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Abstract: Optimality of the premise, IF part is critical to a zero-order evolving intelligent system (EIS) because 

this part determines the validity of the learning results and overall system performance. Nonetheless, a 

systematic analysis of optimality has not been done yet in the state-of-the-art works. In this paper, we use the 

recently introduced self-organising neuro-fuzzy inference system (SONFIS) as an example of typical zero-order 

EISs and analyse the local optimality of its solutions. The optimality problem is firstly formulated in a 

mathematical form, and detailed optimality analysis is conducted. The conclusion is that SONFIS does not 

generate a locally optimal solution in its original form. Then, an optimisation method is proposed for SONFIS, 

which helps the system to attain local optimality in a few iterations using historical data. Numerical examples 

presented in this paper demonstrate the validity of the optimality analysis and the effectiveness of the proposed 

optimisation method. In addition, it is further verified numerically that the proposed concept and general 

principles can be applied to other types of zero-order EISs with similar operating mechanisms. 

Keywords- local optimality, neuro-fuzzy system, evolving intelligent system, self-organising, data partitioning. 

1. Introduction 

Evolving intelligent systems (EISs) [1], as a typical form of multi-model systems, are viewed as a 

powerful tool for handling complex problems with both measurement and motion uncertainties, and have 

demonstrated success in many real-world application scenarios [28]. By exploiting the divide-and-conquer 

strategy, multi-model systems are capable of decomposing complex problems into a set of simpler ones that can 

be approximated using simple local models through data partitioning [8]. As the main goal of a multi-model 

system is to partition the data space and identify underlying data patterns through local partitions, the optimality 

of the solution is of paramount importance to the multi-model system because it determines the validity and 

effectiveness of the learning results. Nonetheless, to the best of the authors’ knowledge, optimality analysis has 

not been touched in the state-of-the-art works in the area of EISs [27],[31]. 

Self-organising neuro-fuzzy inference system (SONFIS) was recently introduced in [18] as a generic 

approach for data and image classification, and it can be further extended to various problems and applications 

including, but not limited to, online data analytics, prediction, etc. As a new type of zero-order AnYa type fuzzy 

rule-based systems [5], SONFIS is able to self-organise and self-evolve its multi-model system structure from 

empirically observed data in a non-iterative, computationally lean and objective manner. It is composed of a set 

of highly transparent, massively parallel IF…THEN rules consisting of meaningful prototypes that represent 

local peaks of the multimodal data distribution. SONFIS does not impose any models with parameters on data 

generation, and the learning process only involves nonparametric statistic operators, which can objectively 

disclose the ensemble properties and mutual distributions of data [4]. After being primed offline, SONFIS can 

further continuously self-update its system structure and meta-parameters with new observations from data 

streams to follow the potential shifts and/or drifts of data patterns [29]. Thanks to its prototype-based nature, 

SONFIS performs classification on unlabelled data in a human-like reasoning style following the well-known 

“winner takes all” principles.  

Prototypes play an instrumental role in SONFIS because they represent local models of data patterns in 

terms of multimodal data density [4]. In this paper, we conduct a detailed mathematical analysis on the 



optimality of the premise, IF part of SONFIS, namely, prototypes. Starting with the mathematical formulation of 

the problem, we firstly investigate the optimality of data partitioning solutions obtained by SONFIS and prove 

that the system does not yield an optimal solution. Then, we introduce a highly efficient optimisation method 

that enables SONFIS to always attain local optimality in few iterations. This, in turn, effectively improves its 

classification performance. Moreover, the optimality analysis and the optimisation method presented in this 

paper are not limited to SONFIS, but are more generic and applicable to other online, non-iterative machine 

learning algorithms with similar operating mechanisms, which include, but not limited to, autonomous learning 

multi-model (ALMMo) neuro-fuzzy systems [3],[19], eClass0 [6]. Numerical examples presented in this paper 

justify the validity of the optimality analysis and further demonstrate that the proposed optimisation method can 

effectively improve the classification accuracy of SONFIS on various challenging benchmark problems with 

minor additional computational cost. In addition, numerical results also show that the proposed optimisation 

method substantially enhances the performance of other types of zero-order EISs with similar operating 

mechanisms.  

The key contributions of this paper include: 1) the mathematical formulation of the optimality problem of 

zero-order EISs; 2) a detailed analysis on the optimality of the solutions obtained by zero-order EISs; 3) a 

generic method for autonomously optimising the premise, IF part of zero-order EISs based on historical data; 4) 

a general strategy for zero-order EISs to obtain the locally optimal solutions and effectively enhance the 

classification performance. 

The remainder of this paper is organised as follows. Section 2 provides a critical review of related works. 

The architecture, learning and validation processes of SONFIS are briefed in Section 3. Section 4 presents the 

optimality analysis. The method, which provides the locally optimal solution, is described in section 5. 

Numerical examples are given in section 6. Section 7 concludes this paper and gives the direction for future 

work. 

2. Related Works 

Prototype-based systems have been widely used for multi-class classification purposes [3],[18]. 

Prototypes play a key role in such systems, and it is the prototype selection process that determines their 

performance, transparency and computational efficiency. Well-known prototype-based classifiers include 

support vector machine (SVM) [10], learning vector quantization (LVQ) [23] and self-organising map (SOM) 

[30], etc. SVM iteratively selects prototypes, namely, support vectors, from observed data samples to identify 

the maximum-margin hyperplane in the data space. LVQ and SOM, just like other types of ANNs, gradually 

approach the optimal solution in the entire data space by minimising the objective function. Another widely 

used classifier, K-nearest neighbour (KNN) [35], can be viewed as an extreme example of prototype-based 

systems as well. Nonetheless, KNN is very different from SVM, LVQ and SOM in the sense that all the data 

samples are stored in the memory and treated as prototypes. 

EISs, as a key branch of computational intelligence, are becoming increasingly popular owing to their 

highly transparent system structure and the explainable learning and decision-making processes [11]. EISs can 

be implemented in the form of neuro-fuzzy or rule-based models [1]. However, unlike the other typical type of 

multi-model systems, namely, ANNs [17], most of the EISs are designed for processing streaming data “on the 

fly”, and they are able to self-update and self-evolve their system structure and meta-parameters to follow the 

rapidly changing data patterns of data streams [29]. Currently, EISs have been successfully implemented for 

various real-world applications including classification [33], prediction [20], control [34], anomaly detection 

[27], etc. The most popular (neuro-) fuzzy systems include, but not limited to, eTS [2], DENFIS [22], eClass [6], 

SAFIS [36], PANFIS [31], GENIFS [32] and IT2FNN [41]. Interested readers are referred to the recent surveys 

[28],[40] for more details.  

Zero-order EISs [3],[6],[18] are based on prototypes, and they, generally, have a simpler, more flexible 

and transparent system structure compared with other types of EISs, e.g. first-order [19] and higher-order ones 

[41]. Thanks to the prototype-based nature, they are highly computational efficient and capable of handling 

complex multi-class classification problems. Despite that the operating mechanisms might be very different, 

prototypes of zero-order EISs are usually identified as the most representative data samples through data 



partitioning. Prototypes determine the validity and effectiveness of the systems and significantly influence their 

performance. Compared with other types of prototype-based systems, e.g., SVM, SOM and LVQ, the prototypes 

of zero-order EISs are usually obtained through an “one pass” learning process without iteratively searching the 

data space for optimal solutions. Many zero-order EISs are also capable of continuously updating existing 

prototypes based on newly observed data samples and adding new prototypes to follow new data patterns. 

Nonetheless, the optimality of zero-order EISs remains a question, and no mathematical analysis has not been 

conducted yet [19]. The main reason for this is that zero-order EISs are designed for learning from 

nonstationary, complex data streams in an efficient, non-iterative and “one pass” manner. Nonetheless, a 

systematic study on system optimality is of paramount importance and required to be done in order to better 

understand the operating mechanisms of zero-order EISs and further improve their performance.  

Another problem that the majority of zero-order EISs [3],[6] (as well as many other machine learning 

algorithms, e.g., first-order EISs [19], type-2 EISs [33], K-means [38], Laplacian SVM [15]) suffer from is the 

need of problem- and user-specific parameters. The structural learning algorithms for the premise, IF part of 

EISs usually require certain parameters to be defined in advance, and this is a challenging issue for real-world 

applications. The prototype identification results of an EIS might vary significantly by using different parameter 

settings, and this can significantly influence the performance and objectiveness of the system. Properly 

predefining such parameters requires certain levels of prior knowledge about the problems from users, and, 

sometimes, assumptions on data generation model are also needed to be made. However, in real-world 

scenarios, prior knowledge is usually very limited, while the assumptions are seldom hold true, especially for 

streaming data.  

As a recently introduced generic classification approach, SONFIS [18] employs nonparametric statistical 

operators to objectively disclose the underlying data patterns behind the empirically observed data samples, and 

extracts local peaks from the multimodal data distribution as prototypes. SONFIS is nonparametric and highly 

objective in the sense that no generation model with parameters is imposed on data, and all the involved meta-

parameters are directly derived from data without prior knowledge of the problems. It is able to approach any 

problem at different levels of granularity, in other words, different levels of details depending on the complexity 

of the problems, availability of computational resources and particular needs from users. Moreover, SONFIS 

supports both offline and online learning modes and can use various types of distance/dissimilarity measures for 

classification. Thus, SONFIS has a strong adaptive ability and has demonstrated the state-of-the-art performance 

on various problems. As a highly representative and well-performing zero-order EIS, in this paper, we will use 

SONFIS as an example and conduct optimality analysis on its solutions.  

3. SONFIS 

In this section, we will briefly describe the architecture, learning process and validation process of 

SONFIS [18] to make this paper self-contained, which also serve as the foundation for the optimality analysis 

conducted in the next section. 

