
Local Optimality of Self-Organising Neuro-Fuzzy Inference Systems

Xiaowei Gu 1,2, Plamen Angelov 1,2,3, Hai-Jun Rong 4

1. School of Computing and Communications, Lancaster University, Lancaster, LA1 4WA, UK

2. Lancaster Intelligent, Robotic and Autonomous Systems Centre (LIRA), Lancaster University, UK

3. Technical University, Sofia, 1000, Bulgaria (Honorary Professor)

4. State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of

Environment and Control for Flight Vehicle, School of Aerospace, Xi'an Jiaotong University, Shaanxi, China

710049

Email: x.gu3@lancaster.ac.uk, p.angelov@lancaster.ac.uk, hjrong@mail.xjtu.edu.cn

Abstract: Optimality of the premise, IF part is critical to a zero-order evolving intelligent system (EIS) because

this part determines the validity of the learning results and overall system performance. Nonetheless, a

systematic analysis of optimality has not been done yet in the state-of-the-art works. In this paper, we use the

recently introduced self-organising neuro-fuzzy inference system (SONFIS) as an example of typical zero-order

EISs and analyse the local optimality of its solutions. The optimality problem is firstly formulated in a

mathematical form, and detailed optimality analysis is conducted. The conclusion is that SONFIS does not

generate a locally optimal solution in its original form. Then, an optimisation method is proposed for SONFIS,

which helps the system to attain local optimality in a few iterations using historical data. Numerical examples

presented in this paper demonstrate the validity of the optimality analysis and the effectiveness of the proposed

optimisation method. In addition, it is further verified numerically that the proposed concept and general

principles can be applied to other types of zero-order EISs with similar operating mechanisms.

Keywords- local optimality, neuro-fuzzy system, evolving intelligent system, self-organising, data partitioning.

1. Introduction

Evolving intelligent systems (EISs) [1], as a typical form of multi-model systems, are viewed as a

powerful tool for handling complex problems with both measurement and motion uncertainties, and have

demonstrated success in many real-world application scenarios [28]. By exploiting the divide-and-conquer

strategy, multi-model systems are capable of decomposing complex problems into a set of simpler ones that can

be approximated using simple local models through data partitioning [8]. As the main goal of a multi-model

system is to partition the data space and identify underlying data patterns through local partitions, the optimality

of the solution is of paramount importance to the multi-model system because it determines the validity and

effectiveness of the learning results. Nonetheless, to the best of the authors’ knowledge, optimality analysis has

not been touched in the state-of-the-art works in the area of EISs [27],[31].

Self-organising neuro-fuzzy inference system (SONFIS) was recently introduced in [18] as a generic

approach for data and image classification, and it can be further extended to various problems and applications

including, but not limited to, online data analytics, prediction, etc. As a new type of zero-order AnYa type fuzzy

rule-based systems [5], SONFIS is able to self-organise and self-evolve its multi-model system structure from

empirically observed data in a non-iterative, computationally lean and objective manner. It is composed of a set

of highly transparent, massively parallel IF…THEN rules consisting of meaningful prototypes that represent

local peaks of the multimodal data distribution. SONFIS does not impose any models with parameters on data

generation, and the learning process only involves nonparametric statistic operators, which can objectively

disclose the ensemble properties and mutual distributions of data [4]. After being primed offline, SONFIS can

further continuously self-update its system structure and meta-parameters with new observations from data

streams to follow the potential shifts and/or drifts of data patterns [29]. Thanks to its prototype-based nature,

SONFIS performs classification on unlabelled data in a human-like reasoning style following the well-known

“winner takes all” principles.

Prototypes play an instrumental role in SONFIS because they represent local models of data patterns in

terms of multimodal data density [4]. In this paper, we conduct a detailed mathematical analysis on the

optimality of the premise, IF part of SONFIS, namely, prototypes. Starting with the mathematical formulation of

the problem, we firstly investigate the optimality of data partitioning solutions obtained by SONFIS and prove

that the system does not yield an optimal solution. Then, we introduce a highly efficient optimisation method

that enables SONFIS to always attain local optimality in few iterations. This, in turn, effectively improves its

classification performance. Moreover, the optimality analysis and the optimisation method presented in this

paper are not limited to SONFIS, but are more generic and applicable to other online, non-iterative machine

learning algorithms with similar operating mechanisms, which include, but not limited to, autonomous learning

multi-model (ALMMo) neuro-fuzzy systems [3],[19], eClass0 [6]. Numerical examples presented in this paper

justify the validity of the optimality analysis and further demonstrate that the proposed optimisation method can

effectively improve the classification accuracy of SONFIS on various challenging benchmark problems with

minor additional computational cost. In addition, numerical results also show that the proposed optimisation

method substantially enhances the performance of other types of zero-order EISs with similar operating

mechanisms.

The key contributions of this paper include: 1) the mathematical formulation of the optimality problem of

zero-order EISs; 2) a detailed analysis on the optimality of the solutions obtained by zero-order EISs; 3) a

generic method for autonomously optimising the premise, IF part of zero-order EISs based on historical data; 4)

a general strategy for zero-order EISs to obtain the locally optimal solutions and effectively enhance the

classification performance.

The remainder of this paper is organised as follows. Section 2 provides a critical review of related works.

The architecture, learning and validation processes of SONFIS are briefed in Section 3. Section 4 presents the

optimality analysis. The method, which provides the locally optimal solution, is described in section 5.

Numerical examples are given in section 6. Section 7 concludes this paper and gives the direction for future

work.

2. Related Works

Prototype-based systems have been widely used for multi-class classification purposes [3],[18].

Prototypes play a key role in such systems, and it is the prototype selection process that determines their

performance, transparency and computational efficiency. Well-known prototype-based classifiers include

support vector machine (SVM) [10], learning vector quantization (LVQ) [23] and self-organising map (SOM)

[30], etc. SVM iteratively selects prototypes, namely, support vectors, from observed data samples to identify

the maximum-margin hyperplane in the data space. LVQ and SOM, just like other types of ANNs, gradually

approach the optimal solution in the entire data space by minimising the objective function. Another widely

used classifier, K-nearest neighbour (KNN) [35], can be viewed as an extreme example of prototype-based

systems as well. Nonetheless, KNN is very different from SVM, LVQ and SOM in the sense that all the data

samples are stored in the memory and treated as prototypes.

EISs, as a key branch of computational intelligence, are becoming increasingly popular owing to their

highly transparent system structure and the explainable learning and decision-making processes [11]. EISs can

be implemented in the form of neuro-fuzzy or rule-based models [1]. However, unlike the other typical type of

multi-model systems, namely, ANNs [17], most of the EISs are designed for processing streaming data “on the

fly”, and they are able to self-update and self-evolve their system structure and meta-parameters to follow the

rapidly changing data patterns of data streams [29]. Currently, EISs have been successfully implemented for

various real-world applications including classification [33], prediction [20], control [34], anomaly detection

[27], etc. The most popular (neuro-) fuzzy systems include, but not limited to, eTS [2], DENFIS [22], eClass [6],

SAFIS [36], PANFIS [31], GENIFS [32] and IT2FNN [41]. Interested readers are referred to the recent surveys

[28],[40] for more details.

Zero-order EISs [3],[6],[18] are based on prototypes, and they, generally, have a simpler, more flexible

and transparent system structure compared with other types of EISs, e.g. first-order [19] and higher-order ones

[41]. Thanks to the prototype-based nature, they are highly computational efficient and capable of handling

complex multi-class classification problems. Despite that the operating mechanisms might be very different,

prototypes of zero-order EISs are usually identified as the most representative data samples through data

partitioning. Prototypes determine the validity and effectiveness of the systems and significantly influence their

performance. Compared with other types of prototype-based systems, e.g., SVM, SOM and LVQ, the prototypes

of zero-order EISs are usually obtained through an “one pass” learning process without iteratively searching the

data space for optimal solutions. Many zero-order EISs are also capable of continuously updating existing

prototypes based on newly observed data samples and adding new prototypes to follow new data patterns.

Nonetheless, the optimality of zero-order EISs remains a question, and no mathematical analysis has not been

conducted yet [19]. The main reason for this is that zero-order EISs are designed for learning from

nonstationary, complex data streams in an efficient, non-iterative and “one pass” manner. Nonetheless, a

systematic study on system optimality is of paramount importance and required to be done in order to better

understand the operating mechanisms of zero-order EISs and further improve their performance.

Another problem that the majority of zero-order EISs [3],[6] (as well as many other machine learning

algorithms, e.g., first-order EISs [19], type-2 EISs [33], K-means [38], Laplacian SVM [15]) suffer from is the

need of problem- and user-specific parameters. The structural learning algorithms for the premise, IF part of

EISs usually require certain parameters to be defined in advance, and this is a challenging issue for real-world

applications. The prototype identification results of an EIS might vary significantly by using different parameter

settings, and this can significantly influence the performance and objectiveness of the system. Properly

predefining such parameters requires certain levels of prior knowledge about the problems from users, and,

sometimes, assumptions on data generation model are also needed to be made. However, in real-world

scenarios, prior knowledge is usually very limited, while the assumptions are seldom hold true, especially for

streaming data.

As a recently introduced generic classification approach, SONFIS [18] employs nonparametric statistical

operators to objectively disclose the underlying data patterns behind the empirically observed data samples, and

extracts local peaks from the multimodal data distribution as prototypes. SONFIS is nonparametric and highly

objective in the sense that no generation model with parameters is imposed on data, and all the involved meta-

parameters are directly derived from data without prior knowledge of the problems. It is able to approach any

problem at different levels of granularity, in other words, different levels of details depending on the complexity

of the problems, availability of computational resources and particular needs from users. Moreover, SONFIS

supports both offline and online learning modes and can use various types of distance/dissimilarity measures for

classification. Thus, SONFIS has a strong adaptive ability and has demonstrated the state-of-the-art performance

on various problems. As a highly representative and well-performing zero-order EIS, in this paper, we will use

SONFIS as an example and conduct optimality analysis on its solutions.

3. SONFIS

In this section, we will briefly describe the architecture, learning process and validation process of

SONFIS [18] to make this paper self-contained, which also serve as the foundation for the optimality analysis

conducted in the next section.

First of all, let {𝒙}𝐾 = {𝒙1, 𝒙2, … , 𝒙𝑖 , … , 𝒙𝐾} (𝒙𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑀]
𝑇

∈ 𝐑𝑀) be a particular data

set/stream in a real metric space, 𝐑𝑀, with the dimensionality of 𝑀. The subscript 𝑖 indicates the time instance at

which 𝒙𝑖 is observed. We assume that this data set/stream is composed of data samples of 𝐶 different classes. At

the Kth time instance, the set of observed data samples is denoted as {𝒙}𝐾 . Based on their class labels, these

data samples can be further divided into C subsets denoted by {𝒙}
𝑁𝑗
𝑗

= {𝒙1
𝑗
, 𝒙2

𝑗
, … , 𝒙

𝑁𝑗
𝑗

} (𝑗 = 1,2, … , 𝐶), where

the superscript 𝑗 denotes the jth class and there is ∑ 𝑁𝑗𝐶
𝑗=1 = 𝐾. For each subset, {𝒙}

𝑁𝑗
𝑗

, we further consider that

some samples may share the same values, i.e., 𝒙𝑚
𝑗

= 𝒙𝑛
𝑗
 and 𝑚 ≠ 𝑛. Thus, we denote the set of unique data

samples of the jth class (𝑗 = 1,2, … , 𝐶) as {𝒖}
𝐿𝑗
𝑗

= {𝒖1
𝑗
, 𝒖2

𝑗
, … , 𝒖

𝐿𝑗
𝑗

} , and the corresponding occurrence

frequencies are denoted as {𝑓}
𝐿𝑗
𝑗

= {𝑓1
𝑗
, 𝑓2

𝑗
, … , 𝑓

𝐿𝑗
𝑗

} . Furthermore, there are {𝒖}
𝐿𝑗
𝑗

⊆ {𝒙}
𝑁𝑗
𝑗

; 𝐿𝑗 ≤ 𝑁𝑗 and

∑ 𝑓𝑘
𝑗𝐿𝑗

𝑘=1 = 𝑁𝑗. Unless specifically declared otherwise, all the mathematical derivations in the remainder of this

paper are conducted at the Kth time instance by default. Without loss of generality, we use Euclidean distance

for derivation. However, it has to be stressed that SONFIS can support various types of distance/dissimilarity

measures [18]. For clarity, we summarise the key notations of this paper and the respective definitions in Table

1.

Table 1. Definitions of key notations

Notations Definitions

𝐺 Level of granularity

𝑀 Dimensionality of the real metric space

𝐑𝑀 𝑀-dimensional real metric space

𝐾 Number of observed data samples/current time instance

𝐶 Number of classes

{𝒙}𝐾 Collection of observed data samples at the Kth time instance

𝒙𝑖 𝑀 × 1 dimensional data sample observed at the ith time instance

𝑁𝑗 Number of observed data samples of the jth class at the Kth time

instance

𝐿𝑗 Number of observed unique data samples of the jth class at the Kth

time instance

{𝒙}
𝑁𝑗
𝑗

 Collection of observed data samples of the jth class at the Kth time

instance

𝒙𝑖
𝑗
 The ith 𝑀 × 1 dimensional data sample of the jth class

{𝒖}
𝐿𝑗
𝑗

 Collection of observed unique data samples of the jth class at the Kth

time instance

𝒖𝑖
𝑗
 The ith 𝑀 × 1 dimensional unique data sample of the jth class

𝑓𝑖
𝑗
 Occurrence frequency of 𝒖𝑖

𝑗

𝝁
𝑁𝑗
𝑗

 Mean of {𝒙}
𝑁𝑗
𝑗

𝑋
𝑁𝑗
𝑗

 Mean of {‖𝒙‖2}
𝑁𝑗
𝑗

𝑃𝑗 Number of identified data clouds/prototypes of the jth class

{ℂ}𝑗 Collection of data clouds of the jth class

ℂ𝑖
𝑗
 The ith data cloud of the jth class

{𝒑}𝑗 Collection of prototypes of the jth class

𝒑𝑖
𝑗
 The ith prototype of the jth class with the dimensionality of 𝑀 × 1

𝑆𝑖
𝑗
 Number of members of ℂ𝑖

𝑗

𝑷𝑗 𝑀 × 𝑃𝑗 dimensional matrix form of {𝒑}𝑗

𝑾𝑗 𝑃𝑗 × 𝑁𝑗dimensional weight matrix

𝛾𝐺
𝑗
 Radius of local influential areas of data clouds of the jth class

corresponding to the Gth level of granularity

𝜆𝑗 Score of confidence of the jth massively parallel fuzzy rule

3.1. Multi-Model Architecture

An illustrative diagram of the multi-model architecture of SONFIS is depicted in Fig. 1. Fig. 1 (a) depicts

the structure of SONFIS during the system identification process; Fig. 1(b) gives the system structure during the

validation stage; Fig. 1(c) is the zoom-in structure of the jth massively parallel fuzzy rule.

