing Horn Decay Pipe and Beam Dump Dirt MicroBooNE

π-

π+

μ+

𝜈μP
𝜈μ

𝜈e

e+

Figure 3.2: Graphical representation of the BNB. Protons with a kinetic energy of 8 GeV are
impeded on a target, embedded in a focusing horn which acts to defocus wrong-signed secondary
particles and focus right-signed secondary particles. The secondary particles are then allowed to
decay in a decay pipe, with residual particles being stopped in the beam dump, or the dirt which
follows. Neutrinos from secondary (and tertiary) particle decays pass through both the beam
dump and dirt and arrive at the MicroBooNE detector.

3.1.1 Beam Composition

Secondary particles produce mainly �� , with a small contamination of �e , �̄� and �̄e , as shown in

Figure 3.3. The composition of the beam is well understood. In neutrino mode, it is dominated by

the �� component which is estimated to be ∼ 93.6% of the total composition of the beam [7], with

the second largest component being the �̄� . The �e and �̄e components are one and two orders

of magnitude smaller, respectively. Table 3.1 is taken from the MiniBooNE �ux paper [62] and

shows the predicted composition of the BNB in neutrino running mode.

The production of ��s is dominated by charged pion decay below around 2.5 GeV. The primary
1The focusing horn can be used to focus either negatively or positively charged particles.
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Figure 3.3: The predicted BNB �ux at MicroBooNE for neutrino mode running, taken from refer-
ence [7]. The dominant component of the beam is �� , although there is signi�cant contribution
from �̄� at low energies. The expected contamination in the beam from �e/�̄e is at the sub-percent
level.

decay mode for charged pions (�+ → �
+
+ ��) has a branching ratio of 99.9877% due to helicity

suppression. Charged pions are produced in a spin-0 state, and decay to a charged lepton and its

corresponding neutrino. The two particles must be produced in opposite-handed helicity states

in the rest frame of the pion. Because the neutrino has a left-handed chirality and an extremely

low mass it is essentially always produced in a left-handed state. The lepton therefore must have

a right-handed helicity, and because the muon has a much larger mass than the electron, the

�
+
→ e

+
+ �e decay is suppressed by a factor of ∼ 10−4 [65].

The largest non-�� component of the beam is the �̄� component which are produced from

highly energetic wrong-sign secondary particles (�−, dominantly), which tend to be very forward

going and are not defocused by the focusing horn.

The small �e and �̄e components of the beam are primarily from the �+ → e
+
+ �e decay and

the semileptonic decays of K 0

L
s respectively.
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�� �̄�

Flux (�/cm2/POT) 5.19 × 10
−10

3.26 × 10
−11

Frac. of Total 93.6% 5.86%

Composition �
+: 96.72% �

−: 89.74%

K
+: 2.65% �

+
→ �

+: 4.54%

K
+
→ �

+: 0.26% K
−: 0.51%

K
0
→ �

+: 0.04% K
0: 0.44%

K
0: 0.03% K

0
→ �

−: 0.24%

�
−
→ �

−: 0.01% K
+
→ �

+: 0.06%

Other: 0.30% K
−
→ �

−: 0.03%

Other: 4.43%

�e �̄e

Flux (�/cm2/POT) 2.87 × 10
−12

3.00 × 10
−13

Frac. of Total 0.52% 0.05%

Composition �
+
→ �

+: 51.64% K
0

L
: 70.65%

K
+: 37.28% �

−
→ �

− 19.33%

K
0

L
: 7.39% K

−: 4.07%

�
+: 2.16% �

−: 1.26%

K
+
→ �

+ 0.69% K
−
→ �

−: 0.07%

Other: 0.84% Other: 4.62%

Table 3.1: Predicted beam composition of the BNB in neutrino running mode, taken from refer-
ence [62]. The total fraction of the �ux is displayed, as well as the composition of each of the �� ,
�̄� , �e , and �̄e components, which are listed in order of size contribution.

3.2 The MicroBooNE Detector

This section is dedicated to a description of the MicroBooNE detector. Section 3.2.1 outlines how

signals are generated in LArTPCs. Sections 3.2.2 and 3.2.3 give overviews of the MicroBooNE

TPC and light collection system, respectively.

Selected important characteristics of the MicroBooNE detector are outlined in Table 3.2.
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Parameter Value

TPC Dimensions

Width 2.56 m

Length 10.37 m

Height 2.33 m

Anode Plane Array

Number of Wire Planes 3

Wire Plane Spacing 3 mm

Wire Pitch 3 mm

Wire Orientation w.r.t Vertical (U, V, Y) +60◦, -60◦, 0◦

Number of channels (U, V, Y) 2400, 2400, 3256

Bias Voltage (U, V, Y) -200 V, 0 V, 400 V

Field Cage

Number of Loops 64

Voltage Step 1.09 kV

Electric Field

Cathode Voltage -70 kV

Drift �eld 273 V/cm

Maximum Drift Time 2.3 ms

PMTs

Number of PMTs 32

Photocathode coverage 0.9%

Table 3.2: Important variables for the TPC, �eld cage, and light detection system of the Micro-
BooNE detector.

3.2.1 Signals in LArTPCs

Ionisation Signals

The modus operandi of a LArTPC is very simple. A charged particle passing through the liquid

argon contained within the detector liberates electrons through the process of ionisation. These
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ionisation electrons e�ectively act to track the path and energy deposition of the initial charged

particle. The TPC is held at a constant electric �eld by holding one side of the TPC (the cathode)

at a constant negative voltage. Under the in�uence of this electric �eld, the ionisation electrons

can be transported over a number of meters with very little distortion to the anode plane of the

TPC, where detection instrumentation is situated.

The number of electrons detected by the instrumented anode plane is dependent primarily

on two e�ects: recombination and the purity of the argon inside the detector.

Recombination happens at the point of ionisation, where a fraction of the liberated electrons

thermalise and quickly recombine with the argon ions. The scale of this e�ect is then a function

of the applied electric �eld. The higher the electric �eld, the more quickly the ions and electrons

are separated, and so the smaller the chance of recombination occurring.

Impurities in the liquid argon, primarily oxygen and water, can a�ect the electron yield at the

anode plane by capturing electrons as they traverse the drift. Once again, this is a function of the

electric �eld, as a higher �eld leads to a shorter drift time, meaning there is less opportunity for

electrons to be captured.

As the cloud of ionisation electrons drift through the TPC, the shape of the cloud is modi�ed by

di�usion of the electrons in both the direction parallel to the electric �eld (longitudinal electron

di�usion), and perpendicular to the electric �eld (transverse electron di�usion). This will be

discussed in detail in Chapter 5.

Optical Signals

The information in this section is taken mostly from reference [66], an excellent reference for

anybody interested in learning about light production in liquid argon.

Liquid argon is a bright scintillator, producing (10,000) photons per MeV of deposited en-

ergy, with dependence on the dE/dx , the electric �eld strength, and the argon purity. These

photons peak with a wavelength of 128 nm, and come with two distinct time signatures. The

fast component occurs within around 6 ns of the interaction, while the slow component occurs



38 CHAPTER 3. THE MICROBOONE EXPERIMENT

around 1500 ns later.

Both the fast and slow components come from the emission of photons from excited dimers2,

with the fast component coming from singlet states, while the slow component comes from triplet

states, which are delayed by inter-system crossing.

There are two methods in which these excited dimers can be produced. The �rst method, self-

trapping, happens when an argon atom becomes excited by an ionising particle, and joins with

a neutral argon atom. The second method, recombination luminescence, happens when an argon

atom is imparted with enough energy to undergo ionisation, and this then combines with another

argon ion to produce a charged argon dimer state. The ionisation electrons then thermalise and

begin to recombine with the charged argon dimer, leading to an excited argon dimer. This is

shown in Figure 3.4.

The recombination method provides an explanation for why scintillation light yield is depen-

dent on the applied electric �eld; a higher electric �eld results in a quicker separation of electrons

and ions, meaning there are fewer opportunities for recombination. This means that the number

of photons from the recombination method is reduced.

In addition to scintillation light, directional Cherenkov light is produced via the usual process:

particles traveling faster than the speed of light in the medium results in a directional cone of light.

While oxygen and water are the contaminants of interest for ionisation signals, nitrogen is

the primary contaminant of interest for optical signals. An excess of nitrogen makes liquid argon

opaque to its own scintillation light, resulting in a reduction in light yield at the optical detectors.

3.2.2 The Liquid Argon Time Projection Chamber

The MicroBooNE TPC measures 2.56 m along the drift (x-direction), with a height of 2.33 m (y-

direction), and a length of 10.37 m (z-direction). It is composed of a cathode at high-x , an anode

at low-x , and a �eld cage connecting the two.

A diagram of the MicroBooNE TPC is shown in Figure 3.5.

2A dimer is a molecule composed of two identical molecules or atoms, in this case, argon.
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Figure 3.4: Diagram showing the two methods available for scintillation light production in liquid
argon. Both the self-trapped and recombination methods can produce either a singlet or triplet
excited dimer state, which give rise to the fast and slow components of the scintillation light,
respectively. For scintillation produced via the self-trapped method, the ratio of singlet-to-triplet
excimers is ∼ 35 ∶ 65. For the recombination method the ratio is closer to 50 ∶ 50.

The Cathode

The cathode is composed of 9 individual plates. In order to deliver a uniform electric �eld through-

out the detector, the cathode must be �at and parallel to the Anode Plane Array (APA). A best

�t plane from survey data suggests that the two faces of the TPC are within 0.0413◦ of parallel

to each other. The maximum deviations from this best �t are +6.6 mm and -6.5 mm, with 90% of

10,000 survey points within 5 mm deviation of the best �t plane. This indicates that the cathode

is slightly bowed with respect to the APA.

The cathode is held at -70 kV, and stepped down to ground over the 64 loops composing the

�eld cage. The resulting electric �eld has a strength of 273 V/cm in the drift direction.
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Anode plane and PMTsDrift direction

Z
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Figure 3.5: A diagram of the MicroBooNE TPC. The orientation is de�ned such that it makes a
right handed co-ordinate system with x increasing along the negative drift direction. The three
wire planes are displayed oriented vertically (Y, collection plane), and ±60◦ to this (U and V, in-
duction planes). The light collection system sits just behind the wire planes but is neglected in
this diagram.

The Anode Plane Array

The MicroBooNE APA makes use of steel sense wires as its detection technology. The wires

are angled vertically, and at ±60 degrees to the vertical. It should be noted that in contrast to

some other current and future LArTPCs, MicroBooNE does not have so-called wrapped wires,

meaning there is a one-to-one correspondence between TPC wires and TPC channels, and often

these terms are used interchangeably3.

By applying a bias voltage over the three planes of wires it can be ensured that the electrons

drift past the �rst two planes (termed induction planes) unimpeded, and are collected in the �nal

plane (the collection plane). Each induction plane has 2400 wires, while there are 3456 wires on

the collection plane, bringing the total number of wires to 8256. Ionisation electrons produce

current on these wire planes; bipolar waveforms are induced on the two induction planes as the

electrons pass by, and a monopolar waveform is produced when the electrons are collected on

3There are a number of channels which are not connected to wires, however these have channel numbers greater
than 8256, and are often neglected.
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the collection plane [6]. Simulated example waveforms are shown in in Figure 3.6. For each of the

planes, a single minimally ionising particle is simulated at an angle both parallel to the APA and

perpendicular to the wire orientation, providing an “ideal” track. The black lines in each diagram

represent the contribution of charge drifting in the region within ±1.5 mm of primary induction

or collection wire to the signal, while the red and blue dashed lines represent the signal when

contribution from charge drifting in the region bounded by [-2,+2] wires and [-10,+10] wires

away are included, respectively. This demonstrates that induced charge e�ects play a large part

in modifying the shape of the signals, and must be taken into account. On the V and Y planes,

which are each shielded by at least one other plane of wires, these e�ects are limited to nearby

wires, however for the U plane, which receives no shielding, induced charge e�ects are important

to (10) wires. This will be an important consideration in later sections of this work.

The wire planes have a pitch of 3 mm, and the planes are spaced 3 mm apart, meaning that

milimeter-scale resolution can be attained.

The three wire planes e�ectively give three di�erent two-dimensional views of each readout

window in wire-time space, as shown in Figure 3.7. The three views can be combined in order to

recover a full three-dimensional reconstruction of the event. This will be covered in Section 4.6.

The MicroBooNE TPC Electronics

Signals from each channel are ampli�ed and shaped through a metal-oxide semiconductor ana-

log front-end cold Application Speci�c Integrated Circuit (ASIC). A number of these ASICs are

mounted on each Front End Motherboard (FEM), which are located in the liquid argon, close to

the sense wires so that the capacitive load, and hence noise, is minimised. From the FEMs, the sig-

nals are passed out of the cryostat through a warm �ange and into the Data Acquisition (DAQ)

machines, whereupon the analogue signals are converted into digital signals through a 12-bit

Analogue-to-Digital Converter (ADC), and then processed [68]. This is displayed graphically in

Figure 3.8.

The ASICs are able to run at a number of di�erent gains (4.7, 7.8, 14, or 25 mV/fC) and shaping
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Figure 3.6: Simulated baseline-subtracted TPC signals for ideal tracks traveling parallel to the
APA, in the direction perpendicular to the wire orientation for each plane. The “0 wire” depicts
the signal for charge arriving at the central wire, while the “[-N,+N] wire” plots provide the
contribution to the signal on the central wire from ionisation electrons that drift within ±N wires.
Figure taken from reference [67].
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Figure 3.7: Event displays from MicroBooNE Run 1 data showing the U, V, and Y plane views for
a candidate CC� 0 event. Here, the x-axis is equivalent to the wire number, and the y-axis is time.

times (0.5, 1.0, 2.0, or 3.0 �s). Here, the gain de�nes the peak height of the pulse and the shaping

time is de�ned to be the time between 5% of the peak height and the peak height of each pulse. In
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Figure 3.8: A schematic of the MicroBooNE electronics. The left part of this image represents the
detector, with the front end motherboards embedded in the liquid argon, while the right part of
the image represents the DAQ machines in the detector hall. This is taken from reference [68].

MicroBooNE, each ASIC operates nominally with a 14 mV/fC gain and 2.0 �s shaping time. The

choice of gain is not arbitrary and needs to be given serious consideration: a gain which is too

high means that particles which deposit a large amount of energy in a short z-projected distance

(such as tracks at high angle to the anode plane) run the risk of saturating the ADC and loss of

information. In addition to this, a gain must be chosen to ensure that signals from minimally

ionising particles are not swamped by gain-independent noise. Similarly the choice of shaping

time must also be given thought: a short shaping time improves peak-resolution, however it

increases the level of noise, while the inverse is true for longer shaping times.

Miscon�gured Regions

Occasionally during re-con�guration of ASICs, a small number of ASICs will report that they

have successfully been con�gured to a gain of 14 mV/fC and shaping time of 2 �s when in reality

they have become stuck on the default gain and shaping time (4.7 mV/fC and 1 �s, respectively).

Table 3.3 shows the miscon�gured channels as a function of run number for MicroBooNE Run 1

data.

In Run 1, this a�ects a relatively small number of channels (∼ 4% of total channels) on the �rst

induction plane, however the fraction of miscon�gured channels becomes signi�cantly larger in

later runs.



CHAPTER 3. THE MICROBOONE EXPERIMENT 45

Run Range Miscon�gured Channels Total Miscon�gured Channels

4952-5281 None 0

5282-5810 2016-2111, 2176-2303, 2352-2383 253

5811-6699 2016-2111, 2128-2303, 2320-2383 333

6700-6998 2240-2255 15

Table 3.3: Run 1 miscon�gured regions.

U- and Y-shorted Regions

Upon ramping up the wire planes to bias voltage, it was noticed that the �eld response in some

regions of the U and V planes were not what was expected. In the case of the U plane, this is

thought to be due to a V plane wire touching the U plane wires and causing them to become

shorted. The result of this is that electric �eld in this region becomes modi�ed and a subset of the

electrons are collected on the U plane rather than passing by unimpeded. This means that charge

induced or collected in the shadow of the so-called U-shorted region is reduced with respect to

nominal channels on each plane. In addition to this, there is a suspected short between the V and

Y plane, meaning that the V plane takes on a collection-plane-like response in this region.

Dead Regions

Approximately 10% of the MicroBooNE readout channels are functionally “dead”, meaning that

no useful information may be extracted from these channels. Only 2 readout planes need to be

functional in any region of the x-z plane for reconstruction of high-level objects to be viable, the

third plane is used for disambiguation. Taking this into account means that reconstruction is

impossible in around 3% of the TPC.

Space Charge E�ect

LArTPCs are a relatively slow technology; they have a long read-out with respect to the length of

a beam spill. This means that for a detector located on the surface, such as MicroBooNE, neutrino
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events are overlayed with (10) cosmogenic tracks and showers.

The ionisation of electrons from the argon results in a signi�cant number of argon ions. These

are heavier than the ionisation electrons and so they drift much more slowly to the cathode where

they are �nally dissipated. The result of this is a build up of positive charge in the detector which

acts to modify the electric �eld. This modi�cation can be signi�cant, reaching approximately

∼ 15% for some regions of the detector. This is predicted to have a signi�cant impact on the

correct reconstruction of track positions, as well as introducing position-dependence to the re-

combination and di�usion within the detector. The e�ects of the space charge e�ect can be seen

in Figure 3.9.

Figure 3.9: Start/end points of tracks tagged by an external muon counter and reconstructed in
the MicroBooNE TPC. In the absence of the space charge e�ect the points are expected to be
distributed at the TPC borders, where the dashed line is placed. Figure taken from reference [69].

3.2.3 The Light Collection System

To mitigate challenges related to the high cosmic �ux and slow readout, LArTPCs are often paired

with some form of light-detection system, which has a much quicker read-out time, and can be
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used to perform cosmic rejection.

MicroBooNE PMTs

MicroBooNE implements 32 8" Hamamatsu R5912-02MOD PhotoMultiplier Tubes (PMTs, shown

in Figure 3.10a) which are used primarily to provide the interaction time of energy deposited

within the TPC.

As shown in Figure 3.10b, the PMTs are most e�cient for photons with a wavelength in the

350-450 nm region. Because liquid argon scintillates in the 128 nm region, the PMTs are situated

behind tetraphenyl-butadiene (TPB) coated acrylic plates. These plates act to take the 128 nm

wavelength scinillation light and shift it to longer wavelengths (peaking at 425 ± 20 nm), where

the PMTs are most e�cient.

(a) (b)

Figure 3.10: Schematic of the MicroBooNE PMTs (3.10a), and the quantum e�ciency of the PMTs
(speci�cation: dashed blue, supplied: solid blue), along with the tetraphenyl-butadiene emission
spectrum (green) superimposed in arbitary units (3.10b). These are taken from reference [6].
Note that the R5912-MOD is a modi�cation of the standard R5912 which has a platinum layer
between the photocathode and the glass bulb, which allows the PMT to maintain conductance at
the cryogenic temperatures necessary for MicroBooNE. The result of this is that the e�ciency of
the PMT is reduced.
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The Light Paddles

In addition to the primary light detection system, there are 4 light paddles which were installed in

the detector for research and development purposes. They are not currently used in the standard

MicroBooNE analysis chain.

The MicroBooNE PMT Electronics

Signals from the light collection system are �rst passed through a splitter circuit, which results in

a high-gain and low-gain component of the signal, which carry 18% and 1.8% of the total signal

amplitude respectively4. These signals are then shaped with a 60 ns shaping time, and �nally

they are digitised at 64 MHz with a 16-bit ADC.

3.2.4 The Cosmic Ray Tagger

In order to improve MicroBooNE’s ability to reject cosmic ray muons and associated cosmogenic

particles, work was undertaken to construct a Cosmic Ray Tagger (CRT) which consists of 73

scintillating modules [70].

The modules line the top, bottom and sides of the MicroBooNE detector, although the up-

stream and downstream ends are left uncovered due to space constraints in the Liquid Argon

Test Facility (LArTF) building. Each scintillator module is made up of 16 scintillator strips and is

read out by a FEM when photons are induced inside the strip by cosmogenic activity.

The MicroBooNE CRT attains a maximum solid angle coverage of 85%. This is due to the lack

of CRT panels at the upstream and downstream ends of the detector, and the fact that the top

panel had to be elevated from the detector in order to accomodate the DAQ machine racks.

The CRT side and bottom panels were install preceding the beginning of Run 2 data taking,

and the �nal top panels were installed prior to the beginning of Run 3 data taking.
4There is an 80% attenuation in the signal. This is purposeful: the electronics expect a certain gain from the the

PMTs, which would mean running at an extremely low voltage. To combat this, the PMTs are run at a close-to-
nominal voltage, but the signal is attenuated to match the expected gain.
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3.3 Data-Taking Triggers

Data-taking triggers are the primary method in which MicroBooNE is able to overcome its con-

siderable cosmogenic backgrounds. Here, the two triggers which are employed are described.

3.3.1 Accelerator Trigger

MicroBooNE is an accelerator-based neutrino experiment. This means that beam timing can

be leveraged. Preceding delivery of protons onto the target, a trigger signal is issued from the

accelerator complex to MicroBooNE, which tells the detector to expect beam to be delivered, and

to begin reading out an event at some de�ned time in the future.

The accelerator trigger allows data to be read from the MicroBooNE detector in chunks rather

than with a continuous readout, however the �ux of the BNB combined with the low neutrino

cross section mean that even after this trigger only approximately 1 in 600 triggered events will

contain a neutrino interaction in the TPC.

In addition to the beam trigger is the external trigger, which can be issued at any time and

tells the detector to read out one readout window. This is useful for taking cosmic-only (o�-beam)

data.

3.3.2 PMT Trigger

Light from the PMT system is used to trigger readout on detection of a �ash of scintillation light

containing more than 6.5 photoelectrons within the beam window. Because light is detected at

the PMTs within (ns) of the neutrino interaction, this trigger is on-line in the sense that it is a

decision made by the DAQ after the TPC and PMT signals have been recorded.

The software trigger allows a huge improvement on the signal to background ratio of the

MicroBooNE data; after application of the hardware trigger approximately 1 in 600 beam spills is

expected to induce a neutrino interaction in the TPC due to the low cross-section of neutrinos.

By application of the software trigger this can be reduced to around 1 in 6.
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Documentation on the speci�cs of the software trigger algorithm can be found in reference

[71].

3.4 Detector Operations

MicroBooNE began taking data in August 2015, and its data is split into several run periods.

• Run 1 describes the period from the beginning of operations through to the beginning of

the CRT installation, covering runs up to run 7955, which occured on September 26, 2016.

• Run 2 describes the period from the beginning of the CRT installation through to the time

when one of the PMTs became non-responsive.

• Run 3 describes the period from when one of the PMTs became non-responsive.

The data used in this thesis was taken from Run 1 of data taking, shown in Figure 3.11. The

POT on tape shown in this �gure represents the POT delivered from the BNB weighted by the de-

tector up-time. This includes the short periods between runs where the DAQ is being con�gured

as well as any extended down-time of the detector during running of the BNB.

It should be noted that because only data from MicroBooNE Run 1 has been used in this work,

the CRT has not been leveraged for any of these analyses. This dataset is used because Micro-

BooNE is pursuing a blind analysis strategy for its �agship analysis. Due to this, most analysis

are limited to using data taken in Run 1.



CHAPTER 3. THE MICROBOONE EXPERIMENT 51

Run 1 data used in this thesis

Figure 3.11: BNB performance for MicroBooNE’s �rst three years of data taking. The blue his-
togram represents the POT delivered on a week-by-week basis, while the red line shows the
cumulative POT. The orange line shows the delivered POT weighted by detector up-time.
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Chapter 4

MicroBooNE Simulation and

Reconstruction

“A computer once beat me at chess, but it was no

match for me at kick boxing.”

Emo Philips

Analysis software is an essential part of any experiment. It de�nes how the events from the

data are interpreted through reconstruction, and is an important ingredient in interpreting the

results of the experiment through comparisons of the simulated prediction to the data.

This chapter will outline both how neutrinos are generated and propagated through the Mi-

croBooNE detector, and will detail how the reconstruction used in this thesis is performed.

4.1 Overview

The MicroBooNE experiment makes use of the LArSoft (Liquid Argon Software) framework [72],

which uses the art event-processing framework [73] for simulation and reconstruction of events

in the MicroBooNE detector.

The art framework provides a number of utilities and templates which can be used to act on

input data. It also provides a standard organisation of �les, where data is split into runs, sub-runs,
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and events. Each event then contains a set of experiment- (or user-) de�ned classes called data

products.

LArSoft encompasses a body of code shared between many LAr experiments, and provides

many standard C++ classes for use by experiments and users.

4.2 Neutrino Flux Simulation

The purpose of the �ux simulation is to predict the number of �� , �e , �̄� , and �̄e coming from the

BNB as a function of energy, per proton on target, and per unit area. MicroBooNE makes use of

the MiniBooNE �ux simulation (rewritten in C++) as documented in reference [62], with some

modi�cations which include an additional dataset in the �t to K+ production, and use of a spline

�t to HARP data in order to estimate systematic uncertainties.