First of all, let {𝒙}𝐾 = {𝒙1, 𝒙2, … , 𝒙𝑖 , … , 𝒙𝐾}  ( 𝒙𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑀]
𝑇

∈ 𝐑𝑀 ) be a particular data 

set/stream in a real metric space, 𝐑𝑀, with the dimensionality of 𝑀. The subscript 𝑖 indicates the time instance at 

which 𝒙𝑖 is observed. We assume that this data set/stream is composed of data samples of 𝐶 different classes. At 

the Kth time instance, the set of observed data samples is denoted as  {𝒙}𝐾 . Based on their class labels, these 

data samples can be further divided into C subsets denoted by {𝒙}
𝑁𝑗
𝑗

= {𝒙1
𝑗
, 𝒙2

𝑗
, … , 𝒙

𝑁𝑗
𝑗

} (𝑗 = 1,2, … , 𝐶), where 

the superscript 𝑗 denotes the jth class and there is ∑ 𝑁𝑗𝐶
𝑗=1 = 𝐾. For each subset, {𝒙}

𝑁𝑗
𝑗

, we further consider that 

some samples may share the same values, i.e., 𝒙𝑚
𝑗

=  𝒙𝑛
𝑗
 and 𝑚 ≠ 𝑛. Thus, we denote the set of unique data 

samples of the jth class ( 𝑗 = 1,2, … , 𝐶 ) as {𝒖}
𝐿𝑗
𝑗

= {𝒖1
𝑗
, 𝒖2

𝑗
, … , 𝒖

𝐿𝑗
𝑗

} , and the corresponding occurrence 

frequencies are denoted as {𝑓}
𝐿𝑗
𝑗

= {𝑓1
𝑗
, 𝑓2

𝑗
, … , 𝑓

𝐿𝑗
𝑗

} . Furthermore, there are  {𝒖}
𝐿𝑗
𝑗

⊆ {𝒙}
𝑁𝑗
𝑗

;  𝐿𝑗 ≤ 𝑁𝑗  and 

∑ 𝑓𝑘
𝑗𝐿𝑗

𝑘=1 = 𝑁𝑗. Unless specifically declared otherwise, all the mathematical derivations in the remainder of this 

paper are conducted at the Kth time instance by default. Without loss of generality, we use Euclidean distance 

for derivation. However, it has to be stressed that SONFIS can support various types of distance/dissimilarity 



measures [18]. For clarity, we summarise the key notations of this paper and the respective definitions in Table 

1. 

 

 

Table 1. Definitions of key notations 

Notations Definitions 

𝐺 Level of granularity 

𝑀 Dimensionality of the real metric space 

𝐑𝑀 𝑀-dimensional real metric space 

𝐾 Number of observed data samples/current time instance 

𝐶 Number of classes 

{𝒙}𝐾 Collection of observed data samples at the Kth time instance 

𝒙𝑖 𝑀 × 1 dimensional data sample observed at the ith time instance 

𝑁𝑗 Number of observed data samples of the jth class at the Kth time 

instance 

𝐿𝑗  Number of observed unique data samples of the jth class at the Kth 

time instance 

{𝒙}
𝑁𝑗
𝑗

 Collection of observed data samples of the jth class at the Kth time 

instance 

𝒙𝑖
𝑗
 The ith 𝑀 × 1 dimensional data sample of the jth class 

{𝒖}
𝐿𝑗
𝑗

 Collection of observed unique data samples of the jth class at the Kth 

time instance 

𝒖𝑖
𝑗
 The ith 𝑀 × 1 dimensional unique data sample of the jth class 

𝑓𝑖
𝑗
 Occurrence frequency of 𝒖𝑖

𝑗
 

𝝁
𝑁𝑗
𝑗

 Mean of {𝒙}
𝑁𝑗
𝑗

 

𝑋
𝑁𝑗
𝑗

 Mean of {‖𝒙‖2}
𝑁𝑗
𝑗

 

𝑃𝑗  Number of identified data clouds/prototypes of the jth class 

{ℂ}𝑗 Collection of data clouds of the jth class 

ℂ𝑖
𝑗
 The ith data cloud of the jth class 

{𝒑}𝑗 Collection of prototypes of the jth class 

𝒑𝑖
𝑗
 The ith prototype of the jth class with the dimensionality of 𝑀 × 1 

𝑆𝑖
𝑗
 Number of members of ℂ𝑖

𝑗
 

𝑷𝑗 𝑀 × 𝑃𝑗  dimensional matrix form of {𝒑}𝑗 

𝑾𝑗 𝑃𝑗 × 𝑁𝑗dimensional weight matrix 

𝛾𝐺
𝑗
 Radius of local influential areas of data clouds of the jth class 

corresponding to the Gth level of granularity 

𝜆𝑗  Score of confidence of the jth massively parallel fuzzy rule 

 

3.1. Multi-Model Architecture 

An illustrative diagram of the multi-model architecture of SONFIS is depicted in Fig. 1. Fig. 1 (a) depicts 

the structure of SONFIS during the system identification process; Fig. 1(b) gives the system structure during the 

validation stage; Fig. 1(c) is the zoom-in structure of the jth massively parallel fuzzy rule.  

It is demonstrated in Fig. 1 that SONFIS consists of 𝐶 massively parallel fuzzy rules. During the learning 

stage, the 𝐶 fuzzy rules are trained in parallel using data samples from the respective classes (one rule per class). 

Each rule is composed of a number of prototypes identified from data samples of the corresponding class, and 

these prototypes are connected by logical “OR” connectives (𝑗 = 1,2, … , 𝐶): 



𝐑𝑗: 𝐼𝐹 (𝒙~𝒑1
𝑗
) 𝑂𝑅 (𝒙~𝒑2

𝑗
) 𝑂𝑅 …  𝑂𝑅 (𝒙~𝒑

𝑃𝑗
𝑗

) 𝑇𝐻𝐸𝑁 (𝐶𝑙𝑎𝑠𝑠 𝑗)                                                     (1a) 

where 𝒑𝑖
𝑗
 is the ith prototype of the jth fuzzy rule; 𝑃𝑗  is the number of identified prototypes. As a result, each 

massively parallel fuzzy rule can be viewed as a combination of multiple simpler fuzzy rules with singleton 

consequences in the form of equation (1b) (𝑖 = 1,2, … , 𝑃𝑗  ): 

𝐑𝑖
𝑗
: 𝐼𝐹 (𝒙~𝒑𝑖

𝑗
) 𝑇𝐻𝐸𝑁 (𝐶𝑙𝑎𝑠𝑠 𝑗)                                                                                                         (1b) 

During the validation process, for each unlabelled data sample, every massively parallel fuzzy rule within 

the rule base will produce a score of confidence on it and, in total, 𝐶 scores will be generated. The overall 

decision-maker will, then, estimate the class label for the sample based on the scores following the “winner 

takes all” principle.  

The learning and validation processes of SONFIS will be detailed in the following two subsections, 

respectively. 

 

 

(a) The multi-model architecture (identification stage) 

 

(b) The multi-model architecture (validation stage) 

 

(c) Zoom-in structure of the jth fuzzy rule 

Fig. 1. Multi-model architecture of SONFIS 

3.2. Identification Process 

In this subsection, the identification process of SONFIS is presented [18]. SONFIS is capable of self-

organising its fuzzy rule base from static data and then, continuing to self-evolve its system structure and self-

update the meta-parameters with streaming data recursively. Therefore, the offline learning process will be 

presented first followed by the online learning process. As each massively parallel fuzzy rule is trained 

separately, we use the jth rule as an example for demonstration. The same principles can be applied to all other 

fuzzy rules within the rule base. The level of granularity of SONFIS is set as 𝐺, which can be any positive 

integers. 



A. Offline Learning Process 

The main algorithmic procedure of the offline learning process is as follows. 

Stage 1. Forming Voronoi tessellation from data 

In this stage, the observed unique data samples of the jth class are, firstly, ranked in an indexing list based 

on their mutual distances and ensemble properties. Firstly, the multimodal densities 𝐷𝑀𝑀  at all unique data 

samples, {𝒖}
𝐿𝑗
𝑗

 are calculated by equation (2) (𝑘 = 1,2, … , 𝐿𝑗) [4]: 

 𝐷𝑀𝑀(𝒖𝑘
𝑗

) = 𝑓𝑘
𝑗 1

1+
‖𝒖

𝑘
𝑗

−𝝁
𝑁𝑗
𝑗

‖
2

𝑋
𝑁𝑗
𝑗

−‖𝝁
𝑁𝑗
𝑗

‖
2

                                                                                                                      (2) 

where 𝝁
𝑁𝑗
𝑗

 and 𝑋
𝑁𝑗
𝑗

 are the means of {𝒙}
𝑁𝑗
𝑗

 and {‖𝒙‖2}
𝑁𝑗
𝑗

, respectively, which can be calculated by the following 

expressions [4]: 

𝝁
𝑁𝑗
𝑗

=
1

𝑁𝑗
∑ 𝒙𝑘

𝑗𝑁𝑗

𝑘=1 ; 𝑋
𝑁𝑗
𝑗

=
1

𝑁𝑗
∑ ‖𝒙𝑘

𝑗
‖

2
𝑁𝑗

𝑘=1                                                             (3) 

and ‖𝒙‖ denotes the Euclidean norm of 𝒙: ‖𝒙‖ = √∑ 𝑥𝑖
2𝑀

𝑖=1 . 

The expression of multimodal density (equation (2)) is very fundamental because it combines information 

about repeated data values and the scattering across the data space, and it is derived directly from data 

resembling the well-known probability mass function [4]. When Euclidean distance or some other types of well-

known distances and dissimilarity, e.g., Mahalanobis distance, cosine dissimilarity, is used for calculation, it can 

be recursively calculated in an elegant form [4],[18].  

In this paper, we use the real climate data1 measured in Manchester, UK for the period 2010-2015 as an 

example to visualise the concept. This dataset is composed of 938 data samples, 479 of which are measured in 

winter (class 1) and the rest are obtained during summer (class 2). For visual clarity, we only consider the first 

two attributes, namely, temperature, oC (𝑥1) and wind speed, mph (𝑥2). The multimodal density of the first 70% 

of data samples is visualised in Fig. 2. 