It is demonstrated in Fig. 1 that SONFIS consists of 𝐶 massively parallel fuzzy rules. During the learning

stage, the 𝐶 fuzzy rules are trained in parallel using data samples from the respective classes (one rule per class).

Each rule is composed of a number of prototypes identified from data samples of the corresponding class, and

these prototypes are connected by logical “OR” connectives (𝑗 = 1,2, … , 𝐶):

𝐑𝑗: 𝐼𝐹 (𝒙~𝒑1
𝑗
) 𝑂𝑅 (𝒙~𝒑2

𝑗
) 𝑂𝑅 … 𝑂𝑅 (𝒙~𝒑

𝑃𝑗
𝑗

) 𝑇𝐻𝐸𝑁 (𝐶𝑙𝑎𝑠𝑠 𝑗) (1a)

where 𝒑𝑖
𝑗
 is the ith prototype of the jth fuzzy rule; 𝑃𝑗 is the number of identified prototypes. As a result, each

massively parallel fuzzy rule can be viewed as a combination of multiple simpler fuzzy rules with singleton

consequences in the form of equation (1b) (𝑖 = 1,2, … , 𝑃𝑗):

𝐑𝑖
𝑗
: 𝐼𝐹 (𝒙~𝒑𝑖

𝑗
) 𝑇𝐻𝐸𝑁 (𝐶𝑙𝑎𝑠𝑠 𝑗) (1b)

During the validation process, for each unlabelled data sample, every massively parallel fuzzy rule within

the rule base will produce a score of confidence on it and, in total, 𝐶 scores will be generated. The overall

decision-maker will, then, estimate the class label for the sample based on the scores following the “winner

takes all” principle.

The learning and validation processes of SONFIS will be detailed in the following two subsections,

respectively.

(a) The multi-model architecture (identification stage)

(b) The multi-model architecture (validation stage)

(c) Zoom-in structure of the jth fuzzy rule

Fig. 1. Multi-model architecture of SONFIS

3.2. Identification Process

In this subsection, the identification process of SONFIS is presented [18]. SONFIS is capable of self-

organising its fuzzy rule base from static data and then, continuing to self-evolve its system structure and self-

update the meta-parameters with streaming data recursively. Therefore, the offline learning process will be

presented first followed by the online learning process. As each massively parallel fuzzy rule is trained

separately, we use the jth rule as an example for demonstration. The same principles can be applied to all other

fuzzy rules within the rule base. The level of granularity of SONFIS is set as 𝐺, which can be any positive

integers.

A. Offline Learning Process

The main algorithmic procedure of the offline learning process is as follows.

Stage 1. Forming Voronoi tessellation from data

In this stage, the observed unique data samples of the jth class are, firstly, ranked in an indexing list based

on their mutual distances and ensemble properties. Firstly, the multimodal densities 𝐷𝑀𝑀 at all unique data

samples, {𝒖}
𝐿𝑗
𝑗

 are calculated by equation (2) (𝑘 = 1,2, … , 𝐿𝑗) [4]:

 𝐷𝑀𝑀(𝒖𝑘
𝑗

) = 𝑓𝑘
𝑗 1

1+
‖𝒖

𝑘
𝑗

−𝝁
𝑁𝑗
𝑗

‖
2

𝑋
𝑁𝑗
𝑗

−‖𝝁
𝑁𝑗
𝑗

‖
2

 (2)

where 𝝁
𝑁𝑗
𝑗

 and 𝑋
𝑁𝑗
𝑗

 are the means of {𝒙}
𝑁𝑗
𝑗

 and {‖𝒙‖2}
𝑁𝑗
𝑗

, respectively, which can be calculated by the following

expressions [4]:

𝝁
𝑁𝑗
𝑗

=
1

𝑁𝑗
∑ 𝒙𝑘

𝑗𝑁𝑗

𝑘=1 ; 𝑋
𝑁𝑗
𝑗

=
1

𝑁𝑗
∑ ‖𝒙𝑘

𝑗
‖

2
𝑁𝑗

𝑘=1 (3)

and ‖𝒙‖ denotes the Euclidean norm of 𝒙: ‖𝒙‖ = √∑ 𝑥𝑖
2𝑀

𝑖=1 .

The expression of multimodal density (equation (2)) is very fundamental because it combines information

about repeated data values and the scattering across the data space, and it is derived directly from data

resembling the well-known probability mass function [4]. When Euclidean distance or some other types of well-

known distances and dissimilarity, e.g., Mahalanobis distance, cosine dissimilarity, is used for calculation, it can

be recursively calculated in an elegant form [4],[18].

In this paper, we use the real climate data1 measured in Manchester, UK for the period 2010-2015 as an

example to visualise the concept. This dataset is composed of 938 data samples, 479 of which are measured in

winter (class 1) and the rest are obtained during summer (class 2). For visual clarity, we only consider the first

two attributes, namely, temperature, oC (𝑥1) and wind speed, mph (𝑥2). The multimodal density of the first 70%

of data samples is visualised in Fig. 2.

Fig. 2. Multimodal density of real climate data

After the multimodal density values at all unique data samples have been calculated, the unique data

sample with the highest multimodal density value is identified as: 𝒓1 = argmax
𝑘=1,2,...,𝐿𝑗

(𝐷𝑀𝑀(𝒖𝑘
𝑗

)), and it is set as the

1 Available from: http://www.worldweatheronline.com

http://www.worldweatheronline.com/

first element of the indexing list, denoted by {𝒓}. The remaining elements of {𝒓} are identified one by one using

the following principle (𝑘 = 2,3, … , 𝐿𝑗):

𝒓𝑘 = argmin
𝒖∈{𝒖}

𝐿𝑗
𝑗

 ;𝒖≠𝒓1,𝒓2,…,𝒓𝑘−1

(‖𝒖 − 𝒓𝑘−1‖2) (4)

Once the full indexing list {𝒓} is built by equation (4), the ranked multimodal density {𝐷𝑀𝑀(𝒓)} is

obtained accordingly. Based on {𝐷𝑀𝑀(𝒓)}, we can identify the local maxima of multimodal density by using the

following condition [18]:

 𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟏:
𝐼𝑓 (𝑠𝑔𝑛(𝐷𝑀𝑀(𝒓𝑘) − 𝐷𝑀𝑀(𝒓𝑘+1)) = 1) 𝑎𝑛𝑑 (𝑠𝑔𝑛(𝐷𝑀𝑀(𝒓𝑘) − 𝐷𝑀𝑀(𝒓𝑘−1)) = 1)

𝑇ℎ𝑒𝑛 (𝒓𝑘 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐷𝑀𝑀)
 (5)

where 𝑠𝑔𝑛(𝑥) = {
1 𝑥 > 0
0 𝑥 = 0

−1 𝑥 < 0
 is the sign function. The local maxima of 𝐷𝑀𝑀 are denoted as {𝒖∗}, and the

cardinality is denoted as 𝐿𝑗∗. By ranking and reordering the unique data samples in terms of their mutual

distances (equation (4)) and their corresponding multimodal density values, the searching process for local

maxima of the multimodal data distribution is significantly simplified because the original 𝑀-dimensional data

space, 𝐑𝑀 is reduced to a 1-dimensional indexing list, {𝒓}.

The ranked multimodal density of the real climate data as given by Fig. 2 are depicted in Figs. 3(a) and

3(b), where the identified local maxima are marked by red circles. The locations of these local maxima in the 2D

data space are also visualized in Fig. 3(c).

(a) Class 1 (b) Class 2

(c) Local maxima in the data space

Fig. 3. The multimodal density of two-class real climate data and the identified local maxima

Then, Voronoi tessellations are formed in the data space by using these identified local maxima as

prototypes to attract nearby data samples, which results in a number of data clouds, denoted by {ℂ}:

ℂ𝑛∗ ← ℂ𝑛∗ ∪ {𝒙𝑘
𝑗

}; 𝑛∗ ← argmin
𝒚∈{𝒖∗}

(‖𝒚 − 𝒙𝑘
𝑗

‖
2

) (6)

where 𝑘 = 1,2, … , 𝑁𝑗. Equation (6) naturally partitions the data space based on mutual distances between data

samples and these prototypes. This process is free from any threshold and, the partitioning result objectively

approximates the real data distribution.

Stage 2. Deriving the radius of local influential area around prototypes

In this stage, the radius of local influential area around each prototype is derived based on the mutual

distances of these observed data samples and the level of granularity defined by users. The radius can be viewed

as an estimation of the average distance between any two strongly connected prototypes under a specific level of

granularity, and it condenses the mutual distribution information extracted from the empirically observed data.

Under the first level of granularity (𝐺 = 1), the radius of local influential area, 𝛾1
𝑗
 is calculated by [18]:

𝛾1
𝑗

=
1

𝑄1
𝑗 ∑ ‖𝒚 − 𝒙‖2

𝒙,𝒚∈{𝒙}
𝑁𝑗
𝑗

;𝒙≠𝒚; ‖𝒚−𝒙‖2≤�̅�
𝑁𝑗
𝑗 (7)

where 𝑄1
𝑗
 is the number of pairs of data samples of {𝒙}

𝑁𝑗
𝑗

 between which the distance is smaller than the average

distance between any two data samples of the jth class, �̅�
𝑁𝑗
𝑗

 [4], namely:

�̅�
𝑁𝑗
𝑗

= 2 (𝑋
𝑁𝑗
𝑗

− ‖𝝁
𝑁𝑗
𝑗

‖
2

) (8)

From the second level to any higher level of granularity (𝐺 = 2,3, ….), one can calculate the radius

iteratively by using the following expression [18]:

𝛾𝐺
𝑗

=
1

𝑄𝐺
𝑗 ∑ ‖𝒚 − 𝒙‖2

𝒙,𝒚∈{𝒙}
𝑁𝑗
𝑗

;𝒙≠𝒚; ‖𝒚−𝒙‖2≤𝛾𝐺−1
𝑗 (9)

where 𝛾𝐺
𝑗
 and 𝛾𝐺−1

𝑗
 represent the radii of local influential area corresponding to the Gth and (G-1)th levels of

granularity, respectively; 𝑄𝐺
𝑗
 is the number of pairs of data samples between which the distance is smaller than

𝛾𝐺−1
𝑗

.

Compared with using predefined threshold or hard-coding principles, deriving the radius of local

influential area around each prototype in such a way has two strong advantages Firstly, 𝛾𝐺
𝑗
 is guaranteed to be

valid all the time because it is derived from data directly and always meaningful. Secondly, 𝛾𝐺
𝑗
 can be decided

without any prior knowledge, but only based on users’ preferences and/or any specific requirements of the

problems [18]. This significantly strengthens the applicability and adaptive ability of SONFIS to any real-world

problems.

In general, with a high level of granularity, SONFIS is able to extract finer details from data and identify

more prototypes, and it usually demonstrates better performance in terms of classification accuracy. However, in

such cases, SONFIS can consume more computational and memory resources, and the problem of overfitting

may occur as well. In contrast, using a low level of granularity may largely improve the computational and

memory efficiency of SONFIS, but may also deteriorate its classification performance on complex, large-scale

and high-dimensional problems.

Stage 3. Identifying prototypes from local maxima

In this stage, prototypes of the jth class are filtered out from the local maxima identified during Stage 1.

Firstly, raw prototypes, denoted by {𝒒}, are derived as the centres of data clouds, {ℂ}:

𝒒𝑘 =
1

𝑆𝑘
𝑗 ∑ 𝒙𝒙∈ℂ𝑘

; 𝒒𝑘 ∈ {𝒒} (10)

where 𝑆𝑘
𝑗
 is the cardinality (number of members) of ℂ𝑘 ; ℂ𝑘 ∈ {ℂ}; 𝑘 = 1,2, … , 𝐿𝑗∗ . The multimodal density

values at the raw prototypes {𝒒} are calculated using equation (11):

𝐷𝑀𝑀(𝒒𝑘) = 𝑆𝑘
𝑗 1

1+
‖𝒒𝑘−𝝁𝑗‖

2

𝑋𝑗−‖𝝁𝑗‖
2

; 𝒒𝑘 ∈ {𝒒}
 (11)

Then, for each raw prototype (i.e. the kth one), its neighbouring prototypes (the collection is denoted by

{𝒒}𝑘
𝑛∗) are identified by the following condition (𝑘 = 1,2, … , 𝐿𝑗∗):

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟐: 𝐼𝑓 (‖𝒒𝑘 − 𝒒𝑖‖2 ≤ 𝛾𝐺
𝑗
) 𝑇ℎ𝑒𝑛 (𝒒𝑖 ∈ {𝒒}𝑘

𝑛∗) (12)

where 𝒒𝑖 ≠ 𝒒𝑘 and 𝒒𝑖 ∈ {𝒒}. Condition 2 defines a local influential area around each prototype with the radius

of 𝛾𝐺
𝑗
 and uses this further to identify neighbouring prototypes. This provides an intuitive understanding of

mutual distributions and ensemble properties of data.

After that, the most representative prototypes of the jth class denoted by {𝒑}𝑗 are selected out from raw

prototypes (local maxima) based on the following condition:

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟑: 𝐼𝑓 (𝐷𝑀𝑀(𝒒𝑘) > max
𝒒∈{𝒒}𝑘

𝑛∗
(𝐷𝑀𝑀(𝒒))) 𝑇ℎ𝑒𝑛 (𝒒𝑘 ∈ {𝒑}𝑗) (13)

and new data clouds are formed around prototypes {𝒑}𝑗 = {𝒑1
𝑗
, 𝒑2

𝑗
, … , 𝒑

𝑃𝑗
𝑗

} resembling Voronoi tessellation

using equation (6), denoted by {ℂ}𝑗 = {ℂ1
𝑗
, ℂ2

𝑗
, … , ℂ

𝑃𝑗
𝑗

}. Condition 3 effectively filters out more representative

prototypes by comparing these prototypes with their neighbours in terms of their values of multimodal density.

Conditions 2 and 3 together greatly facilitate the searching process for the most representative data samples in

the data space. At the same time, these highly representative prototypes objectively reflect the ensemble

properties and mutual distribution of data because only the mutual distances and multimodal density values of

these empirically observed data samples are considered during the identification process. The identified

prototypes by SONFIS in the data space under different levels of granularity are visualised in Fig. 4 using the

same climate data as given in Fig. 2.

In the end, the jth massively parallel fuzzy rule 𝐑𝑗 is created with {𝒑}𝑗 (the number of elements in {𝒑}𝑗 is

denoted by 𝑃𝑗) in the same form as equation (1a).