Simulation of primary protons incident on the target are performed by a Geant4-based Monte

Carlo [74, 75]. This tracks the interactions of the protons with the beryllium (Be) target, and

production and subsequent decay of secondary mesons and muons which result in neutrino pro-

duction.

The secondary mesons and muons are tracked through the decay volume and truth-level

information related to each neutrino which impinges upon a speci�ed plane (the �ux window) is

saved so that systematic uncertainties can be estimated through a re-weighting procedure.

4.2.1 Fits to World Data

The hadron production cross sections in this simulation have been tuned to world data [76],

primarily from:

• BNL E910 data for �±, K±, and K
0 production in p + Be interactions (at 6.0, 12.3 and 17.5

GeV/c) [77].

• CERN HARP data for �±, K±, and K 0 production in p + Be interactions (at 8.9 GeV/c) [78].
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• SciBooNE data for K+ production [79], which is especially important as this is performed in

the BNB. This is the main way in which the BNB MC di�ers from the original MiniBooNE

implementation.

• KEK K
0 production in the 12 GeV/c proton beamline [80].

The double-di�erential inclusive cross sections for secondary mesons (�±, K 0) can be well

described by a Sanford-Wang (SW) parameterisation:

d2�(p + Be → S + X)

dpdΩ = c1p
c2

(
1 −

p

pB − c9
)
exp

[
−c3

p
c4

p
c5

B

− c6�(p − c7pB cos
c8
�)
]
, (4.1)

where pB is the proton (“beam”) momentum, p is the outgoing meson momentum, and � is

the angle between the proton and meson. The c1...c9 are parameters of the model which are

constrained by world data. Importantly, c9 is related to the momentum threshold in meson pro-

duction, which is not �t for pions, but set to 1 GeV/c. For �ts to �+ data, c3 is held at 1 GeV/c and

for �−, c3 is held a 5.454 GeV/c.

Originally, MiniBooNE used the SW �t in order to extract uncertainties on the �+ production,

however this was shown to overestimate the systematic uncertainties, and so they developed a

new method, based on spline �ts to the HARP data, resulting in reduced systematic uncertainties.

Charged kaon production cross sections are not �t using the SW parameterisation, but are

modeled using Feynman scaling (FS) instead [81]. Here, the invariant cross section is modeled

only on the transverse momentum of the outgoing kaon, pT , and the Feynman scaling factor, xF ,

which is the ratio of the longitudinal to maximum longitudinal momentum in the center of mass

frame,

xF =

p
CoM

L

p
CoM,Max

L

. (4.2)

The invariant cross section can then be written
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E

d3�
dp3 = c1(1 − |xF |) exp[−c2pT − c3|xF |

c4
− c5p

2

T
− c7|pT × xF |

c6
], (4.3)

where E is the total energy, and c1...c7 are once again parameters to be constrained by world

data.

The results of the SW �t to �
± data from HARP and E910, and the FS �t to K

± data can be

found in Figures 4.1, 4.2, and 4.3, respectively.

Figure 4.1: HARP �
+ production data (with 8.9 GeV/c incident protons) compared with the best

�t SW prediction (red, solid), and the ±1� bounds (blue, dashed). Taken from reference [82].

4.3 Neutrino Interaction Simulation

Neutrinos from the beam Monte Carlo are passed to the the GENIE neutrino generator [83, 84].

For the work presented in this thesis, GENIE version 2.12.0 has been utilised. MicroBooNE uses

the default GENIE model set, with a number of chosen “alternate tunes” to assess the model

dependence of analyses. Here, the default model set is described.
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(a) 6.4 GeV/c incident protons

(b) 12.3 GeV/c incident protons

Figure 4.2: E910 �+ production data compared with the best �t SW prediction (red, solid), and the
±1� bounds (blue, dashed) for 6.4 GeV and 12.3 GeV/c incident protons. Taken from reference
[82]

In the default model set, the simulation of the nuclear environment is based on the Bodek-

Ritchie relativistic Fermi gas model (RFG) [85]. A standard RFG models the nucleus as a set of non-
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Figure 4.3: Feynman scaling �t to 8 experiments which have been scaled to pT = 8.89 GeV/c. Note
that these plots are taken from reference [82], which precedes the results in reference [79], and
so they do not include the dataset from SciBooNE. Taken from reference [82]

interacting fermions, and assumes that the only interactions between fermions are due to Pauli

blocking. In this way, nucleons are stacked up in energy levels leading to a uniform distribution

of particle momenta up to the Fermi momentum, pF . The Bodek-Ritchie modi�cation takes into

account short-range correlations between nucleons by introduction of a phenomenological tail

at high-momentum.

The energies of neutrinos coming from the BNB are generally around 700 MeV, and this means

that MicroBooNE cares primarily about quasi-elastic (QE) and resonant (RES) interactions (see

Section 2.3), the models for which are described below.

GENIE uses the Llewellyn-Smith formalism for QE interactions [86]. This model is built upon

the idea of form factors, which describe the spatial distributions of electric charge within the

nucleon. Several such form factors have been measured from electron scattering experiments,
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however the axial vector component,

FA(q
2
) =

FA(0)

(
1 −

q
2

M
2

A
)

2
, (4.4)

cannot be measured because electron scattering only occurs through exchange of a photon. FA(0)

has been measured from � decay to high precision, and so this means that there is one dominant

uncertainty in this formalism of QE neutrino interactions: the value of the axial mass, MA.

This model deals with interactions on unbound nucleons, and so GENIE deals with the binding

energies internally.

This version of GENIE also includes an empirical Meson Exchange Current (MEC) model,

which increases the power of the QE cross section in the relevant regions of muon kinematic

phase space in accordance with the MiniBooNE �� CCQE data. For these events, an additional

nucleon produced at the point of interaction, however this has neither a theoretical or experi-

mental motivation.

Resonant production of pions in neutrino interactions is modeled by a GENIE-speci�c version

of the Rein-Sehgal model [87].

4.4 Cosmic Particle Simulation

MicroBooNE is e�ectively located on the surface, leaving it open to large cosmogenic back-

grounds1. This, combined with the slow readout of LArTPCs means that simulation of cosmic

particles must be given consideration. MicroBooNE has investigated several packages and pack-

age con�gurations in reference [88].

Simulation of cosmogenic particles is done by the Cosmic Ray Simulations for Kascade (COR-

SIKA) package [89], using the Constant Mass Con�guration, which simulates interactions of p,

1cosmogenic backgrounds are those particles produced when cosmic rays interact in the upper atmosphere and
produce a shower of secondary particles. In general these are observed in the detector as muons which tend to be
close to vertical.
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He, N , Mg, and Fe in the atmosphere. The choice was also made to use the FLUKA package for

hadronic interactions below 80 GeV instead of the default GEISHA package.

One drawback of the cosmic-ray simulation at MicroBooNE is that there are currently no

systematic uncertainties associated with the simulation. This will be addressed in upcoming

analyses by overlaying simulated neutrino events on top of cosmic data, however this has not

been leveraged for this analysis.

4.5 MicroBooNE Detector Simulation

After the particle production, the particles are propagated through the LAr using Geant4 and

are passed to the detector simulation. During this stage, the detector simulation has to combine

the e�ects of the initial electron ionisation with recombination, di�usion, attenuation, and the

detector response, as well as simulating scintillation light.

4.5.1 TPC Simulation

Simulation of the TPC begins by taking groups of up to 600 ionisation electrons and instantly

transporting them to the readout wires at the anode, taking into account drift-dependent e�ects

such as electron di�usion and electron lifetime, and are grouped into an energy deposition per

readout channel.

Once an energy deposition per readout channel has been produced, the detector response is

applied to the simulated signal.

The detector response can be thought of as being a convolution of an electronics response

and a �eld response.

The electronics response captures how the electronics respond to a delta-like signal, and has

been measured from the data using a pulser, whereby a delta function-like signal can be input

into the ASICs and the electronics response can be measured in the absence of the �eld response.

The �eld response then encapsulates the drift of the ionisation electrons, which leads to in-
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duced currents on the readout wires. It is measured from the MicroBooNE data by taking av-

eraged signal pulses originating from near to the anode plane (so as to neglect drift-dependent

e�ects) and removing the measured electronics response. This is done as a function of Y-Z space

in the detector so as to capture regions which do not have a nominal response. This method is

known to have a bias which over-estimates the width of the �eld response due to the averaging

of waveforms, however for most analyses this e�ect is calibrated out at a later stage.

After the signal has been generated with the correct response, noise is applied. This simula-

tion uses a data-driven implementation of the noise model, which takes into account the magni-

tude of the noise in the time-domain and the shape of the noise in frequency space, as a function

of wire length.

In order to model this noise, data with the high voltage turned o� is used. This is done in

order to minimise the e�ect of signal pulses. The shape of the distribution is measured by taking

an average of a number of collection plane wires, taking the Fourier transform, and performing a

�t to the resultant spectrum. A single representative collection plane wire is then taken, ensuring

that there is no signal present on the channel and a Poisson distribution is �t in bins of equal width

in frequency (84 kHz bins) in order to capture the changing magnitude of the Fourier transform

across the range. This procedure is shown in Figure 4.4.

This information can then be used to construct a noise model in frequency space, and the

inverse Fourier transform can be taken to give the �nal noise spectrum in the time domain. An

example waveform is shown in Figure 4.5.

Note that this �t only needs to take into account frequencies up to 1 MHz because Micro-

BooNE samples 9600 ticks in approximately 4.8 ms: a frequency of 2 MHz. Nyquist theorem then

states that the highest frequency able to be resolved is

�Nyquist =

1

2

�sampling =

1

2

⋅ 2MHz = 1MHz (4.5)

In general, the inherent noise from the ASIC is a function of the capacitance of the system,

which includes the cables and connections to the ASIC, and importantly the readout wire [68].
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Figure 4.4: Example of the �tting procedure used to extract the data-driven noise model used in
the MicroBooNE simulation. The shape of the spectrum in frequency space is a feature of the way
the Fast Fourier Transform (FFT) is performed, resulting in the real part of the waveform being
represented between 0 and 1 MHz, and the imaginary part of the waveform being represented by
the remaining 1 MHz to 2 MHz part. The reduction in magnitude from 730 kHz to 1270 kHz is
due to removal of high-frequency noise. In practice, this part of the spectrum is �ltered during
reconstruction, and so there is no e�ort made to reproduce this part of the spectrum.
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Figure 4.5: Data-driven noise spectrum from MicroBooNE simulation in both the frequency- and
time-domains.
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This indicates that the level of noise on each readout wire is correlated with its length. This e�ect

is also contained within the model, and the resultant noise level as a function of the channel

number can be found in Figure 4.6.

A further e�ect included in the simulation is the Space Charge E�ect (SCE), described in

Chapter 3.2.2. This is encapsulated through the use of a position map and an electric �eld map

which are generated from a model of SCE in the MicroBooNE detector. The �rst of these modi�es

the position of energy depositions in the detector as a function of the deposition’s position in the

detector. The second uses the predicted electric �eld at each position within the detector to ensure

the correct amount of recombination takes place.

There is one signi�cant de�cit of the MicroBooNE TPC simulation: induced charge e�ects are

currently not simulated. The assumption is made that only charge drifting within ±1.5 mm of

the primary readout wire is detected by the wire. In fact, the primary readout wire also receives

a signi�cant contribution from wires within ±2 wires on the second induction plane and the

collection plane, and within ±10 wires on the �rst induction plane, as shown in Figure 3.6 and

demonstrated in Figure 4.7.

Because these e�ects are not included in the simulation but are present in the data, the recon-

struction is known to impact the two data sets di�erently. A preliminary simulation of induced

charge is currently used to estimate a systematic uncertainty resulting from this de�ciency in the

simulation.

4.5.2 Optical Simulation

The propagation of scintillation light is not performed on a photon-by-photon basis due to com-

putational challenges related to the yield of scintillation light on LAr. Instead, the light production

is parameterised through use of a photon library. The TPC is �rst segmented into 3-dimensional

segments known as voxels (75×75×400) and a photon bomb is simulated in each voxel. A full sim-

ulation is performed, and every photon is tracked through the TPC until it leaves or is collected

by the PMTs. The photon library then stores information related to each PMT and its acceptance
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Figure 4.6: The noise level, measured in the RMS of the ADC values, as a function of channel
number. The trapezoidal shape of the distributions on the U and V planes are due to the length of
the wires becoming shorter at high and low channel number due to the angles of the wires (±60⋅

to the vertical). The collection plane, on the other hand, are vertical, leading to a �at distribution
accross the channels.
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0

Top down view

0

Top down view

Figure 4.7: Demonstration of induced charge e�ects. The current MicroBooNE simulation as-
sumes only charge drifting within ±1.5 mm is detected by the primary readout wire, however
induced charge from charge drifting within the ± 10 wires region can also contribute signi�cant
signal.

of photons in each voxel.

4.6 Reconstruction

Reconstruction is the act of taking the raw output of the detector and processing it in such a way

that physics measurements can be performed.

4.6.1 Signal Processing

MicroBooNE has spent a signi�cant amount of time developing novel signal processing tech-

niques. References [67] and [90] in particular go into great depth about the techniques employed

by the experiment, but a brief overview is presented here.

The �rst stage of the signal processing involves reconstruction of the charge detected on each

readout wire. This is done through the process of deconvolution. This is a method of extracting

the true signal S(!) from a measured signal, M(!) by removing the response function R(!),

S(!) =

M(!)

R(!)

⋅ F (!), (4.6)

where ! is in units of angular frequency, and F (!) is a �lter function, which stops the Fourier
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transform of S(!) becoming overwhelmed by noise2. The result of including the �lter function is

that, provided the response function well approximates the data, the output signal has a shape de-

�ned by the �lter function. MicroBooNE chooses to use a Gaussian �lter, meaning that the shape

of the deconvolved waveforms approximates a Gaussian functional form. There are signi�cant

bene�ts to this choice of �lter, which are outlined in [67] and not detailed here, however one re-

sult of this �lter which is worth noting is that the shape of the induction plane signals is modi�ed

from a bipolar shape to a monopolar Gaussian shape which aid in downstream reconstruction.

This procedure can be thought of as deconvolving in one dimension: time, but can be ex-

panded to a second dimension: the wires. In this way, induced charge e�ects can be taken into

account in the signal processing. This is discussed in some depth in reference [67], and a com-

parison of one-dimensional and two-dimensional deconvolution can be found in Figure 4.8. This

two-dimensional technique is not utilised in current MicroBooNE analyses, but will be made use

of in future iterations.

In order to reduce processing time, the deconvolution process is only applied in speci�c Re-

gions Of Interest (ROIs) which are identi�ed by an ADC threshold in the time domain on the raw

waveforms.

After the deconvolution process, the resulting deconvolved ROIs contain signal which is ap-

proximately Gaussian in shape. A procedure of peak �nding is then performed in order to �nd

candidate signals, and Gaussian functional forms (hits) are �t to the identi�ed signals. These form

the basis of the downstream reconstruction.

4.6.2 The Pandora Pattern Recognition Software

This work makes use of the Pandora multi-algorithm pattern recognition framework[91]. This

is a particle �ow style reconstruction where it takes reconstructed hits as an input and produces

Particle Flow Objects (PFOs), which contain Particle Flow Particles (PFPs) as output. Particle �ow

2The response function R(!) decreases substantially at high frequency, but as shown in Figure 4.5, the noise
spectrum persists at high frequencies. The result is that when M(!)/R(!) is calculated, the contribution from noise
at high frequencies is ampli�ed.
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Figure 4.8: Example of a one-dimensional deconvolution compared to a two-dimemsional decon-
volution for a single data event. When the more sophisticated two-dimensional deconvolution is
applied, signal pulses become much more well de�ned. Figure taken from reference [67].

reconstruction means that each reconstructed object is related to other reconstructed objects in

a hierarchy. A PFP is a representation of a reconstructed object which has information about

related PFPs; a related PFP may be either a parent (closer to the reconstructed neutrino vertex),

or a child (further from the reconstructed neutrino vertex).

The pandora reconstruction chain consists of two passes. The �rst pass is tuned to target re-

construction of cosmic rays and is more strongly track-oriented, attempting to reconstruct tracks

of cosmic origin (with the assumption of tracks being downward going) with daughter delta rays

being reconstructed as showers. The second pass is tuned to reconstruct neutrinos coming from

the BNB. Candidate neutrino vertices are �rst identi�ed, and this is used as a handle to reconstruct

the particles emerging from the candidate vertex with a preference for reconstructing forward

going trajectories. Tracks and showers are more carefully identi�ed in this pass.

Both the cosmic and the neutrino pass undergo functionally very similar processes, and these
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are described below.

Two-Dimensional Reconstruction

Firstly, a two-dimensional reconstruction is applied. Hits are clustered together on each plane into

collections which are unambiguous straight lines, with a preference for maintaining cluster purity

rather than completeness3. That is: every time there is some signi�cant change in direction or

other ambiguity, a new cluster is produced. A series of cluster algorithms are then applied to these

two-dimensional clusters in order to merge them, increasing the cluster completeness without

sacri�cing its purity. This is done by identifying clusters which are in close proximity or are

pointing at each other. In the case of the neutrino pass the two-dimensional cluster information

is also used to identify a candidate neutrino interaction vertex, which is used for downstream

reconstruction, and are used to identify each cluster as track-like or shower-like.

Three-Dimensional Reconstruction

Secondly, a three-dimensional track reconstruction is applied. The challenge here is taking the

clusters determined by the two-dimensional reconstruction and matching them across planes.

Firstly, clusters are matched across planes using the time co-ordinate, which is common be-

tween the three planes. These matches are then interrogated by a sophisticated suite of algo-

rithms which aim to identify any ambiguities (for instance, two clusters in the collection plane

are matched to single clusters in the induction planes, or a single cluster in the collection plane

is matched to two clusters on both of the induction planes), and this information can be used to

split or merge clusters in a repetition of the two-dimensional reconstruction. This back and forth

between the two- and three-dimensional reconstruction is repeated until there are no ambiguities

to be addressed. The result is a series of reconstructed showers and tracks.

3Essentially, this begins as a rather conservative approach, whereby a cluster is preferred to be incomplete (a true
particle may be split across multiple clusters), so long as the cluster is pure (there are few hits which are produced
by a di�erent particle)
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Particle Flow Object Creation

The �nal step in the neutrino pass is construction of a PFO, which is done by �rst creating a

PFP for the neutrino and identifying this with the reconstructed neutrino vertex. Reconstructed

primary particles are then identi�ed and included as daughters of the reconstructed neutrino PFP,

and the process is repeated until every particle has a parent and is stored in the PFP hierarchy.

An example hierarchy for a simulated interaction is displayed in Figure 4.9.

Figure 4.9: Example simulated ParticleFlow Object which contains a PFParticle hierarchy.

4.6.3 Optical Reconstruction

The objective of the optical reconstruction is to take in raw waveforms from the optical read-

out, and produce a high-level reconstructed object, an optical �ash, which characterises the light

information from an interaction in the TPC in a given time period.

Combination of High-Gain and Low-Gain Channels

The �rst stage in the optical reconstruction is the combination of the high- and low-gain channels

into a single gain-corrected waveform. In the case that the high-gain channel is saturated, the
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low-gain channel is used with a gain correction factor applied. If the high-gain channel is not

saturated then the waveform is taken from this stream only.

Optical Hit Reconstruction

The gain-corrected waveform is taken and optical hits are reconstructed.

The �rst step of this process is �nding the baseline. For the cosmic discriminator, this is simply

taken to be the ADC of the �rst sample. For the beam discriminator, the baseline is calculated

taking a rolling mean in a sliding window, and extrapolation is performed to �nd the baseline

throughout the signal region.

Once a baseline has been established, the signal region is interrogated to �nd the peak, width

and area of the pulse, amongst other things, and this information is stored in an optical hit object.

Optical Flash Reconstruction

Once optical hits have been reconstructed, these are grouped into a high-level optical �ash. This

is done by looking for optical hits which are coincident in time with each other. Once these have

been found, a dead time of 8 �s is applied such that no other optical �ashes may be reconstructed

in that region.

4.7 Energy Scale Calibration

The objective of the energy scale calibration is to normalise the calorimetric response across the

detector, and to reconstruct the energy deposition per unit length (dE/dx) from the ADC counts

which are read out from the detector.

The energy scale calibration actually encompasses two calibrations. The dQ/dx calibration acts

to make the detector response uniform across the detector volume, while the dE/dx calibration

acts to set the absolute energy scale of the detector.
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4.7.1 Miscon�gured Region Correction

Miscon�gured regions of the detector are �rst accounted for by deconvolving the miscon�gured

gain and shaping time and re-convolving with the desired gain and shaping time. The result of this

is that channels connected to miscon�gured ASICs have a larger fractional noise contamination

than their correctly con�gured counterparts, however signal is still able to be picked out above

the noise baseline.

4.7.2 dQ/dx calibration

Many e�ects which can introduce non-uniformities in the detector have been discussed: in the

Y-Z plane, these are introduced through miscon�gured ASICs, shorted regions, and channel-to-

channel gain variations, while in the drift direction, these are primarily due to e�ects like electron

attenuation and electron di�usion.

To perform this calibration, MicroBooNE makes use of cosmogenic muons. The charge depo-

sition per unit length (dQ/dx) is then mapped in three dimensional volumes (voxels) within the

detector, and a three dimensional correction map is generated.

4.7.3 dE/dx calibration

Once the detector has been given a uniform response, the absolute energy scale can be set.

Conversion from dQ/dx to dE/dx is performed using the modi�ed box model of recombination[92],

dE

dx

calib.

=

exp
(

dQ

dx

calib.

C
⋅
�pWion

�� )
− �

�p

��

, (4.7)

where

• Wion is the work function of Argon (23.6 MeV/electron).

• � is the electric �eld (0.273 kV/cm).
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• � is the density of LAr (1.38 g/cm3).

• � and � are the recombination constants measured by the ArgoNeuT experiment at 0.481

kV/cm (-0.93±0.002 kV/cm, -0.93± 0.02).

• C is the calibration constant used to convert ADC to a number of electrons.

It is then clear that to set the absolute energy scale, the calibration constant, C , must be mea-

sured. To do this, many reconstructed dE/dx distributions are built as a function of the distance

to the end of the track (the residual range), and are �t with a Landau-convoluted Gaussian distri-

bution in order to extract the most probable value of the distribution in each residual range bin.

A two dimensional residual range-dE/dx distribution can then be constructed, and a simple � 2

can be minimised between this and the theoretical curve by modifying C .

4.8 Continuous Integration Validation

MicroBooNE uses a Continuous Integration (CI) system to perform validation of its simulation

and reconstruction packages. This package was developed in part by the author.

Each time a release is tagged, 10,000 cosmic events and 10,000 BNB events are automatically

generated and reconstructed, and a series of variables of interest are plotted against results from

the previous week and results from a con�gurable base release.

The �rst of these comparison is used to identify any unexpected changes in a timely manner

and so helps with quick implementation of bug �xes. The second of these comparisons is used to

avoid a “slow-drift” where incremental changes occur over a number of weeks.

These plots are then monitored by experiment shifters, and CI experts liaise between the

shifters and simulation and reconstruction developers.

The two streams (“cosmic” and “BNB”) are leveraged for their di�erent strengths. The cosmic

stream allows for easy recognition of changes to the detector simulation and some high-level

reconstruction e�ects such as having a handle on how often Pandora splits single particles into
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multiple tracks. It can also be used to perform quick and easy data/simulation comparisons4. The

BNB stream simulates only BNB interactions with no cosmics, and so it can be used to estimate

the neutrino vertex resolution and reconstructed-to-truth match purity and completeness (See

Appendix B).

In addition to incremental validation of the simulation and reconstruction release, the CI

validation framework is used to do detailed validation of candidate production releases of the

simulation and reconstruction.

4The BNB+Cosmic stream is not ideal in this case because every simulated event has a neutrino event, where the
data does not
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Chapter 5

Longitudinal Electron Di�usion in

MicroBooNE

“Chaos is found in greatest abundance wherever

order is being sought. It always defeats order,

because it is better organized.”

Terry Pratchett

5.1 Di�usion in LArTPCs

Ionisation electrons in MicroBooNE travel under the in�uence of an applied electric �eld to an

anode plane where signals are read out from three readout wire planes. During transport, the

shape of the electron cloud is modi�ed by several physical processes. This in turn means that

the signal pulses which are measured at the wire planes change as a function of the distance

traveled by the electron cloud. In particular, electron di�usion acts to smear the initial cloud. It is

known that under the in�uence of an electric �eld, di�usion is non-isotropic [93, 94, 95], and in

general this is parameterised in terms of a transverse component (DT , perpendicular to the drift

direction) and a longitudinal component (DL, parallel to the drift direction). The longitudinal

and transverse components can di�er signi�cantly, as shown in Figure 5.1 and noted in reference
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[95]. It should be noted that the values of DL and DT shown in Figure 5.1 are taken from a �t

to world data performed in reference [95], however this is not what is nominally implemented

in the MicroBooNE simulation, where the di�usion values correspond to MicroBooNE’s original

design electric �eld, 500 V/cm.