 

 

Fig. 2. Multimodal density of real climate data 

 

After the multimodal density values at all unique data samples have been calculated, the unique data 

sample with the highest multimodal density value is identified as: 𝒓1 = argmax
𝑘=1,2,...,𝐿𝑗

(𝐷𝑀𝑀(𝒖𝑘
𝑗

)), and it is set as the 

                                                           
1 Available from: http://www.worldweatheronline.com  

http://www.worldweatheronline.com/


first element of the indexing list, denoted by {𝒓}. The remaining elements of {𝒓} are identified one by one using 

the following principle (𝑘 = 2,3, … , 𝐿𝑗): 

𝒓𝑘 = argmin
𝒖∈{𝒖}

𝐿𝑗
𝑗

 ;𝒖≠𝒓1,𝒓2,…,𝒓𝑘−1
 

(‖𝒖 − 𝒓𝑘−1‖2)                                                                                       (4)  

Once the full indexing list {𝒓}  is built by equation (4), the ranked multimodal density {𝐷𝑀𝑀(𝒓)}  is 

obtained accordingly. Based on {𝐷𝑀𝑀(𝒓)}, we can identify the local maxima of multimodal density by using the 

following condition [18]: 

 𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟏:
𝐼𝑓 (𝑠𝑔𝑛(𝐷𝑀𝑀(𝒓𝑘) − 𝐷𝑀𝑀(𝒓𝑘+1)) = 1) 𝑎𝑛𝑑 (𝑠𝑔𝑛(𝐷𝑀𝑀(𝒓𝑘) − 𝐷𝑀𝑀(𝒓𝑘−1)) = 1) 

𝑇ℎ𝑒𝑛 (𝒓𝑘 𝑖𝑠 𝑎 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐷𝑀𝑀)
 (5) 

where 𝑠𝑔𝑛(𝑥) = {
1 𝑥 > 0
0 𝑥 = 0

−1 𝑥 < 0
 is the sign function. The local maxima of 𝐷𝑀𝑀  are denoted as {𝒖∗}, and the 

cardinality is denoted as  𝐿𝑗∗. By ranking and reordering the unique data samples in terms of their mutual 

distances (equation (4)) and their corresponding multimodal density values, the searching process for local 

maxima of the multimodal data distribution is significantly simplified because the original 𝑀-dimensional data 

space, 𝐑𝑀 is reduced to a 1-dimensional indexing list, {𝒓}.  

The ranked multimodal density of the real climate data as given by Fig. 2 are depicted in Figs. 3(a) and 

3(b), where the identified local maxima are marked by red circles. The locations of these local maxima in the 2D 

data space are also visualized in Fig. 3(c).  

 

(a) Class 1                                                                    (b) Class 2 

 

(c) Local maxima in the data space 

Fig. 3. The multimodal density of two-class real climate data and the identified local maxima 

 



Then, Voronoi tessellations are formed in the data space by using these identified local maxima as 

prototypes to attract nearby data samples, which results in a number of data clouds, denoted by {ℂ}: 

ℂ𝑛∗ ← ℂ𝑛∗ ∪ {𝒙𝑘
𝑗

}; 𝑛∗ ← argmin
𝒚∈{𝒖∗}

(‖𝒚 − 𝒙𝑘
𝑗

‖
2

)                                                                               (6) 

where 𝑘 = 1,2, … , 𝑁𝑗. Equation (6) naturally partitions the data space based on mutual distances between data 

samples and these prototypes. This process is free from any threshold and, the partitioning result objectively 

approximates the real data distribution.  

Stage 2. Deriving the radius of local influential area around prototypes  

In this stage, the radius of local influential area around each prototype is derived based on the mutual 

distances of these observed data samples and the level of granularity defined by users. The radius can be viewed 

as an estimation of the average distance between any two strongly connected prototypes under a specific level of 

granularity, and it condenses the mutual distribution information extracted from the empirically observed data.  

Under the first level of granularity (𝐺 = 1), the radius of local influential area, 𝛾1
𝑗
 is calculated by [18]: 

𝛾1
𝑗

=
1

𝑄1
𝑗 ∑ ‖𝒚 − 𝒙‖2

𝒙,𝒚∈{𝒙}
𝑁𝑗
𝑗

;𝒙≠𝒚; ‖𝒚−𝒙‖2≤�̅�
𝑁𝑗
𝑗                                                                                                  (7) 

where 𝑄1
𝑗
 is the number of pairs of data samples of {𝒙}

𝑁𝑗
𝑗

 between which the distance is smaller than the average 

distance between any two data samples of the jth class, �̅�
𝑁𝑗
𝑗

 [4], namely: 

�̅�
𝑁𝑗
𝑗

= 2 (𝑋
𝑁𝑗
𝑗

− ‖𝝁
𝑁𝑗
𝑗

‖
2

)                                                                                                                           (8) 

From the second level to any higher level of granularity (𝐺 = 2,3, ….), one can calculate the radius 

iteratively by using the following expression [18]: 

𝛾𝐺
𝑗

=
1

𝑄𝐺
𝑗 ∑ ‖𝒚 − 𝒙‖2

𝒙,𝒚∈{𝒙}
𝑁𝑗
𝑗

;𝒙≠𝒚; ‖𝒚−𝒙‖2≤𝛾𝐺−1
𝑗                                                                                                (9) 

where 𝛾𝐺
𝑗
 and 𝛾𝐺−1

𝑗
 represent the radii of local influential area corresponding to the Gth and (G-1)th levels of 

granularity, respectively; 𝑄𝐺
𝑗
 is the number of pairs of data samples between which the distance is smaller than 

𝛾𝐺−1
𝑗

.  

Compared with using predefined threshold or hard-coding principles, deriving the radius of local 

influential area around each prototype in such a way has two strong advantages Firstly,  𝛾𝐺
𝑗
 is guaranteed to be 

valid all the time because it is derived from data directly and always meaningful. Secondly, 𝛾𝐺
𝑗
 can be decided 

without any prior knowledge, but only based on users’ preferences and/or any specific requirements of the 

problems [18]. This significantly strengthens the applicability and adaptive ability of SONFIS to any real-world 

problems. 

In general, with a high level of granularity, SONFIS is able to extract finer details from data and identify 

more prototypes, and it usually demonstrates better performance in terms of classification accuracy. However, in 

such cases, SONFIS can consume more computational and memory resources, and the problem of overfitting 

may occur as well. In contrast, using a low level of granularity may largely improve the computational and 

memory efficiency of SONFIS, but may also deteriorate its classification performance on complex, large-scale 

and high-dimensional problems. 

Stage 3. Identifying prototypes from local maxima 

In this stage, prototypes of the jth class are filtered out from the local maxima identified during Stage 1. 

Firstly, raw prototypes, denoted by {𝒒}, are derived as the centres of data clouds, {ℂ}: 

𝒒𝑘 =
1

𝑆𝑘
𝑗 ∑ 𝒙𝒙∈ℂ𝑘

; 𝒒𝑘 ∈ {𝒒}                                                                                                                     (10) 



where 𝑆𝑘
𝑗
 is the cardinality (number of members) of ℂ𝑘 ; ℂ𝑘 ∈ {ℂ}; 𝑘 = 1,2, … , 𝐿𝑗∗ . The multimodal density 

values at the raw prototypes {𝒒} are calculated using equation (11): 

𝐷𝑀𝑀(𝒒𝑘) = 𝑆𝑘
𝑗 1

1+
‖𝒒𝑘−𝝁𝑗‖

2

𝑋𝑗−‖𝝁𝑗‖
2

; 𝒒𝑘 ∈ {𝒒}
                                                                                                     (11) 

Then, for each raw prototype (i.e. the kth one), its neighbouring prototypes (the collection is denoted by 

{𝒒}𝑘
𝑛∗) are identified by the following condition (𝑘 = 1,2, … , 𝐿𝑗∗): 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟐: 𝐼𝑓 (‖𝒒𝑘 − 𝒒𝑖‖2 ≤ 𝛾𝐺
𝑗
) 𝑇ℎ𝑒𝑛 (𝒒𝑖 ∈ {𝒒}𝑘

𝑛∗)                                                                 (12) 

where 𝒒𝑖 ≠ 𝒒𝑘 and 𝒒𝑖 ∈ {𝒒}. Condition 2 defines a local influential area around each prototype with the radius 

of 𝛾𝐺
𝑗
 and uses this further to identify neighbouring prototypes. This provides an intuitive understanding of 

mutual distributions and ensemble properties of data. 

After that, the most representative prototypes of the jth class denoted by {𝒑}𝑗 are selected out from raw 

prototypes (local maxima) based on the following condition: 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟑: 𝐼𝑓 (𝐷𝑀𝑀(𝒒𝑘) > max
𝒒∈{𝒒}𝑘

𝑛∗
(𝐷𝑀𝑀(𝒒))) 𝑇ℎ𝑒𝑛 (𝒒𝑘 ∈ {𝒑}𝑗)                                    (13)  

and new data clouds are formed around prototypes {𝒑}𝑗 = {𝒑1
𝑗
, 𝒑2

𝑗
, … , 𝒑

𝑃𝑗
𝑗

} resembling Voronoi tessellation 

using equation (6), denoted by {ℂ}𝑗 = {ℂ1
𝑗
, ℂ2

𝑗
, … , ℂ

𝑃𝑗
𝑗

}. Condition 3 effectively filters out more representative 

prototypes by comparing these prototypes with their neighbours in terms of their values of multimodal density. 

Conditions 2 and 3 together greatly facilitate the searching process for the most representative data samples in 

the data space. At the same time, these highly representative prototypes objectively reflect the ensemble 

properties and mutual distribution of data because only the mutual distances and multimodal density values of 

these empirically observed data samples are considered during the identification process. The identified 

prototypes by SONFIS in the data space under different levels of granularity are visualised in Fig. 4 using the 

same climate data as given in Fig. 2. 

In the end, the jth massively parallel fuzzy rule 𝐑𝑗 is created with {𝒑}𝑗 (the number of elements in {𝒑}𝑗 is 

denoted by 𝑃𝑗) in the same form as equation (1a).  