(a) 𝐺 = 1 (b) 𝐺 = 2

(c) 𝐺 = 3 (d) 𝐺 = 4

Fig. 4. Identified prototypes from data under different levels of granularity during offline learning process

B. Online Learning Process

Once the offline learning process is finished, SONFIS can further self-update its structure and meta-

parameters recursively with newly observed data on a sample-by-sample basis. This online learning ability

allows SONFIS to rapidly adapt to new data patterns. It has to be stressed that SONFIS does not require any

user-control parameters to be pre-determined for online learning, but uses nonparametric statistic operators and

data-driven thresholds derived during the offline learning process.

 Let us assume that SONFIS has been primed with the static dataset, {𝒙}𝐾 at the Kth time instance, and at

the next time instance (𝐾 ← 𝐾 + 1), a new data sample of the jth class arrived (𝑁𝑗 ← 𝑁𝑗 + 1). The online

sample-by-sample learning process is described as follows.

Stage 4. Updating global meta-parameters

SONFIS firstly updates the global meta-parameters 𝝁
𝑁𝑗−1

𝑗
 and 𝑋

𝑁𝑗−1

𝑗
 using 𝒙

𝑁𝑗
𝑗

 as:

𝝁
𝑁𝑗
𝑗

←
𝑁𝑗−1

𝑁𝑗 𝝁
𝑁𝑗−1

𝑗
+

1

𝑁𝑗 𝒙
𝑁𝑗
𝑗

; 𝑋
𝑁𝑗
𝑗

←
𝑁𝑗−1

𝑁𝑗 𝑋
𝑁𝑗−1

𝑗
+

1

𝑁𝑗 ‖𝒙
𝑁𝑗
𝑗

‖
2
 (14)

and the radius of local influential area, 𝛾𝐺
𝑗
 is updated in a recursive manner based on the ratio between �̅�

𝑁𝑗
𝑗

 and

�̅�
𝑁𝑗−1

𝑗
, namely [18],

𝛾𝐺
𝑗

←
�̅�

𝑁𝑗
𝑗

�̅�
𝑁𝑗−1

𝑗 𝛾𝐺
𝑗

=
𝑋

𝑁𝑗
𝑗

−‖𝝁
𝑁𝑗
𝑗

‖
2

𝑋
𝑁𝑗−1

𝑗
−‖𝝁

𝑁𝑗−1

𝑗
‖

2 𝛾𝐺
𝑗
 (15)

The main reason for using equation (15) to update 𝛾𝐺
𝑗
 is because it provides a good approximation and is

more computationally efficient. Equations (7)-(9) derive the radius of local influential area, 𝛾𝐺
𝑗
 derived from all

static data samples during the offline learning process based on their mutual distances. However, it would be

time consuming and a waste of computational resources to repeat the same process for each newly observed data

sample during the online learning process. Thus, we use equation (15) instead.

Stage 5. Updating the identified prototypes

In this stage, data density values at 𝒙
𝑁𝑗
𝑗

 and all existing prototypes, {𝒑}𝑗 are calculated by the following

expression [4]:

𝐷(𝒚) =
1

1+
‖𝒚−𝝁

𝑁𝑗
𝑗

‖
2

𝑋
𝑁𝑗
𝑗

−‖𝝁
𝑁𝑗
𝑗

‖
2

 (16)

where 𝒚 = 𝒙
𝑁𝑗
𝑗

, 𝒑1
𝑗
, 𝒑2

𝑗
, … , 𝒑

𝑃𝑗
𝑗

.

Then, the nearest prototype to 𝒙
𝑁𝑗
𝑗

, denoted by 𝒑𝑛∗
𝑗

, is identified by equation (6), and the following

condition is used for checking whether 𝒙
𝑁𝑗
𝑗

 can be a new prototype:

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟒:

𝐼𝑓 (𝐷(𝒙
𝑁𝑗
𝑗

) > max
𝒒∈{𝒑}𝑗

(𝐷(𝒒))) 𝑜𝑟 (𝐷(𝒙
𝑁𝑗
𝑗

) < min
𝒒∈{𝒑}𝑗

(𝐷(𝒒)))

𝑜𝑟 (‖𝒙
𝑁𝑗
𝑗

− 𝒑𝑛∗
𝑗

‖
2

> 𝛾𝐺
𝑗
)

𝑇ℎ𝑒𝑛 (𝒙
𝑁𝑗
𝑗

 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)

 (17)

Condition 4 is a combination of Conditions 4 and 5 in the original version of SONFIS [6], and the

rationale behind it is very clear. If 𝐷(𝒙
𝑁𝑗
𝑗

) is larger than the maximum data density value of the existing

prototypes {𝒑}𝑗 , 𝒙
𝑁𝑗
𝑗

 is more descriptive and has more summarisation power than all other prototypes.

Alternatively, if 𝐷(𝒙
𝑁𝑗
𝑗

) is smaller than the minimum data density value of any prototypes, it represents an

emerging pattern very different from previously seen ones. In the third case, if the distance between 𝒙
𝑁𝑗
𝑗

 and the

nearest prototype 𝒑𝑛∗
𝑗

 is larger than 𝛾𝐺
𝑗
, 𝒙

𝑁𝑗
𝑗

 is distant with all prototypes and represents a pattern that no existing

data clouds can describe. Therefore, in either case, 𝒙
𝑁𝑗
𝑗

 becomes a new prototype and initialise a new data cloud.

If Condition 4 is satisfied, 𝒙
𝑁𝑗
𝑗

 is recognised as a new prototype of the jth class, and the meta-parameters

of the new data cloud associated with 𝒙
𝑁𝑗
𝑗

 are initialised as:

𝑃𝑗 ← 𝑃𝑗 + 1; 𝒑
𝑃𝑗
𝑗

← 𝒙
𝑁𝑗
𝑗

; {𝒑}𝑗 ← {𝒑}𝑗 ∪ {𝒑
𝑃𝑗
𝑗

}; ℂ
𝑃𝑗
𝑗

← {𝒙
𝑁𝑗
𝑗

}; 𝑆
𝑁𝑗
𝑗

← 1 (18)

Otherwise, the meta-parameters of the data cloud, ℂ𝑛∗
𝑗

 associated with the nearest prototype are updated by 𝒙
𝑁𝑗
𝑗

as:

ℂ𝑛∗
𝑗

← ℂ𝑛∗
𝑗

∪ {𝒙
𝑁𝑗
𝑗

}; 𝒑𝑛∗
𝑗

←
𝑆𝑛∗

𝑗

𝑆𝑛∗
𝑗

+1
𝒑𝑛∗

𝑗
+

1

𝑆𝑛∗
𝑗

+1
𝒙

𝑁𝑗
𝑗

; 𝑆𝑛∗
𝑗

← 𝑆𝑛∗
𝑗

+ 1 (19)

After this, the fuzzy rule is updated with the newly updated {𝒑}𝑗, and SONFIS goes back to Stage 4 and

gets ready for processing the next data sample. The online learning results of SONFIS from the remaining 30%

of climate data under different levels of granularity are presented in Fig.5 for illustration.

From the offline and online identification processes described in this subsection one may conclude that,

the prototypes of SONFIS are directly extracted from data and they objectively represent the local models of

data distribution. It has to be stressed that a hybrid of offline and online learning processes is an important

feature of SONFIS and is very useful in real-world scenarios. In most of real-world applications, a part of data

has been available in a static form, while the remaining samples keep coming sequentially in a streaming form.

By learning from the available static data in an offline manner, SONFIS can have a better understanding on

ensemble properties and mutual distributions of data, which results in more robust and stronger performance.

Then, by learning from streaming data on a sample-by-sample basis, SONFIS is capable of successfully tackling

the problems with changing data pattern in nonstationary environments by continuously self-developing based

on new observations.

(a) 𝐺 = 1 (b) 𝐺 = 2

(c) 𝐺 = 3 (d) 𝐺 = 4

Fig. 5. Identified prototypes from data under different levels of granularity after online learning process

The main procedures of the online and offline learning processes of SONFIS are summarised in the

following pseudo codes.

1) Offline training process

Input: {𝒙}
𝑁𝑗
𝑗

Algorithm begins

i. Calculate 𝐷𝑀𝑀 at {𝒖}
𝐿𝑗
𝑗

 using (2);

ii. Rank {𝒖}
𝐿𝑗
𝑗

 into {𝒓} using (4);

iii. Identify {𝒖∗} using Condition 1;

iv. Form {ℂ} around {𝒖∗} using (6);

v. Extract 𝛾𝐺
𝑗
 from {𝒙}

𝑁𝑗
𝑗

 using (7)-(9);

vi. Calculate {𝒒} from {ℂ} using (10);

vii. Calculate 𝐷𝑀𝑀 at {𝒒} using (11);

viii. Identify {𝒑}𝑗 using Conditions 2 and 3;

ix. Create 𝐑𝑗 based on {𝒑}𝑗.

Algorithm ends

Output: 𝐑𝑗

2) Online learning process

Input: {𝒙
𝑁𝑗+1

𝑗
, 𝒙

𝑁𝑗+2

𝑗
, 𝒙

𝑁𝑗+3

𝑗
, … }

Algorithm begins

While 𝒙
𝑁𝑗+1

𝑗
 is available or (until interrupted):

i. Update 𝝁
𝑁𝑗
𝑗

 and 𝑋
𝑁𝑗
𝑗

 by (14);

ii. Update 𝛾𝐺
𝑗
 by (15);

iii. Calculate 𝐷 at 𝒙
𝑁𝑗+1

𝑗
 and {𝒑}𝑗 using (16);

iv. If (Condition 4 is met) Then:

- Add 𝒙
𝑁𝑗
𝑗

 as a new prototype by (18);

v. Else:

- Update ℂ𝑛∗
𝑗

 by (19);

vi. End If

vii. 𝑁𝑗 ← 𝑁𝑗 + 1;

viii. Update 𝐑𝑗;

End While

Algorithm ends

Output: 𝐑𝑗

However, one may also notice that SONFIS as well as the majority of alterative zero-order EISs identify

prototypes in a non-iterative and straightforward manner. There is no optimisation process involved because

zero-order EISs need to be computationally lean. Therefore, the optimality of zero-order EISs require to be

studied to better understand their merits and limitations. In the next section, we will present the optimality

analysis.

3.3. Validation Process

In this subsection, the decision-making procedure of SONFIS is presented. As one can see from Fig. 1,

during the validation process, there is a two-level decision-making process involved for deciding the label of

each unlabelled data sample. This includes the local decision-making and overall decision-making processes.

The local decision-maker follows the “nearest prototype” principle, and the global decision-maker follows the

“winner takes all” principle.

For each newly arrived data sample, 𝒙𝐾, it is firstly sent to the 𝐶 massively parallel fuzzy rules, and the

local decision-maker will identify the most similar prototype to 𝒙𝐾 within this fuzzy rule and calculate the score

of confidence using equation (20):

𝜆𝑗(𝒙𝐾) = max
𝑖=1,2,…,𝑃𝑗

(𝑒−‖𝒙𝐾−𝒑𝑖
𝑗

‖
2

) (20)

The score of confidence produced by a particular massively parallel fuzzy rule is determined by similarity

between 𝒙𝐾 and the nearest prototype of the corresponding class. The exponential function is used for confining

the value of score of confidence into a more familiar range, namely, [0,1] and, at the same time, enlarging the

Euclidean distance between 𝒙𝐾 and prototypes {𝒑}𝑗 . Nonetheless, it has to be stressed that the exponential

function used in equation (20) can be replaced by other functions as well.

Then, the 𝐶 scores of confidence generated by the 𝐶 fuzzy rules will be passed to the global decision-

maker, and the label of 𝒙𝐾 will be decided as:

𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 = argmax
𝑗=1,2,…,𝐶

(𝜆𝑗(𝒙𝐾)) (21)

In the next section, we will study the optimality of the premise, IF part by SONFIS from the data

partitioning point of view.

4. Analysis of the Optimality

The analysis of optimality of the initial solutions obtained from data by SONFIS [18] is performed in this

section. As SONFIS identifies prototypes per class, we only consider the optimality of the solution of a

particular class (assuming the jth one; 𝑗 = 1,2, … , 𝐶). The optimality analysis can be applied to all other classes

as well. It is necessary to stress that the analysis and general principles presented in this section can also be

applied to other online non-iterative learning algorithms with similar operating mechanisms.

4.1. Mathematical Formulation of the Problem

Thanks to the non-parametric nature of both, the consequent, THEN part and the premise, IF part (which

is prototype-based), the optimality of SONFIS depends solely on the optimal positions of prototypes, namely,

the most representative data samples in the data space. Therefore, the optimality problem of SONFIS is reduced

to finding a locally optimal data partition solution. From machine learning point of view, this can be considered

as locally optimal clustering. The formal mathematical condition for this can be described in the form of a

mathematical programming problem [38] as follows.

Considering that SONFIS partitions data samples of jth class, {𝒙}
𝑁𝑗
𝑗

= {𝒙1
𝑗
, 𝒙2

𝑗
, … , 𝒙

𝑁𝑗
𝑗

} , into 𝑃𝑗 data

clouds, we formulate the optimality problem in the form of the following mathematical programming problem

for clustering/data partitioning [38]:

𝑷𝒓𝒐𝒃𝒍𝒆𝒎 𝟏: 𝑓(𝑾𝑗, 𝑷𝑗) = ∑ ∑ 𝑤𝑖,𝑘
𝑗𝑁𝑗

𝑖=1
𝑃𝑗

𝑘=1 𝑑(𝒙𝑖
𝑗
, 𝒑𝑘

𝑗
) (22)

where 𝑗 = 1,2, … , 𝐶; 𝑾𝑗 = [𝑤𝑖,𝑘
𝑗

] is a 𝑃𝑗 × 𝑁𝑗 real matrix; 𝑷𝑗 = [𝒑1
𝑗
, 𝒑2

𝑗
, … , 𝒑

𝑃𝑗
𝑗

] ∈ 𝐑𝑀×𝑃𝑗
.

𝑾𝑗 is subject to the following constraints (𝑘 = 1,2, … , 𝑃𝑗 , 𝑖 = 1,2, … , 𝑁𝑗):

𝑤𝑖,𝑘
𝑗

∈ {0,1} (23a)

∑ 𝑤𝑖,𝑘
𝑗𝑃𝑗

𝑘=1 = 1 (23b)

and the collection of all 𝑾𝑗 that meet the constraints (equation (23)) is denoted as: 𝚴𝑃𝑗×𝑁𝑗
. The reason for

imposing such constraints on 𝑾𝑗 is that each data sample can be associated with only one prototype according

to equation (6).

Problem 1 is a nonconvex problem, and therefore, the local minimum point does not need to be a global

minimum [38]. The necessary conditions for global optimality of Problem 1 is called Karush–Kuhn–Tucker,

which can be found in [25].