BecauseDL andDT are expected to be di�erent, each component must be measured separately

in order to minimise the impact of the other. DT impacts the spatial resolution of a Time Projection

Chamber (TPC) in the plane transverse to the readout wires as a function of drift distance, while

DL impacts the spatial resolution in the electron drift direction; see Figure 5.2. Measuring DL can

also be useful in tagging the t0 (actual arrival time) of tracks in TPCs, as shown by analysis carried

out by the DUNE 35 ton prototype experiment [96].

This measurement is an important one in MicroBooNE. The current uncertainties on DL, es-

timated from world data, are large 6.2+57%
−47%

cm2
/s, and this has proven to be a signi�cant e�ect in

shower reconstruction. This constitutes one of the larger detector-related uncertainties in the ��

CC�0 cross section measurement [97]. This is then an important parameter to constrain in the

context of a �e search, such as MicroBooNE’s low-energy excess investigations.

Currently, there are few measurements of electron di�usion in liquid argon in the literature:

measurements of the transverse component of di�usion have been reported for �elds above 1500

V/cm, initially by Derenzo, et al. [98], followed by Shibamura, et al. [99], while measurements

of the longitudinal component have been reported by Cennini, et al. [94] and Li, et al. [95]

for �elds between 100 and 2000 V/cm. It should be noted that, for E-�elds between 100 and 350

V/cm, Cennini’s measurements show reasonable agreement with theory [93]; Li’s measurements,

however, are systematically higher than both. The ICARUS experiment is currently in the process

of re�ning its measurement of the longitudinal di�usion coe�cient, and the most recent results

can be found in reference [100].

A summary of the current world data can be found in Figures 5.3, 5.4, and 5.5. Reference [95]

reports results in terms of electron energy, �L, which is related to DL by the equation
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Figure 5.1: Expected contribution to the width of the ionisation electron cloud (� ) from transverse
(red dot-dashed), and longitudinal (blue dotted) di�usion as a function of drift distance at Micro-
BooNE’s nominal electric �eld, 273 V/cm. The longitudinal di�usion value used here is calculated
using the parameterisation outlined in reference [95]. Due to the shortage of transverse di�usion
measurements at MicroBooNE-scale electric �elds in liquid argon, the transverse di�usion value
is estimated from the treatment in Atrazhev and Timoshkin [93]; however this is in disagreement
with data reported in Derenzo, et al. [98] and Shibamura, et al. [99].

DL =

��L

e

(5.1)

where � is the electron mobility — which characterises how quickly an electron can pass

through a material in an applied electric �eld, and is measured in cm2V−1s−1 — in liquid argon and

e is the electron charge. For �elds below ∼0.3 kV/cm, electron mobility changes relatively slowly

in liquid argon; for an order-of-magnitude conversion to DL below these electric �elds, one can

take �L and multiply it by a factor of 500 cm2V−1s−1. Note, however, that this relationship rapidly

changes at higher electric �elds, as shown in Figure 5.4, and so this approximate relationship no

longer applies.
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Figure 5.2: Averaged waveforms as a function of drift distance (see Section 5.2 for more details
on the waveform averaging technique), taken from MicroBooNE Run 1 beam-o� data. The x-axis
on this plot is measured in ticks (1 tick = 0.5 �s), but is arbitrary in the sense that all waveforms
have been aligned at zero in order to aid in comparison of waveforms. For the same reason, the
pulse heights are also arbitrary. As the drift distance shown on the y-axis increases, the e�ects
of di�usion become more pronounced and the pulses become more smeared.
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Figure 5.3: The measured electron energy, which is proportional toDL, as a function of the electric
�eld for gaseous argon (left) and liquid argon (right), taken from reference [95]. This also shows
results from ICARUS, and results from reference [99], although the latest ICARUS results can be
found in Figure 5.5. It is clear that there is a signi�cant spread in the values claimed from each
measurement.

The focus of this analysis is the measurement of the longitudinal di�usion constant, DL. This

can be described to �rst order by the equation

�
2

t
(x) ≃ �

2

t
(0) +

(

2DL

v
3

d
)
x, (5.2)

This, in e�ect, means that the squared time width of a signal pulse measured in �s2, � 2, can be

related to some inherent pulse width squared, �t(0)2, plus some width squared which is in�uenced

by DL, and the drift velocity, vd , as a function of drift distance, x .

5.2 Method for E�ective Longitudinal Di�usion Coe�cient

Extraction

Equation 5.2 shows that to �rst order there is a linear relationship between the drift distance of

a waveform and the square of its width. To extract the longitudinal electron di�usion constant,
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Figure 5.4: World data for electron drift velocity (top), and a �t to world data for electron mobility
(bottom), taken from reference [95]. The left plots are for gaseous argon, the right for liquid argon.
The �t for liquid argon is limited by the expected � at 0 electric �eld with T=89 K, 551.6 cm2

/V/s.

Figure 5.5: The latest ICARUS results, taken from reference [100]. This is taken across several
di�erent electric �elds between approximately 250 V/cm and 1000 V/cm, and shows relatively
little dependence. The uncertainties here are explained to be largely statistical.
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therefore, a straight line can be �t to a plot of � 2
t

vs. x .

This analysis makes use of deconvolved waveforms. These are zero-suppressed waveforms

with Regions Of Interest (ROIs) preserved around peaks which exceed a threshold. This is dis-

played in Figure 5.6. The deconvolution process is described in some detail in Chapter 4.6.1.

For this analysis a Gaussian functional form is �t to the sum of deconvolved collection plane

waveforms as a function of drift distance. In practice, this is performed by separating the drift

direction into a number of bins (drift bins), and waveforms which fall within each of these are

summed together into a single waveform. The standard deviation of the Gaussian �t is used as a

measure of the width of the waveform.
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(b) Example of a summed waveform.

Figure 5.6: Example of (a) a single deconvolved ROI waveform and (b) the sum of many wave-
forms, extracted from MicroBooNE Run 1 cosmic data. Here, one tick = 0.5 �s. Where the wave-
form changes from �at to noisy near the edges of the plot (most easily visible on the left-hand
plot) de�nes the ROI which has been retained. The summed waveform on the right has a signif-
icantly improved signal-to-noise ratio. The dip preceding the peak in the right plot is known to
be an e�ect of imperfect deconvolution.

Sections 5.2.1, 5.2.2, and 5.2.3 outline the selection of high quality waveforms from a set of

tracks, and how these waveforms are averaged. Method validation has been performed in Section
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5.3, and a measurement of the longitudinal electron di�usion coe�cient from MicroBooNE Run

1 data is presented in Section 5.4. Finally, systematic studies are performed in Section 5.5

5.2.1 Selection of Tracks

To perform the measurement, o�-beam cosmic muon tracks are leveraged. Given MicroBooNE’s

proximity to the surface, cosmic muons are plentiful, and serve as excellent calibration sources

for detector physics measurements. The initial selection for the DL analysis is simple. Tracks are

selected based only on:

• Their length, which must be at least 50 cm.

• Whether they have a reconstructed interaction time (t0) which has been geometrically

tagged, as outlined in reference [101]. The reason this is necessary is that the only informa-

tion which is associated with a given energy deposition is the amount of charge detected

and the time at which it arrived at the readout wires. This means that an energy deposition

which truly occurred at some time (t0, x0) could also be reconstructed as having happened

at (t1, x1) or (t2, x2). This is displayed graphically in Figure 5.7.

In addition to these, a set of angular cuts will be developed in order to reduce the impact of

biases to the measurement.

5.2.2 Selection of high quality waveforms

In MicroBooNE reconstruction, Gaussian functional forms, or “hits” are �t to deconvolved wave-

forms, and so by performing quality cuts on the hits, it can be ensured that only high-quality

waveforms are accessed. The quality demands placed on the hits are as follows:

• The hit multiplicity must be exactly 1, ensuring that there is only a single hit in the

selected ROI. The intention of this is to try and select out a clean sample of waveforms

which are not contaminated by hits from nearby tracks.
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Figure 5.7: Diagram showing the necessity for t0-tagging. Without t0-tagging it is unknown what
the true x-position of the track is.

• The hit goodness of �t is demanded to be less than 1.1 to ensure that the deconvolved

waveform underlying the hit is reasonably Gaussian. The distribution of this variable for

data and simulation is shown in Figure 5.8. This metric de�nes how well the Gaussian

functional form �ts the underlying hit. The cut at 1.1 was chosen by-eye to remove hits

which do not well describe the underlying waveform.

• The hit channel is demanded to be on the collection plane, and an additional demand is

made to ensure that the channel does not fall within the shorted region (see Chapter 3.2.2

for details).

The t0-corrected peak time of each hit which passes the quality cuts is logged, and a window

of size nt/nb is opened around this value and a histogram of the waveform is created. Here, nt is

the number of ticks corresponding to one full drift window, which is constant at approximately

4600 ticks, and nb is the chosen number of drift bins, which is set to be 25 by default. From here,
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Figure 5.8: Hit goodness of �t plot, taken from a CI validation release. Here the goodness of �t
is a metric which de�nes how well the Gaussian functional form �ts the underlying hit. Note
that these distributions are area normalised, and although there are di�erences between the data
(black) and the Monte Carlo (red), it is reassuring that they both peak at low goodness of �t
values, indicating that the pulses can be well described by a Gaussian curve.

the waveform is manipulated in two ways.

Firstly, the peak is moved to the center of the drift-bin into which it falls. In order to avoid

complications with peak �nding, a peak is only selected in the case that there is exactly one peak

above 3 ADC counts in the chosen drift bin. This value is motivated by Figure 5.9, where it can

be observed that all hits in both the data and simulation have a peak ADC count which is larger

than 3.

A baseline correction is then applied. The largest peak is located and the signal region is

de�ned to be the part of the waveform which falls within 20 ticks of this peak. The average value

of the non-signal ROI is found, and the histogram is baseline-subtracted by this amount.

The �nal waveform quality cut removes waveforms which have outlying values of � 2. This is

referred to as the dynamic sigma cut, and is shown in Figure 5.10. The region around the median
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(a) Data.
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(b) Simulation.

Figure 5.9: Pulse height versus drift bin number for a cosmic data sample (5.9a) and a CORSIKA
Monte Carlo sample (5.9b). This contains only collection plane hits. Each drift bin spans ap-
proximately 10 cm. The grey line here is indicative of the pulse height threshold used to identify
signals. On the collection plane it is expected that a signal-to-noise ratio of around 40:1 can be
attained, meaning that the chosen cut value should be signi�cantly above expected pulse heights
from noise.

is de�ned by the standard deviation of the � 2 values in the chosen drift bin.

5.2.3 Waveform Averaging Technique

The technique developed for this analysis takes the averaged waveform in each drift bin. The goal

of this is to minimise the e�ect of noise and other features in the waveforms. The result of doing

this on MicroBooNE data can be found in Figure 5.6. The plot on the left here is an example of an

individual deconvolved waveform, complete with noise in the ROI. After applying the waveform

averaging technique, the noise is greatly reduced, as is shown in the plot on the right. Here, the

slight baseline undershoot on the left-hand side of the averaged waveform is known to be an

e�ect of imperfect deconvolution.

The merging of the histograms which contribute to the average waveform must be done care-
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(b) post-dynamic � cut.

Figure 5.10: � 2
t

versus bin number pre- (a) and post- (b) dynamic sigma cut for a MicroBooNE
cosmic simulation with input DT = 0 and DL = 6.36 cm2/s.

fully such that no extra widening from misalignment of waveforms can contribute to widening of

the pulses. Beginning with the peak value of the averaged waveform and the input single wave-

form separated by �ve ticks, the two waveforms are summed and an RMS2 value is computed

above a threshold which is 10% of the pulse height. By iteratively moving the single waveform

and the averaged waveform closer together by a single bin and calculating the RMS2 value for

the summed waveform at each step, the combination which produces the lowest RMS2 can be

chosen, as shown graphically in Figure 5.11.

5.2.4 Extracting the Di�usion Value

Performing waveform averaging in each drift bin results in an association between the mean

drift distance of the individual waveform peaks and the pulse width of the averaged waveform

in that bin. As shown by Equation 5.2, the longitudinal di�usion constant, DL is, to �rst order,

proportional to the gradient of the plot that has been constructed, and so the di�usion coe�cient

can be calculated. For simulated data, the true drift velocity, 0.111436 cm/�s, is taken for vd , while
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Figure 5.11: Illustration of the method used to merge waveforms. As described in the text, two
initial waveforms (shown in blue and green) are �rst separated with the peak of the �rst waveform
placed �ve ticks before the peak of the second waveform. The �rst waveform is iteratively moved
forward by one tick until the peak is �ve ticks after the peak of the second waveform, and at each
iteration the sum of the waveforms (shown in black) and RMS2 are calculated. The combination
which results in the minimum RMS2 is selected (in this case, 3.12, shown on the right in the
second row), and merged with the next waveform. This example uses Monte Carlo waveforms
from Dataset 1, as de�ned in Table 5.1.



88 CHAPTER 5. LONGITUDINAL ELECTRON DIFFUSION IN MICROBOONE

for data, the drift velocity is taken to be 0.1098 cm/�s, which is derived from measurements of

the electric �eld in the MicroBooNE data.

5.2.5 Estimation of Error

To estimate the statistical error for this measurement, the prescription outlined in reference [95]

is followed, whereby the uncertainty in each bin of the summed deconvolved waveform is iter-

atively increased until the Gaussian �t has a � 2/NDF = 1. These in�ated uncertainties are then

propagated to the width parameter which is extracted from the �t.

The drift distance of each summed waveform is taken to be the mean value of the peak posi-

tions of the individual waveforms in the chosen drift bin, and the error on this value is taken to

be the standard deviation of the peak positions in the selected drift bin.

The linear �t then takes these errors into account. In practice, it is the uncertainty in the

x-position in each bin which drives the uncertainty on the �t.

5.3 Method Validation

Having now de�ned a method for measuring the di�usion value, a staged approach to the analysis

is performed. Initially the analysis is performed on a reduced sample, in which many detector and

Geant4-level physics e�ects are turned o�. This dataset is then built upon, introducing e�ects

in order to estimate the uncertainty due to each. Once this has been done, the method can be

validated on the full MicroBooNE cosmic simulation. A description of the datasets used in this

analysis can be found in Table 5.1.

5.3.1 Using a Reduced Simulation Sample

Because a measurement of longitudinal electron di�usion might be expected to be sensitive to a

large number of low-level e�ects—the electronics and �eld response, electron drift-lifetime, etc.—

a staged approach to the analysis is taken. As a �rst step, a reduced sample is de�ned which has a
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Dataset Description Paramater Values
Dataset 1 (multiple samples) Single Muon �xz = 0

◦

�yz = 0
◦

Δ�xz = 0
◦

Δ�yz = 0
◦

Momentum = 1 GeV
Start position (x) = 128 ± 128 cm
Start position (y) = 0 ± 116.5 cm
Start position (x) = 518.5 ± 518.5 cm
DL = 0.0, 2.0, 4.0, 6.0, 8.0 cm2/s
DT = 0.0 cm2/s
Electron lifetime = 30 ms
No noise simulated
No space charge simulated
No multiple Coulomb scattering simulated
No delta rays simulated
No muon decay simulated

Dataset 2 Single Muon Same as Dataset 1, but with
Noise simulated
DL = 6.36 cm2/s

Dataset 3 Single Muon Same as Dataset 2, but with
Multiple Coulomb scattering simulated
Delta rays simulated
Muon decay simulated

Dataset 4 (multiple samples) Single Muon Same as Dataset 2, but with
�xz = 8.0

◦

�yz = 8.0
◦

Δ�xz = 8.0
◦

Δ�yz = 8.0
◦

Start position (z) = 500 ± 0.0 cm
DT = 11.3, 16.3, 21.6 cm2/s

Dataset 5 Cosmic All detector e�ects are turned on, with
DL = 6.36 cm2/s
DT = 0.0 cm2/s

Dataset 6 Cosmic Nominal MicroBooNE simulation
Dataset 7 Cosmic MicroBooNE Run 1 o�-beam data

Table 5.1: Outline of the datasets used in the validation of the longitudinal electron di�usion
analysis.

minimal con�guration. This is described as Dataset 1 in Table 5.1. An example of a typical event

using this con�guration is shown in the event display in Figure 5.12.
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Figure 5.12: Example collection plane (i.e, vertical wire) event display using deconvolved signal
information showing the forward-going muon sample which has been simulated with the con-
�guration outlined in Section 5.3.1. Here, the x-axis corresponds to the direction of the beam,
where each pixel represents one wire on the collection plane; the y-axis corresponds to the drift
direction, where each pixel represents 1 tick of the TPC clock.

Impact of Tunable Paramaters

There are several tunable parameters in the di�usion analysis. Using the sample outlined earlier,

the e�ect of each of these parameters can be understood. Of course, because this sample is so

simplistic, each of these checks must be performed once again on a more realistic cosmic sample.

Number of Drift Bins The �rst, and most obvious, tunable variable is the number of chosen

drift bins. Nominally, 25 bins are used, resulting in each drift bin being approximately 10 cm

wide. Several other values have been tested, as shown in Figure 5.13. For each of the tested

number of bins, the true value of DL falls within the �t uncertainty, meaning that the analysis

is not sensitive to variations in this parameter. As the number of drift bins is increased, the

uncertainty on the measured di�usion value decreases. This is because the uncertainty is driven
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by the uncertainty on the x-position of the average waveform. Note that it becomes di�cult to

move to larger numbers of drift bins, as it is necessary to leave enough of a sideband to calculate

the waveform baseline, as discussed in section 5.2.2. To strike a balance between the error on the

�t and the ability to �nd the waveform baseline, the nominal 25 drift bins are chosen. This will

be reassessed when moving to a cosmic data sample in Section 5.4.
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1.1 Figure 5.13: Fractional dif-
fusion value as a function
of the number of drift bins
used. Each sample here
used the same 250 tracks,
meaning on average the
number of tracks used in
each drift bin is 25, 12.5, 10,
6.25, and 5, for the respec-
tive samples. The reduction
in error is because the error
is driven by the error on the
x-position, which is related
to the width of the drift bin.

Dynamic � Cut The second tunable variable is the dynamic sigma cut value, which only ac-

cepts waveforms which have a � 2 which falls in some region around the median �
2 value in the

relevant drift bin. As explained in an earlier section, the width of this region is de�ned by the

standard deviation of the � 2 values in the chosen drift bin, multiplied by some factor, which is

referred to as the � cut value. The results of modifying the multiplication factor of the � cut value

are shown in Figure 5.14. The plot shows that the analysis is insensitive to this cut, even for very

large values of the multiplication factor. This, however, is likely due to the minimalistic nature

of the con�guration of the sample used here. For this reason, the multiplication factor is set to



92 CHAPTER 5. LONGITUDINAL ELECTRON DIFFUSION IN MICROBOONE

one, however this will be revisited on a cosmic sample.
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1.1 Figure 5.14: Fractional dif-
fusion value as a function of
the dynamic � cut value.

Ensuring Non-Bias Across Many Input DL Values

As a measure of how well the analysis method works, it is not enough to show that the correct

value of DL can be extracted from a single dataset. To bolster con�dence in the method, the

analysis is repeated on datasets with input DL of 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0 cm2/s. The results

of this are shown in Figure 5.15 and Table 5.2. Here the nominal selection and cut values are used,

as de�ned in Table 5.3.

One point of interest, shown in Figure 5.15, is that the error on the �t does not envelope the

true input DL value for the DL = 0.0 cm2/s sample. The error is so small here because each �
2

value is essentially the same for every x , meaning that the �t has very little freedom.
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Figure 5.15: Measured DL

values for many di�erent
input DL values, along with
associated error.

Input DL values (cm2/s Measured DL (cm2/s) Error %di�erence
0.0 0.034 0.0005 N/A
2.0 2.005 0.0278 0.25
4.0 3.999 0.0555 -0.02
6.0 6.006 0.0833 0.10
8.0 8.000 0.1109 0.00
10.0 9.972 0.1383 -0.27

Table 5.2: Measured DL values for many di�erent input DL values. The percent di�erence column
is calculated by D

measured

L
−D

true

L

D
true

L

× 100, meaning that the DL = 0.0 cm2/s cannot be included.

5.3.2 Including Noise in the Simulation

In this section Dataset 2, as de�ned in Table 5.1, is used. This is identical to Dataset 1, but with

the inclusion of simulated electronics noise. The noise model implemented in the MicroBooNE

simulation is data-driven in that it reproduces the frequency-domain shape and time-domain RMS

of the noise. This is described in Chapter 4.

As can be noted from Figure 5.16a, there is a small di�erence between the best �t value for
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Variable Value Bound type
Number drift bins 25
Drift Velocity (simulation) 0.111436 cm/�s
Drift Velocity (data) 0.1098 cm/�s
X width 256 cm
Dynamic sigma cut value 1� Upper and Lower
Hit goodness of �t 1.1 Upper
Peak �nding threshold 3.0 Lower

Table 5.3: Table summarising nominal cut values and other numbers of interest for this analysis.

the measured DL coe�cient and the true input DL value; however the true value still falls within

the �t error.
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Figure 5.16: Measured DL with noise turned on (5.16a) and with noise and Geant4 level physics
processes turned on (5.16b). These were produced with Dataset 2 and Dataset 3, respectively.

5.3.3 Including Physics E�ects in the Simulation

This makes use of the sample de�ned as Dataset 3 in Table 5.1. This sample is identical to the one

in the previous section, but with physics e�ects simulated. This includes turning on delta rays,

muon decay, and multiple Coulomb scattering. Note that the tracks are still generated precisely
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along the beam direction, and transverse di�usion is not simulated at this stage.

Figure 5.16b shows that there is essentially no di�erence between turning on physics e�ects

and the earlier sample with only noise turned on. From this it can be stated that neither noise

nor physics e�ects will be a signi�cant uncertainty for this analysis.

5.3.4 Moving to a Simulated Cosmic Sample

Now that the method has been validated on a minimally con�gured reduced sample, investiga-

tions can be performed on a cosmic dataset. The intention is to use cosmic datasets to answer

three questions:

• Are the number of drift bins and multiplication factor of the � cut value which were chosen

in Section 5.3.1 still appropriate?

• Is it possible to select a sample of t0-tagged tracks from a cosmic dataset which can return

the simulated DL value?

• What angular selection is needed to minimise the e�ects of DT?

Number of Drift Bins and � Cut Value

The plots shown in Figures 5.13 and 5.14 are reproduced using Dataset 5 as de�ned Table 5.1;

see Figures 5.17a and 5.17b. Unlike in the case of Dataset 1, there is a signi�cant variation in the

fractional di�usion value depending on the number of bins used. There is also a small dependence

on the dynamic � cut value. Because it has been shown that neither the noise or physics e�ects

are expected to cause signi�cant di�erences in the measured DL value, it is assumed that this

dependence is due to the angular distribution of the tracks in the cosmic sample.

Because the simulated value of DL is able to be reasonably accurately measured with the

nominal chosen values of 25 bins and a � cut value of 1, no change is made to these parameters.
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(a) Number of bins. (b) � Cut Value

Figure 5.17: Fractional di�usion value as a function of the number of bins used (5.17a, using � cut
value = 1) and the � cut value (5.17b, using a number of bins of 25) for a simulated cosmic sample.
When compared with Figures 5.13 and 5.14 it is clear that the cosmic sample has more dependence
on the choice of these variables, and this is assumed to be due to the angular distribution of the
tracks.

Selecting t0-Tagged Tracks From a Cosmic Dataset

The selection of cosmic tracks is simple. As outlined in section 5.2.1, the only requirements placed

upon the tracks are a track length cut and the requirement that a track must have a reconstructed

t0. As alluded to earlier, an angular selection will now be developed in order to measure DL using

cosmic rays.

For this analysis it is prudent to de�ne the angular cuts in terms of the angle to the anode

plane, �xz , and it’s orthogonal angle, �yz . When using these coordinates, �xz = �yz = 90
◦ de�nes

a track which is going straight downwards through the detector, �xz = �yz = 0
◦ is a track going

in exactly the beam direction, and �xz = �yz = 180◦ is a track going exactly opposite to the beam

direction. A diagram showing these angles is provided in Figure 5.18.

The �xz angle, in particular, is an important angle when selecting angular cuts because of the

e�ect of transverse di�usion, and because the response function can have signi�cantly di�erent

e�ects at di�erent angles during deconvolution.

Figure 5.19 shows the distribution of all tracks above 50 cm in length (left) and those tracks
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Figure 5.18: Plot showing the de�nition of �xz and �yz . Here, the blue lines and dots represent the
collection plane, while the black and red represent the �rst and second induction planes.

which have been t0 tagged (right). The demand that tracks are t0 tagged reduces the statistics of

the selected dataset; however, geometric t0 tagging has been shown to be accurate to the order of

several ticks, as shown in Figure 5.20, and in the MicroBooNE geometric t0-tagging public note

[101]. Because of this high accuracy and the large number of cosmic tracks available in any given

MicroBooNE window meaning that this analysis is able to accrue statistics reasonably quickly,

this is not currently deemed to not be a signi�cant source of concern. It should be noted that the

t0-tagging public note states that the purity (the fraction of tagged tracks which are truly anode-

or cathode-piercing) is approximately 97%.