 

 

 

(a) 𝐺 = 1                                                                 (b) 𝐺 = 2 



 

(c) 𝐺 = 3                                                                 (d) 𝐺 = 4 

Fig. 4. Identified prototypes from data under different levels of granularity during offline learning process 

 

B. Online Learning Process 

Once the offline learning process is finished, SONFIS can further self-update its structure and meta-

parameters recursively with newly observed data on a sample-by-sample basis. This online learning ability 

allows SONFIS to rapidly adapt to new data patterns. It has to be stressed that SONFIS does not require any 

user-control parameters to be pre-determined for online learning, but uses nonparametric statistic operators and 

data-driven thresholds derived during the offline learning process. 

 Let us assume that SONFIS has been primed with the static dataset, {𝒙}𝐾 at the Kth time instance, and at 

the next time instance (𝐾 ← 𝐾 + 1), a new data sample of the jth class arrived (𝑁𝑗 ← 𝑁𝑗 + 1). The online 

sample-by-sample learning process is described as follows. 

Stage 4. Updating global meta-parameters 

SONFIS firstly updates the global meta-parameters 𝝁
𝑁𝑗−1

𝑗
 and 𝑋

𝑁𝑗−1

𝑗
 using 𝒙

𝑁𝑗
𝑗

 as: 

𝝁
𝑁𝑗
𝑗

←
𝑁𝑗−1

𝑁𝑗 𝝁
𝑁𝑗−1

𝑗
+

1

𝑁𝑗 𝒙
𝑁𝑗
𝑗

; 𝑋
𝑁𝑗
𝑗

←
𝑁𝑗−1

𝑁𝑗 𝑋
𝑁𝑗−1

𝑗
+

1

𝑁𝑗 ‖𝒙
𝑁𝑗
𝑗

‖
2
                                                               (14) 

and the radius of local influential area, 𝛾𝐺
𝑗
 is updated in a recursive manner based on the ratio between  �̅�

𝑁𝑗
𝑗

 and 

�̅�
𝑁𝑗−1

𝑗
, namely [18], 

𝛾𝐺
𝑗

←
�̅�

𝑁𝑗
𝑗

�̅�
𝑁𝑗−1

𝑗 𝛾𝐺
𝑗

=
𝑋

𝑁𝑗
𝑗

−‖𝝁
𝑁𝑗
𝑗

‖
2

𝑋
𝑁𝑗−1

𝑗
−‖𝝁

𝑁𝑗−1

𝑗
‖

2 𝛾𝐺
𝑗
                                                                                                           (15) 

The main reason for using equation (15) to update 𝛾𝐺
𝑗
 is because it provides a good approximation and is 

more computationally efficient. Equations (7)-(9) derive the radius of local influential area, 𝛾𝐺
𝑗
 derived from all 

static data samples during the offline learning process based on their mutual distances. However, it would be 

time consuming and a waste of computational resources to repeat the same process for each newly observed data 

sample during the online learning process. Thus, we use equation (15) instead. 

Stage 5. Updating the identified prototypes 

In this stage, data density values at 𝒙
𝑁𝑗
𝑗

 and all existing prototypes, {𝒑}𝑗 are calculated by the following 

expression [4]: 

𝐷(𝒚) =
1

1+
‖𝒚−𝝁

𝑁𝑗
𝑗

‖
2

𝑋
𝑁𝑗
𝑗

−‖𝝁
𝑁𝑗
𝑗

‖
2

                                                                                                                                  (16) 



where 𝒚 = 𝒙
𝑁𝑗
𝑗

, 𝒑1
𝑗
, 𝒑2

𝑗
, … , 𝒑

𝑃𝑗
𝑗

.  

Then, the nearest prototype to 𝒙
𝑁𝑗
𝑗

, denoted by 𝒑𝑛∗
𝑗

, is identified by equation (6), and the following 

condition is used for checking whether 𝒙
𝑁𝑗
𝑗

 can be a new prototype: 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟒:

𝐼𝑓 (𝐷(𝒙
𝑁𝑗
𝑗

) > max
𝒒∈{𝒑}𝑗

(𝐷(𝒒)))  𝑜𝑟 (𝐷(𝒙
𝑁𝑗
𝑗

) < min
𝒒∈{𝒑}𝑗

(𝐷(𝒒)))

𝑜𝑟 (‖𝒙
𝑁𝑗
𝑗

− 𝒑𝑛∗
𝑗

‖
2

> 𝛾𝐺
𝑗
) 

𝑇ℎ𝑒𝑛 (𝒙
𝑁𝑗
𝑗

 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)

                      (17) 

Condition 4 is a combination of Conditions 4 and 5 in the original version of SONFIS [6], and the 

rationale behind it is very clear. If 𝐷(𝒙
𝑁𝑗
𝑗

) is larger than the maximum data density value of the existing 

prototypes {𝒑}𝑗 , 𝒙
𝑁𝑗
𝑗

 is more descriptive and has more summarisation power than all other prototypes. 

Alternatively, if 𝐷(𝒙
𝑁𝑗
𝑗

) is smaller than the minimum data density value of any prototypes, it represents an 

emerging pattern very different from previously seen ones. In the third case, if the distance between 𝒙
𝑁𝑗
𝑗

 and the 

nearest prototype 𝒑𝑛∗
𝑗

 is larger than 𝛾𝐺
𝑗
, 𝒙

𝑁𝑗
𝑗

 is distant with all prototypes and represents a pattern that no existing 

data clouds can describe. Therefore, in either case, 𝒙
𝑁𝑗
𝑗

 becomes a new prototype and initialise a new data cloud. 

If Condition 4 is satisfied,  𝒙
𝑁𝑗
𝑗

 is recognised as a new prototype of the jth class, and the meta-parameters 

of the new data cloud associated with 𝒙
𝑁𝑗
𝑗

 are initialised as: 

𝑃𝑗 ← 𝑃𝑗 + 1; 𝒑
𝑃𝑗
𝑗

← 𝒙
𝑁𝑗
𝑗

; {𝒑}𝑗 ← {𝒑}𝑗 ∪ {𝒑
𝑃𝑗
𝑗

}; ℂ
𝑃𝑗
𝑗

← {𝒙
𝑁𝑗
𝑗

}; 𝑆
𝑁𝑗
𝑗

← 1                                     (18) 

Otherwise, the meta-parameters of the data cloud, ℂ𝑛∗
𝑗

 associated with the nearest prototype are updated by 𝒙
𝑁𝑗
𝑗

 

as: 

ℂ𝑛∗
𝑗

← ℂ𝑛∗
𝑗

∪ {𝒙
𝑁𝑗
𝑗

}; 𝒑𝑛∗
𝑗

←
𝑆𝑛∗

𝑗

𝑆𝑛∗
𝑗

+1
𝒑𝑛∗

𝑗
+

1

𝑆𝑛∗
𝑗

+1
𝒙

𝑁𝑗
𝑗

; 𝑆𝑛∗
𝑗

← 𝑆𝑛∗
𝑗

+ 1                                                     (19) 

After this, the fuzzy rule is updated with the newly updated {𝒑}𝑗, and SONFIS goes back to Stage 4 and 

gets ready for processing the next data sample. The online learning results of SONFIS from the remaining 30% 

of climate data under different levels of granularity are presented in Fig.5 for illustration. 

From the offline and online identification processes described in this subsection one may conclude that, 

the prototypes of SONFIS are directly extracted from data and they objectively represent the local models of 

data distribution. It has to be stressed that a hybrid of offline and online learning processes is an important 

feature of SONFIS and is very useful in real-world scenarios. In most of real-world applications, a part of data 

has been available in a static form, while the remaining samples keep coming sequentially in a streaming form. 

By learning from the available static data in an offline manner, SONFIS can have a better understanding on 

ensemble properties and mutual distributions of data, which results in more robust and stronger performance. 

Then, by learning from streaming data on a sample-by-sample basis, SONFIS is capable of successfully tackling 

the problems with changing data pattern in nonstationary environments by continuously self-developing based 

on new observations.  

 



 

(a) 𝐺 = 1                                                                 (b) 𝐺 = 2 

 

(c) 𝐺 = 3                                                                 (d) 𝐺 = 4 

Fig. 5. Identified prototypes from data under different levels of granularity after online learning process 

The main procedures of the online and offline learning processes of SONFIS are summarised in the 

following pseudo codes. 

1) Offline training process  

Input: {𝒙}
𝑁𝑗
𝑗

 

Algorithm begins 

i.  Calculate 𝐷𝑀𝑀 at {𝒖}
𝐿𝑗
𝑗

 using (2); 

ii. Rank {𝒖}
𝐿𝑗
𝑗

 into {𝒓} using (4); 

iii. Identify {𝒖∗} using Condition 1; 

iv. Form {ℂ} around {𝒖∗} using (6); 

v. Extract 𝛾𝐺
𝑗
 from {𝒙}

𝑁𝑗
𝑗

 using (7)-(9); 

vi. Calculate {𝒒} from {ℂ} using (10); 

vii. Calculate 𝐷𝑀𝑀 at  {𝒒} using (11); 

viii. Identify {𝒑}𝑗 using Conditions 2 and 3; 

ix. Create 𝐑𝑗 based on {𝒑}𝑗. 

Algorithm ends 

Output: 𝐑𝑗 



 

2) Online learning process  

Input: {𝒙
𝑁𝑗+1

𝑗
, 𝒙

𝑁𝑗+2

𝑗
, 𝒙

𝑁𝑗+3

𝑗
, … } 

Algorithm begins 

While 𝒙
𝑁𝑗+1

𝑗
 is available or (until interrupted): 

i.  Update  𝝁
𝑁𝑗
𝑗

 and 𝑋
𝑁𝑗
𝑗

 by (14); 

ii. Update 𝛾𝐺
𝑗
 by (15); 

iii. Calculate 𝐷 at 𝒙
𝑁𝑗+1

𝑗
 and {𝒑}𝑗 using (16); 

iv. If (Condition 4 is met) Then: 

- Add 𝒙
𝑁𝑗
𝑗

 as a new prototype by (18); 

v. Else: 

- Update ℂ𝑛∗
𝑗

 by (19); 

vi. End If 

vii. 𝑁𝑗 ← 𝑁𝑗 + 1; 

viii. Update 𝐑𝑗; 

End While  

Algorithm ends 

Output: 𝐑𝑗 

 

However, one may also notice that SONFIS as well as the majority of alterative zero-order EISs identify 

prototypes in a non-iterative and straightforward manner. There is no optimisation process involved because 

zero-order EISs need to be computationally lean. Therefore, the optimality of zero-order EISs require to be 

studied to better understand their merits and limitations. In the next section, we will present the optimality 

analysis. 