It has been proven in [28] that when square Euclidean distance is used, partially optimal solutions are

always locally optimal as shown in Theorem 1. The detailed proof of Theorem 1 can be found on page 5 of

[38].

Theorem 1: Consider Problem 1 where 𝑑(𝒙𝑖
𝑗
, 𝒑𝑘

𝑗
) = ‖𝒙𝑖

𝑗
− 𝒑𝑘

𝑗
‖

2
, a partially optimal solution of

Problem 1 is a local minimum point.

From Theorem 1 one can see that, a locally optimal solution of Problem 1 is equivalent to a partially

optimal solution. The definition of a partially optimal solution is as follows [43].

Definition 1: a point (𝑾𝑗∗, 𝑷𝑗∗) is a partially optimal solution for Theorem 1 if the following two

inequalities are satisfied

𝑓(𝑾𝑗∗, 𝑷𝑗∗) ≤ 𝑓(𝑾𝑗 , 𝑷𝑗∗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑾𝑗 ∈ 𝚴𝑃𝑗×𝑁𝑗

𝑓(𝑾𝑗∗, 𝑷𝑗∗) ≤ 𝑓(𝑾𝑗∗, 𝑷𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑷𝑗 ∈ 𝐑𝑀×𝑃𝑗 (24)

By solving the following two problems, one can get a partially optimal solution [43]:

Problem 2: Given �̂�𝑗 ∈ 𝐑𝑀×𝑃𝑗
, minimize 𝑓(𝑾𝑗 , �̂�𝑗) subject to 𝑾𝑗 ∈ 𝚴𝑃𝑗×𝑁𝑗

.

Problem 3: Given �̂�𝑗 ∈ 𝚴𝑃𝑗×𝑁𝑗
, minimize 𝑓(�̂�𝑗 , 𝑷𝑗) subject to 𝑷𝑗 ∈ 𝐑𝑀×𝑃𝑗

.

In other words, (𝑾𝑗∗, 𝑷𝑗∗) is a partially optimal solution on condition that 𝑾𝑗∗ solves Problem 2 with

�̂�𝑗 = 𝑷𝑗∗ and 𝑷𝑗∗ solves Problem 3 with �̂�𝑗 = 𝑾𝑗∗.

4.2. Local Optimality Analysis of Data Partitioning by SONFIS

From subsection 4.1 one can see that the data partitioning result ({𝒑}𝑗 and {ℂ}𝑗) is locally optimal if

(𝑾𝑗, 𝑷𝑗) is a partially optimal solution of Problem 1. As it is described in subsection 3.2, SONFIS self-

organises its multi-model architecture from static data and, then, continues to self-develop with streaming data

on a sample-by-sample basis. In this subsection, we will analyse the local optimality of the solutions achieved

by the offline and online learning processes, separately.

Firstly, let us consider the offline learning process. As one can see from subsection 3.2, after {𝒑}𝑗 are

filtered out from raw prototypes at the end of the process, the static data, {𝒙}
𝑁𝑗
𝑗

 is partitioned into 𝑃𝑗 data

clouds, {ℂ}𝑗 = {ℂ1
𝑗
, ℂ2

𝑗
, … , ℂ

𝑃𝑗
𝑗

} by using equation (6) to form Voronoi tessellations around {𝒑}𝑗. Based on {𝒑}𝑗

and {ℂ}𝑗, one can obtain the prototype matrix 𝑷𝑗 and the weight matrix 𝑾𝑗, respectively, and Problem 1 can be

reformulated as:

𝑓(𝑾𝑗 , 𝑷𝑗) = ∑ ∑ 𝑤𝑖,𝑘
𝑗𝑁𝑗

𝑖=1
𝑃𝑗

𝑘=1 𝑑(𝒙𝑖
𝑗
, 𝒑𝑘

𝑗
) = ∑ ∑ ‖𝒙 − 𝒑𝑘

𝑗
‖

2

𝒙∈ℂ
𝑘
𝑗

𝑃𝑗

𝑘=1 (25)

By taking equation (6) into consideration, one can conclude that 𝑾𝑗 is the minimum solution of Problem

2 given 𝑷𝑗. Thus, the data partitioning result, {ℂ}𝑗 is an optimal solution of Problem 2. However, there is no

guarantee that the solution (𝑾𝑗 , 𝑷𝑗) can solve Problem 3 as well because this problem is not taken into

consideration during the entire offline learning process.

Considering the online learning process, which is of “one pass” type and non-iterative, there is also no

guarantee that the current solution obtained by (𝑾𝑗, 𝑷𝑗) can solve Problems 2 and 3 at the same time. In fact,

for a particular data sample, 𝒙𝑖
𝑗
 (𝑖 = 1,2, … , 𝑁𝑗 − 1), only the following equation is guaranteed to be valid at the

time instance when 𝒙𝑖
𝑗
 was observed:

∑ 𝑤𝑖,𝑘
𝑗

𝑑(𝒙𝑖
𝑗
, 𝒑𝑘

𝑗
(𝑖))

𝑃𝑗(𝑖)
𝑘=1 = min

𝑘=1,2,…,𝑃𝑗(𝑖)
(‖𝒙𝑖

𝑗
− 𝒑𝑘

𝑗
(𝑖)‖

2
) = ‖𝒙𝑖

𝑗
− 𝒑𝑛∗

𝑗
(𝑖)‖

2
 (26)

where 𝒑𝑘
𝑗 (𝑖)(𝑘 = 1,2, … , 𝑃𝑗(𝑖)) are the existing prototypes at the time instance that 𝒙𝑖

𝑗
 is observed; 𝑃𝑗(𝑖) is the

corresponding number of prototype at the ith time instance; 𝒑𝑛∗
𝑗

(𝑖) is the nearest prototype to 𝒙𝑖
𝑗
, which can be

𝒙𝑖
𝑗
 itself if Condition 4 is met. Otherwise, there are 𝑤𝑖,𝑛∗

𝑗
= 1 and 𝑤𝑖,𝑘

𝑗
= 0 for ∀𝑘 ≠ 𝑛∗.

From the time instance at which the next data sample of the jth class is observed, equation (26) is not

guaranteed to be true anymore for 𝒙𝑖
𝑗
 due to the possible shift of 𝒑𝑛∗

𝑗
 and/or the initialisation of new data clouds

with prototypes closer to 𝒙𝑖
𝑗
 than 𝒑𝑛∗

𝑗
. However, the values of 𝑤𝑖,𝑘

𝑗
 (𝑘 = 1,2, … 𝑃𝑗) has been already fixed when

𝒙𝑖
𝑗
 was observed because 𝒙𝑖

𝑗
 has been assigned as a member of ℂ𝑛∗

𝑗
 and there is no reallocation in the future. As

a result, we can state that the following inequality applies to all historically observed data samples, 𝒙𝑖
𝑗
 (𝑖 =

1,2, … , 𝑁𝑗 − 1):

∑ 𝑤
𝑁𝑗,𝑘

𝑗
𝑑(𝒙𝑖

𝑗
, 𝒑𝑘

𝑗
(𝑁𝑗))

𝑃𝑗(𝑁𝑗)
𝑘=1 = ‖𝒙𝑖

𝑗
− 𝒑𝑛∗

𝑗
(𝑁𝑗)‖

2
≥ min

𝑘=1,2,…,𝑃𝑗(𝑁𝑗)
(‖𝒙𝑖

𝑗
− 𝒑𝑘

𝑗
(𝑁𝑗)‖

2
) (27)

which means that (𝑾𝑗, 𝑷𝑗) is not a minimum solution of Problem 3 given 𝑾𝑗. Therefore, one can conclude

that the data partitioning result obtained by SONFIS is not locally optimal. In the next section, we will discuss a

feasible approach for SONFIS to attain local optimality from the initial prototype solutions.

5. Attaining Locally Optimal Solution

As we have proven that the premise, IF part of SONFIS lacks local optimality, in this section, we will

discuss how to optimise the positions of prototypes of SONFIS in the data space to attain the locally optimal

solution. According to Theorem 1, in order to find a locally optimal solution for the premise, IF part of

SONFIS, one can look for a partially optimal solution in the problem space instead. One possible way to obtain

a partially optimal IF part from the initial partitioning result by SONFIS is to further apply an iterative

optimisation process, for example, using the similar iterative process used by the well-known K-means

clustering algorithm [38].

In this section, the proposed prototype optimisation (PO) algorithm for SONFIS is presented. This

algorithm concerns only the identified prototypes and the historical data; thus, it is entirely data-driven and

nonparametric. The main algorithmic procedure is composed of the following four steps. However, it has to be

stressed that the optimisation process is performed on prototypes of each class separately, which means different

massively parallel rules in the rule base can be optimised at the same time in parallel. In this section, we use

prototypes of the jth class as an example.

Step 1. Re-denote the identified prototype matrix, 𝑷𝑗 from the offline learning process and/or online learning

process as 𝑷𝑗(𝑡) (𝑡 = 0, which indicates the current number of iterations) and solve Problem 2 by

setting 𝑷𝑗(𝑡) to �̂�𝑗 and obtain 𝑾𝑗(𝑡) = [𝑤𝑖,𝑘
𝑗

(𝑡)] as the optimal solution.

The solution of Problem 2 can be expressed as follows (𝑖 = 1,2, … , 𝑁𝑗):

 {
𝑤𝑖,𝑘

𝑗
(𝑡) = 1 𝑘 = argmin

𝑙=1,2,…,𝑃𝑗
(‖𝒙𝑖

𝑗
− �̂�𝑙

𝑗
‖

2
)

𝑤𝑖,𝑘
𝑗

(𝑡) = 0 𝑘 ∈ 𝑒𝑙𝑠𝑒

 (28)

Step 2. Solve Problem 3 by setting 𝑾𝑗(𝑡) as �̂�𝑗 and identify new prototypes denoted by 𝑷𝑗(𝑡 + 1).

The solution of Problem 3 may not be as obvious as Problem 2. With the given �̂�𝑗, it is obvious that

Problem 3 is equivalent to the problem of finding 𝑷𝑗(𝑡 + 1) ∈ 𝐑𝑀×𝑃𝑗
 , which satisfies the following

equation:

𝑓1 (𝑷𝑗(𝑡 + 1)) = min
𝒁∈𝐑𝑀×𝑃𝑗

(𝑓1(𝒁)) (29)

where 𝑓1(𝒁) = 𝑓(�̂�𝑗 , 𝒁). 𝑓1(𝒁) can be reformulated as:

𝑓1(𝒁) = ∑ ∑ ‖𝒙𝑖
𝑗

− 𝒛𝑘‖
2

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
𝑃𝑗

𝑘=1 = 𝑓2(𝒛1) + 𝑓2(𝒛2) + ⋯ + 𝑓2(𝒛𝑃𝑗) (30)

where 𝑓2(𝒛𝑘) = ∑ ‖𝒙𝑖
𝑗

− 𝒛𝑘‖
2

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
, 𝑘 = 1,2, … , 𝑃𝑗 .

The problem of minimising 𝑓1(𝒁) (equation (29)) can be further simplified to the problem of finding

𝒑𝑘
𝑗

(𝑡 + 1) ∈ 𝐑𝑀 (𝑘 = 1,2, … , 𝑃𝑗) that meets the following equation:

𝒑𝑘
𝑗 (𝑡 + 1) = argmin

𝒛𝑘∈𝐑𝑀
(𝑓2(𝒛𝑘)) (31)

Because ‖𝒙𝑖
𝑗

− 𝒛𝑘‖
2

= ∑ (𝑥𝑖,ℎ
𝑗

− 𝑧𝑘,ℎ)
2

𝑀
ℎ=1 (𝑖 ∈ {𝑙|𝑤𝑙,𝑘

𝑗
(𝑡) = 1, 𝑙 = 1,2, … , 𝑁𝑗}), 𝑓2(𝒛𝑘) is a convex

function and is differentiable for 𝒛𝑘 ∈ 𝐑𝑀 . Therefore, 𝒑𝑘
𝑗 (𝑡 + 1) is the minimum value of 𝑓2(𝒛𝑘) .

According to Fermat’s Theorem, the partial derivative of 𝑓2(𝒛𝑘) at each dimension will have a value of

0 at 𝒑𝑘
𝑗 (𝑡 + 1) = [𝑝𝑘,1

𝑗 (𝑡 + 1), 𝑝𝑘,2
𝑗 (𝑡 + 1), … , 𝑝𝑘,𝑀

𝑗 (𝑡 + 1)]
𝑇
, namely:

𝜕𝑓2(𝒛𝑘)

𝜕𝑧𝑘,ℎ
= 2 ∑ (𝑥𝑖,ℎ

𝑗
− 𝑧𝑘,ℎ)

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
= 0 𝑖𝑓𝑓 𝒛𝑘 = 𝒑𝑘

𝑗 (𝑡 + 1) (32)

where ℎ = 1,2, … , 𝑀, 𝑘 = 1,2, … , 𝑃𝑖. Equation (32) can be further simplified in the following form with

𝒛𝑘 = 𝒑𝑘
𝑗 (𝑡 + 1):

∑ (𝑥𝑖,ℎ
𝑗

− 𝑝𝑘,ℎ
𝑗 (𝑡 + 1))

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
=

∑ 𝑥𝑖,ℎ
𝑗

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
− ∑ 𝑤𝑙,𝑘

𝑗
(𝑡)𝑁𝑗

𝑙=1 ∙ 𝑝𝑘,ℎ
𝑗 (𝑡 + 1) = 0

 (33)

Based on equation (33) one can see that, 𝒑𝑘
𝑗 (𝑡 + 1) is the mean of data samples, 𝒙𝑖

𝑗
 (∀𝑖 ∈ {𝑙|𝑤𝑙,𝑘

𝑗
(𝑡) =

1, 𝑙 = 1,2, … , 𝑁𝑗}) that are associated with 𝒑𝑘
𝑗 (𝑡), namely (𝑘 = 1,2, … , 𝑃𝑗):

𝒑𝑘
𝑗 (𝑡 + 1) =

1

∑ 𝑤𝑙,𝑘
𝑗

(𝑡)𝑁𝑗
𝑙=1

∑ 𝒙𝑖
𝑗

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
 (34)

Step 3. Solve Problem 2 by setting 𝑷𝑗(𝑡 + 1) as �̂�𝑗 and obtain 𝑾𝑗(𝑡 + 1) = [𝑤𝑖,𝑘
𝑗

(𝑡 + 1)] as the optimal

solution.

Step 4. If 𝑓 (𝑾𝑗(𝑡 + 1), 𝑷𝑗(𝑡 + 1)) = 𝑓 (𝑾𝑗(𝑡), 𝑷𝑗(𝑡)), the optimum solution is reached, the optimisation

algorithm stops and (𝑾𝑗(𝑡 + 1), 𝑷𝑗(𝑡 + 1)) is set to be (𝑾𝑗∗, 𝑷𝑗∗); Otherwise, 𝑡 ← 𝑡 + 1 and go back

to Step 2.