Table 5.4 shows the passing rates for tracks as a function of the chosen �xz/�yz cut. As a

demonstration, this shows a cut which is symmetric in these variables, but this does not neces-

sarily need to be the case, and will be investigated in the next section. The total passing rates

appear to be very low; however, this is the passing rate on a track-by-track basis. Knowing that

there are approximately 10 cosmic tracks per event increases these passing rates by a factor of
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Figure 5.19: Angular distribution of reconstructed tracks with a length greater than 50 cm (5.19a),
and the subset of those tracks which have a reconstructed t0 (5.19b). The t0-tagging process
reduces the size of the dataset signi�cantly more in the region of interest for this analysis (�xz =
�yz = 0 degrees and �xz = �yz = 180 degrees) than in other regions of the phase space. This is
an expected e�ect because the closer a track becomes to forward- or backward- going, the less
likely it is to pierce the anode or cathode faces.

10. In this table, the “Selected Tracks” and “% of Total” columns are measured with respect to the

total number of tracks above 50 cm, while the “t0-Tagged Tracks” and “t0-Tagging Rate” columns

are measured with respect to the selected tracks.

�xz & �yz Cut Selected Tracks % of Total t0-Tagged Tracks t0-Tagging Rate Total Pass Rate
5◦ 219 0.03% 8 3.65% 0.001%
10◦ 700 0.13% 28 4.00% 0.005%
15◦ 1568 0.29% 127 8.10% 0.023%
20◦ 3687 0.67% 456 12.37% 0.083%

Table 5.4: This table shows the total passing rate for tracks in the Monte Carlo as a function of the
�xz and �yz cut. This assumes that the chosen cut value is symmetric in �xz and �yz , but this does
not necessarily have to be the case. Note that there is a requirement that every reconstructed
track included in this table is at least 50 cm long.

Using a 10 degree �xz/�yz upper limit, plus a 50 cm length demand, DL is measured using the
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Figure 5.20: Plots taken from the MicroBooNE t0-tagging public note (reference [101]) showing
the t0 reconstruction accuracy for anode (left) and cathode (right) piercing tracks. As shown, the
accuracy for tracks passing through the anode is higher than for those passing the cathode, but
both have a standard deviation of less than 4 ticks. For the di�usion analysis, each drift bin (for
25 bins) corresponds to approximately 184 ticks, and so it is anticipated that this resolution is
more than adequate.

dataset of 30k events from Dataset 5. The result is shown in Figure 5.21. There is approximately a

1-2% bias in the central drift bins. This has been investigated and is due to the angular acceptance

of each drift bin. Higher angle tracks are signi�cantly more likely to reach the center of the TPC,

and so they are more likely to be dominant in those drift bins. Although it has been shown that

track angles do not a�ect the measurement of DL for a DT = 0 sample up to ∼30◦, it does modify

the � 2
t
(0) values, and so a sample which uses many di�erent track angles, such as this, is liable to

bias at the center of the TPC. For this reason, an additional demand is made that each drift bin

contain more than 500 waveforms in order to be use in the linear �t. This values has been chosen

by-eye. Because few low-angle tracks make it to the center of the TPC, this e�ectively removes

the bias caused by these bins.

Dealing with the E�ects of DT for a Cosmic Dataset

Having now shown that the analysis is able to be performed by placing an angular cut on t0-

tagged tracks, a study has been performed to understand the bias expected in the measured DL

from the e�ects of DT .



100 CHAPTER 5. LONGITUDINAL ELECTRON DIFFUSION IN MICROBOONE

)2 sµ
 (2 σ

1
2
3
4
5
6
7
8

/s2: 6.34 +/- 0.05 cmLMeasured D

 -
 F

it)
/F

it
2 σ(

0.1−

0.05−

0

0.05

0.1

Drift Distance (cm)
0 50 100 150 200 250#w

av
ef

or
m

s

0
1000
2000
3000

Figure 5.21: Measured DL for a cosmic sample with input DL = 6.36 cm2/s, and DT = 0.0 cm2/s.
Here, the number of waveforms in each drift bin is also included.

Transverse di�usion acts to modify the shape of the pulse in the yz-plane. For a track which

is at �xz = �yz = 0
◦, the e�ect of DT is minimised because the electron cloud di�usion in the

negative z-direction is compensated by the electron cloud di�usion in the positive direction. It

is not possible to achieve this using geometrically t0-tagged cosmic rays because the sample is

inherently angular, and so some e�ective additional smearing in the longitudinal direction is

present. This is shown graphically in Figure 5.22. In this graphic, the green ovals represent single

electron clouds. Without DT , the longitudinal width of the electron cloud is measured to be the

width of a single oval in x , however after the application of DT , neighbouring ovals begin to

overlap, and the measured longitudinal width is e�ectively wider.

In order to proceed with this measurement, a sample of tracks should be chosen which has an

angular distribution which minimises the e�ect of DT , while maximising statistics. To select the

angular distribution, a study has been performed with Dataset 6, as outlined in Table 5.1. These

samples use various combinations of DT , �xz , and �yz to determine at which angles the e�ects of
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Figure 5.22: Illustration of the e�ects of transverse di�usion. Transverse di�usion can be thought
of as a smearing in the z direction (blue) and the y direction (orange). Because only collection
plane (vertical) wires are used, the spreading in Y has little e�ect because the pulses still arrive
at the same time, on the same wires. However, the z component acts to spread the cloud onto
neighbouring wires, meaning the x-width of the cloud appears to gain additional width.

DT become pronounced enough to signi�cantly skew the measurement. The di�usion analysis

is performed for datasets using DT =11.3, 16.3, 21.3 cm2/s, where the variations were chosen

because they are approximately 30% away from the nominal 16.3 cm2/s, and this is expected to

be a reasonably conservative uncertainty on DT . For each dataset, di�erent �xz and �yz selections

have been made between 0 and 16 degrees. The results are presented in Figure 5.23.

For each of these �gures, the plot on the left shows four bins in �xz and four bins in �yz , each

representing the percentage di�erence between the measured di�usion value and the true DL

value for the di�erent angular selections. The plot on the right of each of these �gures represents
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the average percentage bias as a function of �xz (green) and �yz (brown). It is clear from these plots

that the dominant e�ect on the measured value of DL is from the �xz angle, with the �yz angle

having little-to-no e�ect. For this reason, a very limited �xz angle of 0 to 4 degrees is chosen,

while the �yz angle is allowed to be between 0 to 16 degrees.

These plots also reveal that, according to the model implemented in Geant4, the bias increases

linearly as a function of angle, and the gradient of the DL bias as a function of �xz is increased

as the value of DT increases. This raises the interesting prospect of inferring the value of DT

from the measured value of DL as a function of �xz . This is beyond the scope of this work, and

would require thought before proceeding however; one of the interesting things about di�usion

in electric �elds is the level of disagreement between data and theory, indicating that there may

be e�ects which are not currently being simulated.

Due to this study, it is found that approximately a +3% bias due to DT is expected in the

nominal simulation for an angular selection of 0◦ ≤ �xz ≤ 4◦ and 0◦ ≤ �yz ≤ 16◦.

Table 5.5 summarises the �nal cut values chosen to perform the analysis with.

Cut Value
Length 50 cm
�xz 0

◦
− 4

◦

�yz 0
◦
− 16

◦

Table 5.5: Cut values used to select out tracks for the di�usion analysis.

5.3.5 Performing theDi�usionMeasurement on a FullMonteCarlo Sim-

ulation

Taking the nominal values of �xz and �yz of 0-4 degrees and 0-16 degrees respectively, as well a

demand that each track have a length of at least 50 cm, the analysis can now be performed on a

full MicroBooNE simulation including the e�ects of DT . In total, 93 tracks were selected from a

sample of 200,000 cosmic events, and the result of performing analysis on these tracks is shown in

Figure 5.24. The �t-only uncertainty on the measured di�usion value covers the expected value
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(a) Input DT = 11.3 cm2/s
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(b) Input DT = 16.3 cm2/s
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(c) Input DT = 21.3 cm2/s

Figure 5.23: Percentage bias in measured DL values in �xz-�yz space, and projected onto each
axis. These plots are made using the sample de�ned in Dataset 6 with DT = (a) 11.3, (b) 16.3, the
nominal value, and (c) 21.3 cm2/s.



104 CHAPTER 5. LONGITUDINAL ELECTRON DIFFUSION IN MICROBOONE

of 6.39 cm2/s, where this is de�ned as the nominal input DL value of 6.2 cm2/s, with an additional

expected +3% bias for our angular selection from the e�ects of DT .
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Figure 5.24: Extracted di�usion value for a full cosmic MicroBooNE simulation de�ned as Dataset
6 in Table 5.1, using the nominal input di�usion values of DL = 6.2 cm2/s and DT = 16.3 cm2/s. The
reason for the discrepancy is due to the e�ects ofDT , as outlined in the text. For this measurement,
the angular selection outlined in this section (�xz = [0, 4] degrees and �yz = [0, 16] degrees) has
been used. There is also a requirement that there be at least 500 waveforms in each drift bin,
meaning that most of the central bins are excluded. The distribution of waveforms as a function
of drift bin is a result of having a sample of tracks which are at very low angles. A track must
have a �xz of approximately 13 degrees, beginning at z = 0 cm, in order to traverse the whole
width of the TPC. Such a track would not pass our angular selection. The maximum distance a
track is expected to travel with our angular selection is approximately 90 cm.
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5.4 Measuring the E�ective Longitudinal Di�usion Coe�-

cient in Data

Applying the same requirements as in Section 5.3.5, a measurement of the longitudinal di�usion

coe�cient can be measured from MicroBooNE Run 1 data. The central value of the measurement

is presented in Figure 5.25.
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Figure 5.25: Extracted di�usion value from the MicroBooNE Run 1 data. In order for a point to
be considered in the linear �t each bin must have a minimum of 500 waveforms.

The measured value is signi�cantly lower than the parameterisation introduced in reference

[95], and agrees more with the data presented by the ICARUS collaboration [100]. The uncertainty
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presented in Figure 5.25 only contains the error on the �t, and so now it is necessary to understand

the systematic uncertainties on this measurement.

5.5 Systematic Studies

The largest systematic uncertainties for this analysis are expected to be those related to uncer-

tainty on the response function, drift velocity, space charge, and DT . The following sections

outline the systematic studies into these e�ects. A list of smaller systematic uncertainties to be

addressed in the future can be found in Section 5.6.

5.5.1 Transverse Di�usion

The e�ect of transverse di�usion was discussed in Section 5.3.4. Due to the studies outlined there,

the systematic uncertainty associated with transverse di�usion is estimated to be 5%.

5.5.2 Response Function

A study of the e�ect of the uncertainty on the response function has been carried out. From

simulation studies, it is known that the data-driven response function has an approximately 1 �s

widening over the true response function. This broadening has been corrected for, and a sample

has been produced using the new, narrower response function in the simulation while using the

original broad response function in the deconvolution.

The result is an approximately 15% systematic di�erence on the measured value of DL. This

represents the dominant systematic uncertainty on this measurement.

5.5.3 Drift Velocity

The drift velocity enters the di�usion equation as v3
d

(see Equation 5.2), meaning that the DL pa-

rameter has a very strong dependence on it. MicroBooNE does not currently have a full measure-
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ment of this parameter with uncertainties, but a central value measurement has been determined

from measurements of the electric �eld.

In simulation, the value of vd used is that which is input into the simulation, 1.11436 km/s,

while in the data, the value measured from the electric �eld is used, 1.098 km/s.

For the MicroBooNE data, a conservative 5% systematic uncertainty is placed on this param-

eter. This results in a systematic uncertainty of +9.1%, −8.3%

5.5.4 Space Charge E�ect

The Space Charge E�ect (SCE) is caused by a build up of argon ions in the TPC, leading to a

distortion of the electric �eld. The e�ects of this are two fold: the �rst is that tracks can become

bowed, meaning that this may lead to waveforms being placed in the incorrect drift bins, and the

second is that the average electric �eld which an energy deposit travels through is a function of

the X-Y-Z position in the detector.

Currently, space charge is simulated by moving the simulated true energy deposit to a new

position using a position correction map, at which point the recombination is modi�ed based on

an E-�eld correction map. The energy deposition is then instantly transported to the readout

planes without taking into account how changes in the electric �eld modify the drift velocity of

the energy deposit. This presents a problem for estimating the systematic uncertainty, as the drift

velocity is always assumed to be nominal.

Current work on the SCE places the variation in the electric �eld at a maximum of around

15%, but this is position dependent. This uncertainty can be used to calculate a DL value using

the parameterisation presented in reference [95] in order to estimate the scale of the uncertainty

which might be expected. Table 5.6 indicates that even for reasonably large changes in the elec-

tric �eld, the e�ect on DL should be reasonably limited. For this iteration of the analysis, a 3%

systematic is applied due to variations in the electric �eld.
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Electric Field Value (kV/cm) DL (cm2/s)
0.273 × 0.85 6.24

0.273 6.36
0.273 × 1.15 6.45

Table 5.6: Expected maximum and minimum electric �eld values from space charge e�ect and
the predicted DL value.

5.5.5 Summary of Uncertainties

Table 5.7 outlines the systematic uncertainties which have been investigated. By far the largest

systematic is the bias introduced from the response function used in the reconstruction being too

wide.

The uncertainties listed for “Noise” and “MCS + delta rays” here are inferred from the studies

undertaken with the reduced sample in Section 5.3, where turning on these e�ects resulted in a

%-level change in the measured DL value.

Systematic Value
Response Function 15%
Drift Velocity +9.1%, -8.3%
DT 5%
Space Charge E�ect 3%
Noise ∼ 1%
MCS + delta rays ∼ 1%
Fit error ∼ 2.5%
Total +18.7%, -18.3%

Table 5.7: An outline of the bounds on systematic uncertainties which have been placed so far.
The total uncertainty assumes that the systematic uncertainties are uncorrelated.

There are a number of additional systematic uncertainties which must be investigated for

this analysis, and these are outlined in Section 5.6. In general, these are expected to have a small

impact on the result.
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5.6 Summary and Future Work

Using the systematic uncertainties described in Table 5.7, the DL measurement is quoted to be

3.73
+0.70

−0.68
cm2/s.

There are a number of additional systematic uncertainties which must be addressed and these

are outlined in this section. These are thought to be reasonably small when compared to the scale

of the uncertainty on the width of the response function, and the drift velocity.

5.6.1 Detector Systematic Uncertainties to Address

The following are the detector-related systematic uncertainties that might be expected to have

some impact on the di�usion analysis, although in general the magnitude of the listed e�ects is

expected to be small.

• Electron lifetime The electron lifetime in MicroBooNE is extremely good and is simulated

as being essentially in�nite, and so this is expected to have minimal impact on the analysis.

• Electron recombination This takes place at the point of ionisation and so should not be

a drift dependent e�ect.

5.6.2 Geant4-level Physics Uncertainties to Address

The following are the Geant4-level physics systematic uncertainties which might be expected to

have some impact on the DL analysis.

• Delta ray production rate Preliminary studies on this show that it is a negligible e�ect,

but this requires further study.

5.6.3 Further Measurements

As discussed in Section 5.3.4, the requirement of t0-tagged tracks necessarily leads to a sample of

largely high-angle tracks, and the angular selection used in this analysis drastically reduces the
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number of selected tracks. The MicroBooNE CRTs — installed after Run 1 — could resolve this

problem. The CRTs surround the detector, allowing t0 tagging tracks which are not necessarily

anode- or cathode-piercing. While the same angular selection would likely be used to reduce

the e�ects of DT , this would allow for much higher statistics, and therefore would mean that

the measurement could be performed for lower electric �elds for which less data exists. Indeed,

existing measurements (as discussed in Section 1) were all performed at a variety of E-�elds.
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Chapter 6

Particle Identi�cation

“Nobody expects the Spanish Inquisition”

Cardinal Ximénez

Particle Identi�cation (PID) is a critical tool in the development of physics analyses, allowing

for selection of exclusive state topologies. LArTPC detectors have a number of options available

in order to perform PID.

The output of the MicroBooNE reconstruction is a collection of charged-particle tracks and

electromagnetic showers, the distinction between which can act as a coarse PID: if the particle is

shower-like then it is likely to be either an electron or a photon, if it is a track then it is likely to

be either a muon, a pion, a kaon, or a proton.

Putting each reconstructed particle in the context of the topology of the full event can also

shed light on its species: a photon takes time to pair produce and so is identi�able by a gap

between the vertex and the start of a shower, whereas an electron shower starts at the vertex.

Further to this, identi�cation of a Michel electron can aid in identi�cation of muons, while hard

scatters can be used in the identi�cation of hadrons.

In addition to topological information, MicroBooNE is able to make extensive use of the calori-

metric information which is read out from the TPC.
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6.1 Energy Deposition in Liquid Argon

The mean rate of energy loss for charged particles at energies relevant for MicroBooNE can be

described by the Bethe-Bloch equation,
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Here, Z and A are the atomic number and atomic mass of the medium respectively, z is the

charge of the incident particle, mec
2
= 0.510 MeV, Tmax is the maximum kinetic energy which can

be imparted to a free electron in a single collision, I is the mean excitation energy (in eV), and

�(�
 ) is a correction factor which is important for higher momentum particles. As is standard,

� = v/c and 
 = 1/

√

1 − �
2. It should be noted that the mean dE/dx here is weighted by rare

events which deposit large amounts of energy.

Figure 6.1: Mass stopping power (=⟨dE/dx⟩) for �+ on copper, as a function of �
 = p/Mc. Figure
taken from reference [102].

An example energy deposition curve for �+ on copper is shown in Figure 6.1. Muons in Mi-
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croBooNE generally fall near to the point of minimum ionisation and thus have a mean energy

deposition of 2.1 MeV/cm (characteristic of liquid argon), while more highly ionising particles

such as protons deposit more energy per unit length. As particles lose kinetic energy in the

detector, they begin to deposit more energy, resulting in a Bragg peak, which is a curve char-

acteristic of the particle species. This can be phrased in terms of the distance between each hit

and the end of the reconstructed track (the residual range). Curves of the ⟨dE/dx⟩ as a function

of residual range are shown in Figure 6.2. The Bragg peak is often leveraged to perform particle

identi�cation of track-like particles.

Figure 6.2: Theory curves in residual range-dE/dx space for particles which generally appear as
tracks inside LArTPCs: protons, kaons, pions and muons. It should be noted that pions and muons
(green and blue respectively) occupy essentially the same space, meaning muon-pion separation
is extremely di�cult.

Generally, shower-based calorimetric PID algorithms use the dE/dx in the trunk of the shower

in order to separate out electrons from photons, as shown in Figure 6.3. Showers which are

from electrons have a dE/dx of a minimally ionising particle (MIP), while those which are from

photons have twice this energy deposition as they are composed of two electrons which have

pair produced from a photon. Note that this is not always the case; photons are able to Compton

scatter, producing a shower from a single electron which is not attached to the reconstructed

neutrino vertex.

This chapter is dedicated to the description of a tuning which is applied to the calorimetry in
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e 𝛾
Figure 6.3: Electron versus photon particle identi�cation is performed by making use of the fact
that photons pair produce two electrons, meaning the dE/dx is approximately double that of a
single electron.

order to make the data and the simulation approximate each other more closely. It also acts as a

comprehensive evaluation of the PID algorithms used in the identi�cation of track-like particles

in MicroBooNE. Both the tuning outlined in this chapter, and the Bragg Likelihood algorithm for

performing PID were developed as part of this work. The primary focus here is on the separation

between MIP-like particles and protons such that the �� CC0�Np signal de�nition can be selected.

6.2 Simulated Data dE/dx Tuning

This section will describe a tuning which is performed prior to the particle identi�cation outlined

in the next sections.

By looking at the dE/dx per hit for hits in extremely MIP-like tracks (as in Figure 6.4 and

Figure 6.5), we see that both data and simulation distributions peak around the same value, but

that the width of the distribution in data is much larger than in simulation. This behaviour is

expected after application of the dQ/dx and dE/dx calibrations as described in Section 4.7. In

order to best compare PID performance between the two samples, the simulated data is �rst

tuned by application of a simple smearing in order for it to better match the data. The tuning

procedure and a validation of this approach are presented in this section.

A Landau distribution convoluted with a Gaussian distribution is used to represent the dE/dx

of charged particles in MicroBooNE. A Landau distribution should be a reasonable approximation

of the straggling function, while the Gaussian distribution is used as a catch-all model of detector

e�ects. For both muons and protons, the widths of the Landau and Gaussian distributions are
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then �t for. These �ts are performed separately as detector e�ects can impact highly ionising

particles in di�erent ways to minimally ionising particles. The �tting procedure is as follows:

1. A distribution of dE/dx is produced for reconstructed hits coming from simulated true

muons and protons with a distance from the hit to the end of the track greater than 100 cm

and less than 150 cm. This range is used because the dE/dx in this region is slowly varying

and can be treated as essentially constant. This distribution is then �t with a Landau-

Gaussian functional form.

2. The dE/dx distribution is then produced without discriminating on particle species in order

to verify that the distribution is dominated by muons (as protons tend to be very short in

length), and is once again �t with a Landau-Gaussian functional form.

3. Step 2 is then repeated on cosmic data. Based on the previous step, the assumption is made

that this is muon dominated. When �tting the data, the Landau component width is kept

constant with respect to the simulated dataset under the assumption that any di�erences

are due to un-modeled detector e�ects. This is thought to be a reasonable assumption, as

the energy deposition of charged particles passing through a medium is better understood

than the response of LArTPCs to such an e�ect.

4. The Gaussian widths for simulation and data can then be compared, and the residual width

is assumed to be due to an uncorrelated Gaussian that represents detector e�ects that are

not currently simulated, or not simulated well.

5. The width of this additional smearing Gaussian is estimated empirically using a toy study,

as outlined in Appendix A.1.

6. Each dE/dx value along the track is multiplied by a random number drawn from the smear-

ing Gaussian centered at 1.

7. This procedure works for muons, however there are very few protons with an extent of 100

cm or more in data (and there is also no way to reliably identify protons at this stage), and so
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a di�erent approach is taken for them. As with muons, the Landau component is estimated

from the simulation. To estimate the Gaussian width in the data, the Gaussian width in the

simulation is taken, and smeared using the smearing Gaussian which was derived from the

muon sample.

This procedure is followed for each of the induction planes and the collection plane individ-

ually so that each plane has associated Landau and Gaussian widths for protons and muons. The

assumption is made that pions and kaons have the same Landau and Gaussian widths as muons.

While the kaon dE/dx pro�le is known to be quite di�erent, the very low number of kaons ex-

pected in MicroBooNE means that this is not expected to be a signi�cant issue. Pions have a very

similar dE/dx pro�le as muons (see Figure 6.2), and so this is expected to be a valid assumption.

The datasets used to determine the widths are described in section 6.3.1: for simulation, a

BNB+Cosmic sample is used and for data an on-beam sample is used. Both have been processed

through the CC-inclusive selection. This is done so that the selected events have the correct t0,

and so they are calibrated with the correct x-position.

The results of this procedure for simulation can be found in Figure 6.4 and Table 6.1. Similarly,

results for data can be found in Figure 6.5 and Table 6.2. While the � 2/NDF for many of these �ts

are unimpressive, it is thought that they describe the distributions well enough that the extracted

parameters can be used without signi�cant impact to the results of the algorithms.

A priori, it might be expected that the width of the distributions on the U and V planes would

be the same. In the data it is observed that the distribution of dE/dx values is wider on the

V plane than on the U plane. This is primarily due to two e�ects. Firstly, there are expected

di�erences because the �eld response is di�erent on the two planes due to the U plane not being

shielded, meaning that it sees long-range induced signal. Because the front lobe of the response

function is so shallow this e�ectively means that the response is quasi-unipolar and does not vary

as much as a function of angle as the V plane. Because the dE/dx distributions are integrating

over angle, an additional smearing on the V plane is expected. The second e�ect is that the V

plane contains both U-shorted regions, where only 80% of the nominal charge is collected, and
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Y-shorted regions, where the V plane takes on a collection-plane like response. These e�ects act

to broaden the distribution.

As validation of the simulation tuning procedure, the tuned distributions may be �t with a

Landau-Gaussian to ensure that the broadening results in an improved agreement between the

data and simulation. The results of performing this �t are shown in Figure 6.6 and Table 6.3.

These results show that the Gaussian width of the tuned simulation approximates the data to

within 5%. In addition to this, a comparison of the data with the pre- and post-tuning simulation

can be found in Figure 6.7.

Plane Particle Species �L �G �
2/NDF

U All Tracks 0.10 0.09 1088/86
U Muons 0.10 0.09 982.2/86
U Protons 0.23 0.32 49.2/35
V All Tracks 0.13 0.19 332.7/86
V Muons 0.12 0.19 982.2/86
V Protons 0.19 0.32 40.68/37
Y All Tracks 0.09 0.09 2628/86
Y Muons 0.09 0.09 2522/86
Y Protons 0.13 0.25 48.26/30

Table 6.1: Summary of measured Landau and Gaussian widths for MicroBooNE simulation across
the three planes. Both the Landau and Gaussian widths are allowed to �oat for all �ts for the
simulation, the assumption being that there are detector e�ects which more strongly e�ect highly
ionising particles such as protons.