3.3. Validation Process 

In this subsection, the decision-making procedure of SONFIS is presented. As one can see from Fig. 1, 

during the validation process, there is a two-level decision-making process involved for deciding the label of 

each unlabelled data sample. This includes the local decision-making and overall decision-making processes. 

The local decision-maker follows the “nearest prototype” principle, and the global decision-maker follows the 

“winner takes all” principle.  

For each newly arrived data sample, 𝒙𝐾, it is firstly sent to the  𝐶 massively parallel fuzzy rules, and the 

local decision-maker will identify the most similar prototype to  𝒙𝐾 within this fuzzy rule and calculate the score 

of confidence using equation (20): 

𝜆𝑗(𝒙𝐾) = max
𝑖=1,2,…,𝑃𝑗

(𝑒−‖𝒙𝐾−𝒑𝑖
𝑗

‖
2

)                                                                                                    (20) 

The score of confidence produced by a particular massively parallel fuzzy rule is determined by similarity 

between 𝒙𝐾 and the nearest prototype of the corresponding class. The exponential function is used for confining 

the value of score of confidence into a more familiar range, namely, [0,1] and, at the same time, enlarging the 

Euclidean distance between 𝒙𝐾  and prototypes {𝒑}𝑗 . Nonetheless, it has to be stressed that the exponential 

function used in equation (20) can be replaced by other functions as well. 



Then, the 𝐶 scores of confidence generated by the 𝐶 fuzzy rules will be passed to the global decision-

maker, and the label of 𝒙𝐾 will be decided as: 

𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 = argmax
𝑗=1,2,…,𝐶

(𝜆𝑗(𝒙𝐾))                                                                                                 (21) 

In the next section, we will study the optimality of the premise, IF part by SONFIS from the data 

partitioning point of view. 

4. Analysis of the Optimality  

The analysis of optimality of the initial solutions obtained from data by SONFIS [18] is performed in this 

section. As SONFIS identifies prototypes per class, we only consider the optimality of the solution of a 

particular class (assuming the jth one; 𝑗 = 1,2, … , 𝐶). The optimality analysis can be applied to all other classes 

as well. It is necessary to stress that the analysis and general principles presented in this section can also be 

applied to other online non-iterative learning algorithms with similar operating mechanisms.  

4.1. Mathematical Formulation of the Problem 

Thanks to the non-parametric nature of both, the consequent, THEN part and the premise, IF part (which 

is prototype-based), the optimality of SONFIS depends solely on the optimal positions of prototypes, namely, 

the most representative data samples in the data space. Therefore, the optimality problem of SONFIS is reduced 

to finding a locally optimal data partition solution. From machine learning point of view, this can be considered 

as locally optimal clustering. The formal mathematical condition for this can be described in the form of a 

mathematical programming problem [38] as follows. 

Considering that SONFIS partitions data samples of jth class, {𝒙}
𝑁𝑗
𝑗

= {𝒙1
𝑗
, 𝒙2

𝑗
, … , 𝒙

𝑁𝑗
𝑗

} , into 𝑃𝑗  data 

clouds, we formulate the optimality problem in the form of the following mathematical programming problem 

for clustering/data partitioning [38]: 

𝑷𝒓𝒐𝒃𝒍𝒆𝒎 𝟏: 𝑓(𝑾𝑗, 𝑷𝑗) = ∑ ∑ 𝑤𝑖,𝑘
𝑗𝑁𝑗

𝑖=1
𝑃𝑗

𝑘=1 𝑑(𝒙𝑖
𝑗
, 𝒑𝑘

𝑗
)                                                                              (22) 

where 𝑗 = 1,2, … , 𝐶; 𝑾𝑗 = [𝑤𝑖,𝑘
𝑗

] is a  𝑃𝑗 × 𝑁𝑗 real matrix; 𝑷𝑗 = [𝒑1
𝑗
, 𝒑2

𝑗
, … , 𝒑

𝑃𝑗
𝑗

] ∈ 𝐑𝑀×𝑃𝑗
.  

𝑾𝑗 is subject to the following constraints (𝑘 = 1,2, … , 𝑃𝑗 , 𝑖 = 1,2, … , 𝑁𝑗): 

𝑤𝑖,𝑘
𝑗

∈ {0,1}                                                                                                                                              (23a) 

∑ 𝑤𝑖,𝑘
𝑗𝑃𝑗

𝑘=1 = 1                                                                                                                                           (23b) 

and the collection of all 𝑾𝑗  that meet the constraints (equation (23)) is denoted as: 𝚴𝑃𝑗×𝑁𝑗
. The reason for 

imposing such constraints on 𝑾𝑗 is that each data sample can be associated with only one prototype according 

to equation (6). 

Problem 1 is a nonconvex problem, and therefore, the local minimum point does not need to be a global 

minimum [38]. The necessary conditions for global optimality of Problem 1 is called Karush–Kuhn–Tucker, 

which can be found in [25]. 

It has been proven in [28] that when square Euclidean distance is used, partially optimal solutions are 

always locally optimal as shown in Theorem 1. The detailed proof of Theorem 1 can be found on page 5 of 

[38]. 

Theorem 1: Consider Problem 1 where 𝑑(𝒙𝑖
𝑗
, 𝒑𝑘

𝑗
) = ‖𝒙𝑖

𝑗
− 𝒑𝑘

𝑗
‖

2
, a partially optimal solution of 

Problem 1 is a local minimum point. 

From Theorem 1 one can see that, a locally optimal solution of Problem 1 is equivalent to a partially 

optimal solution. The definition of a partially optimal solution is as follows [43]. 



Definition 1: a point (𝑾𝑗∗, 𝑷𝑗∗) is a partially optimal solution for Theorem 1 if the following two 

inequalities are satisfied 

𝑓(𝑾𝑗∗, 𝑷𝑗∗) ≤ 𝑓(𝑾𝑗 , 𝑷𝑗∗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑾𝑗 ∈ 𝚴𝑃𝑗×𝑁𝑗

𝑓(𝑾𝑗∗, 𝑷𝑗∗) ≤ 𝑓(𝑾𝑗∗, 𝑷𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑷𝑗 ∈ 𝐑𝑀×𝑃𝑗                                                                                  (24) 

By solving the following two problems, one can get a partially optimal solution [43]: 

Problem 2: Given �̂�𝑗 ∈ 𝐑𝑀×𝑃𝑗
, minimize 𝑓(𝑾𝑗 , �̂�𝑗) subject to 𝑾𝑗 ∈ 𝚴𝑃𝑗×𝑁𝑗

. 

Problem 3: Given �̂�𝑗 ∈ 𝚴𝑃𝑗×𝑁𝑗
, minimize 𝑓(�̂�𝑗 , 𝑷𝑗) subject to 𝑷𝑗 ∈ 𝐑𝑀×𝑃𝑗

. 

In other words, (𝑾𝑗∗, 𝑷𝑗∗) is a partially optimal solution on condition that 𝑾𝑗∗ solves Problem 2 with 

�̂�𝑗 = 𝑷𝑗∗ and 𝑷𝑗∗ solves Problem 3 with �̂�𝑗 = 𝑾𝑗∗.  

4.2. Local Optimality Analysis of Data Partitioning by SONFIS 

From subsection 4.1 one can see that the data partitioning result ({𝒑}𝑗  and {ℂ}𝑗) is locally optimal if 

(𝑾𝑗, 𝑷𝑗) is a partially optimal solution of Problem 1.  As it is described in subsection 3.2, SONFIS self-

organises its multi-model architecture from static data and, then, continues to self-develop with streaming data 

on a sample-by-sample basis. In this subsection, we will analyse the local optimality of the solutions achieved 

by the offline and online learning processes, separately. 

Firstly, let us consider the offline learning process. As one can see from subsection 3.2, after {𝒑}𝑗 are 

filtered out from raw prototypes at the end of the process, the static data, {𝒙}
𝑁𝑗
𝑗

 is partitioned into 𝑃𝑗  data 

clouds, {ℂ}𝑗 = {ℂ1
𝑗
, ℂ2

𝑗
, … , ℂ

𝑃𝑗
𝑗

} by using equation (6) to form Voronoi tessellations around {𝒑}𝑗. Based on {𝒑}𝑗 

and {ℂ}𝑗, one can obtain the prototype matrix 𝑷𝑗 and the weight matrix 𝑾𝑗, respectively, and Problem 1 can be 

reformulated as: 

𝑓(𝑾𝑗 , 𝑷𝑗) = ∑ ∑ 𝑤𝑖,𝑘
𝑗𝑁𝑗

𝑖=1
𝑃𝑗

𝑘=1 𝑑(𝒙𝑖
𝑗
, 𝒑𝑘

𝑗
) = ∑ ∑ ‖𝒙 − 𝒑𝑘

𝑗
‖

2

𝒙∈ℂ
𝑘
𝑗

𝑃𝑗

𝑘=1                                                             (25) 

By taking equation (6) into consideration, one can conclude that 𝑾𝑗 is the minimum solution of Problem 

2 given 𝑷𝑗. Thus, the data partitioning result, {ℂ}𝑗 is an optimal solution of Problem 2. However, there is no 

guarantee that the solution (𝑾𝑗 , 𝑷𝑗)  can solve Problem 3 as well because this problem is not taken into 

consideration during the entire offline learning process. 