To better illustrate the proposed concept and principles, we use the PO algorithm for optimising the

prototype identification results obtained by SONFIS and present the results in the following figure, where the

obtained solution with 𝐺 = 3 as given in Fig. 5(a) is used for visual clarity. As we can see from Fig. 6, after a

few iterations, all prototypes have reached their best positions in the data space.

The main procedure of the PO algorithm is also summarised by the following pseudo code:

Input: {𝒙}
𝑁𝑗
𝑗

 and {𝒑}𝑗

Algorithm begins

i. 𝑡 ← 0;

ii. Obtain 𝑾𝑗(𝑡) by solving Problem 2 with 𝑷𝑗(𝑡);

iii. Calculate 𝑓 (𝑾𝑗(𝑡), 𝑷𝑗(𝑡)) by (25);

iv. While 𝑓 (𝑾𝑗(𝑡), 𝑷𝑗(𝑡)) ≠ 𝑓 (𝑾𝑗(𝑡 − 1), 𝑷𝑗(𝑡 − 1)):

- Obtain 𝑷𝑗(𝑡 + 1) by solving Problem 3 with 𝑾𝑗(𝑡);

- Obtain 𝑾𝑗(𝑡 + 1) by solving Problem 2 with 𝑷𝑗(𝑡 + 1);

- Calculate 𝑓 (𝑾𝑗(𝑡 + 1), 𝑷𝑗(𝑡 + 1)) by (25);

 - 𝑡 ← 𝑡 + 1;

v. End While

Algorithm ends

Output: {𝒑}𝑗∗

(a) First optimisation round (b) Second optimisation round

(c) Third optimisation round (d) Final optimisation round

Fig. 6. Illustration of the optimisation process

The proposed PO algorithm guarantees a partially optimal solution of Problem 1 as stated in Theorem 2

as follows.

Theorem 2: The PO algorithm converges to a partially optimal solution of Problem 1 in a finite number

of iterations.

The detailed proof of Theorem 2 can be found on page 3 of [38].

The proposed PO algorithm can be applied to SONFIS during the system identification process in a way

as depicted in Fig. 7. After all prototypes of SONFIS have been identified at the end of the learning process, the

PO algorithm is used to help SONFIS achieve a locally optimal partitioning by refining the positions of the

prototypes in the data space. This effectively updates/fine-tunes the premise, IF part of the fuzzy rules. By

involving the proposed PO algorithm, the local optimality of partitioning results can be guaranteed at the price

of lower computational efficiency because of the iterative optimisation process. Nonetheless, it is worth to be

noticed that in practice, only a few iterations are needed.

By using the framework depicted in Fig. 7, the offline and online learning processes of SONFIS are still

highly efficient, but all historical data samples are required to be kept in system memory. Additional

computational resources will be consumed at the end of the learning process only to perform the optimisation

process. On the other hand, one may consider alternative ways to use the proposed PO algorithm, for example,

conducting optimisation every time the system is updated. However, the aim of this paper is to deliver the

general concept and principles, and thus, we only consider the implementation presented in Fig. 7 without loss

of generality. It is also necessary to stress that proposed PO algorithm is generic and applicable for other types

of evolving learning algorithms with similar operating mechanisms, and this will be demonstrated through

numerical examples presented in section 7. Alteratively, one may also consider using generic optimisation

algorithms to optimise the solution obtained by SONFIS, e.g. particle swarm optimisation (PSO) algorithm [9].

However, the attractiveness of the PO algorithm comes from the two aspects. Firstly, the proposed algorithm is

a modified form of the most widely used K-means algorithm, it is designed specifically for optimising data

partitioning problems and its effectiveness and validity are guaranteed. Secondly, the PO algorithm is

computationally efficient and only adds minor additional computational cost to SONFIS. In the next section, a

detailed computational complexity analysis on SONFIS and the PO algorithm will be provided as the supporting

evidence.

Fig. 7 The diagram of optimising SONFIS using the proposed algorithm

6. Computational Complexity Analysis

In this section, we will analyse the computational complexity of SONFIS and the proposed PO algorithm.

During the first stage of the offline learning process of SONFIS, the computational complexity of

calculating the multimodal density values at the observed unique data samples of the jth class is 𝑂(𝐿𝑗𝑀). The

computational complexity for forming Voronoi tessellations from data is 𝑂(𝐿𝑗∗𝑁𝑗𝑀). During stage 2, the

computational complexity for estimating the radius of influential area around each prototype is 𝑂((𝑁𝑗)2𝑀). In

the third stage, the computational complexity for calculating the multimodal density value at each raw prototype

is 𝑂(𝐿𝑗∗𝑀), the computational complexity for the highly representative prototype identification is negligible,

and the complexity for forming data clouds around the identified prototypes is 𝑂(𝑃𝑗𝑁𝑗𝑀). Therefore, the

overall computational complexity of the offline learning process of SONFIS is 𝑂(𝑀 ∑ (𝑁𝑗)2𝐶
𝑗=1)

 During the online learning process, SONFIS will update one of its fuzzy rules in the rule base for each

newly arrived data sample. Assuming the new data sample belongs to the jth class, the computational

complexity of stage 4 is 𝑂(𝑀). The computational complexity of stage 5 is 𝑂 ((𝑃𝑗 + 1)𝑀), which is mainly

caused by the calculation of data density values at the new data sample and the previously identified prototypes.

Therefore, the overall computational complexity of updating SONFIS with each new data sample during the

online learning process is 𝑂(𝑀𝑃𝑗).

For the proposed PO algorithm, the overall computational complexity is hard to estimate because

prototypes of difference classes require different numbers of iterations to reach the optimal positions. However,

we still can estimate that, for prototypes of the jth class (𝑗 = 1,2, … , 𝐶), the computational complexity of each

iteration is 𝑂(𝑃𝑗𝑁𝑗𝑀). Thus, the overall computational complexity of the optimisation process using the PO

algorithm is 𝑂(𝑀 ∑ 𝑃𝑗𝑁𝑗𝑇𝑗𝐶
𝑗=1), where 𝑇𝑗 is the number of iteration steps for prototypes of the jth class to

converge.

 7. Numerical Examples and Discussions

In this section, numerical examples are presented for validating the proposed concept and general

principles. The experiments are conducted using MATLAB R2018a on a PC with dual core processor 3.60

GHz×2 and 16 GB RAM. As it was stated in section 5, we only apply the proposed PO algorithm at the end of

the learning process of SONFIS to optimise the obtained solutions, namely, prototypes.

7.1. Experiments on Benchmark Numerical Datasets

In this subsection, the validity and effectiveness of the proposed PO algorithm are demonstrated through

numerical examples on a number of benchmark datasets. The following nine real-world challenging problems

are considered, and details of these datasets are tabulated in Table 2:

1) Wilt (WI) dataset2;

2) Occupancy detection (OD) dataset3;

3) Optical recognition of handwritten digits (OR) dataset4;

4) Pen-based recognition of handwritten digits (PR) dataset5;

5) Multiple features (MF) dataset6;

6) Epileptic seizure recognition (ES) dataset7;

7) Letter recognition (LR) dataset8;

8) Crowdsourced Mapping (CM) dataset9, and;

9) Forest cover type (FC) dataset10.

By default, SONFIS uses Euclidean distance in the experiments conducted in this section. In this paper,

the time stamps of the OD dataset are removed in advance, and the two testing sets are combined into one for

numerical experiments. Binary classification is performed on the ES dataset to distinguish the subjects with and

without epileptic seizure, namely, class 1 versus the rest.

2 Available from http://archive.ics.uci.edu/ml/datasets/wilt
3 Available from https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
4 Available from https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
5 Available from https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
6 Available from https://archive.ics.uci.edu/ml/datasets/Multiple+Features
7 Available from https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
8 Available from https://archive.ics.uci.edu/ml/datasets/letter+recognition
9 Available from https://archive.ics.uci.edu/ml/datasets/Crowdsourced+Mapping
10 Available from https://archive.ics.uci.edu/ml/datasets/covertype

http://archive.ics.uci.edu/ml/datasets/wilt
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/datasets/Crowdsourced+Mapping
https://archive.ics.uci.edu/ml/datasets/covertype

As the structure of WI and OD datasets are both relatively simpler compared with other benchmark

datasets considered within this subsection, we use the two datasets for demonstrating the concept of the

proposed approach. The offline data partitioning results obtained by SONFIS on the training sets of the two

benchmark datasets are depicted in Fig. 8, where dots “∙” in red and blue represent data samples from classes 1

and 2, respectively; asterisks “*” in cyan and green represent prototypes identified from the data samples of the

corresponding classes. By using the proposed PO algorithm, we obtain the local optimal data partitioning, and

the results obtained by the locally optimal SONFIS (LO-SONFIS) are also given in Fig. 8 for comparison,

where only the first two attributes of the datasets are presented for visual clarity. The value changes of

𝑓(𝑾𝑗, 𝑷𝑗) (𝑗 = 1,2) after each iteration are given in Fig. 9, where the values have been normalised to the range

[0,1] for better visualisation. In this example, the level of granularity of SONFIS, 𝐺 is set to be 𝐺 = 2 because it

enables SONFIS to identify a smaller number of prototypes and is more suitable for illustration. From Figs. 8

and 9 one can see that the PO algorithm is capable of assisting SONFIS to achieve the locally optimal solutions

after a few iterations.

Table 2. Details of datasets

Datasets
Number of

Classes

Number of

Samples

Number of

Attributes

WI Training set
2

4339
5+1 label

Testing set 500

OD
Training set

2

8143

5+1 label Testing set 1 2664

Testing set 2 9752

OR Training set
10

3823
64+1 label

Testing set 1797

PR Training set
10

7494
16+1 label

Testing set 3498

MF 10 2000 649+1 label

ES 2 11500 178+1 label

LR 26 20000 16+1 label

CM
Training seta

16
10545

28+1 label
Testing set 300

FC 7 581012 54+1 label
 a containing many class labelling errors.

 (a) Initial data partitioning-WI (b) Local optimal data partitioning-WI

 (c) Initial data partitioning-OD (d) Local optimal data partitioning-OD

Fig. 8. Data partitioning results.

 (a) WI (b) OD

Fig. 9. The changes of the values of 𝑓(𝑾𝑗 , 𝑷𝑗) (𝑗 = 1,2) after each iteration

In the following numerical example, we will evaluate the effectiveness of the proposed PO algorithm by

comparing the classification performance between SONFIS and LO-SONFIS. Here, WI, OD, OR and PR

datasets are used for experiments. The training sets are used for priming SONFIS in an offline scenario and the

performance of LO-SONFIS and SONFIS in terms of classification accuracy (ACC) on testing sets and

execution time (texe in sec) are tabulated in Table 3. The level of granularity of SONFIS is set to be 𝐺 =

1,2,3,4,5,6 . The reported numerical results are the average of 10 Monte Carlo experiments by randomly

scrambling the order of the training samples. The total number of prototypes (NP) identified by SONFIS is

given in Fig. 10(a) to profile the system complexity.

Table 3. Performance comparison between SONFIS and LO-SONFIS – scenario 1

Dataset Algorithm Measures Granularity, 𝐺

1 2 3 4 5 6

WI SONFIS ACC 0.4960 0.6460 0.6900 0.8060 0.7960 0.8100

texe 1.04 1.07 1.09 1.12 1.12 1.13

LO-SONFIS ACC 0.5420 0.7080 0.7820 0.8100 0.8040 0.8000

texe 1.07 1.16 1.38 1.54 1.57 1.78

OD SONFIS ACC 0.8107 0.8403 0.8618 0.9112 0.9382 0.9513

texe 2.27 2.40 2.55 2.48 2.51 2.57

LO-SONFIS ACC 0.8150 0.8405 0.8770 0.9165 0.9410 0.9524

texe 2.30 2.63 3.07 3.59 2.95 3.25

OR SONFIS ACC 0.9160 0.9421 0.9499 0.9716 0.9766 0.9761

texe 0.09 0.09 0.09 0.09 0.09 0.09

LO-SONFIS ACC 0.9254 0.9505 0.9549 0.9755 0.9777 0.9777

texe 0.12 0.12 0.12 0.15 0.15 0.15

PR SONFIS ACC 0.9028 0.9503 0.9588 0.9700 0.9743 0.9780

texe 0.28 0.29 0.29 0.29 0.29 0.31

LO-SONFIS ACC 0.9108 0.9528 0.9663 0.9720 0.9746 0.9771

texe 0.34 0.35 0.37 0.40 0.40 0.42

In the following numerical example, we repeat the same experiments as reported in Table 3 under the

same protocol. However, in this case, one third of the training samples are used for priming SONFIS offline

first, and the remaining samples are treated as data streams and used for training SONFIS on a sample-by-

sample basis. The experimental results are given in Table 4, and the total number of prototypes (NP) identified

by SONFIS during experiments is given in Fig. 10(b).

Table 4. Performance comparison between SONFIS and LO-SONFIS – scenario 2

Dataset Algorithm Measures Granularity, 𝐺

1 2 3 4 5 6

WI SONFIS ACC 0.6410 0.6842 0.7328 0.7964 0.8138 0.8222

texe 0.46 0.43 0.46 0.49 0.53 0.52

LO-SONFIS ACC 0.7456 0.7708 0.7696 0.8016 0.8218 0.8268

texe 0.67 0.70 0.83 0.94 1.11 1.24

OD SONFIS ACC 0.9139 0.8839 0.8856 0.9058 0.9245 0.9361

texe 0.91 0.99 0.96 1.09 1.05 1.23

LO-SONFIS ACC 0.9206 0.8872 0.8969 0.9113 0.9196 0.9315

texe 1.25 1.71 2.06 2.66 2.87 2.79

OR SONFIS ACC 0.9554 0.9705 0.9728 0.9762 0.9789 0.9797

texe 0.35 0.31 0.34 0.37 0.39 0.44

LO-SONFIS ACC 0.9648 0.9741 0.9745 0.9769 0.9784 0.9802

texe 0.41 0.38 0.42 0.47 0.49 0.53

PR SONFIS ACC 0.9392 0.9575 0.9637 0.9690 0.9745 0.9748

texe 0.68 0.61 0.62 0.67 0.70 0.73

LO-SONFIS ACC 0.9515 0.9650 0.9674 0.9711 0.9752 0.9760

texe 0.77 0.71 0.74 0.82 0.92 1.01

 (a) Scenario 1 (b) Scenario 2

Fig. 10. The total number of prototypes (NP) identified by SONFIS during the learning processes

As one can see from Tables 3 and 4, the proposed PO algorithm can effectively improve the classification

accuracy of SONFIS, and only slightly influences its computational efficiency. Moreover, it is worth to be

noticed that the local optimality of the solutions is more important to SONFIS when the system identifies a

smaller number of prototypes from data. This is because that with a lower level of granularity, SONFIS

partitions the data space coarsely resulting in more space for further improvement. Therefore, in such cases, the

proposed PO algorithm can significantly improve the performance of SONFIS.