Plane Particle Species �L �G �
2/NDF

U All Tracks Fixed: 0.10 0.33 147.4/83
V All Tracks Fixed: 0.12 0.53 308.7/87
Y All Tracks Fixed: 0.09 0.20 551.7/87

Table 6.2: Summary of measured Landau and Gaussian widths for MicroBooNE data accross the
three planes. Here, it is assumed that the vast majority of tracks in the 100-150 cm range are
muons. Here, “Fixed” alludes to the fact that the �L is not allowed to �oat during the �t.
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(e) V plane, true muons

0 1 2 3 4 5 6 7 8 9 10

dE/dx (plane 1)

0

10

20

30

40

50

60

70

80

90

 / ndf 2χ  40.68 / 37

Landau width  0.0207± 0.1904 

Peak value  0.027± 2.116 

Normalisation  5.3± 133.9 
Gaussian width  0.04±  0.32 

(f) V plane, true protons

0 1 2 3 4 5 6 7 8 9 10

dE/dx (plane 2)

0

5000

10000

15000

20000

25000

 / ndf 2χ   2628 / 86

Landau width  0.00052± 0.08953 

Peak value  0.001± 1.586 

Normalisation  3.845e+01± 1.457e+04 

Gaussian width  0.001± 0.089 

(g) Y plane, all particles

0 1 2 3 4 5 6 7 8 9 10

dE/dx (plane 2)

0

5000

10000

15000

20000

25000

 / ndf 2χ   2522 / 86

Landau width  0.0005± 0.0868 

Peak value  0.001± 1.585 

Normalisation  3.733e+01± 1.387e+04 

Gaussian width  0.00103± 0.09051 

(h) Y plane, true muons
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Figure 6.4: Fitted widths for all particles, true muons and true protons for each wire plane in
MicroBooNE simulation. The distribution for all particles is very similar to the distribution for
true muons due to small numbers of protons in the sample used. The peaks at 0 dE/dx are due
to a known de�ciency in the reconstruction as tracks approach being parallel to the wires on a
given plane.

Plane Particle Species �L �G �
2/NDF (�D − �MC)/�MC

U All Tracks Fixed: 0.10 0.32 228.3/17 0.031
V All Tracks Fixed: 0.12 0.56 189.8/17 0.054
Y All Tracks Fixed: 0.09 0.19 83.64/17 0.053

Table 6.3: Summary of measured Landau and Gaussian widths for MicroBooNE tuned simulation
accross the three planes.
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Figure 6.5: Fitted widths for all particles from MicroBooNE data for the two induction planes and
the collection plane.

(a) U plane, all particles (b) V plane, all particles (c) Y plane, all particles

Figure 6.6: Fitted widths for all particles from MicroBooNE tuned simulated data for the two
induction planes and the collection plane.

6.3 Algorithm Comparisons

Now that the simulation has been tuned to better match the data, comparisons can be made

between the available algorithms in order to evaluate the strengths and weaknesses of each.

This section will compare the output of the algorithms currently being used on MicroBooNE

with the Bragg Likelihood algorithm, which has been developed as part of this work. It should be

noted here that the tuning which has been applied to the simulation as outlined in Chapter 6.2 is

propagated through all of these algorithms such that they can be compared on the same footing.

Because the relative and absolute number of each particle species produced in the simulation

is not necessarily correct, the normalisation of each particle species are allowed to �oat indepen-

dently in a template �t. This allows evaluation of whether the simulation is able to describe the

shape of the data for each variable in a way that is decoupled from the complicated physics of
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Figure 6.7: Agreement between data and simulation before and after application of the simulation
tuning. The post-tuning simulation agrees signi�cantly better with the data, although there is a
slight over-smearing on the collection plane.

neutrino interactions. Results of performing this �t for each distribution, for each sample, can be

found in this section. The original POT normalised distributions can be found in Appendix A.3.

6.3.1 Sample Information and Scaling Factors

For results that have been normalised by their POT, an overview of the samples and their scaling

factors can be found in Table 6.4.

For those distributions which have been template �t, the normalisations of each component

of the simulation is allowed to �oat within ± 50% of their nominal POT scaled values. Note

that the o�-beam and on-beam data are not allowed to �oat in this �t. Also note that any purities

which are calculated are done using the POT normalised distributions so that they are comparable

between algorithms.
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Within this chapter, the DIC and Birks systematic variation samples have been used as these

are expected to have the largest impact on the performance of the PID. A description of these

samples can be found in Chapter 7.2.

6.3.2 Deposited Energy Versus Energy By Range Algorithm

The �rst algorithm which has been investigated is the depErangeE algorithm, which compares

the energy deposited on the collection plane in the TPC to the energy estimated based on the

particle’s range under the � and p assumptions in order to try and attain separation. This is

particularly interesting as, unlike the other algorithms investigated, it is not speci�cally looking

at the shape and normalisation of the Bragg peak, and so can act as a somewhat independent

handle on PID.

Data-to-simulation comparison distributions are shown for the depErangeE under the � as-

sumption in Figure 6.8. Although the agreement between data and simulation appears to be very

good, the separation power of this algorithm is relatively low when compared to the other algo-

rithms.

In addition to the data/simulation comparison plots, Figure 6.8 also contains the e�ciency

and purity of selected muons, pions and protons as a function of cut value.

Sample Number of Triggers POT Scale Factor
On-beam data 31383149 1.41e+20 -
O�-beam data 33612500 - 0.93
BNB+Cosmic - 1.96799e+20 0.72
BNB+Cosmic/with no smear - 1.97421e+20 0.71
BNB+Cosmic/with DIC - 1.96615e+20 0.72
BNB+Cosmic/with Birks - 1.96220e+20 0.72

Table 6.4: Information about samples used throughout the development of the dE/dx tuning and
algorithm comparisons.
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(a) Without calibration (b) Nominal simulation

(c) Dynamic induced charge (d) Birks model

(e) E�ciencies and purities

Figure 6.8: Deposited energy on plane 2 versus energy by range under the muon assumption, for
four separate samples.
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Here, the e�ciency is de�ned to be

� =

Selected true particle species, s
Total true particle species, s , (6.2)

while the purity is de�ned to be

p =

Selected true particle species, s
Total selected particles (6.3)

The e�ciency and purity curves are shown for the nominal MicroBooNE simulation and are

compared against two detector variations outlined in Chapter 6.3.1 in order to provide informa-

tion on the robustness of the algorithms.
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6.3.3 PIDa Algorithm

The PIDa algorithm has been successfully used by the ArgoNeuT collaboration [92] in the past,

however there is a signi�cant level of disagreement between data and simulation when this al-

gorithm is applied at MicroBooNE.

This algorithm parameterises the dE/dx curves as an exponential,

dE/dx = aR
b
, (6.4)

where R is the residual range of the hit and a and b are parameters which are to be �t for. It

is found to be a reasonable approximation to use b = −0.42, and rely only on the value of a to

perform the PID. In practice, a is calculated on a hit-by-hit basis, and the average is taken across

the track,

PIDa =

∑
dE

dx
⋅ R

0.42

Nℎits

. (6.5)

This algorithm drops both the �rst and last hit in the hit collection as it is known that the �rst

hit can be biased due to being close to the vertex, where there may be other activity, and the last

hit can be biased if a particle stops part way between two wires, causing a low dE/dx hit to be

reconstructed. Several additional methods have been investigated in the course of this review, for

instance taking the median of the PIDa values along the track, or extracting the most probable

value using a kernel density estimator, however no signi�cant improvement has been found, and

so only the original method using the mean is presented in Figure 6.9.

The e�ciency and purity of the PID using PIDa are reasonably good, however there is severe

disagreement between the data and simulation in the proton region and it is clear that this variable

is extremely sensitive to both the DIC sample and the alternative recombination model sample.



CHAPTER 6. PARTICLE IDENTIFICATION 125

(a) Without calibration (b) Nominal simulation

(c) Dynamic induced charge (d) Birks model

(e) E�ciencies and purities

Figure 6.9: Template �t plots of the PIDa-by-mean variable for the collection plane with four
di�erent samples.
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6.3.4 �
2 Algorithm

The � 2 algorithm simply takes the dE/dx and residual range of each reconstructed hit and uses

this and the theory curves shown in Figure 6.2 to construct a �
2 value under the hypothesis

of each particle species. One weakness of this algorithm is that it assumes that the underlying

dE/dx distribution is Gaussian, and assumes that the track direction and reconstructed end point

are correct. It, like the PIDa algorithm, drops the �rst and last hit from the calculation in order

to remove bias.

Many variables can be constructed by combining �
2 values under di�erent particle species

assumptions. In this section a single variable is highlighted, � 2
�
−�

2

p
, however bare � 2 distributions

can be found in Appendix A.3. This is chosen in the hope that by doing this the scale of the

disagreement between data and simulation can be reduced, as any e�ect which causes a linear

increase in the dE/dx of reconstructed tracks should cancel.

Figure 6.10 shows the distributions for each sample and the method e�ciencies and purities.

It is unfortunate that even after the template �t, the disagreement between data and simu-

lation is signi�cant. This is particularly true in the proton peak, and in the region between the

MIP-like peak and the proton-like peak. This is especially concerning because this is the region

where a separator cut might be placed to maximise proton identi�cation e�ciency and purity.

Note that the extremely high �
2
/NDF for these plots is primarily due to the bins on the right

where there are severe di�erences between the data and simulation. Using the sample which

uses the Birks recombination model in the conversion of dQ/dx to dE/dx improves the agree-

ment between the data and simulation, but the � 2/NDF is still relatively high.
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(a) Without calibration (b) Nominal simulation

(c) Dynamic induced charge (d) Birks model

(e) E�ciencies and purities

Figure 6.10: Template �t plots of the � 2
�
− �

2

p

variablef orplane2f orf ourdif f erentsamples.
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6.3.5 Bragg Likelihood Algorithm

The �nal algorithm which is investigated is the Bragg Likelihood algorithm, which has been

developed as a part of this work.

Using the Landau and Gaussian widths outlined in Chapter 6.2, a probability map is con-

structed for each particle species using the theoretical mean dE/dx as a function of residual range

close to the Bragg peak (shown for muons, pions, protons, and kaons in �gure 6.2), as well as for

MIP-like particles which exit the detector and so do not have a Bragg peak. For a given residual

range, the theoretical dE/dx prediction is used to determine the mean of the Landau-Gaussian

distribution, and the width is taken from the results given in Tables 6.1 and 6.2. The resulting

probability maps are shown in Figure 6.11.

These particle maps can be used to construct a likelihood under each particle hypothesis for

each track,

L
s

Total
=

∑
Nℎits

i=1
L
s
(dE/dxi , Ri)

Nℎits

, (6.6)

where the sum is over each hit i associated to the track between 0 and 30 cm residual range.

The Ls(dE/dxi , Ri) corresponds to the evaluation of the likelihood map for the particle species, s,

at the residual range (R) and dE/dx of the hit. As with previous algorithms, the �rst and last hits

of each track are neglected, as they are known to produce unreliable results.

This calculation is done for each plane separately, but results from multiple planes may be

combined to produce a single result by taking the average of the likelihood across multiple planes.

Currently, however, this is not performed, as there are known di�erences in dQ/dx as a function

of track angle between data and simulation which are not currently understood. For this reason,

only the collection plane is considered for calorimetry.

The algorithm is made to be more robust by the addition of two features:

• For each particle species, the likelihood is �rst calculated by assuming the track direction

is correct, and then the direction is arti�cially reversed, and the likelihood is recalculated.
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(a) Muon (b) MIP, no Bragg peak

(c) Proton (d) Pion

(e) Kaon

Figure 6.11: Probability maps for each particle species using the Landau and Gaussian widths for
the simulated collection plane, as described in the text. Each x bin integrated over y is normalised
to an integral of 1 in the range [0,100].
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The result which maximises the likelihood is thought to be the correct direction, however

both values are stored for future use.

• Additionally, the track end-point resolution is dynamically accounted for. This is done by

allowing the hit residual range to �oat within ±2 cm, (the estimated 1� envelope on the

end point resolution for tracks from the neutrino pass of the Pandora reconstruction suite,

as shown in Figure 6.12), calculating the likelihood for many points with 0.05 cm spacing

within these bounds, and taking the maximised likelihood.

Figure 6.12: End point resolution for BNB-induced tracks reconstructed by neutrino pass of the
Pandora reconstruction suite.

Both the data and the simulation suggest that as the the end of the track is approached, the

Landau-Gaussian distributions become wider (see, for example, Figures 7.14 and 7.15), however

it is believed that this is reconstruction-driven and not physics-driven. The explanation for this is

that the end point resolution can have signi�cant impact on the apparent width of the distribution

and this is especially dominant at very low residual range, where the dE/dx is rapidly changing.

This is shown in Figure 6.13. This e�ect could be captured by by modifying the width of the

distribution as a function of residual range, however due to the dynamic �oating of the end-point

resolution, as outlined above, this is not necessary.
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Figure 6.13: Demonstration of the impact of end point resolution on the e�ective width of the
distribution. The black line here is the nominal muon theory as shown in Figure 6.2, the green
line is what would be expected if the track was extended by 2 cm, and the red line is what might
be expected if the track was truncated by 2 cm. It is clear here that reconstructing an incorrect
end point for the track can signi�cantly alter any PID variable which uses the dE/dx and residual
range of each hit associated to a track unless this e�ect is speci�cally targeted.

Figure 6.14 shows a comparison of data and simulation for the bare likelihoods for muons,

pions, protons, kaons, and MIPs. In general, the agreement between data and simulation here is

unimpressive. The shape of the proton region is reasonably well approximated in the simulation,

however there are signi�cant shape di�erences in the muon region in each plot. Muons may stop

in the detector and exhibit a Bragg peak, or may exit and look like a MIP. Part of the disagreement

here may be due to di�erent relative strengths of the di�erent muon populations, although it

seems unlikely that this captures the whole problem.

Taking the ratio of some of the variables produced by the BL algorithm can signi�cantly im-

prove the agreement between data and simulation, as shown in Figure 6.15. Here, each likelihood

has been normalised by the sum of the likelihoods, therefore enforcing the demand that they
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(a) Muon likelihood (b) Pion likelihood

(c) Proton likelihood (d) Kaon likelihood

(e) MIP likelihood

Figure 6.14: Template �t bare likelihoods for tracks under muon, pion, proton, kaon, and MIP
assumptions.
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range between 0 and 1. The improved agreement seems to indicate that the residual di�erences

between data and simulation for the bare likelihoods in Figure 6.14 are caused by one or more

e�ects which are not contained within the simulation, or where an improved implementation is

necessary. Taking the ratio of the likelihood variables halps to mitigate the di�erences between

data and simulation.

For the selection presented in Chapter 7, it is enough to identify tracks as MIP-like (either

muon or pion), or proton-like. To maximise separation between these, the variable ln(LMIP /Lp)

is constructed, as shown in Figure 6.16. In this variable we would expect protons to populate

the region below 0, and MIP-like particles to populate the region above 0. Both the separation

of muons and protons, and the agreement between the data and simulation in this variable are

extremely good. The e�ciency and purity plots presented in Figure 6.16 also indicate that this

algorithm is reasonably insensitive to the detector e�ects which were investigated.
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(a) Muon likelihood (b) Pion likelihood

(c) Proton likelihood (d) Kaon likelihood

(e) MIP likelihood

Figure 6.15: Template �t likelihoods for tracks under muon, pion, proton, kaon, and MIP assump-
tions, normalised from 0 to 1.
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(a) Without Calibration (b) Nominal simulation

(c) Dynamic induced charge (d) Birks model

(e) E�ciencies and purities

Figure 6.16: Template �t plots of the ln(LMIP /Lp) ratio for plane 2 for four di�erent samples.
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6.4 Discussion

In order to compare the e�ciency and purity of the four PID methods outlined in the previous

section, Figure 6.17 shows the e�ciency versus purity curves for each method, for the nominal

simulation, as well as for the two samples used to assess they systematic uncertainties. These

are generated by varying the cut value for each algorithm. The curves are separated by parti-

cle species. It is clear that the PIDa and depErangeE methods under perform compared to the

ln(LMIP /Lp) and � 2
�
− �

2

p
algorithms, which are similar in performance to each other.

Using Figure 6.17, a single test cut value can be chosen, and summary tables for muon and

proton identi�cation e�ciencies and purities across the nominal and two detector variation sam-

ples can be found in Table 6.5. The cut value that has been chosen for each variable approximately

maximises the proton selection � × p.

The muon e�ciencies and purities for the ln(LMIP /Lp), � 2� − � 2p , and PIDa algorithms are com-

parable: these algorithms select muons with 95%+ e�ciency and around 80% purity, and this can

be slightly tuned by choosing cut values for the needs of a speci�c analysis. However, there is a

wide range of possible proton e�ciency and purities. The BL algorithm is able to attain excellent

proton e�ciency without sacri�cing too much purity (both approaching around 85%), while the

�
2

�
− �

2

p
algorithm is able to slightly beat out the BL algorithm on purity, with a sacri�ce to the

e�ciency.

Another vital consideration when evaluating the particle ID algorithms is the agreement be-

tween data and simulation. If the simulation does not describe the shape of the data well, then

this reduces con�dence in the ability to select the intended particles with the quoted e�ciency

and purity. Table 6.6 shows the goodness-of-�t � 2/NDF between the data and simulation for each

of the three detector samples, both for the POT-normalised distribution and after the template

�t. These numbers are taken from the �gures shown in Section 6.3. In general, a higher level

of agreement between data and simulation is observed in the BL-based variables over the other

variables. This is particularly true after performing the template �t in which the normalisation of

di�erent particle species is allowed to change, but it is also true of the POT normalised distribu-
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tions presented in Appendix A.2.1. In many of the distributions shown in Section 6.3 it seems that

the overall proton normalisation is too high in simulation, and the agreement between data and

simulation can be improved by decreasing the total number of protons. This e�ect will be touched

upon in Chapter 7. The depErangeE algorithm has a similar level of agreement between the data

and simulation as the BL algorithm, but as mentioned above, the �/p separation is signi�cantly

reduced.

Variable POT-norm. � 2/NDF Template Fit � 2/NDF
Nom. DIC. Birks. Nom. DIC. Birks.

ln(LMIP /Lp) 28.52 11.71 28.12 4.19 9.22 4.33
�
2

�−p
194.32 45.66 41.39 270.77 50.15 12.74

PIDa (mean) 60.07 28.26 39.69 33.11 29.00 7.67
depERangeEMu 29.91 16.18 24.33 5.29 11.60 3.78

Table 6.6: Goodness-of-�t � 2/NDF showing data/simulation agreement for each algorithm, both
for the POT-normalised distribution and after the template �t.

The robustness of the algorithms can be analysed by looking at how the e�ciencies, purities,

and agreement between data and simulation changes between the three di�erent samples. By

looking at Figure 6.17, and Table 6.5 it can be observed that in terms of e�ciency and purity, most

algorithms are reasonably insensitive to the Birks recombination modi�cation, but they each have

a 3-5% sensitivity on the DIC modi�cation. This is somewhat expected as the DIC model results

in an additional dE/dx smearing over the nominal sample (that is, a wider distribution in dE/dx)

leading to an over-smearing when the tuning is applied to the simulation.

By looking only at the variations of e�ciency and purity, each algorithm appears to be reason-

ably robust, however Table 6.6 tells a di�erent story. Here, the spread in �
2
/NDF values makes

it clear that the ln(LMIP /Lp) and depErangeE algorithms, are much more robust against these

systematic uncertainties than the remaining algorithms.

One could ask whether the di�erent algorithms are accessing di�erent aspects of the phase

space; if they do, then select algorithms could be used in a multi-variate analysis in order to

bolster the particle identi�cation capabilities at MicroBooNE. An understanding of the overlap of
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the samples can be gained by construction of several Venn diagrams, as shown in Figure 6.18.

Figures 6.18a and 6.18b show the overlap of the BL and �
2 algorithms with the PIDa and

depErangeE algorithms. The overlap between the �rst two of these is very large, which is to

be expected as they are utilising the same information. The LMIP /Lp algorithm selects slightly

fewer protons than the � 2 algorithm because it is slightly less e�cient. The e�cencies for proton

identi�cation for the PIDa and depErangeE are reasonably large and so the overlap between

these algorithms and the BL/� 2 algorithms is reasonably large. For both of these algorithms this

e�ciency comes with the penalty of worse muon identi�cation rates (indicated by their much

lower muon identi�cation e�ciency, and lower proton identi�cation purity).

The last comparison which has been made is the overlap of those events selected by PIDa

versus those selected by depErangeE and this is shown in Figure 6.18c. For protons, the two

algorithms are accessing very similar phase space, however for muons there is a signi�cant dif-

ference. This indicates that while neither are particularly pure, the muon backgrounds which

contaminate the protons are di�erent in each algorithm indicating that they are sensitive to dif-

ferent e�ects.

Because the overlap between the algorithms presented here is rather large, it seems unlikely

that feeding these algorithms into a multi-variate analysis would result in signi�cant improve-

ment to the particle identi�cation.

Based on the work in this chapter, the choice is made to proceed using the ln(LMIP /Lp) variable

as the primary PID method. This choice is made as the algorithm is able to replicate the high

e�ciency and purity of the � 2
�
−�

2

p
variable, but with a signi�cantly improved agreement between

data and simulation, and an improved robustness against the systematic uncertainties discussed

in this section.

The �nal test of the particle identi�cation algorithm is to ensure that it is resilient against

changes to the underlying interaction model. In absence of, for instance, a sample using a di�erent

neutrino interaction generator, this is investigated by looking at the agreement between data and

simulation and the e�ciency and purity for di�erent track lengths and angles. Particular interest
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is paid to low track lengths and tracks near to 90 degrees to the beam direction, as they represent

lower energy particles which may be expected to be less well modeled.

A comparison of data with simulation for the lowest chosen track length bin (between 0 and

2.5 cm) and the lowest chosen |�x |
1 bin (0 to 30 degrees) can be found in Figures 6.19 and 6.20

respectively. For each of these plots there is a signi�cant disagreement between the data and

simulation when the nominal simulation is used, however using the induced charge simulation

mitigates those changes to a large extent.

Proton and muon selection e�ciencies and purities as a function of track length and |�x | are

shown in Figure 6.21. In general these distributions are reasonably �at in both e�ciency and

purity. The one distribution which does follow this trend is the muon purity as a function of

track length, where there is a discontinuity around 20 cm. This is can be simply explained as being

due to most muons from neutrino interactions having lengths above 20 cm, while a signi�cant

number of cosmic-ray muons also appear below 20 cm.

1
�x is de�ned to be 0 degrees in axis of the drift direction, with ±90 degrees equivalent to the beam and anti-beam

direction. Here, the absolute value of |�x | has been taken.
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(a) Muon

(b) Proton

(c) Pion

Figure 6.17: Curves in e�ciency/purity space for muons, protons, and pions. For each plot, the
performance of the four potential algorithms are presented using the nominal simulation as well
as the DIC and Birks recombination samples. The red line on the muon and proton plot represent
lines of � × p = 0.75, and the performance of each algorithm can be qualitatively estimated by
how close the curves approach this line.



142 CHAPTER 6. PARTICLE IDENTIFICATION

(a) Overlap of ln(LMIP /Lp),
�
2

�−p
, and PIDa.

(b) Overlap of ln(LMIP /Lp),
�
2

�−p
, and Edep − Erange .

(c) Overlap of the Edep − Erange and PIDa algorithms

Figure 6.18: Venn diagrams showing the overlap of each chosen algorithm for true muons selected
as muons and true protons selected as protons
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(a) Nominal simulation (b) Dynamic induced charge

Figure 6.19: A comparison of data and simulation for tracks between 0 and 2.5 cm. This is dom-
inated by protons, which tend to be much shorter than protons. There is a shape disagreement
at low ln(LMIP /Lp) values, however this is almost completely mitigated by the e�ects of induced
charge.

(a) Nominal simulation (b) Dynamic induced charge

Figure 6.20: A comparison of data and simulation for tracks with �x < 30 degrees. There is very
clearly a large normalisation and shape di�erence in the nominal simulation, however including
the e�ect of induced charge largely removes this disagreement, aside from a slight dip in the
simulation around ln(LMIP /Lp), which does not appear to be replicated in the data.
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Figure 6.21: Proton and muon selection e�ciencies and purities for the ln(LMIP /Lp) algorithm as
a function of track length and �x . The e�ciencies and purities are generally smoothly varying,
and follow shapes which are expected.
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Chapter 7

Selection of �� CC0�Np Events

“In [physics] almost everything is already

discovered, and all that remains is to �ll a few

unimportant holes”

Phillipp von Jolly, to Max Planck (1878)

The analysis presented in this work has been performed in order to constrain the systematic

uncertainties of an electron neutrino dataset. In order to perform the systematic constraint, this

chapter will outline the development of a selection of �� CC events with 0 pions and N protons

above 40 MeV kinetic energy in the �nal state (�� CC 0�Np).

7.1 Signal De�nition and Backgrounds

This signal de�nition was chosen in order to approximate the signal de�nition used by Mini-

BooNE (CCQE), while the demand of at least one proton was chosen to minimise the contam-

ination from cosmic rays. The 40 MeV kinetic energy lower limit on the signal de�nition was

chosen to ensure that the proton crosses enough channels such that particle identi�cation can be

performed.