Considering the online learning process, which is of “one pass” type and non-iterative, there is also no 

guarantee that the current solution obtained by (𝑾𝑗, 𝑷𝑗) can solve Problems 2 and 3 at the same time. In fact, 

for a particular data sample, 𝒙𝑖
𝑗
 (𝑖 = 1,2, … , 𝑁𝑗 − 1), only the following equation is guaranteed to be valid at the 

time instance when  𝒙𝑖
𝑗
 was observed:  

∑ 𝑤𝑖,𝑘
𝑗

𝑑(𝒙𝑖
𝑗
, 𝒑𝑘

𝑗
(𝑖))

𝑃𝑗(𝑖)
𝑘=1 = min

𝑘=1,2,…,𝑃𝑗(𝑖)
(‖𝒙𝑖

𝑗
− 𝒑𝑘

𝑗
(𝑖)‖

2
) = ‖𝒙𝑖

𝑗
− 𝒑𝑛∗

𝑗
(𝑖)‖

2
                                             (26) 

where  𝒑𝑘
𝑗 (𝑖)(𝑘 = 1,2, … , 𝑃𝑗(𝑖))  are the existing prototypes at the time instance that 𝒙𝑖

𝑗
 is observed; 𝑃𝑗(𝑖) is the 

corresponding number of prototype at the ith time instance; 𝒑𝑛∗
𝑗

(𝑖) is the nearest prototype to 𝒙𝑖
𝑗
, which can be 

𝒙𝑖
𝑗
 itself if Condition 4 is met. Otherwise, there are 𝑤𝑖,𝑛∗

𝑗
= 1 and 𝑤𝑖,𝑘

𝑗
= 0 for ∀𝑘 ≠ 𝑛∗.  

From the time instance at which the next data sample of the jth class is observed, equation (26) is not 

guaranteed to be true anymore for 𝒙𝑖
𝑗
  due to the possible shift of 𝒑𝑛∗

𝑗
 and/or the initialisation of new data clouds 

with prototypes closer to 𝒙𝑖
𝑗
 than 𝒑𝑛∗

𝑗
. However, the values of 𝑤𝑖,𝑘

𝑗
 (𝑘 = 1,2, … 𝑃𝑗) has been already fixed when 

𝒙𝑖
𝑗
 was observed because 𝒙𝑖

𝑗
 has been assigned as a member of  ℂ𝑛∗

𝑗
 and there is no reallocation in the future. As 

a result, we can state that the following inequality applies to all historically observed data samples, 𝒙𝑖
𝑗
 (𝑖 =

1,2, … , 𝑁𝑗 − 1): 



∑ 𝑤
𝑁𝑗,𝑘

𝑗
𝑑(𝒙𝑖

𝑗
, 𝒑𝑘

𝑗
(𝑁𝑗))

𝑃𝑗(𝑁𝑗)
𝑘=1 = ‖𝒙𝑖

𝑗
− 𝒑𝑛∗

𝑗
(𝑁𝑗)‖

2
≥ min

𝑘=1,2,…,𝑃𝑗(𝑁𝑗)
(‖𝒙𝑖

𝑗
− 𝒑𝑘

𝑗
(𝑁𝑗)‖

2
)                    (27) 

which means that (𝑾𝑗, 𝑷𝑗)  is not a minimum solution of Problem 3 given 𝑾𝑗. Therefore, one can conclude 

that the data partitioning result obtained by SONFIS is not locally optimal. In the next section, we will discuss a 

feasible approach for SONFIS to attain local optimality from the initial prototype solutions.  

5. Attaining Locally Optimal Solution 

As we have proven that the premise, IF part of SONFIS lacks local optimality, in this section, we will 

discuss how to optimise the positions of prototypes of SONFIS in the data space to attain the locally optimal 

solution. According to Theorem 1, in order to find a locally optimal solution for the premise, IF part of 

SONFIS, one can look for a partially optimal solution in the problem space instead. One possible way to obtain 

a partially optimal IF part from the initial partitioning result by SONFIS is to further apply an iterative 

optimisation process, for example, using the similar iterative process used by the well-known K-means 

clustering algorithm [38].  

In this section, the proposed prototype optimisation (PO) algorithm for SONFIS is presented. This 

algorithm concerns only the identified prototypes and the historical data; thus, it is entirely data-driven and 

nonparametric.  The main algorithmic procedure is composed of the following four steps. However, it has to be 

stressed that the optimisation process is performed on prototypes of each class separately, which means different 

massively parallel rules in the rule base can be optimised at the same time in parallel. In this section, we use 

prototypes of the jth class as an example.  

Step 1. Re-denote the identified prototype matrix, 𝑷𝑗 from the offline learning process and/or online learning 

process as 𝑷𝑗(𝑡)  (𝑡 = 0, which indicates the current number of iterations) and solve Problem 2 by 

setting  𝑷𝑗(𝑡) to �̂�𝑗 and obtain 𝑾𝑗(𝑡) = [𝑤𝑖,𝑘
𝑗

(𝑡)] as the optimal solution.  

The solution of Problem 2 can be expressed as follows (𝑖 = 1,2, … , 𝑁𝑗): 

   {
𝑤𝑖,𝑘

𝑗
(𝑡) = 1  𝑘 = argmin

𝑙=1,2,…,𝑃𝑗
(‖𝒙𝑖

𝑗
− �̂�𝑙

𝑗
‖

2
)

𝑤𝑖,𝑘
𝑗

(𝑡) = 0 𝑘 ∈ 𝑒𝑙𝑠𝑒

                                                                             (28) 

Step 2.  Solve Problem 3 by setting  𝑾𝑗(𝑡) as  �̂�𝑗  and identify new prototypes denoted by 𝑷𝑗(𝑡 + 1).  

The solution of Problem 3 may not be as obvious as Problem 2. With the given  �̂�𝑗, it is obvious that 

Problem 3 is equivalent to the problem of finding 𝑷𝑗(𝑡 + 1) ∈ 𝐑𝑀×𝑃𝑗
 , which satisfies the following 

equation: 

𝑓1 (𝑷𝑗(𝑡 + 1)) = min
𝒁∈𝐑𝑀×𝑃𝑗

(𝑓1(𝒁))                                                                                                  (29) 

where 𝑓1(𝒁) = 𝑓( �̂�𝑗 , 𝒁). 𝑓1(𝒁) can be reformulated as: 

𝑓1(𝒁) = ∑ ∑ ‖𝒙𝑖
𝑗

− 𝒛𝑘‖
2

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
𝑃𝑗

𝑘=1 = 𝑓2(𝒛1) + 𝑓2(𝒛2) + ⋯ + 𝑓2(𝒛𝑃𝑗)                       (30) 

where 𝑓2(𝒛𝑘) = ∑ ‖𝒙𝑖
𝑗

− 𝒛𝑘‖
2

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
, 𝑘 = 1,2, … , 𝑃𝑗 . 

The problem of minimising 𝑓1(𝒁) (equation (29)) can be further simplified to the problem of finding 

𝒑𝑘
𝑗

(𝑡 + 1) ∈ 𝐑𝑀 (𝑘 = 1,2, … , 𝑃𝑗) that meets the following equation: 

𝒑𝑘
𝑗 (𝑡 + 1) = argmin

𝒛𝑘∈𝐑𝑀
(𝑓2(𝒛𝑘))                                                                                                       (31) 

Because ‖𝒙𝑖
𝑗

− 𝒛𝑘‖
2

= ∑ (𝑥𝑖,ℎ
𝑗

− 𝑧𝑘,ℎ)
2

𝑀
ℎ=1  ( 𝑖 ∈ {𝑙|𝑤𝑙,𝑘

𝑗
(𝑡) = 1, 𝑙 = 1,2, … , 𝑁𝑗} ), 𝑓2(𝒛𝑘)  is a convex 

function and is differentiable for 𝒛𝑘 ∈ 𝐑𝑀 . Therefore, 𝒑𝑘
𝑗 (𝑡 + 1)  is the minimum value of 𝑓2(𝒛𝑘) . 



According to Fermat’s Theorem, the partial derivative of 𝑓2(𝒛𝑘) at each dimension will have a value of 

0 at  𝒑𝑘
𝑗 (𝑡 + 1) =  [𝑝𝑘,1

𝑗 (𝑡 + 1), 𝑝𝑘,2
𝑗 (𝑡 + 1), … , 𝑝𝑘,𝑀

𝑗 (𝑡 + 1)]
𝑇
, namely: 

𝜕𝑓2(𝒛𝑘)

𝜕𝑧𝑘,ℎ
= 2 ∑ (𝑥𝑖,ℎ

𝑗
− 𝑧𝑘,ℎ)

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
= 0 𝑖𝑓𝑓 𝒛𝑘 = 𝒑𝑘

𝑗 (𝑡 + 1)                                        (32) 

where  ℎ = 1,2, … , 𝑀, 𝑘 = 1,2, … , 𝑃𝑖. Equation (32) can be further simplified in the following form with 

𝒛𝑘 = 𝒑𝑘
𝑗 (𝑡 + 1): 

∑ (𝑥𝑖,ℎ
𝑗

− 𝑝𝑘,ℎ
𝑗 (𝑡 + 1))

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
=

∑ 𝑥𝑖,ℎ
𝑗

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
− ∑ 𝑤𝑙,𝑘

𝑗
(𝑡)𝑁𝑗

𝑙=1 ∙ 𝑝𝑘,ℎ
𝑗 (𝑡 + 1) = 0

                                                               (33) 

Based on equation (33) one can see that, 𝒑𝑘
𝑗 (𝑡 + 1) is the mean of data samples, 𝒙𝑖

𝑗
 (∀𝑖 ∈ {𝑙|𝑤𝑙,𝑘

𝑗
(𝑡) =

1, 𝑙 = 1,2, … , 𝑁𝑗}) that are associated with 𝒑𝑘
𝑗 (𝑡), namely (𝑘 = 1,2, … , 𝑃𝑗): 

𝒑𝑘
𝑗 (𝑡 + 1) =

1

∑ 𝑤𝑙,𝑘
𝑗

(𝑡)𝑁𝑗
𝑙=1

∑ 𝒙𝑖
𝑗

∀𝑖∈{𝑙|𝑤𝑙,𝑘
𝑗

(𝑡)=1,𝑙=1,2,…,𝑁𝑗}
                                                                                (34) 

Step 3. Solve Problem 2 by setting  𝑷𝑗(𝑡 + 1) as  �̂�𝑗  and obtain 𝑾𝑗(𝑡 + 1) = [𝑤𝑖,𝑘
𝑗

(𝑡 + 1)] as the optimal 

solution. 