Furthermore, the proposed PO algorithm is compared with the widely used PSO [9] and genetic learning

PSO (GLPSO) [16] algorithms. In this example, both algorithms are applied to SONFIS for optimising the

identified prototypes of each class after the offline training process. The performances of the PSO-optimised and

GLPSO-optimised SONFISs (namely, PSO-SONFIS and GLPSO-SONFIS) are tested on the validation sets.

The comparison in terms of classification accuracy and execution time (texe in sec) between LO-SONFIS, PSO-

SONFIS and GLPSO-SONFIS is reported in Table 5, where the level of granularity of SONFIS, 𝐺 varies from 1

to 6. The parameters of the PSO algorithm used for this example are set as: 𝜔 = 0.7298; 𝜑1 = 1.49618; 𝜑2 =

1.49618; 𝜔𝑑𝑎𝑚𝑝 = 1; the parameters of the GLPSO algorithm are set as: 𝜔 = 0.7298; 𝜑1 = 1.49618; 𝜑2 =

1.49618; 𝜑 = 1.49618; 𝜔𝑑𝑎𝑚𝑝 = 1; the population size for both PSO algorithms is equal to 50; the maximum

iteration number is set as 100 and equation (22) is used as the cost function.

Table 5. Performance comparison between the proposed PO, PSO and GLPSO algorithms

Dataset Algorithm Measures Granularity, 𝐺

1 2 3 4 5 6

WI LO-SONFIS ACC 0.5420 0.7080 0.7820 0.8100 0.8040 0.8000

texe 1.07 1.16 1.38 1.54 1.57 1.78

PSO-SONFIS ACC 0.5506 0.6060 0.6748 0.7170 0.7276 0.7720

texe 3.57 7.98 19.14 25.19 42.13 69.83

GLPSO-SONFIS ACC 0.5552 0.6224 0.7392 0.7772 0.7926 0.7692

texe 6.31 12.59 34.27 49.92 68.62 125.19

OD LO-SONFIS ACC 0.8150 0.8405 0.8770 0.9165 0.9410 0.9524

texe 2.30 2.63 3.07 3.59 2.95 3.25

PSO-SONFIS ACC 0.8244 0.8894 0.8809 0.8984 0.9216 0.9260

texe 8.93 25.46 38.01 61.20 84.27 119.82

GLPSO-SONFIS ACC 0.8193 0.8662 0.8824 0.9190 0.9383 0.9429

texe 15.98 49.80 75.62 120.89 170.69 239.17

OR LO-SONFIS ACC 0.9254 0.9505 0.9549 0.9755 0.9777 0.9777

texe 0.12 0.12 0.12 0.15 0.15 0.15

PSO-SONFIS ACC 0.9264 0.9431 0.9544 0.9706 0.9738 0.9765

texe 12.88 14.14 14.64 31.92 48.31 59.28

GLPSO-SONFIS ACC 0.9283 0.9425 0.9539 0.9706 0.9761 0.9760

texe 30.19 31.98 32.65 68.08 100.55 122.19

PR LO-SONFIS ACC 0.9108 0.9528 0.9663 0.9720 0.9746 0.9771

texe 0.34 0.35 0.37 0.40 0.40 0.42

PSO-SONFIS ACC 0.9123 0.9497 0.9545 0.9638 0.9670 0.9684

texe 9.03 11.48 20.69 34.46 55.40 79.41

GLPSO-SONFIS ACC 0.9119 0.9506 0.9607 0.9696 0.9730 0.9760

texe 20.14 25.37 43.48 70.60 114.11 162.17

As one can see from Table 5, despite that the PSO algorithms can effective update the positions of the

identified prototypes in the data space by minimising the values of the cost function (namely, equation (22)),

they did not significantly improve the classification accuracy of SONFIS compared with the proposed PO

algorithm. In addition, PSO and GLPSO consume more computational resources. Therefore, one can conclude

that the proposed PO algorithm is more suitable for SONFIS optimisation than PSO algorithms.

For better evaluation, the performance of the LO-SONFIS and SONFIS on WI, OD, OR and PR datasets

is compared with the following state-of-the-art algorithms:

1) SVM classifier [10];

2) Decision tree (DT) classifier [37];

3) KNN classifier [35];

4) SOM classifier [30];

5) Back-propagation neural network (BPNN);

6) LVQ [23];

7) Long short-term memory (LSTM) network [14].

8) ESAFIS classifier [36];

9) eClass0 classifier [6];

10) Simpl_eClass0 classifier [7], and;

11) ALMMo0 classifier [3].

In the following numerical examples, SVM uses Gaussian kernel; 𝑘 is equal to 10 for KNN; SOM

classifier applies “winner takes all” principle for decision-making and the net size is 6 × 6; BPNN has three

hidden layers and each hidden layer has 20 neurons; LVQ has one hidden layer, which is composed of 32

neurons; LSTM has three hidden layers and each hidden layer has 20 neurons. It has to be stressed that eClass0,

Simpl_eClass0 and ALMMo0 classifiers are also prototype-based neuro-fuzzy systems and are of the same type

as SONFIS. For fair comparison, SONFIS is trained offline and the level of granularity is set to be 𝐺 = 5 to

avoid overfitting. The statistic performance of the involved classification algorithms (accuracy, ACC and

execution time, texe in sec) is reported in Table 6 in the form of 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 after 10 times

Monte-Carlo experiments by randomly scrambling the order of training samples.

Table 6. Performance comparison on WI, OD, OR and PR datasets

Dataset Algorithm ACC texe

WI LO-SONFIS 0.8040±0.0000 1.57±0.05

SONFIS 0.7960±0.0000 1.12±0.04

SVM 0.6280±0.0000 1.83±0.90

DT 0.8140±0.0000 0.04±0.06

KNN 0.6920±0.0000 0.04±0.07

SOM 0.6260±0.0000 2.73±1.83

BPNN 0.6316±0.0171 0.65±0.51

LVQ 0.6260±0.0000 179.12±2.48

LSTM 0.6260±0.0000 5.51±0.78

ESAFIS 0.6266±0.0025 5.53±3.09

eClass0 0.4604±0.0025 0.25±0.04

Simpl_eClass0 0.5428±0.0054 0.28±0.05

ALMMo0 0.7640±0.0000 0.39±0.08

OD LO-SONFIS 0.9410±0.0000 2.95±0.09

SONFIS 0.9382±0.0000 2.51±0.07

SVM 0.7607±0.0000 4.25±0.43

DT 0.9314±0.0000 0.04±0.05

KNN 0.9664±0.0000 0.04±0.04

SOM 0.9651±0.0065 4.62±1.33

BPNN 0.9259±0.0468 0.81±0.23

LVQ 0.8859±0.0008 336.85±8.96

LSTM 0.9634±0.0125 6.59±0.65

ESAFIS 0.9617±0.0157 16.12±9.80

eClass0 0.8858±0.0003 1.02±0.20

Simpl_eClass0 0.9471±0.0006 1.04±0.11

ALMMo0 0.9394±0.0000 0.63±0.11

OR LO-SONFIS 0.9777±0.0000 0.15±0.07

SONFIS 0.9766±0.0000 0.09±0.06

SVM 0.1013±0.0000 2.74±0.70

DT 0.8525±0.0000 0.06±0.03

KNN 0.9766±0.0000 0.02±0.04

SOM 0.9297±0.0075 8.83±1.49

BPNN 0.9243±0.0077 0.70±0.24

LVQ 0.8380±0.0275 174.27±14.81

LSTM 0.7726±0.0544 5.61±0. 91

ESAFIS 0.9538±0.0067 32.24±10.36

eClass0 0.8937±0.0000 0.75±0.07

Simpl_eClass0 0.9081±0.0002 1.63±0.21

ALMMo0 0.9789±0.0000 0.33±0.09

PR LO-SONFIS 0.9746±0.0000 0.40±0.09

SONFIS 0.9743±0.0000 0.29±0.08

SVM 0.1038±0.0000 8.90±0.91

DT 0.9125±0.0000 0.06±0.06

KNN 0.9748±0.0000 0.03±0.06

SOM 0.8664±0.0022 5.27±1.39

BPNN 0.9188±0.0097 1.05±0.24

LVQ 0.8225±0.0035 326.29±14.28

LSTM 0.8147±0.0410 6.88±1.09

ESAFIS 0.9155±0.0131 30.00±1.69

eClass0 0.8274±0.0002 0.56±0.06

Simpl_eClass0 0.8768±0.0001 0.81±0.03

ALMMo0 0.9706±0.0000 0.43±0.10

Furthermore, the performance of the involved algorithms in the previous numerical example is compared

on MF, ES, LR and CM datasets. In the following numerical example, for MF, ES and LR datasets, all the data

samples are firstly split into 10 folds evenly. Then, we randomly select five of the 10 folds to train the

algorithms and use the remaining for validation. For CM dataset, the order of the training samples is randomly

scrambled. The same experiment is repeated for 10 times with the statistical results reported in Table 7.

Table 7. Performance comparison on MF, ES and LR datasets

Dataset Algorithm ACC texe

MF LO-SONFIS 0.9210±0.0093 0.12±0.07

SONFIS 0.9192±0.0090 0.08±0.06

SVM 0.1027±0.0013 0.74±0.32

DT 0.9210±0.0121 0.12±0.04

KNN 0.9122±0.0094 0.02±0.03

SOM 0.8192±0.0146 14.45±0.82

BPNN 0.8648±0.0331 0.53±0.25

LVQ 0.6529±0.0116 64.46±2.90

LSTM 0.2054±0.0283 4.95±0.72

ESAFIS 0.5938±0.1896 278.62±58.83

eClass0 0.7990±0.0113 2.22±0.27

Simpl_eClass0 0.8417±0.0118 4.53±0.89

ALMMo0 0.9347±0.0050 0.12±0.04

ES LO-SONFIS 0.9023±0.0077 6.98±0.72

SONFIS 0.8884±0.0140 2.24±0.07

SVM 0.8005±0.0042 4.35±0.84

DT 0.9353±0.0038 0.57±0.08

KNN 0.9032±0.0059 0.02±0.03

SOM 0.9127±0.0073 29.65±5.55

BPNN 0.9570±0.0045 1.02±0.40

LVQ 0.8891±0.0073 324.10±52.76

LSTM 0.8142±0.0042 7.98±5.91

ESAFIS 0.2270±0.0278 349.11±65.37

eClass0 0.8504±0.0260 2.63±0.10

Simpl_eClass0 0.8427±0.0228 7.24±0.47

ALMMo0 0.8936±0.0023 25.77±3.19

LR LO-SONFIS 0.9240±0.0049 0.37±0.16

SONFIS 0.9223±0.0052 0.27±0.15

SVM 0.3799±0.0373 14.21±1.23

DT 0.8235±0.0068 0.12±0.05

KNN 0.9201±0.0032 0.04±0.04

SOM 0.3231±0.0074 14.60±1.50

BPNN 0.4799±0.0328 1.34±0.23

LVQ 0.0379±0.0015 762.20±46.92

LSTM 0.4727±0.0290 24.42±11.00

ESAFIS 0.4394±0.0116 5.90±0.53

eClass0 0.4833±0.0087 1.26±0.13

Simpl_eClass0 0.5736±0.0065 1.68±0.07

ALMMo0 0.9179±0.0029 0.76±0.19

CM LO-SONFIS 0.6433±0.0000 4.38±0.29

SONFIS 0.6500±0.0000 3.52±0.27

SVM 0.2600±0.0000 30.74±3.81

DT 0.5767±0.0000 0.16±0.06

KNN 0.6267±0.0000 0.03±0.05

SOM 0.4447±0.0149 10.03±1.58

BPNN 0.4757±0.0352 0.76±0.20

LVQ 0.4317±0.0069 457.30±26.83

LSTM 0.2940±0.0203 29.83±6.46

ESAFIS 0.5503±0.0135 63.33±9.45

eClass0 0.3480±0.0063 1.41±0.20

Simpl_eClass0 0.3333±0.0000 2.46±0.11

ALMMo0 0.5740±0.0216 5.79±0.83

Since the proposed PO algorithm is a generic approach and can be used for optimising other learning

algorithms with similar operating mechanisms, in the following example, we use the PO algorithm for

optimising the eClass0, Simpl_eClass0 and ALMMo0 classifiers. The same experiments presented in Tables 6

and 7 are repeated under the same experimental protocols and the numerical results are reported in Table 8. The

optimised classifiers by the proposed PO algorithm are re-denoted as LO-eClass0, LO-Simpl_eClass0 and LO-

ALMMo0, respectively. The original results obtained by the three classifiers are reported as baseline. The

results of the LO-SONFIS and SONFIS are also given for better illustration.