�� CC 0�Np interactions are de�ned as containing exactly one muon, and some number of
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CC𝝿+/- CC0𝝿-NPCC0𝝿-0P
CC0𝝿-1P below 

threshold

40 MeV threshold

CC𝝿0

Figure 7.1: Primary �� CC backgrounds to the selection of the signal are shown in the red box,
where a blue line represents a muon, a red line represents a proton, and a green line or triangle
represents a charged or neutral pion, respectively.

protons above 0 emanating from the vertex. The main backgrounds to this are CC interactions

which contain a charged or neutral pion, those without a proton, and NC events. These are shown

in Figure 7.1.

Many of the �gures in this chapter contain comparisons of MicroBooNE data and simulation,

and contain a stacked histogram of the signal and backgrounds. These backgrounds have been

separated into the categories described below.

Cosmic: The selected interaction contains only particles of cosmic origin.

Mixed: Due to misreconstruction, the selected interaction contains both neutrino-induced par-

ticles and particles of cosmic origin.

OOFV: Events with a true vertex outside of the �ducial volume, where the reconstructed vertex

is within the �ducial volume. This primarily happens due to the space charge e�ect.

Dirt: Events selected from the dirt sample.

NC: Events selected which contain a �� neutrino interaction, but where the interaction is via the

neutral current.

�e, �̄e: Events selected which contain a neutrino interaction, but where the interacting neutrino

is either a �e or �̄e .
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�̄�: Events selected which contain a neutrino interaction, but where the interacting neutrino is a

�̄� event.

�� CC Other: Selected �� CC interactions which are not signal. These events may contain a pion,

or may not contain a proton.

�� CC0�Np: Selected signal events.

O�-beam data Data taken outside of the beam window but with the same constraint on the

software trigger.

On-beam data Data taken within the beam window with constraints on the software trigger.

7.2 Data Samples

The data samples which have been used in this analysis are described in this section. A summary

of the POT of the datasets used in this analysis is found in Table 7.1.

7.2.1 Run 1 Data

The data used in this analysis represents 5 × 1019 protons on target of collected beam data from

MicroBooNE Run 1. This represents less than 5% of the full 13 × 1020 POT which MicroBooNE is

expected to collect over its lifetime, and is the data which is currently open for the purposes of

developing analyses.

In addition to this, all of the Run 1 o�-beam data is used.

7.2.2 Simulated Data

The nominal simulation sample used in this analysis corresponds to around 2,000,000 events, or

1.86e+21 POT. These events are generated within the MicroBooNE TPC according to the simula-

tion chain outlined in Chapter 4.
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7.2.3 Out-of-TPC Simulation

The nominal simulated dataset contains neutrino interactions which have been simulated within

the MicroBooNE TPC. Particles from interactions which take place outside of the TPC may enter

and be selected as neutrino candidates. These are referred to as Out-of-TPC or dirt backgrounds.

This happens primarily because the MicroBooNE TPC is contained within a cylindrical cryo-

stat which is �lled with liquid argon. Approximately half of the total mass of liquid argon is not

contained within the TPC, and this means that approximately half of the interactions in Micro-

BooNE occur inside of the cryostat but outside of the TPC. These interactions are able to have

a �ash in-time with the beam which may be detected by the light collection system, meaning

they may be selected as a neutrino candidate. Due to processing constraints, these events are not

contained in the nominal simulation, and so a separate simulation of these events is produced.

This dataset corresponds to 1.69e+21 POT.

7.2.4 Detector Variation Samples

In order to assess the impact of the detector-related systematic uncertainties in MicroBooNE,

several detector variation datasets are leveraged. These are simulated samples where parameters

thought to have some systematic e�ect on analyses are varied by their ±1� bound, or where

speci�c models are turned on or o� in order to gauge the magnitude of their e�ect. Each detector

variation dataset uses the same underlying events from the GENIE generator in order to remove

statistical uncertainty as a factor.

One drawback of separating the out-of-TPC events from the simulation is that the detector

variation samples described below do not a�ect the dirt backgrounds, however the out-of-TPC

contamination in neutrino selections is generally small due to �ducial volume constraints, and

so the e�ect of this is estimated to be small.

The variation samples presented here are intended to be a conservative treatment, and work

is ongoing within the collaboration to constrain many of these through in-situ measurements.

Many of the e�ects listed here are described in greater detail in Chapter 3.
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Central Value (CV) The nominal MicroBooNE simulation with no additions or modi�cations.

Note that this is the same simulation as presented in Section 7.2.2, but it contains the same

underlying events as the other detector variation samples such that they are not statistically

independent.

Space Charge E�ect (SCE) A data-driven correction is applied to the nominal simulation of

the SCE. This dataset is then generated using the data-driven SCE model which moves the

simulation to better match what is measured in the data. This data-driven correction is

applied to both the spatial migration map and the electric �eld modi�cation map.

Light Yield (LY) In the central value simulation, there were a number of bugs contained in the

simulation of scintillation light. The primary bug here is that the simulation assumed that

every particle produced light assuming it was a true electron meaning the number of pho-

tons/cm is constant for all particle species. This has been corrected in this variation sample.

Longitudinal Di�usion (LD Up and LD Down) There are two variations here: one turns down

the longitudinal di�usion coe�cient and the other turns the coe�cient up. Currently this

is estimated from world data to be 6.2 cm2/s+57%
−47%

. In future iterations of the systematic un-

certainty treatment, the result obtained in Chapter 5 will supersede these values.

Transverse Di�usion (TD Up and TD Down) Both transverse and longitudinal di�usion are

simulated assuming MicroBooNE’s design voltage, 500 V/cm. In the case of longitudinal

di�usion the uncertainties easily cover the di�erence between this (6.2 cm2/s) and the cor-

rect value from a �t to world data (6.36cm2/s), however in the case of transverse di�usion

this is not the case, and so both variations fall below the nominal DT value and the ±1�

is 16.3 cm2/s−24.5%
−49.6%

. The world data for transverse di�usion does not cover the MicroBooNE

electric �eld, and so the uncertainties here were chosen from theoretical models.

Wire Noise (WN Up and WN Down) The nominal simulation uses a data-driven model of wire

noise, as described in Chapter 4. The magnitude of the noise is varied up and down by 10%.
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PMT Noise (PMTN Up and PMTN Down) The main noise on the MicroBooNE PMTs is single

PE noise, which is seen at a rate of 250 Hz. The systematic variations here use a ±1� of

±50Hz, which is an approximate ±1 � variation on measurements taken from the data.

Induced Charge (DIC) Induced charge has been widely discussed within this work. There is no

induced charge simulation in the nominal MicroBooNE simulation. This detector variation

introduces a preliminary simulation of this e�ect, and is referred to as the Dynamic Induced

Charge simulation.

Wire Response Function (SQUEEZE RF and STRETCH RF) The wire response function is

measured from the data, however studies on simulation have shown that there is some bias

on this measurement. This is a roughly 20% bias, and so these detector variation samples

modify the width of the response function by ± this amount.

Removing Channels Prone To Saturation (SAT) A number of channels in the MicroBooNE

TPC will occasionally have charge build up on the capacitors in the ASICs, and this results

in an amount of dead time on wires connected to these ASICs. This detector variation

simulation simulates these channels as being non-responsive in order to understand the

e�ect on the reconstruction.

Removing Miscon�gured Channels (MIS) This variation simulates miscon�gured channels

as being non-responsive in order to place an upper bound on their e�ect on reconstruction.

Light Outside of the TPC (EXTTPCVIS) The light production from charged particles outside

of the TPC is thought to be incorrectly simulated because e�ects such as the re�ectance of

the cryostat are not present, and so this variation increases the light yield in this region by

50%.

Electron Lifetime (LT) The electron lifetime in MicroBooNE has been measured to be very

high, and is treated to be quasi-in�nite in the nominal simulation. This detector variation
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estimates a lower bound on the e�ect of electron lifetime by simulating the lifetime to be

10 ms.

Recombination Model (BIRKS) The nominal MicroBooNE simulation uses the Modi�ed Box

model tuned to ArgoNeuT data. This substitutes the Birks recombination model [92], tuned

to ICARUS data [103], in the MicroBooNE reconstruction (note that the Modi�ed Box model

is still used in simulation).

Sample Number of Triggers POT Scale Factor
On-beam data 10905211 4.89e+19 -
O�-beam data 77329137 - 0.141
BNB+Cosmic - 1.86e+21 0.026
Out-of-TPC - 1.69e+21 0.029
CV - 1.94e+20 0.253
SCE - 3.92e+20 0.125
LY - 1.97e+20 0.248
LD Up - 1.95e+20 0.251
LD Down - 1.97e+20 0.248
TD Up - 1.95e+20 0.250
TD Down - 1.98e+20 0.248
WN Up - 1.94e+20 0.252
WN Down - 1.96e+20 0.250
PMTN Up - 1.96e+20 0.250
PMTN Down - 1.98e+20 0.247
DIC - 1.96e+20 0.250
STRETCH RF - 1.94e+20 0.252
SQUEEZE RF - 1.94e+20 0.252
SAT - 1.97e+20 0.248
MIS - 1.93e+20 0.252
EXTTPCVIS - 1.97e+20 0.249
LT - 1.97e+20 0.249
BIRKS - 1.97e+20 0.248

Table 7.1: Datasets used in the development of the �� CC 0�Np selection, and understanding of
the detector-related systematic uncertainties.
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7.3 The �� CC-inclusive selection

The selection of ��CC0�Np events leverages MicroBooNE’s �� CC-inclusive selection as a pre-

selection and builds on this to remove both events containing pions and those which do not

contain protons. This pre-selection is described in brief in this section. Full details of the selection

can be found in reference [104].

The analysis leverages the Pandora multi-algorithm pattern recognition software (see [105,

91], and Chapter 4.6) as part of the reconstruction.

7.3.1 Rejection of Cosmic-Ray Backgrounds

MicroBooNE, being a surface level detector, has a large number of cosmic rays incident upon it,

and these make up the most signi�cant background to any neutrino selection. This, combined

with its relatively slow readout ((ms)) means that each event read out from the detector contains

(10) cosmic ray muons. In order to perform neutrino physics, it is then necessary to process

each event through a cosmic removal stage. In practice, this is can be done by using topological,

optical, and high-level reconstructed information, and is done in several stages.

Topological Cosmic Rejection

First, cosmic tagging is performed by tagging PFPs which have hits which are not consistent with

the neutrino beam spill window. Nominally, the MicroBooNE readout window is around 9600

ticks in time (where 1 tick is 0.5 �s), however neutrinos are known to arrive within a speci�c 4600

tick window, and so anything which is not fully contained within this window can be identi�ed

as being of cosmic origin.

In practice, this cosmic tagging is performed in two ways:

• If a PFP has 4 or more hits in one or more planes reconstructed as being out of time, then

the PFP is determined to be of cosmic origin and is not considered in the analysis.
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• Remaining PFPs then undergo geometric cosmic tagging to determine whether it both en-

ters and exits the TPC by checking the reconstructed start and end point of each PFP against

the �ducial volume (FV) de�ned in table 7.2. The relatively tight FV cut in the y position is

necessary to remove cosmic tracks for which the start and end points have been shifted due

to the space charge e�ect. Note that a smaller �ducial volume is used in event selection.

TPC Dimension Fiducial Volume
x 10 cm
y 30 cm
z 20 cm

Table 7.2: Summary of the �ducial volume used in the geometric cosmic tagging outlined in the
text.

Optical Cosmic Rejection

Following this, optical information is leveraged to remove additional cosmogenic tracks. The

geometry of each PFParticle is used to generate a �ash hypothesis on MicroBooNE’s 32 PMTs

and this is compared against the �ash coincident with the 1.6 �s beam window.

The �ash in the beam window has a reconstructed Z-position of

⟨Z⟩ =
(

32

∑

i=0

ZPMTi
× PEi

)
/

32

∑

i=0

PEi = Zf lasℎ (7.1)

with a standard deviation given by

√

Var(Z ) =
√

⟨Z
2
⟩ − ⟨Z⟩

2
= ΔZf lasℎ. (7.2)

If the number of PE reconstructed on a single PMT is greater than 3� away from the hy-

pothesised number of PE and the hypothesised Zf lasℎ of the �ash is not within ΔZf lasℎ of the

reconstructed Zf lasℎ, then the PFP is identi�ed as being of cosmic origin.

Further cosmic rejection is applied by looking for so-called Anode-or-Cathode Piercing Tracks
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(ACPT). For a given track which truly enters the TPC through the top and leaves through the

anode, then the reconstructed time of the track is tt ∼ tA, where tA = xA/vd is the time at the

anode. The true track should have an associated �ash with time tF , and so we can construct the

relationship

tt − tF ∼ tA (7.3)

For each track and �ash pair (other than the candidate neutrino �ash), tt −tF −tA can be calculated.

If this is approximately zero then the track can be identi�ed as being cosmogenic. This can be

repeated under the assumption that the track enters the anode and leaves the bottom of the TPC,

and under the assumptions that the track pierces the cathode and either the top or bottom planes

of the TPC. For each iteration it is ensured that the reconstructed �ash position is compatible

with the reconstructed track.

Cosmic Rejection Using High-Level Proprties

In addition to this, the following two algorithms are aimed at removing cosmic rays which stop in

the detector. This type of cosmic ray can be particularly challenging for analysis because they can

mimic a neutrino topology in the case where a there is a Michel electron. This is complicated by

imperfect reconstruction where the electron may be reconstructed as either a track or a shower,

may not be reconstructed at all, or may even be merged with the cosmic muon.

• The �rst algorithm is pitched at removing cosmic muons which have a well reconstructed

Michel electron, and uses a series of techniques at the hit-level to try and identify the Bragg

Peak of the muon, followed by a drop in the dQ/dx, which represents the presence of the

Michel electron.

• The second algorithm makes use of a Multiple Coulomb Scattering (MCS) �t in order to

determine the direction of the muon. As a charged particle of momentum p traverses a

medium, it undergoes electromagnetic scattering o� of atomic nuclei. This can be mod-

eled as a Gaussian functional form centered at 0 with an RMS, �HL
0

, paramaterised by the
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Highland formula [106],

�
HL

0
=

S2

p�c

z

√

�

X0
[
1 + � × ln

(

�

X0
)]

, (7.4)

where � is the distance traveled within the medium, X0 is the radiation length of the medium

(14 cm in liquid argon), z is the magnitude of the charge of the particle (unity, for muons),

� = v/c, and the S2 and � parameters have been determined to be 13.6 MeV and 0.038,

respectively.

�
HL

0
is inversely proportional to � , indicating that a track should scatter by higher angles

as the momentum decreases. By performing a likelihood �t in each direction of the track, a

preferred direction can be determined. If the track is determined to be entering the detector

then it is identi�ed as a cosmogenic track.

7.3.2 Flash to TPCObject Matching

Any remaining tracks and showers which are determined to be related are grouped together into

a TPCObject. This grouping is done by following the PFParticle hierarchy, contained within the

ParticleFlow Object, as described in Chapter 4.6, i.e. starting from each reconstructed neutrino

and including all of the daughter particles iteratively until all particles in the hierarchy have been

included in the TPCObject.

The challenge here is separating out the neutrino candidate TPCObject from any cosmic TP-

CObjects which passed the cosmic rejection cuts. This is performed by levaraging the light in-

formation to do TPCObject-to-optical information matching (or Flash Matching, FM).

To perform the FM, each TPCObject is taken, and it’s x position is modi�ed several times, and

at each position the topology of the interaction and geometry of the detector are used to predict

the number of PE expected on each PMT. This is compared against the reconstructed number of

PE on each PMT, and a likelihood is constructed between the two,
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Figure 7.2: De�nition of the �ducial volume for the �� CC-inclusive event selection. Figure taken
from reference [104]. The left panel here shows a side-on view of the TPC, while the right hand
panel shows an end-on view of the TPC.

−LL(x) = −

i=32

∑

i=0

ln(Poisson(Oi , Hi(x))), (7.5)

which is then minimised across the chosen x positions. This is repeated for each TPCObject

in the detector and the one which minimises the −LL(x) is chosen as the neutrino candidate.

An additional quality cut is placed at this stage, which demands that the x position chosen by

the FM agrees with the assumed x position given by the �ash time with some tolerance.

7.3.3 Fiducial Volume

At this stage in the selection, there is a single TPCObject selected inside the cosmic �ducial

volume de�ned in Table 7.2. During this stage of the selection, a tighter �ducial volume is de�ned,

shown in Figure 7.2. This takes into account the known large dead region on the collection plane

at around z = 700 cm. The large 35 cm �ducal cut in Y is de�ned such that cosmogenic tracks

where the start and end positions have been mis-reconstructed due to the space charge e�ect are

still removed.
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Figure 7.3: The e�ciency of selecting �� CC-inclusive events as a function of neutrino energy,
separated by interaction type.

7.3.4 Performance of the �� CC-inclusive Selection

At this point it is instructive to quantify the performance of the inclusive part of the selection.

The selection e�ciency is de�ned to be

� =

Selected �� CC interactions with a vertex in the FV
Generated �� CC interactions with a vertex in the FV , (7.6)

and the purity is de�ned to be

p =

Selected �� CC interactions with a vertex in the FV
All selected events . (7.7)

The overall e�ciency and purity of the selection are found to be 57.2% and 49.1%, respectively.

The e�ciency is shown as a function of true neutrino energy, separated by interaction type, in

Figure 7.3.

After the CC-inclusive selection has been performed, 8351 on-beam events have been selected

from MicroBooNE Run 1 data, with 6523.6 events being predicted from the simulation, and 2708.2

o�beam events, bringing the total predicted events to 9231.8. Of the selected events in simulation,

4531.6 are �� CC-inclusive signal events (3302.9 of which are �� CC 0�Np), and the remaining
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selected events are primarily OOFV (670.1), Cosmic (594.5), and Dirt (385.9).

7.4 Selection of �� CC 0�Np Events

After selecting �� CC interactions, removal of events with pions and identi�cation of muons

and protons must take place. In principle, the selection of �� CC 0�Np interactions requires the

identi�cation of the following event characteristics:

• TPCObjects must meet the topological requirement of having at least two reconstructed

tracks and zero reconstructed showers.

• A particle identi�cation requirement of having only one muon candidate in order to remove

events containing a pion

In practice, each of these steps have complications. Chapter 7.4.1 describes some of the chal-

lenges in placing topological cuts on the data, and Chapter 7.4.2 outlines the particle identi�cation

leveraged in this analysis.

7.4.1 Topology Cuts

Initial Studies of Reconstructed Tracks and Showers

Initially, investigations into the topological information of the TPC objects were performed in

order to develop a selection based on reconstructed tracks and showers, however di�erences

between the MicroBooNE simulation and the MicroBooNE data mean that applying the same

reconstruction algorithm to both yields di�erent results. This is displayed succinctly in Figure

7.4. Speci�cally, it should be noted that the ratio of data to simulated events for the number

of reconstructed PFParticles is reasonably �at, whereas the ratios for number of reconstructed

tracks and showers are biased low and high respectively, indicating that more showers and fewer

tracks are reconstructed in the data than in the simulation.
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Figure 7.4: Comparison of data and simulation for the number of reconstructed PFParticles,
tracks, and showers in a TPCObjects which pass the CC-inclusive selection reconstructed by
the Pandora reconstruction algorithm. These plots use the CV dataset, de�ned above.

While it is feasible that the reason for this di�erence is due to a mis-modeling in the GENIE

generator or an issue with particle propagation in Geant4, it seems more likely that this is due to

a missing e�ect in MicroBooNE’s detector simulation. This is especially true given results from

the CC� 0 cross section analysis, which suggests reasonable agreement with GENIE and NuWro

[97]. It seems likely that in large part these di�erences are driven by a lack of induced charge
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e�ects in the nominal simulation. Induced charge e�ects have been described in Chapters 3.2.2

and 4.5.1.

Including induced charges modi�es the shape of the clusters of hits through two primary

mechanisms:

• Bipolar induced signals from neighbouring energy depositions can destructively interfere

with the primary signal on a selected wire, meaning the signal pulse falls below hit-�nding

threshold and no hit is created.

• The induced signals on neighbouring wires can act to induce additional hits on a selected

wire.

A preliminary implementation of such e�ects is included in the DIC systematic variation

sample described in Section 7.2.4. This can be used as a proxy for the MicroBooNE data, and can

be compared against the nominal CV simulation to begin to understand the di�erences between

data and simulation.

To do this, a dataset containing CC-inclusive selected events is used.

The �rst piece of information which can be gleaned by looking at the DIC sample is that it

leads to around 8% fewer events being selected. This is shown in Figure 7.5.

Further to this, the DIC sample can be used to probe how often particles of di�erent species are

reconstructed as a track versus reconstructed as a shower in the MicroBooNE data compared with

the nominal simulation. This information is presented for muons, protons, pions, and electrons

in Figures 7.6, 7.7, 7.8, and 7.9, respectively. These are presented as a function of true kinetic

energy and true �xz , where this de�nes the angle to the plane1. Here “true” means the energy and

angle of the true particle which has been associated with the reconstructed object (see Appendix

B). The blue histogram shows the particles reconstructed in the CV dataset, while the green

shows the particles reconstructed when induced charge is included. The grey histogram shows

1
�xz = 0/� is forward going, �xz = ±�/2 is going into or out of the anode plane array.
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Figure 7.5: Number of events selected by the CC-inclusive selection in the CV dataset and in the
DIC dataset

the distribution of the true particles which have been matched to the reconstructed objects, and

the bottom plot in each �gure shows the ratio of the DIC over the CV dataset.
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Figure 7.6: Fraction of muons which have been reconstructed as a track according to Pandora
using the nominal (blue) and DIC (green) datasets as a function of true kinetic energy (left) and
true �xz (right). Overlayed is the spectrum of energies for reconstructed particles.

While there are di�erences between the two samples for true electrons and muons, these are

generally di�erences on the order of a few percent. By a signi�cant margin the largest di�erences
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Figure 7.7: Fraction of protons which have been reconstructed as a track according to Pandora
using the nominal (blue) and DIC (green) datasets as a function of true kinetic energy (left) and
true �xz (right). Overlayed is the spectrum of energies for reconstructed particles.
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Figure 7.8: Fraction of pions which have been reconstructed as a track according to Pandora using
the nominal (blue) and DIC (green) datasets as a function of true kinetic energy (left) and true �xz
(right). Overlayed is the spectrum of energies for reconstructed particles.

are for the true protons and pions, where both show an approximately 10% di�erence between

nominal and DIC in the bin where most of the reconstructed particles lay in Ek . It is also obvious
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Figure 7.9: Fraction of electrons which have been reconstructed as a track according to Pandora
using the nominal (blue) and DIC (green) datasets as a function of true kinetic energy (left) and
true �xz (right). Overlayed is the spectrum of energies for reconstructed particles.

that this is not only a function of energy, where lower energy (and therefore shorter) protons

and pions (Figures 7.7 and 7.8) are expected to be reconstructed as a shower more often in the

DIC sample, but also of angle. As might be expected from the e�ects of induced charge, as tracks

approach high angles with respect to the plane, the reconstruction becomes worse, and particles

are more likely to be reconstructed as showers.

These studies indicate that while it is not currently feasible to develop a selection based on

reconstructed tracks and showers, developing a selection based on PFParticles and applying par-

ticle identi�cation to each PFParticle in order to separate muons from protons is a viable path

forward.

Mitigation Through Fitting Showers As Tracks

In order to leverage the particle identi�cation method outlined in Chapter 6, each PFParticle is

required to have a valid set of dE/dx and residual ranges2. This poses a problem for PFParticles

which have been reconstructed as showers, as a shower residual range is ill-de�ned.
2Distance to the end of the reconstructed object
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In order to proceed, Pandora is asked to build every shower as both a track and a shower

object, meaning every PFParticle now has an associated track, which has a well-de�ned residual

range.

PID on Showers Built as Tracks

After building all PFParticles as tracks, the showers-built-as-tracks may be processed through the

PID, and the ln(LMIP /Lp) variable can be constructed in order to select out protons which were

built as showers against electrons. The results of doing this can be found in Figure 7.10.
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Figure 7.10: PID variable for showers which have been rebuilt as tracks.

The electrons mostly pile up at values greater than zero, meaning that they are more MIP-

like than proton-like, while in general protons are located at values less than zero, indicating that

they are more proton-like than MIP-like. There is a signi�cant number of protons which also fall

within the MIP peak. This is because these protons are at a high angle to the collection plane

where the charge reconstruction becomes di�cult.
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The excess which is present in the data at values in the proton region is consistent with the

earlier assertion that more protons are reconstructed as showers in the data than in the nominal

simulation.

Including both the tracks and the showers-built-as-tracks, we can reproduce the full PID dis-

tribution, and this is shown in Figure 7.11. When including these additional particles which were

reconstructed as showers there is a slight deterioration in the � 2/NDF, however this is minor.

Some amount of disagreement remains in the proton peak, however this is largely a normalisa-

tion di�erence, and is thought to be related to induced charge e�ects meaning fewer protons are

reconstructed in the data than in the simulation.
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Figure 7.11: Distributions of the MIP/proton separator using only tracks identi�ed as such by
Pandora (left) and including in addition the showers built as tracks (right).

Application of Topological Cuts

This section has outlined a method to minimise the e�ects of di�erences between data and sim-

ulation due to reconstruction e�ects.