Step 4. If 𝑓 (𝑾𝑗(𝑡 + 1), 𝑷𝑗(𝑡 + 1)) = 𝑓 (𝑾𝑗(𝑡), 𝑷𝑗(𝑡)), the optimum solution is reached, the optimisation 

algorithm stops and (𝑾𝑗(𝑡 + 1), 𝑷𝑗(𝑡 + 1)) is set to be  (𝑾𝑗∗, 𝑷𝑗∗); Otherwise, 𝑡 ← 𝑡 + 1 and  go back 

to Step 2. 

To better illustrate the proposed concept and principles, we use the PO algorithm for optimising the 

prototype identification results obtained by SONFIS and present the results in the following figure, where the 

obtained solution with 𝐺 = 3 as given in Fig. 5(a) is used for visual clarity. As we can see from Fig. 6, after a 

few iterations, all prototypes have reached their best positions in the data space. 

 

The main procedure of the PO algorithm is also summarised by the following pseudo code: 

Input: {𝒙}
𝑁𝑗
𝑗

 and {𝒑}𝑗 

Algorithm begins 

i. 𝑡 ← 0; 

ii. Obtain 𝑾𝑗(𝑡) by solving Problem 2 with 𝑷𝑗(𝑡); 

iii. Calculate 𝑓 (𝑾𝑗(𝑡), 𝑷𝑗(𝑡)) by (25); 

iv. While 𝑓 (𝑾𝑗(𝑡), 𝑷𝑗(𝑡)) ≠ 𝑓 (𝑾𝑗(𝑡 − 1), 𝑷𝑗(𝑡 − 1)): 

- Obtain 𝑷𝑗(𝑡 + 1) by solving Problem 3 with 𝑾𝑗(𝑡); 

- Obtain 𝑾𝑗(𝑡 + 1) by solving Problem 2 with 𝑷𝑗(𝑡 + 1); 

- Calculate 𝑓 (𝑾𝑗(𝑡 + 1), 𝑷𝑗(𝑡 + 1)) by (25); 

 - 𝑡 ← 𝑡 + 1; 

v. End While 

Algorithm ends 

Output: {𝒑}𝑗∗ 

 



 

(a) First optimisation round                                       (b) Second optimisation round 

 

(c) Third optimisation round                                       (d) Final optimisation round 

Fig. 6. Illustration of the optimisation process 

 

The proposed PO algorithm guarantees a partially optimal solution of Problem 1 as stated in Theorem 2 

as follows. 

Theorem 2: The PO algorithm converges to a partially optimal solution of Problem 1 in a finite number 

of iterations. 

The detailed proof of Theorem 2 can be found on page 3 of [38]. 

The proposed PO algorithm can be applied to SONFIS during the system identification process in a way 

as depicted in Fig. 7. After all prototypes of SONFIS have been identified at the end of the learning process, the 

PO algorithm is used to help SONFIS achieve a locally optimal partitioning by refining the positions of the 

prototypes in the data space. This effectively updates/fine-tunes the premise, IF part of the fuzzy rules. By 

involving the proposed PO algorithm, the local optimality of partitioning results can be guaranteed at the price 

of lower computational efficiency because of the iterative optimisation process. Nonetheless, it is worth to be 

noticed that in practice, only a few iterations are needed. 

By using the framework depicted in Fig. 7, the offline and online learning processes of SONFIS are still 

highly efficient, but all historical data samples are required to be kept in system memory. Additional 

computational resources will be consumed at the end of the learning process only to perform the optimisation 

process. On the other hand, one may consider alternative ways to use the proposed PO algorithm, for example, 

conducting optimisation every time the system is updated. However, the aim of this paper is to deliver the 

general concept and principles, and thus, we only consider the implementation presented in Fig. 7 without loss 

of generality. It is also necessary to stress that proposed PO algorithm is generic and applicable for other types 

of evolving learning algorithms with similar operating mechanisms, and this will be demonstrated through 



numerical examples presented in section 7. Alteratively, one may also consider using generic optimisation 

algorithms to optimise the solution obtained by SONFIS, e.g. particle swarm optimisation (PSO) algorithm [9]. 

However, the attractiveness of the PO algorithm comes from the two aspects. Firstly, the proposed algorithm is 

a modified form of the most widely used K-means algorithm, it is designed specifically for optimising data 

partitioning problems and its effectiveness and validity are guaranteed. Secondly, the PO algorithm is 

computationally efficient and only adds minor additional computational cost to SONFIS. In the next section, a 

detailed computational complexity analysis on SONFIS and the PO algorithm will be provided as the supporting 

evidence. 

 

 

Fig. 7 The diagram of optimising SONFIS using the proposed algorithm 

 

6. Computational Complexity Analysis 

In this section, we will analyse the computational complexity of SONFIS and the proposed PO algorithm.  

During the first stage of the offline learning process of SONFIS, the computational complexity of 

calculating the multimodal density values at the observed unique data samples of the jth class is 𝑂(𝐿𝑗𝑀). The 

computational complexity for forming Voronoi tessellations from data is 𝑂(𝐿𝑗∗𝑁𝑗𝑀). During stage 2, the 

computational complexity for estimating the radius of influential area around each prototype is 𝑂((𝑁𝑗)2𝑀). In 

the third stage, the computational complexity for calculating the multimodal density value at each raw prototype 

is 𝑂(𝐿𝑗∗𝑀), the computational complexity for the highly representative prototype identification is negligible, 

and the complexity for forming data clouds around the identified prototypes is 𝑂(𝑃𝑗𝑁𝑗𝑀). Therefore, the 

overall computational complexity of the offline learning process of SONFIS is 𝑂(𝑀 ∑ (𝑁𝑗)2𝐶
𝑗=1 ) 



 During the online learning process, SONFIS will update one of its fuzzy rules in the rule base for each 

newly arrived data sample. Assuming the new data sample belongs to the jth class, the computational 

complexity of stage 4 is 𝑂(𝑀). The computational complexity of stage 5 is 𝑂 ((𝑃𝑗 + 1)𝑀), which is mainly 

caused by the calculation of data density values at the new data sample and the previously identified prototypes. 

Therefore, the overall computational complexity of updating SONFIS with each new data sample during the 

online learning process is 𝑂(𝑀𝑃𝑗). 

For the proposed PO algorithm, the overall computational complexity is hard to estimate because 

prototypes of difference classes require different numbers of iterations to reach the optimal positions. However, 

we still can estimate that, for prototypes of the jth class (𝑗 = 1,2, … , 𝐶), the computational complexity of each 

iteration is 𝑂(𝑃𝑗𝑁𝑗𝑀). Thus, the overall computational complexity of the optimisation process using the PO 

algorithm is  𝑂(𝑀 ∑ 𝑃𝑗𝑁𝑗𝑇𝑗𝐶
𝑗=1 ), where 𝑇𝑗 is the number of iteration steps for prototypes of the jth class to 

converge. 

 7. Numerical Examples and Discussions 

In this section, numerical examples are presented for validating the proposed concept and general 

principles. The experiments are conducted using MATLAB R2018a on a PC with dual core processor 3.60 

GHz×2 and 16 GB RAM. As it was stated in section 5, we only apply the proposed PO algorithm at the end of 

the learning process of SONFIS to optimise the obtained solutions, namely, prototypes.  

7.1. Experiments on Benchmark Numerical Datasets 

In this subsection, the validity and effectiveness of the proposed PO algorithm are demonstrated through 

numerical examples on a number of benchmark datasets. The following nine real-world challenging problems 

are considered, and details of these datasets are tabulated in Table 2: 

1) Wilt (WI) dataset2;  

2) Occupancy detection (OD) dataset3; 

3) Optical recognition of handwritten digits (OR) dataset4; 

4) Pen-based recognition of handwritten digits (PR) dataset5; 

5) Multiple features (MF) dataset6; 

6) Epileptic seizure recognition (ES) dataset7; 

7) Letter recognition (LR) dataset8; 

8) Crowdsourced Mapping (CM) dataset9, and; 

9) Forest cover type (FC) dataset10. 

By default, SONFIS uses Euclidean distance in the experiments conducted in this section. In this paper, 

the time stamps of the OD dataset are removed in advance, and the two testing sets are combined into one for 

numerical experiments. Binary classification is performed on the ES dataset to distinguish the subjects with and 

without epileptic seizure, namely, class 1 versus the rest. 

                                                           
2 Available from http://archive.ics.uci.edu/ml/datasets/wilt 
3 Available from https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+ 
4 Available from https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits 
5 Available from https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits 
6 Available from https://archive.ics.uci.edu/ml/datasets/Multiple+Features 
7 Available from https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition 
8 Available from https://archive.ics.uci.edu/ml/datasets/letter+recognition 
9 Available from https://archive.ics.uci.edu/ml/datasets/Crowdsourced+Mapping 
10 Available from https://archive.ics.uci.edu/ml/datasets/covertype 
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https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/datasets/Crowdsourced+Mapping
https://archive.ics.uci.edu/ml/datasets/covertype


As the structure of WI and OD datasets are both relatively simpler compared with other benchmark 

datasets considered within this subsection, we use the two datasets for demonstrating the concept of the 

proposed approach. The offline data partitioning results obtained by SONFIS on the training sets of the two 

benchmark datasets are depicted in Fig. 8, where dots “∙” in red and blue represent data samples from classes 1 

and 2, respectively; asterisks “*” in cyan and green represent prototypes identified from the data samples of the 

corresponding classes. By using the proposed PO algorithm, we obtain the local optimal data partitioning, and 

the results obtained by the locally optimal SONFIS (LO-SONFIS) are also given in Fig. 8 for comparison, 

where only the first two attributes of the datasets are presented for visual clarity. The value changes of 

𝑓(𝑾𝑗, 𝑷𝑗) (𝑗 = 1,2) after each iteration are given in Fig. 9, where the values have been normalised to the range 

[0,1] for better visualisation. In this example, the level of granularity of SONFIS, 𝐺 is set to be 𝐺 = 2 because it 

enables SONFIS to identify a smaller number of prototypes and is more suitable for illustration. From Figs. 8 

and 9 one can see that the PO algorithm is capable of assisting SONFIS to achieve the locally optimal solutions 

after a few iterations. 