Table 8. Performance of the locally optimised eClass0, Simpl_eClass0 and ALMMo-0 classifiers

Dataset Algorithm NP ACC texe

WI LO-SONFIS 110.00±0.00 0.8040±0.0000 1.57±0.05

SONFIS 0.7960±0.0000 1.12±0.04

LO-eClass0 6.80±0.63 0.6704±0.0358 0.21±0.04

eClass0 0.4604±0.0025 0.19±0.04

LO-Simpl_eClass0 13.00±0.00 0.6938±0.0321 0.20±0.03

Simpl_eClass0 0.5428±0.0054 0.18±0.03

LO-ALMMo0 462.50±9.50 0.7748±0.0224 0.96±0.10

ALMMo0 0.7640±0.0000 0.39±0.08

OD LO-SONFIS 201.00±0.00 0.9410±0.0000 2.95±0.09

SONFIS 0.9382±0.0000 2.51±0.07

LO-eClass0 17.00±0.00 0.9507±0.0002 0.57±0.20

eClass0 0.8858±0.0003 0.53±0.21

LO-Simpl_eClass0 27.00±0.00 0.9658±0.0006 1.71±0.09

Simpl_eClass0 0.9471±0.0006 0.39±0.02

LO-ALMMo0 432.70±19.02 0.9423±0.0058 1.23±0.19

ALMMo0 0.9394±0.0000 0.63±0.11

OR LO-SONFIS 409.00±0.00 0.9777±0.0000 0.15±0.07

SONFIS 0.9766±0.0000 0.09±0.06

LO-eClass0 75.00±0.00 0.9563±0.0013 0.79±0.07

eClass0 0.8937±0.0000 0.72±0.05

LO-Simpl_eClass0 142.00±0.00 0.9613±0.0004 1.45±0.03

Simpl_eClass0 0.9081±0.0002 1.37±0.04

LO-ALMMo0 1573.40±13.78 0.9787±0.0017 0.37±0.10

ALMMo0 0.9789±0.0000 0.33±0.09

PR LO-SONFIS 747.00±0.00 0.9746±0.0000 0.40±0.09

SONFIS 0.9743±0.0000 0.29±0.08

LO-eClass0 62.90±0.32 0.9000±0.0016 0.58±0.07

eClass0 0.8274±0.0002 0.52±0.06

LO-Simpl_eClass0 139.90±0.32 0.9376±0.0016 0.96±0.11

Simpl_eClass0 0.8768±0.0001 0.89±0.11

LO-ALMMo0 1565.70±13.82 0.9759±0.0022 0.63±0.13

ALMMo0 0.9706±0.0000 0.43±0.10

MF LO-SONFIS 179.70±4.99 0.9210±0.0093 0.12±0.07

SONFIS 0.9192±0.0090 0.08±0.06

LO-eClass0 70.80±2.97 0.9104±0.0067 1.92±0.08

eClass0 0.7990±0.0113 1.84±0.10

LO-Simpl_eClass0 100.20±4.52 0.9247±0.0055 2.94±0.25

Simpl_eClass0 0.8417±0.0118 2.87±0.26

LO-ALMMo0 220.90±5.74 0.9358±0.0038 0.17±0.04

ALMMo0 0.9347±0.0050 0.12±0.04

ES LO-SONFIS 944.70±13.47 0.9023±0.0077 6.98±0.72

SONFIS 0.8884±0.0140 2.24±0.07

LO-eClass0 6.00±0.00 0.8669±0.0091 2.48±0.11

eClass0 0.8504±0.0260 2.26±0.07

LO-Simpl_eClass0 24.00±0.00 0.8508±0.0202 5.48±0.28

Simpl_eClass0 0.8427±0.0228 5.04±0.10

LO-ALMMo0 5369.90±10.01 0.8935±0.0023 33.54±1.17

ALMMo0 0.8936±0.0023 25.77±3.19

LR LO-SONFIS 1510.50±25.79 0.9240±0.0049 0.37±0.16

SONFIS 0.9223±0.0052 0.27±0.15

LO-eClass0 153.60±1.51 0.7079±0.0287 1.04±0.04

eClass0 0.4833±0.0087 0.94±0.04

LO-Simpl_eClass0 332.70±7.63 0.8012±0.0123 0.73±0.06

Simpl_eClass0 0.5736±0.0065 0.64±0.04

LO-ALMMo0 2036.30±36.16 0.9252±0.0024 1.00±0.15

ALMMo0 0.9179±0.0029 0.76±0.19

CM LO-SONFIS 509.00±0.00 0.6433±0.0000 4.38±0.29

SONFIS 0.6500±0.0000 3.52±0.27

LO-eClass0 53.90±9.22 0.5543±0.0127 2.19±0.47

eClass0 0.3480±0.0063 1.41±0.20

LO-Simpl_eClass0 112.30±29.13 0.5560±0.0107 5.25±1.28

Simpl_eClass0 0.3333±0.0000 2.46±0.11

LO-ALMMo0 3397.60±21.33 0.5717±0.0178 3.15±0.60

ALMMo0 0.5740±0.0216 5.79±0.83

Finally, we conduct numerical experiments on FC dataset to further evaluate the effectiveness of the

proposed PO algorithm on improving the classification performance of SONFIS, eClass0, Simpl_eClass0 and

ALMMo0. We follow the same experimental protocol as used in the numerical examples presented in Table 7

by evenly splitting all the data samples into 10 folds and randomly selecting five of the 10 folds to train the

algorithms and using the remaining for validation. LVQ, LSTM, SOM and ESAFIS algorithms are not involved

for comparison because their computational efficiency is significantly low on large-scale datasets. In this

experiment, the SONFIS is primed with 10% training samples in an offline manner and continuously updated

with the remaining data on a sample-by-sample basis; the level of granularity of SONFIS is set as: 𝐺 = 12 due

to the larger scale and more complex structure of the problem. Classification performance of the involved

algorithms in terms of accuracy (ACC) is reported in Table 9.

Table 9. Performance comparison on FC dataset

Algorithm ACC

LO-SONFIS 0.9259±0.0005

SONFIS 0.9245±0.0007

LO-eClass0 0.5330±0.0011

eClass0 0.4281±0.0006

LO-Simpl_eClass0 0.4878±0.0103

Simpl_eClass0 0.3479±0.0005

LO-ALMMo0 0.9046±0.0003

ALMMo0 0.8934±0.0006

SVM 0.7981±0.0003

DT 0.9181±0.0010

KNN 0.9107±0.0006

BPNN 0.7227±0.0063

7.2. Experiments on Benchmark Image Sets

In this subsection, we further use the following benchmark image sets to justify the validity and

effectiveness of the proposed PO algorithm on image classification problems:

1) MNIST image set11;

2) Fashion MNIST image set 12;

3) Singapore image set13;

4) RSSCN7 image set14;

5) Caltech101 image set15, and;

6) Caltech256 image set16.

Detailed descriptions of the six image sets are as follows.

11 Available from http://yann.lecun.com/exdb/mnist/
12 Available from https://github.com/zalandoresearch/fashion-mnist
13 Available from http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx
14 Available from https://sites.google.com/view/zhouwx/dataset
15 Available from http://www.vision.caltech.edu/Image_Datasets/Caltech101/
16 Available from http://www.vision.caltech.edu/Image_Datasets/Caltech256/

http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx
https://sites.google.com/view/zhouwx/dataset

1) MNIST dataset

MNIST dataset is a famous benchmark database for handwritten digit recognition. This dataset contains

70000 greyscale images of handwritten digits from “0” to “9”, 60000 of which are used for training and the

remaining 10000 images are for validation/testing. The amounts of training and validation images of the 10

classes are more or less balanced. The size of both training and validation images is 28 × 28 pixels.

2) Fashion MNIST dataset

Fashion MNIST dataset is a new dataset composed of 70000 greyscale images of different fashion

product from 10 classes: 1) T-shirt; 2) trouser; 3) pullover; 4) dress; 5) coat; 6) sandals; 7) shirt; 8) sneaker; 9)

bag and 10) ankle boots. Each category has 7000 images with the 28 × 28 pixel size, 6000 of them are used for

training, and the other 1000 images are used for testing.

3) Singapore dataset

Singapore dataset is a recently introduced benchmark image set for remote sensing scene classification.

This dataset consists of 1086 images of 256×256 pixels size. These images belong to nine land-use categories: i)

airplane; ii) forest; iii) harbour; iv) industry; v) meadow; vi) overpass; vii) residential; viii) river and ix) runway.

The numbers of images of the nine land-use categories are imbalanced varying from 42 to 179.

4) RSSCN7 dataset

RSSCN7 dataset is collected from Google Earth (Google Inc.). This dataset has seven land-use categories

including: i) grassland; ii) forest; iii) farmland; iv) parking lot; v) resident; vi) industry and vii) river and lake.

Each land-use category contains 400 images of size 600×600 pixels. The images of each land-use category are

sampled at four different scales (100 images per scale) with different angles and, thus, classifying images of this

dataset is very challenging.

5) Caltech101 dataset and 6) Caltech256 dataset

Caltech101 dataset has more than 8677 images belonging to 101 classes. There are 31 to 800 images for

each class, and the size of each image is roughly 200 × 300 pixels. Caltech256 dataset is the extended dataset

of Caltech101, which has 256 classes. The minimum number of images per class for the Caltech256 dataset is

80, and in total, there are 29780 images. Caltech101 and Caltech256 datasets both contain classes corresponding

to rigid object (like bikes and cars) and classes corresponding to non-rigid object (like animals and flowers) with

various backgrounds, and, thus, they are very challenging problems. Example images of the six benchmark

datasets are given in Fig. 11(a)-(f).

For MNIST and Fashion MNIST image sets, images are firstly converted into 784 × 1 dimensional

vectors and, then, directly used for training and testing the classification algorithms. For Singapore, RSSCN7,

Caltech101 and Caltech256 datasets, a high-level ensemble descriptor using the pre-trained AlexNet [24] and

VGG-VD-16 [39] deep learning neural networks is created for feature extraction. The feature extraction process

for converting a particular image 𝐈 into a feature vector 𝒙 is expressed as:

𝒙 = F(𝐈) = [
AN(𝐈)

‖AN(𝐈)‖
,

VN(𝐈)

‖VN(𝐈)‖
]

𝑇

 (35)

where F(𝐈) represents 9192 × 1 dimensional representation extracted from 𝐈 by the ensemble feature descriptor;

AN(𝐈) and VN(𝐈) are the 1 × 4096 dimensional feature vectors extracted from the first fully connected layer of

the AlexNet and VGG-VD-16 models, respectively. In addition, for Singapore and RSSCN7 datasets, we adopt

the commonly used “centre, four corners and horizontal flipping” data augmentation process and use the mean

of feature vectors of the 10 sub-images created from each remote sensing image as its corresponding feature

vector [24]. In the numerical examples presented in this subsection, SONFIS and LO-SONFIS use cosine

dissimilarity for classification [18], and the level of granularity is set to be 𝐺 = 12.

Firstly, the effectiveness and validity of the proposed PO algorithm on image classification problems are

justified on MNIST and Fashion MNIST datasets. In the following numerical example, SONFIS is primed

offline with 10000 training images, and then, uses 20000, 30000, 40000 and 50000 training images for online

learning. Thus, in total, there are 30000, 40000, 50000 and 60000 training images used for experiments,

respectively. After the online learning process, the identified prototypes of SONFIS are optimised by the PO

algorithm with the images involved during the overall learning process. After being optimised, the performance

of LO-SONFIS is, then, evaluated on the testing images. The average accuracy (ACC) of the classification

results by LO-SONFIS after 10 times Monte-Carlo experiments are tabulated in Table 10. The results by

SONFIS under the same experimental protocol are reported as the baseline. Furthermore, the following

algorithms are involved for comparison:

1) SVM classifier [10];

2) KNN classifier [35];

3) eClass0 classifier [6];

4) Simpl_eClass0 classifier [7], and;

5) ALMMo0 classifier [3].

In the experiments, SVM uses linear kernel; k is equal to 1 for KNN. The optimised eClass0, Simpl_eClass0 and

ALMMo0 by using the proposed PO algorithm, namely, LO-eClass0, LO-Simpl_eClass0 and LO-ALMMo0 are

also involved.

(a) MNIST

(b) Fashion MNIST

(c) Singapore

(d) RSSCN7

(e) Caltech101

(f) Caltech256

Fig. 11. Examples of the benchmark image sets

Table 10. Performance comparison on MNSIT and Fashion MNIST datasets

Dataset Algorithm 30000 40000 50000 60000

M
N

S
IT

 LO-SONFIS 0.9617±0.0017 0.9650±0.0013 0.9665±0.0008 0.9686±0.0010

SONFIS 0.9621±0.0017 0.9646±0.0013 0.9662±0.0010 0.9681±0.0011

LO-eClass0 0.9231±0.0034 0.9255±0.0012 0.9240±0.0014 0.9250±0.0045

eClass0 0.7557±0.0024 0.7565±0.0000 0.7569±0.0003 0.7354±0.0000

LO-Simpl_eClass0 0.9340±0.0014 0.9361±0.0015 0.9384±0.0019 0.9362±0.0009

Simpl_eClass0 0.7719±0.0004 0.7717±0.0000 0.7743±0.0009 0.7528±0.0000

LO-ALMMo0 0.9624±0.0014 0.9651±0.0014 0.9678±0.0014 0.9690±0.0013

ALMMo0 0.9621±0.0018 0.9649±0.0015 0.9672±0.0016 0.9683±0.0013

SVM 0.9370±0.0016 0.9403±0.0012 0.9424±0.0016 0.9438±0.0000

KNN 0.9632±0.0011 0.9661±0.0013 0.9672±0.0010 0.9691±0.0000

F
as

h
io

n

M
N

IS
T

 LO-SONFIS 0.8478±0.0032 0.8523±0.0028 0.8575±0.0015 0.8610±0.0021

SONFIS 0.8483±0.0027 0.8537±0.0020 0.8583±0.0016 0.8610±0.0015

LO-eClass0 0.7790±0.0037 0.7785±0.0022 0.7785±0.0053 0.7798±0.0068

eClass0 0.6535±0.0012 0.6539±0.0000 0.6539±0.0000 0.6539±0.0000

LO-Simpl_eClass0 0.7825±0.0028 0.7852±0.0020 0.7943±0.0043 0.7942±0.0032

Simpl_eClass0 0.6624±0.0009 0.6618±0.0000 0.6618±0.0000 0.6618±0.0000

LO-ALMMo0 0.8429±0.0017 0.8503±0.0018 0.8547±0.0014 0.8597±0.0012

ALMMo0 0.8432±0.0021 0.8498±0.0023 0.8543±0.0017 0.8589±0.0015

SVM 0.8417±0.0016 0.8457±0.0011 0.8486±0.0018 0.8498±0.0001

KNN 0.8349±0.0020 0.8384±0.0020 0.8444±0.0017 0.8497±0.0000

Then, we use Singapore and RSSCN7 datasets to further evaluate the effectiveness of the proposed PO

algorithm on improving the classification accuracy of zero-order EISs, namely, SONFIS, eClass0,

Simpl_eClass0 and ALMMo0. The same SVM and KNN algorithms used in the previous numerical example are

also involved. Following the commonly used experimental protocols [12],[44], for Singapore dataset, 20%

images per class are randomly selected out for training and the remaining images are used for validation. For

RSSCN7 dataset, 20% and 50% images per class are randomly selected out for training, respectively, and the

remaining images are used for validation. The average classification accuracy rates by the classification

algorithms on the two datasets are reported in Tables 11 and 12, respectively, after 10 times Monte-Carlo

experiments. Furthermore, selected state-of-the-art results in the literature are reported in the two tables for

informed comparison.