After application of the topological demand that each interaction have at least two PFParti-

cles, the makeup of events is as follows: 6039 on-beam data events are selected compared to a



166 CHAPTER 7. SELECTION OF �� CC0�NP EVENTS

predicted 6633.8 events, of which 2571.4 events are signal, 1558.1 are o�-beam backgrounds, and

the remaining backgrounds are predicted from simulation. At this stage, the selection e�ciency

is ∼ 46.5% with a selection purity of ∼ 38.8%. At this stage, the largest backgrounds are from

the o�-beam data (1558.1 events), CC-other interactions (1162.1 events), and OOFV interactions

(517.0 events).

It might be expected that both o�-beam data and OOFV interactions are selected, because if

they decay, the muon and Michel electron meet the 2-PFParticle criteria. Both these backgrounds

and CC-other backgrounds may be targeted by applying particle identi�cation.

7.4.2 Particle Identi�cation

This analysis leverages the Bragg Likelihood algorithm in order to separate out MIP-like particles

from protons. This is discussed extensively in Chapter 6, where the performance and robustness

of the available algorithms is investigated.

Speci�cally, this analysis makes use of the ln(LMIP /Lp) variable, which was shown to have a

high selection e�ciency and purity, while being relatively robust against systematic variations

and having a good level of agreement between the data and simulation.

In order to select out the chosen signal, the demand is made that exactly one track be a muon

candidate and the remaining selected tracks be consistent with being a proton. This is done

in practice by cutting at -1 in the separator variable displayed in Figure 7.11, and de�ning any

particle which falls to the left of this cut as a proton candidate, and any particle which falls to the

right of this particle as a muon candidate.

After application of the particle identi�cation cut, the makeup of events is as follows: The

number of on-beam data events selected is 1595, compared to a prediction of 1775.2. Of the

predicted events, 1196.3 are signal, meaning the purity of the selection at this stage is 67%, while

the e�ciency is around 20.5%. The largest backgrounds at this stage of the selection are from

o�-beam data (292.4 events), followed by OOFV (87.7 events) and �� CC-other (85 events).

It was noted that after building showers as tracks, some events are misreconstructed, and so
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now it is important to place quality cuts on the selected interactions.

7.4.3 Quality Cuts

The �nal cuts, performed after the particle identi�cation, are related to the quality of the recon-

structed tracks.

This comes down to three demands:

• All proton candidates must be fully contained within the FV de�ned in Figure 7.2. This is

done because protons in general are very short and travel in straight lines, meaning that it

is di�cult to measure their energy from multiple Coulomb scattering. This means that the

only energy estimators for these particles are their length and the energy they deposit in

the TPC, both of which require containment.

• The energy of each contained reconstructed particle from its range is similar to that de-

posited in the TPC. This is applied to remove tracks which are misreconstructed by, for

instance, the inclusion of hits which are reconstructed from noise.

• Contained muon candidates must have an energy reconstructed from MCS within 20% of

the energy reconstructed from the range. This is a relatively loose cut which ensures that

the three energy estimators available for contained muons are consistent with each other.

For the second and third cuts here, the energy from range is calculated under the assumption

that the particle is a muon for muon candidates, and under the proton assumption for proton

candidates. Plots of the distributions of this variable can be found in Figure 7.12.

There are two features in these distributions: �rstly, there is a slight o�set from zero in both

distributions indicating that the energy from range is slightly higher than the energy deposited

in the TPC. This is not fully understood, but has been observed in several MicroBooNE analyses.

Secondly, it is clear from these plots that there is a some disagreement in the peak regions in both

shape and normalisation. For this reason, reasonably loose cuts are placed on these distributions

of -0.15 GeV < E
Y

dep
− Erange < 0.1 GeV.
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Figure 7.12: EY
dep
−Erange for selected contained muon candidates and proton candidates. Note that

only contained muons are present in the plot on the left, while all selected protons are present in
the plot on the right.

7.4.4 Selection Performance

After application of the full selection chain, the PID variable, log(LMIP /Lp) can be plotted for

selected events, as shown in Figure 7.13. Here, any entries to the left of -1 have been identi�ed as a

proton candidate, and any entries to the right of -1 have been identi�ed as muon candidates. There

is clearly very little contamination from muons in the proton peak, and low contamination from

protons in the muon peak. The shape agreement between the data and simulation is reasonable

overall, although there is a normalisation di�erence in the nominal simulation which can be

observed to come from the lack of induced charge e�ects.

In order to provide further con�dence that the selection is acting as intended, the dE/dx versus

residual range at the end of the track for contained and uncontained muon candidates, and leading

and non-leading proton candidates can be plotted. This is shown in Figure 7.14 for the simulation,

and Figure 7.15 and 7.16 for on-beam and o�-beam data, respectively.

It is clear from these plots, that the selected proton candidates are more highly ionising than

the muon candidates and so there can be some con�dence that the PID algorithm is acting as it
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Figure 7.13: Distribution of the PID variable log(LMIP /Lp) after the full selection chain on the CV
and DIC simulated samples. Those entries to the left of -1 are identi�ed as proton candidates,
while those to the right have been identi�ed as muon candidates.

should.

Speci�cally of interest are the o�-beam distributions presented in Figure 7.16. It might be

natural to ask why there is still a relatively signi�cant contribution of cosmic particles passing

the selection after the demand of one muon candiadate plus at least one proton candidate, and this

plot indicates that the proton candidates which are identi�ed in this sample are indeed consistent

with being protons, and this is not some feature of the PID algorithm.

As for the case of the CC-inclusive selection outlined above, the e�ciency and purity of this

selection can be de�ned as

� =

Selected �� CC 0�Np interactions with a vertex in the FV
Generated �� CC 0�Np interactions with a vertex in the FV , (7.8)

and

p =

Selected �� CC 0�Np interactions with a vertex in the FV
All selected events , (7.9)

respectively

The e�ciency of the selection is 14.2%, and the the purity is 79%. The e�ciency as a function of
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Figure 7.14: dE/dx versus residual range for uncontained and contained muons, and for leading
and non-leading protons from simulation.
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Figure 7.15: dE/dx versus residual range for uncontained and contained muons, and for leading
and non-leading protons from on-beam data.
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Figure 7.16: dE/dx versus residual range for uncontained and contained muons, and for leading
and non-leading protons from o�-beam data.

the true neutrino energy and of the true muon momentum are shown in Figure 7.17. Of particular

interest for this analysis is the e�ciency at low neutrino energy.

After the selection has been applied, a total of 804 on-beam data events are selected, where

89.8 o�-beam events are expected, and 941.9 simulated events are predicted, bringing the total

expectation to 1031.7 events. The largest backgrounds are from o�beam (89.8 events) and OOFV

(52.1 events) events. A cut �ow table is presented in Table 7.3.

Quantifying E�ects of Building Showers as Tracks

This section has so far demonstrated that application of topological cuts using reconstructed

tracks and showers is not reliable, and that this introduces di�erences between the data and

simulation.

A method has been devised in order to minimise this e�ect using the loose topological re-

quirement of demanding only two PFParticles, but demanding each PFParticle pass a PID cut. It
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Figure 7.17: E�ciency of the selection as a function of Etrue
�

and ptrue
�
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CC-inclusive 8351 3302.9 5928.9 60% 35.8%
Topological 6039 2571.4 4062.4 46.5% 38.8%
PID 1595 1196.3 578.9 20.5% 67%
Quality Cuts 804 813.4 218.3 14.2% 79%

Table 7.3: Cut �ow table, showing the number of selected on-beam events compared with the
predicted number of events, as well as the selection e�ciency and purity at each stage.

is now interesting to quantify what magnitude the uncertainty due to DIC can be reduced by if

the proposed method of building showers as tracks is followed.

To benchmark the performance of the process of building showers as tracks, two sets of cuts

can be de�ned:

1. Tight Topology Cuts Exactly 0 reconstructed showers (as identi�ed by Pandora) and >= 2

reconstructed tracks are demanded. Only one candidate track must be consistent with being

MIP-like (log(LMIP/Lp) >= −1), and all other tracks must be consistent with being a proton

log(LMIP/Lp) < −1).
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2. Loose Topology Cuts Demand only >= 2 reconstructed PFParticles, but reconstruct every

particle as a track, and subject them to a PID cut, making the same demand as above.

This study is performed in only a single variable, the candidate muon �, because it is especially

sensitive to induced charge e�ects. Further distributions can be found in Appendix B.

Results using the tight topology cuts can be found in Figure 7.18. It is clear here that the

DIC simulation drastically improves the agreement between data and simulation, but this is at

a price of a large uncertainty on the selection e�ciency. The �/p for the nominal simulation is

∼ 12.4%/ ∼ 84.0% while for the DIC simulation it is ∼ 8.9%/ ∼ 80.3%, which represents a ∼ 28.2%

uncertainty on the e�ciency.
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Figure 7.18: Candidate muon track � distributions for the nominal simulation (left) and the DIC
simulation (right) using the tight topology cuts.

Results using the loose topology cuts can be found in Figure 7.19. It is immediately obvious

here that the agreement between data and simulation in for the nominal sample is signi�cantly

improved over the tight topology cuts. The �/p for the nominal sample is ∼ 14.2%/ ∼ 79.0% and for

the DIC simulation is ∼ 11.1%/ ∼ 75.1%, which represents a 21.8% uncertainty on the e�ciency.

To summarise: by implementing loose topological cuts, the data-to-simulation agreement in

the nominal sample can be improved, and the magnitude of the systematic uncertainty due to
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Figure 7.19: Candidate muon track � distributions for the nominal simulation (left) and the DIC
simulation (right) using the loose topology cuts.

induced charge e�ects can be reduced by 22.7%.

One trade-o� to the application of the loose topological cuts is that the overall purity is re-

duced by around ∼ 6%, however this appears to mostly be due to an increase in the o�-beam data,

which can be measured and removed, and so this is thought to be a reasonable trade-o�.

Despite this improvement, the overall shape and normalisation agreement between the nom-

inal simulation and the data is still imperfect due to a lack of induced charge e�ects in the simu-

lation.

7.5 Distributions of Selected Events

Figure 7.20 shows the distribution of reconstructed neutrino vertex positions in the x, y, and z

dimensions within the MicroBooNE TPC. From these distributions it is clear that there remains

a normalisation o�set between the data and simulation, although there appears to be very little

in the way of shape di�erence.

There is a large gap around 700 cm in the vertex z position plot is due to a known dead region
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on the collection plane, leading the �ducial volume to neglect this region, as shown in Figure 7.2.

The shape of the OOFV backgrounds here is somewhat nonintuitive with events generally

laying at large x positions and at the edges of the distribution in y. This is mostly due to the

space charge e�ect. Particles which emanate from interactions which occur at larger x positions

are subject to a higher level of spatial distortion due to an increased amount of time traversing

the non-linear electric �eld caused by space charge. In this way, interactions which truly take

place outside of the �ducial volume can be brought inside the volume more often.
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Figure 7.20: Reconstructed neutrino vertex positions in the x , y and z dimensions within the
MicroBooNE TPC.

In addition to these plots, distributions of the muon and proton candidate cos(�), �, and energy

estimators are shown in Figures 7.21 and 7.22.



176 CHAPTER 7. SELECTION OF �� CC0�NP EVENTS

The downturn in the data for very forward going tracks in the muon candidate cos(�) plot is

similar to that observed by the CC-inclusive analysis [104], however it appears more pronounced.

This is thought to be for two reasons. The �rst is that there is a coherent noise �lter run on the

MicroBooNE data which is not applied to the simulation. This �lter aims to remove noise which is

correlated across several channels, and so parts of very forward going particles might be removed,

impacting the reconstruction. This would only impact the bin at cos(�) = 1. The second reason

is due to e�ects which are not included in MicroBooNE’s default tune of GENIE, such as Random

Phase Approximation corrections.

There is also some level of disagreement in the muon candidate � plot which is due to the lack

of induced charge e�ects in the simulation. Aside from these e�ects, and the overall normalisation

di�erence, the agreement between data and simulation is reasonably good.

The same holds true of the proton candidate distributions shown in Figure 7.22, where there

is generally an overall normalisation disagreement and a disagreement in �, but otherwise the

ratio of the data to simulation is relatively �at.

7.6 Neutrino Energy Reconstruction

After application of the selection outlined in this chapter, a neutrino energy estimator is con-

structed. The energy estimator which is chosen for this analysis is the sum of the energies of the

particles reconstructed as coming from the interaction.

The energy of contained muon and proton candidates are reconstructed by using the recon-

structed track range, while the energy of those muons which are uncontained are reconstructed

using the momentum obtained from multiple Coulomb scattering.

For each true muon and proton passing the selection, the variable (Etrue
k

− E
reco

k
)/E

true

k
can

be constructed. These values can be binned depending on their Etrue
k

in order to estimate the

resolution for each species as a function of their true kinetic energy. This is done separately for

uncontained and contained muons, and for protons, and a functional form similar to that of the
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Figure 7.21: Kinematic distributions for the selected muon candidate.
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Figure 7.22: Kinematic distributions for the selected proton candidates.
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Crystal Ball function (developed in reference [107]) is �t in each of these bins,

f (x; x̄ , � , k) = e
−
1

2
(
x−x̄

�
), for x − x̄

�

≥ −k

= e

k
2

2 + k(

x − x̄

�

), for x − x̄
�

< −k.

(7.10)

Here, the Gaussian width is taken to be the resolution in each bin. The results of these �ts can

be found in Figures 7.23, 7.25 and 7.27.

The resolution as a function of Ek for uncontained and contained muons, and for protons, can

be found in Figures 7.24a, 7.26a, and 7.28a respectively. These plots show that for uncontained

muons, where the energy is estimated from the magnitude of the multiple Coulomb scattering

[106], the resolution hovers around 15%, but for contained muons and protons, where the energy

can be estimated from the range the energy resolution is generally sub-5%.

In addition to this, the bias of each particle species has been found and is presented in Figures

7.24b, 7.26b and 7.28b. Here, Etrue
k

is plotted against Ereco
k

, and for each bin in Etrue
k

the modal value

of Ereco
k

is found. A least-squares �t is then performed in order to �nd the bias.
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Figure 7.23: Fits for energy resolution of uncontained muons as a function of energy.
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Figure 7.24: Resolution (left) and bias (right) for uncontained muons
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Figure 7.25: Fits for energy resolution of contained muons as a function of energy.

From the �ts to the bias plots a method can be devised for each particle species to translate

between the true and reconstructed energies. These are shown in Equations 7.11, 7.12m and 7.13.

E
true
k

=

E
reco, �, uncontained
k

− 0.002

0.983

, (7.11)
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Figure 7.26: Resolution (left) and bias (right) for contained muons
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Figure 7.27: Fits for energy resolution of protons as a function of energy.

E
true
k

= E
reco, �, contained
k

, (7.12)

E
true
k

=

E
reco, p
k

− 0.007

1.030

. (7.13)

Using these equations and the reconstructed kinetic energies, the neutrino energy estima-
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Figure 7.28: Resolution (left) and bias (right) for protons

tor can �nally be constructed. Plots of this variable can be found inf Figure 7.29 for both the

uncalibrated and the calibrated reconstructed energies.

A comparison of the true neutrino energy compared against this neutrino energy estimator

can be found in Figure 7.30. It is clear that there is a systematic bias to lower reconstructed

energies. This is expected as only charged particles which are reconstructed are able to contribute

energy to the reconstructed neutrino energy. Neutral particles and those which are too short to

be reconstructed therefore do not contribute to the reconstructed neutrino energy.

7.7 Evaluation of Systematic Uncertainties

Systematic uncertainties for MicroBooNE analyses are generally dealt with in two ways: through

unisims, or multisims.

Unisims refer to a process by which underlying model parameters are varied by ±1� of the

nominal value (or the e�ect is turned o� in order to get a lower bound on its e�ect), and the events

are re-simulated. This is performed for detector-related systematic uncertainties, as described in

Chapter 7.2.

Multisims are used for �ux and interaction uncertainties. In these cases, the underlying mod-

els have parameters with associated uncertainties which are assumed to be distributed in a Gaus-
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Figure 7.29: Total deposited energy in the TPC before (left) and after (right) calibrating.
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Figure 7.30: True neutrino energy compared with the energy estimator used in this analysis.
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sian way. Given these uncertainties, a new value for each parameter can be chosen by randomly

sampling the Gaussian function. This random throw results in a new weight for each neutrino

interaction which describes how much more or less likely it is with the randomly thrown param-

eter.

A new universe can be de�ned by randomly sampling from each underlying model parameter

at once (in a correlated way, where necessary). Some number of universes can then be gener-

ated, and each universe is assigned a global weight for the neutrino interaction which is just

the multiplication of all of the individual weights from the parameters. This process is called

reweighting.

Using these alternate universes and the central value simulation, a covariance matrix may be

constructed,

Ci,j =

1

U

U

∑

All universes,u
[N

i

N om.
− N

i

U niv.u] × [N
j

N om.
− N

j

U niv.u]
, (7.14)

where N i

N om.
and N i

U niv.u
are the number of entries in the ith bin of the nominal simulation and

of the alternative universe, respectively, and U is the total number of alternative universes.

A covariance matrix encodes how each bin within the distribution covaries with every other

bin. From this, the fractional covariance matrix can be de�ned,

Fi,j =

Ci,j

NiNj

, (7.15)

in addition to a correlation matrix,

Xi,j =

Ci,j
√

Ci,i

√

Cj,j

. (7.16)

The fractional covariance matrix and correlation matrix contain the same information as the

covariance matrix. The utility of these as opposed to the regular covariance matrix is that the

diagonal of the fractional covariance matrix gives the fractional error in each bin, while the cor-

relation matrix is unitless and has a lower and upper bound of -1 and 1.

It is often instructive to �rst construct covariance matrices for each source of systematic error,

and then combine these covariance matrices. In this case, there are three covariance matrices
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to construct: one for the �ux uncertainties, one for the neutrino interaction uncertainties, and

one for detector-related systematic uncertainties. This means the total covaiance matrix can be

written

Csyst. = Cf lux + Cxsec + Cdetector (7.17)

and this can then be combined with the statistical covariance matrix, the entries for which

lay on the diagonal

C = Csyst. + Cstat. (7.18)

7.7.1 Flux Uncertainties

Flux uncertainties come from uncertainties on the parameters contained with in the simulation

of the MicroBooNE beam simulation as discussed in Chapter 4.2. These mainly come down to

uncertainties on the hadron production, as well as uncertainties on e�ects such as the current in

the focusing horn.

The �ux uncertainties on the reconstructed neutrino energy is shown in Figure 7.31. Here,

the green histogram is the central value from the nominal simulation and the colour map shows

the distribution of systematic universes. The covariance, fractional covariance, and correlation

matrices are also presented in Figure 7.32.
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Figure 7.31: Distribution of systematic universes from the MicroBooNE �ux simulation. The
green histogram is the central value histogram, while the colour map shows the distribution of
systematic universes in each bin.
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(c) Correlation matrix

Figure 7.32: Covariance matrices for �ux-related systematic uncertainties.

7.7.2 Interaction Uncertainties

Interaction uncertainties come from the GENIE event generator outlined in Section 4.3, where

further details may be found in references [83] and [84].

The default tune of GENIE used by MicroBooNE uses the Llewellyn-Smith formalism for

quasi-elastic interactions [108], the Rein-Seghal (RS) model for both resonant and coherent pion

production interactions [87], the Bodek-Ritchie Fermi gas model of the nucelar environment [85],

and the hA model [84] for �nal state interactions. In addition to this, a model is added in order to

capture the e�ects of meson exchange currents (MEC), however this model is purely empirical.

For ease, the interaction-related systematic uncertainties used in this analysis along with their

default values (where quoted in the GENIE manual [84]) and ±1� ranges are displayed in Table

7.4. In this table, the �rst section describes the axial and vector masses for di�erent scattering

processes, as well as other parameters related to quasi-elastic scattering and the RS model of res-

onant interactions. The second section relates to interactions in the deep-inelastic regime, which
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is less important at MicroBooNE due to the typical energy of beam neutrinos. The third section

relates to hadronization and resonance decay uncertainties, while the fourth accounts for non-

resonant backgrounds to interactions with � in the �nal states. Finally, the last section contains

parameters related to intranuclear hadron transport. This work is aimed at selecting interactions

which contain only a muon and some number of protons in the �nal state, meaning that the

quasi-elastic interaction uncertainties are much more prominent than those for the resonant and

inelastic interactions.

The e�ect of interaction uncertainties on the reconstructed neutrino energy spectrum can be

found in Figure 7.33. The associated covariance matrices can be found in Figure 7.34.

It is known that these interaction systematic uncertainties are incomplete. In particular, there

is no uncertainty applied to meson exchange current interactions.
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Figure 7.33: Distribution of systmatic universes from the GENIE generator. The blue histogram is
the central value histogram, while the colour map shows the distribution of systematic universes
in each bin.

7.7.3 Detector Uncertainties

The detector-related systematic uncertainties which are probed here are outlined in Section 7.2.4.

The e�ect of these systematic uncertainties on the shape of the reconstructed neutrino energy

can be found in Figure 7.35. A summary of the percentage change in number of selected events

are presented in Table 7.5. The covariance matrices associated with detector-related uncertainties
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Parameter P Description of P Value �P/P

M
NCEL

A
Axial mass for NC elastic 0.990 GeV ±25%

�
NCEL Strange axial form factor for NC elastic 0.120 GeV ±30%

M
CCQE

A
A Axial mass for CC quasi-elastic 0.990 GeV +15

−25
%

M
CCRES

A
Axial mass for CC resonance neutrino production 1.120 GeV ±20%

M
CCRES

V
Vector mass for CC resonance neutrino production 0.840 GeV ±10%

M
NCRES

A
Axial mass for NC resonance neutrino production 1.120 GeV ±20%

M
NCRES

V
Vector mass for NC resonance neutrino production 0.840 GeV ±50%

M
COH�

A
Axial mass for CC and NC coherent pion production 1.000 GeV ±50%

R
COH�

0
Nuclear size para. controlling � absorption in RS model 1.000 fm ±10%

CCQE-PauliSup (p) CCQE Pauli suppression (via changes in Fermi level kF ) 0.242 GeV ±35%

CCQE-PauliSup (n) CCQE Pauli suppression (via changes in Fermi level kF ) 0.259 GeV ±35%

A
BY

HT
AHT higher-twist param. in BY model scaling variable �! 0.538 ±25%

B
BY

HT
BHT higher-twist param. in BY model scaling variable �! 0.305 ±25%

C
BY

V1u
CV1u u valence GRV98 PDF correction maram in BY model 0.291 ±30%

C
BY

V2u
CV2u u valence GRV98 PDF correction maram in BY model 0.189 ±40%

FZ (pion) Hadron formation zone 0.342 fm ±50%

FZ (nucleon) Hadron formation zone 2.300 fm ±50%

BR(
 ) Branching ratio for radiative resonance decays - ±50

BR(�) Branching ratio for single-� resonance decays - ±50%

R
CC1�

�p
Non-resonance bkg in �p CC1� reactions - ±50%

R
CC2�

�p
Non-resonance bkg in �p CC2� reactions - ±50%

R
CC1�

�n
Non-resonance bkg in �n CC1� reactions - ±50%

R
CC2�

�n
Non-resonance bkg in �p CC2� reactions - ±50%

R
NC1�

�p
Non-resonance bkg in �p NC1� reactions - ±50%

R
NC2�

�p
Non-resonance bkg in �p NC2� reactions - ±50%

R
NC1�

�n
Non-resonance bkg in �n NC1� reactions - ±50%

R
NC2�

�n
Non-resonance bkg in �n NC2� reactions - ±50%

x
N

abs
Nucleon mean free path (total rescattering probability) - ±20%

x
N

cex
Nucleon charge exchange probability - ±50%

x
N

el
Nucleon elastic reaction probability - ±30%

x
N

inel
Nucleon inelastic reaction probability - ±40%

x
N

mf p
Nucleon absorption probability - ±20%

x
N

�
Nucleon �-production probability - ±20%

x
�

abs
� mean free path (total rescattering probability) - ±20%

x
�

cex
� charge exchange probability - ±50%

x
�

el
� elastic reaction probability - ±10%

x
�

inel
� inelastic reaction probability - ±40%

x
�

mf p
� absorption probability - ±20%

x
�

�
� �-production probability - ±20%

Table 7.4: Neutrino interaction model parameters and associated uncertainties taken from the
GENIE generator. These are taken initially from the GENIE Users Manual [84] but were grouped
together by the authors of reference [109].
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(c) Correlation matrix

Figure 7.34: Covariance matrices for interaction-related systematic uncertainties.

can be found in Figure 7.36.

Understanding Detector-Related Systematic Uncertainties

In order to understand whether the detector-related systematic uncertainties correctly capture

knowledge of the detector, it is possible to make data-driven plots similar to those in Figures 7.6,

7.7, 7.8, and 7.9. Because it is known that the largest detector-related systematic, DIC, primarily

a�ects the reconstruction of protons, only the impact on protons is analysed. To this end, a cut

is placed at -1 in the PID distribution in Figure 7.11, and everything to the left is de�ned to be

a proton candidate, resulting in a pure selection of protons. Given this, we can ask how many

PFParticles which fall in this area were identi�ed by Pandora as a track versus being identi�ed

as a shower. The results are presented in Figure 7.37.