Table 11. Numerical results on Singapore dataset

Algorithm ACC

LO-SONFIS 0.9718±0.0051

SONFIS 0.9713±0.0054

LO-eClass0 0.9685±0.0051

eClass0 0.9379±0.0070

LO-Simpl_eClass0 0.9713±0.0054

Simpl_eClass0 0.9528±0.0061

LO-ALMMo0 0.9685±0.0060

ALMMo0 0.9684±0.0060

SVM 0.9726±0.0053

KNN 0.9700±0.0066

TLFP [12] 0.9094

BoVW [45] 0.8741

VLAD [21] 0.8878

SPM [26] 0.8285

Table 12. Numerical results on RSSCN7 datasets

Algorithm ACC

20% Training Images 50% Training Images

LO-SONFIS 0.8741±0.0081 0.9041±0.0071

SONFIS 0.8741±0.0082 0.9042±0.0074

LO-eClass0 0.8568±0.0114 0.8732±0.0079

eClass0 0.7436±0.0137 0.7511±0.0075

LO-Simpl_eClass0 0.8778±0.0079 0.9003±0.0078

Simpl_eClass0 0.7671±0.0084 0.7770±0.0075

LO-ALMMo0 0.8681±0.0068 0.9041±0.0072

ALMMo0 0.8681±0.0069 0.9043±0.0071

SVM 0.8798±0.0085 0.9073±0.0070

KNN 0.8707±0.0075 0.9072±0.0070

CaffeNet [44] 0.8557±0.0095 0.8885±0.0062

GoogLeNet [44] 0.8398±0.0087 0.8718±0.0094

VGG-VD-16 [44] 0.8255±0.0111 0.8584±0.0092

BoVW(SIFT) [44] 0.7633±0.0088 0.8134±0.0055

VLAD(SIFT) [44] 0.8082±0.0215 0.7727±0.0058

DBNFS [50] 0.7581 0.7119

Finally, the classification performance (in terms of accuracy, ACC) of LO-SONFIS and SONFIS are

tested on Caltech101 and Caltech256 datasets. Following the commonly used experimental protocol [13], for

Caltech101 dataset, 15, 30 images per class are randomly selected out for training, respectively, and the

remaining images are used for validation. For Caltech256 dataset, 15, 30, 45 and 60 images per class are

randomly selected out for training, respectively, and the remaining images are used for validation. The average

classification accuracy obtained by LO-SONFIS and SONFIS on the two datasets is reported in Tables 13 and

14 after 10 times Monte-Carlo experiments. The same SVM and KNN algorithms used in the previous examples

are tested on the two datasets as well, and their classification accuracy rates are reported in Tables 13 and 14.

We further report the selected state-of-the-art results in the literature for informed comparison. The average

numbers of prototypes (NP) per class identified by SONFIS during the experiments are given in Fig. 12.

From the numerical examples presented in this subsection one can see that both SONFIS and LO-SONFIS

produced the highly accurate classification results surpassing or on par with the state-of-the-art approaches.

Fig. 12. The average numbers of prototypes (NP) per class identified by SONFIS during the experiments

Table 13. Numerical results on Caltech101 dataset

Algorithm ACC

15 Training Images 30 Training Images

LO-SONFIS 0.8978±0.0050 0.9230±0.0034

SONFIS 0.8979±0.0048 0.9231±0.0036

SVM 0.8729±0.0104 0.9027±0.0087

KNN 0.8670±0.0063 0.8999±0.0051

ICAC [47] 0.7148±0.0056 0.7663±0.0079

CASE-LLC-SVM [42] 0.6400±0.0040 0.7140±0.0120

ScSPM [46] 0.6700±0.0045 0.7320±0.0054

DEFEATnet [13] 0.7128±0.0061 0.7760±0.0096

Table 14. Numerical results on Caltech256 dataset

Algorithm ACC

15 Training

Images

30 Training

Images

45 Training

Images

60 Training

Images

LO-SONFIS 0.6799±0.0033 0.7113±0.0029 0.7272±0.0033 0.7416±0.0041

SONFIS 0.6798±0.0033 0.7114±0.0029 0.7270±0.0034 0.7407±0.0040

SVM Out of System Memory

KNN 0.6249±0.0033 0.6723±0.0026 0.6986±0.0032 0.7210±0.0027

SWSS-DeCAF [48] 0.6152±0.0039 0.6768±0.0065 0.6977±0.0053 0.7283±0.0044

SWSS-FV [48] 0.4246±0.0038 0.4985±0.0042 0.5466±0.0047 0.5652±0.0041

SC2-CNN [49] 0.4758±0.0062 0.5542±0.0056 0.5912±0.0051 0.6174±0.0050

ScSPM [46] 0.2773±0.0051 0.3402±0.0035 0.3746±0.0055 0.4014±0.0091

DEFEATnet [13] 0.3507±0.0038 0.4206±0.0025 0.4598±0.0026 0.4852±0.0032

7.3. Discussions

Numerical examples on benchmark numerical datasets and image sets presented in this section

demonstrate that the proposed PO algorithm can effectively improve the classification accuracy of SONFIS,

eClass0, Simpl_eClass0 and ALMMo0 on various types of problems. The proposed PO algorithm is more

computationally efficient than PSO algorithms and more effective on complex, large-scale problems. In

addition, it only has slight influence on the computational efficiency of the learning algorithms and costs little

extra memory resources.

However, one may notice that the performance of eClass0 and Simpl_eClass0 increases much more after

being optimised by the proposed PO algorithm compared with SONFIS and ALMMo0. This is due to the

differences in the operating mechanisms of the classification algorithms. eClass0 and Simpl_eClass0 usually

extract a smaller number of prototypes from data samples compared with SONFIS and ALMMo0 (see Table 8),

which results in a coarse partitioning of the data space and leaves more space for further improvement. As a

result, the PO algorithm is able to play a more significant role in improving their classification performance.

It is also interesting to notice that when the training set contains many incorrect labelled samples, PO

algorithm actually decreases the classification accuracy of SONFIS and ALMMo0 as they are more sensitive to

noise because of the larger number of prototypes identified from data. In such cases, anomalies are highly likely

to be recognised as prototypes because of their very different patterns from the majority, and they create lots of

confusions during the validation stage.

8. Conclusion and Future Work

In this paper, we use the recently introduced SONFIS as an example to study the local optimality of zero-

order EISs. Based on a detailed mathematical analysis, it is proven that SONFIS is not able to obtain a locally

optimal solution from data through the “one pass” type learning process. Following this conclusion, we, then,

propose an optimisation algorithm that enables SONFIS to self-adjust the locations of its prototypes based on

historically observed data and finally achieve the local optimal solution. Numerical examples on benchmark

datasets demonstrate the validity of the optimality analysis and the effectiveness of the proposed optimisation

algorithm. Moreover, it is further numerically proven that the proposed concepts and general principles are also

applicable to other types of zero-order EISs with similar operating mechanisms

As future work, we will extend this study to first-order EISs by further investigating the optimality of both

the premise, IF and consequent, THEN parts. Since the optimality analysis conducted within this paper mostly

concerns the data partitioning results obtained by zero-order EISs, we will also extend this study to clustering

algorithms and other prototype-based semi-supervised classification approaches. Another interesting direction

for more future works is to find an effective way to reduce the number of prototypes during the optimisation

process for simplifying the system structure and, meanwhile, maintain the same level of classification accuracy.

References

[1] P. Angelov, Autonomous learning systems: from data streams to knowledge in real time. John Wiley &

Sons, Ltd., 2012.

[2] P. P. Angelov and D. P. Filev, “An approach to online identification of Takagi-Sugeno fuzzy models,”

IEEE Trans. Syst. Man, Cybern. - Part B Cybern., vol. 34, no. 1, pp. 484–498, 2004.

[3] P. P. Angelov and X. Gu, “Autonomous learning multi-model classifier of 0-order (ALMMo-0),” in IEEE

International Conference on Evolving and Autonomous Intelligent Systems, 2017, pp. 1–7.

[4] P. P. Angelov, X. Gu, and J. Principe, “A generalized methodology for data analysis,” IEEE Trans.

Cybern., vol. 48, no. 10, pp. 2981–2993, 2018.

[5] P. P. Angelov and R. Yager, “A new type of simplified fuzzy rule-based system,” Int. J. Gen. Syst., vol. 41,

no. 2, pp. 163–185, 2012.

[6] P. Angelov and X. Zhou, “Evolving fuzzy-rule based classifiers from data streams,” IEEE Trans. Fuzzy

Syst., vol. 16, no. 6, pp. 1462–1474, 2008.

[7] R. D. Baruah, P. P. Angelov, and J. Andreu, “Simpl _ eClass : simplified potential-free evolving fuzzy rule-

based classifiers,” in IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2011, pp.

2249–2254.

[8] O. Castillo, L. Cervantes, J. Soria, M. Sanchez, and J. R. Castro, “A generalized type-2 fuzzy granular

approach with applications to aerospace,” Inf. Sci. (Ny)., vol. 354, pp. 165–177, 2016.

[9] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional

complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73, 2002.

[10] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based

learning methods. Cambridge: Cambridge University Press, 2000.

[11] A. Fernandez, F. Herrera, O. Cordon, M. Jose Del Jesus, and F. Marcelloni, “Evolutionary fuzzy systems

for explainable artificial intelligence: why, when, what for, and where to?,” IEEE Comput. Intell. Mag., vol.

14, no. 1, pp. 69–81, 2019.

[12] J. Gan, Q. Li, Z. Zhang, and J. Wang, “Two-level feature representation for aerial scene classification,”

IEEE Geosci. Remote Sens. Lett., vol. 13, no. 11, pp. 1626–1630, 2016.

[13] S. Gao, L. Duan, and I. W. Tsang, “DEFEATnet—a deep conventional image representation for image

classification,” IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 3, pp. 494–505, 2016.

[14] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning Precise Timing with LSTM Recurrent

Networks,” J. Mach. Learn. Res., vol. 3, no. 1, pp. 115–143, 2002.

[15] L. Gómez-Chova, G. Camps-Valls, J. Munoz-Mari, and J. Calpe, “Semisupervised image classification with

Laplacian support vector machines,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 336–340, 2008.

[16] Y. J. Gong et al., “Genetic learning particle swarm optimization,” IEEE Trans. Cybern., vol. 46, no. 10, pp.

2277–2290, 2016.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Crambridge, MA: MIT Press, 2016.

[18] X. Gu and P. P. Angelov, “Self-organising fuzzy logic classifier,” Inf. Sci. (Ny)., vol. 447, pp. 36–51, 2018.

[19] X. Gu and P. Angelov, “Self-boosting first-order autonomous learning neuro-fuzzy systems,” Appl. Soft

Comput., vol. 77, pp. 118–134, 2019.

[20] P. Hajek, “Predicting corporate investment/non-investment grade by using interval-valued fuzzy rule-based

systems—a cross-region analysis,” Appl. Soft Comput. J., vol. 62, pp. 73–85, 2018.

[21] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a compact

representation,” IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3304–3311, 2010.

[22] N. K. Kasabov and Q. Song, “DENFIS : dynamic evolving neural-fuzzy inference system and its

application for time-series prediction,” IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, 2002.

[23] T. Kohonen, Self-organizing maps. Berlin: Springer, 1997.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural

networks,” in Advances In Neural Information Processing Systems, 2012, pp. 1097–1105.

[25] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of the Second Symposium on

Mathematical Statistics and Probability, 1951, pp. 481–492.

[26] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features : spatial pyramid matching for recognizing

natural scene categories,” in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2006, pp. 2169–2178.

[27] A. Lemos, W. Caminhas, and F. Gomide, “Adaptive fault detection and diagnosis using an evolving fuzzy

classifier,” Inf. Sci. (Ny)., vol. 220, pp. 64–85, 2013.

[28] E. Lughofer, Evolving fuzzy systems-methodologies, advanced concepts and applications. Berlin: Springer,

2011.

[29] E. Lughofer and P. Angelov, “Handling drifts and shifts in on-line data streams with evolving fuzzy

systems,” Appl. Soft Comput., vol. 11, no. 2, pp. 2057–2068, 2011.

[30] P. Płoński and K. Zaremba, “Self-organising maps for classification with metropolis-hastings algorithm for

supervision,” in International Conference on Neural Information Processing, 2012, pp. 149–156.

[31] M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer, “PANFIS : a novel incremental learning

machine,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 1, pp. 55–68, 2014.

[32] M. Pratama, S. G. Anavatti, and E. Lughofer, “Genefis: toward an effective localist network,” IEEE Trans.

Fuzzy Syst., vol. 22, no. 3, pp. 547–562, 2014.

[33] M. Pratama, J. Lu, and G. Zhang, “Evolving type-2 fuzzy classifier,” IEEE Trans. Fuzzy Syst., vol. 24, no.

3, pp. 574–589, 2016.

[34] R. E. Precup, T. A. Teban, A. Albu, A. I. Szedlak-Stinean, and C. A. Bojan-Dragos, “Experiments in

incremental online identification of fuzzy models of finger dynamics,” Rom. J. Inf. Sci. Technol., vol. 21,

no. 4, pp. 358–376, 2018.

[35] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining outliers from large data sets,”

ACM SIGMOD Rec., pp. 427–438, 2000.

[36] H. J. Rong, N. Sundararajan, G. Bin Huang, and G. S. Zhao, “Extended sequential adaptive fuzzy inference

system for classification problems,” Evol. Syst., vol. 2, no. 2, pp. 71–82, 2011.

[37] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology,” IEEE Trans. Syst.

Man. Cybern., vol. 21, no. 3, pp. 660–674, 1990.

[38] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: a generalized convergence theorem and

characterization of local optimality,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 1, pp. 81–

87, 1984.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in

International Conference on Learning Representations, 2015, pp. 1–14.

[40] I. Škrjanc, J. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F. Gomide, “Evolving fuzzy and neuro-fuzzy

approaches in clustering, regression, identification, and classification: a survey,” Inf. Sci. (Ny)., vol. 490,

pp. 344–368, 2019.

[41] J. Soto, P. Melin, and O. Castillo, “A new approach for time series prediction using ensembles of IT2FNN

models with optimization of fuzzy integrators,” Int. J. Fuzzy Syst., vol. 20, no. 3, pp. 701–728, 2018.

[42] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained linear coding for image

classification,” in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3360–3367.

[43] R. E. Wendell and A. P. Hurter Jr, “Minimization of a non-separable objective function subject to disjoint

constraints,” Oper. Res., vol. 24, no. 4, pp. 643–657, 1976.

[44] G. Xia et al., “AID: a benchmark dataset for performance evaluation of aerial scene classification,” IEEE

Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3965–3981, 2017.

[45] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions for land-use classification,” in

International Conference on Advances in Geographic Information Systems, 2010, pp. 270–279.

[46] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image

classification,” in IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1794–1801.

[47] C. Zhang, J. Cheng, and Q. Tian, “Incremental codebook adaptation for visual representation and

categorization,” IEEE Trans. Cybern., vol. 48, no. 7, pp. 2012–2023, 2018.

[48] C. Zhang, J. Cheng, and Q. Tian, “Structured weak semantic space construction for visual categorization,”

IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 8, pp. 3442–3451, 2018.

[49] C. Zhang, C. Li, D. Lu, J. Cheng, and Q. Tian, “Birds of a feather flock together: visual representation with

scale and class consistency,” Inf. Sci. (Ny)., vol. 460–461, pp. 115–127, 2018.

[50] Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep learning based feature selection for remote sensing scene

classification,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2321–2325, 2015.