These plots show that in the majority of the phase space the systematic uncertainties cover

the disagreement between data and simulation. There are notable exceptions for higher energy
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(h) SQUEEZE/STRETCH RF
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Figure 7.35: E�ect of detector-related systematic uncertainties on the reconstructed neutrino en-
ergy spectrum. Each detector variation used is described in Section 7.2.4.
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Sample N. Selected Events (Ndet.var − NCV )/NCV × 100 (%)
CV 1030.82 0
SCE 1016.15 -1.42
LY 1003.14 -2.68
LDUp 1018.88 -1.16
LDDown 1038.79 +0.77
TDUp 1037.52 +0.64
TDDown 1073.82 +4.17
WNUp 1031.84 +0.10
WNDown 1026.90 -0.38
PMTNUp 1023.74 -0.69
PMTNDown 1037.81 +0.68
DIC 843.29 -18.20
SQUEEZERF 1016.69 -1.37
STRETCHRF 1037.57 +0.65
SAT 1035.59 +0.46
MIS 1062.62 +3.08
EXTTPCVIS 1004.92 -2.51
LT 946.425 -8.19
BIRKS 1035.59 +0.46
Total systematic uncertainty 21.1%

Table 7.5: E�ect of detector-related systematic uncertainties on the number of selected signal
candidates. For the total systematic uncertainty, the larger of (+1�, −1� ) is taken.

protons, which are likely to be forwards going. One possible reason for this is that tracks which

are forward going are more likely to be impacted by the coherent noise removal, which may make

it appear more sparse and therefore more likely to be reconstructed as a shower. It is also likely

that this is in part driven by physics which is not captured by the models in the event generator.

7.7.4 Total Uncertainties

Combining the �ux, cross section, and detector systematic uncertainties with the statistical un-

certainties results in the covariance matrices located in Figure 7.38

From this total covariance matrix it is possible to extract the total error in each bin of recon-

structed energy. This is shown in Figure 7.39. In general, the data fall within the systematic error

bands, athough there is a systematic excess in the simulation. Much of this is due to the lack of
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(c) Correlation matrix

Figure 7.36: Covariance matrices for detector-related systematic uncertainties.
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Figure 7.37: Data-driven track fraction plots for on-beam data and for the CV dataset with
detector-related systematic uncertainties included (green, hashed).

induced charge in the simulation, as shown in Figure 7.35.

In total, 804 events are selected from the on-beam data, with a statistical uncertainty of ±28.6

events compared to a predicted 1031.7 ± 32.0 (stat.) ± 157.8 (syst.). The ratio between data and

simulation is R = 0.78 ± 0.04 (stat.) ± 0.12 (syst.).
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(c) Correlation matrix

Figure 7.38: Combined covariance matrices for �ux, interaction, and detector systematic uncer-
tainties.
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Figure 7.39: Distribution of reconstructed neutrino energy with statistical uncertainty shown in
dark green and stat. + syst. uncertainty shown in light green. The black histogram includes the
o�-beam data as well as signal and backgrounds from the simulation. The black data points are
the selected on-beam data events.
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Chapter 8

The �� Constraint

“Scientists have calculated that the chances of

something so patently absurd actually existing are

millions to one. But magicians have calculated that

million-to-one chances crop up nine times out of ten.”

Terry Pratchett

The excess of low-energy electron neutrino candidates observed by the MiniBooNE collabo-

ration [11] can be interpreted in two distinct ways. The �rst is that the excess is electron-like in

nature, while the second treats the excess as photon-like.

The MicroBooNE collaboration is actively developing analyses under both of these assump-

tions. The expectation is that for analyses developed under the electron neutrino hypothesis,

an improvement in the sensitivity can be obtained by application of a muon neutrino dataset in

order to constrain systematic uncertainties. This chapter outlines how this is performed using

the muon neutrino selection outlined in Chapter 7 and a dataset containing electron neutrinos.

The power of the �� constraint comes primarily from the fact that �� and �e interactions are

expected to be e�ectively the same up to kinematic di�erences due to the mass of the lepton, and

from the fact that the �e and �� in the beam are kinematically related because they originate from

the same particles, as shown in Figure 3.2.
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Some detector e�ects are also expected to be constrained, however many such e�ects will

impact the reconstruction of the two topologies di�erently. An example of this is longitudinal

electron di�usion, where reconstruction of showers is be expected to be disproportionately af-

fected compared to tracks due to signal pulses falling below threshold. Some evidence for this

e�ect can be derived by comparing the �� CC-inclusive cross section, where longitudinal di�u-

sion contributes a 1.4% uncertainty to the total cross section [104], to the �� CC �
0 cross section,

where it contributes a 9% uncertainty to the cross section for single photon events.

In cases such as this one MicroBooNE is pursuing in-situ measurements of the detector e�ects

in order to constrain the systematic uncertainties.

8.1 Understanding the �� Constraint

To estimate MicroBooNEs sensitivity to the MiniBooNE low-energy excess, a � 2 test statistic is

constructed,

�
2
=

n
�e

b
+n

��

b

∑

i,j=1

�iC
−1

i,j
�j , (8.1)

where n�e
b

and n��
b

are de�ned to be the number of bins in the �e and �� distributions, respectively,

and

�i = N
data

i
− N

sim

i
. (8.2)

Here,N data/sim

i
is the number of events in ith bin for the concatenation of the �e and �� distributions

for data or simulation, and C−1

i,j
is the inverse covariance matrix.

In order to estimate the magnitude of the constraining power obtained by inclusion of the ��

in the � 2 calculation, the prescription outlined in Chapter 4.2.4 of reference [110] is followed.

Here, n��
b
+ n

�e

b
�t parameters, N f it

i
, are introduced, one for each bin. Δi is then de�ned to be
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f it

i
− N
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i
, (8.3)
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and the � 2 can be written
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Minimising this results in N f it
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±
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Ci,i , � 2 = 0.

It should be noted here that taking the derivative of the � 2 with respect to the �t parameters

results in just the inverse covariance matrix with an additional factor of 2,
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The constraint can be applied by including a pull term for the �� bins in the � 2 calculation

which applies a penalty if the �t parameters fall outside of the statistical uncertainty of the data,
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This can then be di�erentiated with respect to the �t parameters to retrieve an e�ective in-

verse covariance matrix,
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where the Kronecker delta in the second term, �(i = j, i > n
�e

b
), implies that this term is only

applied to the �� part of the covariance matrix, and is only non-vanishing for the case in which

i = j.

This matrix can now be inverted, and the constrained uncertainties in bin i of the �e spectrum

can be taken to be
√

(Ci,i)
ef f .
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8.2 Demonstration of the �� Constraint

In order to demonstrate the constraint, a dataset containing �e has been provided, following the

selection outlined in reference [111]. The distribution of selected events are displayed in Figure

8.1 for a sample with and without the LEE signal. The binning chosen here is a modi�cation to

the MiniBooNE binning, combining the 4 lowest bins into a single bin due to the low electron

neutrino selection e�ciency, and therefore low number of events in this region.
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Figure 8.1: Selected events from the electron neutrino selection outlined in reference [111]. The
number of selected signal events (LEE signal) is estimated from the number of selected �e inter-
actions.

There are some known limitations to this dataset:

• The booster neutrino beam contains only 0.5% intrinsic �e . To improve the number of se-

lected events, the selection was performed on a dataset which includes only beam-intrinsic

�e and simulated cosmic rays overlaid. This means that this dataset does not include a

number of backgrounds, such as �� CC and �� NC backgrounds.

• The �e intrinsic sample provided corresponds to 4e20 POT. The expected total POT Micro-

BooNE will collect is 13e20 POT, meaning that each event from this sample is weighted up
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by a factor of 3.25.

• To estimate the backgrounds, the electron neutrino selection is also performed on the full

beam MicroBooNE simulation. The provided dataset corresponds only to 5e19 POT, mean-

ing very few backgrounds were selected. In order to overcome this, the shape of the �� CC

and �� NC events have been estimated from the selected events, and this shape has been

used to randomly generate backgrounds of the correct scale. The result of this is that these

backgrounds do not have associated systematic uncertainties. This means that the

systematic uncertainties are under-estimated in this demonstration.

• No detector-related systematic uncertainties were provided for the electron neutrino selec-

tion, meaning that e�ect of the constraint on these uncertainties cannot be studied at this

time.

These limitations mean that there is expected to be considerable statistical noise in this dataset

due to the low number of simulated events, while the systematic uncertainties are under-estimated.

This means that care should be taken when interpreting the results in this chapter, and this should

be used as a demonstration of the constraining power of the muon neutrino dataset only.

In order to demonstrate the method outlined in Section 8.1, a covariance matrix describing

the covariance between each bin in the electron neutrino and muon neutrino datasets is �rst

constructed, using the no-LEE electron neutrino distribution from Figure 8.1. This is shown in

Figure 8.2.

From this covariance matrix, the total error on the electron neutrino bins can be taken to be
√

Ci,i in the �rst 8 bins. Following the procedure outlined in Section 8.1, the e�ective correlation

matrix can be found, and the constrained errors can be read in the same way.

The result of performing this procedure can be found in Figure 8.3 and Table 8.1. As expected,

the systematic uncertainties in each of the electron neutrino bins have been reduced through

inclusion of the muon neutrino dataset.
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Figure 8.2: Full statistical plus systematic covariance matrix showing the full �ux and cross section
covariance between the muon neutrino sample and the electron neutrino sample. The �rst 8 bins
correspond to the electron neutrino sample and the remaining 10 bins correspond to the muon
neutrino sample.
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(a) A priori electron neutrino uncertainties
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(b) Constrained electron neutrino uncertainties

Figure 8.3: Total stat. + syst. uncertainties on the electron neutrino selection before and after
applying the muon neutrino constraint.

8.3 Frequentist Studies

Given the electron and muon neutrino datasets, the SBNFit framework [112] may be used to pose

a statistical question: Given some data with the associated statistical and systematic uncertainties,

how well is MicroBooNE able to reject the scenario in which there is no excess of electron-like

events at low energy?

In order to give a quantitive answer to this question, two hypotheses are de�ned:
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1 0.200 - 0.550 0.073 0.055 0.029 47% 0.092 0.079 14%
2 0.550 - 0.675 0.079 0.055 0.009 83% 0.096 0.079 18%
3 0.675 - 0.800 0.065 0.077 0.033 57% 0.101 0.073 28%
4 0.800 - 0.950 0.051 0.055 0.036 34% 0.076 0.065 14%
5 0.950 - 1.100 0.061 0.077 0.039 49% 0.098 0.072 27%
6 1.100 - 1.300 0.051 0.079 0.037 53% 0.094 0.062 34%
7 1.300 - 1.500 0.056 0.091 0.047 48% 0.107 0.073 32%
8 1.500 - 3.000 0.036 0.122 0.091 25% 0.127 0.098 23%

Table 8.1: Table showing the fractional error in each electron neutrino bin, split into statistical
error, systematic error, and total error before and after application of the muon neutrino con-
straint.

• H0: the null hypothesis. No excess of data exists.

• H1: the alternative hypothesis. This is taken to be the excess of data events observed by

MiniBooNE. This has been unfolded from the MiniBooNE reconstructed energy to a true

energy following the procedure outlined in reference [113].

Given these hypotheses it is possible to produce two probability distribution functions. To do

this, two fake datasets, D0 and D1 are produced by pulling from the covariance matrix of H0 and

H1 respectively. Each bin in these datasets is then Poisson �uctuated. By doing this over many

pseudo-experiments and calculating a test statistic for each dataset every time,
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Dataset bin 1 bin 2 bin 3 bin 4 bin 5
�e 0.2-0.4 GeV 0.4-0.6 GeV 0.6-0.8 GeV 0.8-1.0 GeV -

�� (0 bins) - - - - -
�� (1 bins) 0.1-3.0 GeV - - - -
�� (2 bins) 0.1-0.8 GeV 0.8-3.0 GeV - - -
�� (5 bins) 0.1-0.3 GeV 0.3-0.5 GeV 0.5-0.8 GeV 0.8-1.0 GeV 1.0-3.0 GeV

Table 8.2: Binning used in the frequentist studies for the �� and �e samples.
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the distributions can be built up. It should be noted here that every time this test statistic is built,

the null hypothesis is also �uctuated within systematic uncertainties.

Results from the frequentist studies can be found in Figure 8.4. Here, a slightly di�erent bin-

ning is chosen in order to make the e�ects of the constraint more apparent. The chosen binning

is presented in Table 8.2. The results are presented with the �� dataset binned in four di�erent

ways in order to show the e�ect of additional degrees of freedom on the �nal sensitivities.

For each plot in Figure 8.4, a chosen �
2 value can be used to calculate a sensitivity, and this

has been done for several � 2 values in each plot:

• The median sensitivity: the median of the distribution of � 2 values for H1 is chosen. This

is an important quantity because 50% of the time MicroBooNE would measure a more sig-

ni�cant excess than this and 50% of the time it would measure a less signi�cant excess.

• The ±1� , ±2� sensitivities: 68.2% of the time the measured excess will give a sensitivity in

the 1� range, while 95.4% of the time the measured excess will give a sensitivity in the 2�

range.

The median sensitivities for these four sets of frequentist studies show that using the muon

neutrino constraint does improve the ability of MicroBooNE to reject the null hypothesis.

It is observed that the largest improvement to the sensitivity is obtained by including only a

single muon bin such that the muon neutrino dataset is only acting as a normalisation constraint.

Including shape information through increasing the number of bins seems to decrease the sen-
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Figure 8.4: Results of performing frequentist studies for the case in which 0, 1, 2 and 5 bins of ��
bins are included in the �t.

sitivity. Including 5 muon neutrino bins is shown to make the sensitivity worse than using only

the electron neutrino bins.

This is thought to be because the uncertainty in the signal region of the electron neutrinos is

dominated by the statistical error, with the systematic uncertainty not becoming dominant until

higher energies. This means that with the current electron neutrino selection the constraint can

have only a small impact. Including additional bins in the muon neutrino distribution increases

the number of degrees of freedom beyond the capability of the dataset to constrain the uncertain-

ties. The constraint is expected to provide a larger e�ect when the electron neutrino selection

attains higher selection e�ciency in the signal region, below 800 MeV. This can be investigated by



204 CHAPTER 8. THE �� CONSTRAINT

applying a �at scale factor to the e�ciency of the electron neutrino selection, and this is presented

in Figure 8.5. As the electron neutrino selection e�ciency is scaled up, the expected signi�cance

with and without the muon neutrino constraint begin to diverge.

Electron neutrino selection efficiency scale factor
0 0.5 1 1.5 2 2.5 3 3.5 4

σ

1

2

3

4

5  constraintµνWith 
 constraintµνNo 

Figure 8.5: Signi�cance with which H0 can be rejected in favour of H1, as a function of electron
neutrino e�ciency scale factor. As the electron neutrino selection e�ciency

If the selection e�ciency is able to be increased by a factor of three, then the constraint, as

currently implemented, is able to increase the median signi�cance with which the null hypothesis

can be rejected from 4.1� to 4.4� .
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Chapter 9

Conclusions

“I think I’ll stop here.”

Andrew Wiles

The �eld of neutrino physics has many open questions. It is hoped that some of these ques-

tions can be addressed by the current and next generation of neutrino oscillation experiments.

Regarding the existence of sterile neutrinos, these hopes are in part pinned on the SBN program

at Fermilab, while for CP violation, we must look to the next generation experiments: Hyper-

Kamiokande and DUNE.

This thesis has presented a number of analyses intended provide insight into MicroBooNE’s

investigation of the excess of low-energy electromagnetic events observed by the MiniBooNE

collaboration, and to develop tools and techniques for LArTPCs.

Chapter 5 presents MicroBooNE’s �rst measurement of longitudinal electron di�usion. This

is an important e�ect to constrain due to the large discrepancies between the theory and measure-

ments, and its e�ect on electron neutrino searches. This measurement is important not only for

MicroBooNE and SBN, but also for DUNE, where the dual-phase far detector module is expected

to have a 12 m drift.

In chapter 6, a novel method of performing particle identi�cation in LArTPCs is developed. It

is shown that the Bragg Likelihood algorithm marks an improvement in both data-to-simulation
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agreement and robustness against systematic uncertainties over the methods previously used by

MicroBooNE and other LArTPCs.

Chapter 7 presents a selection of a pionless �� charged-current interactions with at least one

proton above a 40 KeV threshold on kinetic energy. This includes a discussion of the importance

of the e�ects of induced charge and its impact on analyses, and presents a method by which the

sensitivity to this e�ect can be reduced. This approach is being pursued by other analyses which

are expected to be published on this software release.

In chapter 8, this thesis has demonstrated a path towards the �rst step of the SBN program:

investigation of the excess of low-energy electron neutrino candidates observed by the Mini-

BooNE collaboration. Speci�cally, this chapter focuses on the constraint of systematic uncertain-

ties through use of a dataset containing muon neutrinos.

The analyses here are from the �rst-generation of MicroBooNE analyses. There are a number

of improvements which can be made in future iterations.

The �rst has been widely discussed within this work: improvement to the simulation of drift-

ing ionisation electrons is clearly a priority. This has been worked on extensively over the last

year, and is in the process of being incorporated into the MicroBooNE simulation. Additionally,

the inclusion of a two-dimensional deconvolution will result in an improved signal processing

[67, 90], and it is hoped that this will lead to an improved reconstruction. It is also thought that

this simulation improvement will allow for calorimetry to be performed on the induction planes,

meaning an improvement in the particle identi�cation capabilities of MicroBooNE.

Further improvement to the muon neutrino constraint can be attained by bringing the electron

neutrino selection into a greater degree of alignment with the muon neutrino selection. Ensuring

that the same particle identi�cation and �ducial volume requirements are met will give greater

power to the constraint due to the similarity of the backgrounds. The sensitivity to a MiniBooNE-

style low-energy excess is primarily driven by the e�ciency and purity of the electron neutrino

selection, and so this is another area which would bene�t from an improved reconstruction.
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Appendix A

Additional Information for Particle

Identi�cation in MicroBooNE

A.1 Toy Width Study

The aim of the toy width study is to estimate the width of the Gaussian needed to smear the

simulation in order to make the dE/dx distributions in physics data and simulated data more

similar. This is done under the assumption that the di�erences are caused by detector e�ects that

are not currently simulated, which can be modeled by an additional uncorrelated Gaussian. The

improved data/simulation agreement seen when a smearing of this type is applied supports the

assumption that there are some e�ects that can be modeled in this way.

When �tting dE/dx distributions as in Section 6.2, the Landau distribution width for both data

and simulation is constrained to be the same, and so it is su�cient to perform the toy study with

only Gaussian functional forms. A Gaussian toy sample is �rst generated by throwing randomly

from a Gaussian distribution with a given mean and width 100,000 times. Each point is then

smeared by multiplying its value by another random number thrown from a di�erent Gaussian.

By changing the width of this second Gaussian while keeping the �rst constant, the width of the

additional smearing Gaussian can be empirically estimated.
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The additional widths needed to smear simulation in order to match the width of the data

distribution are estimated for the three planes to be �0 = 0.19, �1 = 0.30, and �2 = 0.11.

In order to understand whether these widths are a reasonable approximation for protons as

well as muons, the widths of protons in data have been measured in the collection plane. This

is done by �rst selecting out two-track events from data, and selecting the shorter track, which

should be proton-enhanced.

There is obviously signi�cant contamination here. By removing co-linear tracks, which are

expected to be broken muons, this contamination can be reduced, but not completely removed

without seriously impacting the proton candidate statistics. Instead, we take the region between

65 and 70 cm residual range and �t the muon-like peak with a Landau-Gaussian functional form

of �xed Landau and Gaussian width (�L = 0.09 and �G = 0.20, as in section 6.2), and �t the proton

peak with a �xed Landau width of 0.13, allowing the Gaussian width to �oat.

The result of this �t is a proton Gaussian width of 0.34, but with a reasonably large uncertainty

of 0.09. In section 6.2, we measured the Gaussian width for simulated protons to be 0.25. We can

therefore use the same toy study process as above (smearing by a second Gaussian with di�erent

values) to empirically �nd the value needed to match the simulation width of 0.25 to the data

width of 0.34. By doing so, we estimate that the additional smearing needed for protons on the

collection plane is �2 = 0.14
+0.07

−0.13
, which is consistent with the value of �2 = 0.11 derived from

muon tracks earlier in this section.

This loose piece of evidence combined with the improved agreement between data and sim-

ulation in the proton-like region across all tested algorithms gives some con�dence that this

smearing works reasonably well.
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(a) Longer track dE/dx
versus residual range

(b) Shorter track dE/dx
versus residual range

Figure A.1: dE/dx versus residual range distributions for the longer (left) and shorter (right) track
in two-track selected events.

Figure A.2: dE/dx distribution for the shorter track of two-track selected events between 65 and
70 cm residual range, �t with a double Landau-Gaussian curve.
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A.2 Bare � 2 Distributions

This section contains both POT normalised and template �t distributions of the bare � 2 variables

under the muon, pion, proton and kaon assumptions. These are provided in order to complement

the � 2
�
− �

2

p
variable which is presented in Chapter 6.

A.2.1 POT normalised

Figure A.3 shows POT normalised plots of the � 2 variables.

A.2.2 Template Fit

Figure A.4 shows template �t distributions of the � 2 variables.
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(a) Muon � 2 (b) Pion � 2

(c) Proton � 2 (d) Kaon � 2

Figure A.3: POT normalised bare � 2 for tracks under muon, pion, proton, kaon, and MIP assump-
tions.
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(a) Muon � 2 (b) Pion � 2

(c) Proton � 2 (d) Kaon � 2

Figure A.4: Template �t bare � 2 for tracks under muon, pion, proton, kaon, and MIP assumptions.
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A.3 POT normalised Distributions

This section shows the POT normalised versions of the plots presented in Section 6.3.
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(a) Muon likelihood (b) Pion likelihood

(c) Proton likelihood (d) Kaon likelihood

(e) MIP likelihood

Figure A.5: POT normalised bare likelihoods for tracks under muon, pion, proton, kaon, and MIP
assumptions.
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(a) Muon likelihood (b) Pion likelihood

(c) Proton likelihood (d) Kaon likelihood

(e) MIP likelihood

Figure A.6: POT normalised likelihoods for tracks under muon, pion, proton, kaon, and MIP
assumptions, normalised from 0 to 1.
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(a) Nominal simulation (b) Dynamic induced charge

(c) Birks model

Figure A.7: POT normalised plots of the ln(LMIP /Lp) ratio for plane 2.
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(a) Nominal simulation (b) Dynamic induced charge

(c) Birks model

Figure A.8: POT normalised plots of the Δ� 2
�−p

variable for plane 2.
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(a) Nominal simulation (b) Dynamic induced charge

(c) Birks model

Figure A.9: POT normalised plots of the PIDA-by-mean variable for plane 2.
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(a) Nominal simulation (b) Dynamic induced charge

(c) Birks model

Figure A.10: POT normalised deposited energy on plane 2 versus energy by range under the
muon assumption.
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Appendix B

Additional Information for the ��

CC0�Np Selection

B.1 A Note on Reconstructed-To-True Object Matching

One tool which MicroBooNE analyses make frequent use of is so caalled reconstructed-to-true

object matching. This is the act of taking a reconstructed object such as a track or shower and

�nding which true simulated particle this corresponds to.

This is an important concept as it allows for studies of particle resolutions and is necessary

for de�ning a signal.

While simple in concept, this is a somewhat complicated procedure. The reason for this is

that due to imperfect reconstruction there are often multiple true particles which are associated

to a single reconstructed particle or multiple reconstructed particles associate to a single true

particle. This is demonstrated in Figure B.1.

The reconstructed-to-true object matching is performed by taking high level reconstructed

objects such as tracks and showers, �nding the reconstructed energy depositions which make up

these objects, and then �nding the true energy depositions which make up each of these. The

true particle which deposits the most energy in the reconstructed object is then identi�ed as the
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Figure B.1: Cartoon showing the di�culties of matching reconstructed particles to true particles.
A set of true particles which leave the interaction would ideally be reconstructed as a series of
tracks and showers, but due to imperfect reconstruction multiple reconstructed particles may
be associated to a single true particle, and multiple true particles may be associated to a single
reconstructed particle.

matched particle, and two quantities are de�ned to characterise the quality of this match. The

purity is de�ned to be

P =

MCParticle
matcℎ

Ereco

Track
matcℎ

E

(B.1)

and the completeness is de�ned to be

C =

MCParticle
matcℎ

Ereco

MCParticle
matcℎ

Etotal

(B.2)

B.2 Kinematic Variables with the DIC Sample

This appendix contains plots produced using the DIC sample. Here, the “physics-less” quantities

of the vertex positions of the selected �� CC0�Np, along with kinematic variables for muons and

protons are displayed. These plots are analogous to those found in Chapter 7.5.
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Figure B.2: Reconstructed neutrino vertex positions in the x, y and z dimensions within the Mi-
croBooNE TPC.
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Figure B.3: Kinematic distributions for the selected muon candidate.
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Figure B.4: Kinematic distributions for the selected proton candidates.