 

Table 2. Details of datasets 

Datasets 
Number of 

Classes 

Number of 

Samples 

Number of 

Attributes 

WI Training set 
2 

4339 
5+1 label 

Testing set 500 

OD 
Training set 

2 

8143 

5+1 label Testing set 1 2664 

Testing set 2 9752 

OR Training set 
10 

3823 
64+1 label 

Testing set 1797 

PR Training set 
10 

7494 
16+1 label 

Testing set 3498 

MF 10 2000 649+1 label 

ES 2 11500 178+1 label 

LR 26 20000 16+1 label 

CM 
Training seta 

16 
10545 

28+1 label 
Testing set 300 

FC 7 581012 54+1 label 
                                                                                                                          a containing many class labelling errors. 

 

 

                     (a) Initial data partitioning-WI                                 (b) Local optimal data partitioning-WI 



 

                    (c) Initial data partitioning-OD                                 (d) Local optimal data partitioning-OD                            

Fig. 8. Data partitioning results. 

 

                                          (a) WI                                                                       (b) OD  

Fig. 9. The changes of the values of 𝑓(𝑾𝑗 , 𝑷𝑗) (𝑗 = 1,2) after each iteration 

 

In the following numerical example, we will evaluate the effectiveness of the proposed PO algorithm by 

comparing the classification performance between SONFIS and LO-SONFIS. Here, WI, OD, OR and PR 

datasets are used for experiments. The training sets are used for priming SONFIS in an offline scenario and the 

performance of LO-SONFIS and SONFIS in terms of classification accuracy (ACC) on testing sets and 

execution time (texe in sec) are tabulated in Table 3. The level of granularity of SONFIS is set to be 𝐺 =

1,2,3,4,5,6 . The reported numerical results are the average of 10 Monte Carlo experiments by randomly 

scrambling the order of the training samples. The total number of prototypes (NP) identified by SONFIS is 

given in Fig. 10(a) to profile the system complexity. 

 

Table 3. Performance comparison between SONFIS and LO-SONFIS – scenario 1 

Dataset Algorithm Measures Granularity, 𝐺 

1 2 3 4 5 6 

WI SONFIS ACC 0.4960 0.6460 0.6900 0.8060 0.7960 0.8100 

texe 1.04 1.07 1.09 1.12 1.12 1.13 

LO-SONFIS ACC 0.5420 0.7080 0.7820 0.8100 0.8040 0.8000 

texe 1.07 1.16 1.38 1.54 1.57 1.78 

OD SONFIS ACC 0.8107 0.8403 0.8618 0.9112 0.9382 0.9513 

texe 2.27 2.40 2.55 2.48 2.51 2.57 



LO-SONFIS ACC 0.8150 0.8405 0.8770 0.9165 0.9410 0.9524 

texe 2.30 2.63 3.07 3.59 2.95 3.25 

OR SONFIS ACC 0.9160 0.9421 0.9499 0.9716 0.9766 0.9761 

texe 0.09 0.09 0.09 0.09 0.09 0.09 

LO-SONFIS ACC 0.9254 0.9505 0.9549 0.9755 0.9777 0.9777 

texe 0.12 0.12 0.12 0.15 0.15 0.15 

PR SONFIS ACC 0.9028 0.9503 0.9588 0.9700 0.9743 0.9780 

texe 0.28 0.29 0.29 0.29 0.29 0.31 

LO-SONFIS ACC 0.9108 0.9528 0.9663 0.9720 0.9746 0.9771 

texe 0.34 0.35 0.37 0.40 0.40 0.42 

 

In the following numerical example, we repeat the same experiments as reported in Table 3 under the 

same protocol. However, in this case, one third of the training samples are used for priming SONFIS offline 

first, and the remaining samples are treated as data streams and used for training SONFIS on a sample-by-

sample basis. The experimental results are given in Table 4, and the total number of prototypes (NP) identified 

by SONFIS during experiments is given in Fig. 10(b). 

Table 4. Performance comparison between SONFIS and LO-SONFIS – scenario 2 

Dataset Algorithm Measures Granularity, 𝐺 

1 2 3 4 5 6 

WI SONFIS ACC 0.6410 0.6842 0.7328 0.7964 0.8138 0.8222 

texe 0.46 0.43 0.46 0.49 0.53 0.52 

LO-SONFIS ACC 0.7456 0.7708 0.7696 0.8016 0.8218 0.8268 

texe 0.67 0.70 0.83 0.94 1.11 1.24 

OD SONFIS ACC 0.9139 0.8839 0.8856 0.9058 0.9245 0.9361 

texe 0.91 0.99 0.96 1.09 1.05 1.23 

LO-SONFIS ACC 0.9206 0.8872 0.8969 0.9113 0.9196 0.9315 

texe 1.25 1.71 2.06 2.66 2.87 2.79 

OR SONFIS ACC 0.9554 0.9705 0.9728 0.9762 0.9789 0.9797 

texe 0.35 0.31 0.34 0.37 0.39 0.44 

LO-SONFIS ACC 0.9648 0.9741 0.9745 0.9769 0.9784 0.9802 

texe 0.41 0.38 0.42 0.47 0.49 0.53 

PR SONFIS ACC 0.9392 0.9575 0.9637 0.9690 0.9745 0.9748 

texe 0.68 0.61 0.62 0.67 0.70 0.73 

LO-SONFIS ACC 0.9515 0.9650 0.9674 0.9711 0.9752 0.9760 

texe 0.77 0.71 0.74 0.82 0.92 1.01 

 

 

  (a) Scenario 1                                                                  (b) Scenario 2 

Fig. 10. The total number of prototypes (NP) identified by SONFIS during the learning processes 



 

As one can see from Tables 3 and 4, the proposed PO algorithm can effectively improve the classification 

accuracy of SONFIS, and only slightly influences its computational efficiency. Moreover, it is worth to be 

noticed that the local optimality of the solutions is more important to SONFIS when the system identifies a 

smaller number of prototypes from data. This is because that with a lower level of granularity, SONFIS 

partitions the data space coarsely resulting in more space for further improvement. Therefore, in such cases, the 

proposed PO algorithm can significantly improve the performance of SONFIS. 

Furthermore, the proposed PO algorithm is compared with the widely used PSO [9] and genetic learning 

PSO (GLPSO) [16] algorithms. In this example, both algorithms are applied to SONFIS for optimising the 

identified prototypes of each class after the offline training process. The performances of the PSO-optimised and 

GLPSO-optimised SONFISs (namely, PSO-SONFIS and GLPSO-SONFIS) are tested on the validation sets. 

The comparison in terms of classification accuracy and execution time (texe in sec) between LO-SONFIS, PSO-

SONFIS and GLPSO-SONFIS is reported in Table 5, where the level of granularity of SONFIS, 𝐺 varies from 1 

to 6.  The parameters of the PSO algorithm used for this example are set as: 𝜔 = 0.7298; 𝜑1 = 1.49618; 𝜑2 =

1.49618; 𝜔𝑑𝑎𝑚𝑝 = 1; the parameters of the GLPSO algorithm are set as: 𝜔 = 0.7298; 𝜑1 = 1.49618; 𝜑2 =

1.49618; 𝜑 = 1.49618;  𝜔𝑑𝑎𝑚𝑝 = 1; the population size for both PSO algorithms is equal to 50; the maximum 

iteration number is set as 100 and equation (22) is used as the cost function.  

Table 5. Performance comparison between the proposed PO, PSO and GLPSO algorithms 

Dataset Algorithm Measures Granularity, 𝐺 

1 2 3 4 5 6 

WI LO-SONFIS ACC 0.5420 0.7080 0.7820 0.8100 0.8040 0.8000 

texe 1.07 1.16 1.38 1.54 1.57 1.78 

PSO-SONFIS ACC 0.5506 0.6060 0.6748 0.7170 0.7276 0.7720 

texe 3.57 7.98 19.14 25.19 42.13 69.83 

GLPSO-SONFIS ACC 0.5552 0.6224 0.7392 0.7772 0.7926 0.7692 

texe 6.31 12.59 34.27 49.92 68.62 125.19 

OD LO-SONFIS ACC 0.8150 0.8405 0.8770 0.9165 0.9410 0.9524 

texe 2.30 2.63 3.07 3.59 2.95 3.25 

PSO-SONFIS ACC 0.8244 0.8894 0.8809 0.8984 0.9216 0.9260 

texe 8.93 25.46 38.01 61.20 84.27 119.82 

GLPSO-SONFIS ACC 0.8193 0.8662 0.8824 0.9190 0.9383 0.9429 

texe 15.98 49.80 75.62 120.89 170.69 239.17 

OR LO-SONFIS ACC 0.9254 0.9505 0.9549 0.9755 0.9777 0.9777 

texe 0.12 0.12 0.12 0.15 0.15 0.15 

PSO-SONFIS ACC 0.9264 0.9431 0.9544 0.9706 0.9738 0.9765 

texe 12.88 14.14 14.64 31.92 48.31 59.28 

GLPSO-SONFIS ACC 0.9283 0.9425 0.9539 0.9706 0.9761 0.9760 

texe 30.19 31.98 32.65 68.08 100.55 122.19 

PR LO-SONFIS ACC 0.9108 0.9528 0.9663 0.9720 0.9746 0.9771 

texe 0.34 0.35 0.37 0.40 0.40 0.42 

PSO-SONFIS ACC 0.9123 0.9497 0.9545 0.9638 0.9670 0.9684 

texe 9.03 11.48 20.69 34.46 55.40 79.41 

GLPSO-SONFIS ACC 0.9119 0.9506 0.9607 0.9696 0.9730 0.9760 

texe 20.14 25.37 43.48 70.60 114.11 162.17 

 

As one can see from Table 5, despite that the PSO algorithms can effective update the positions of the 

identified prototypes in the data space by minimising the values of the cost function (namely, equation (22)), 

they did not significantly improve the classification accuracy of SONFIS compared with the proposed PO 

algorithm. In addition, PSO and GLPSO consume more computational resources. Therefore, one can conclude 

that the proposed PO algorithm is more suitable for SONFIS optimisation than PSO algorithms. 



For better evaluation, the performance of the LO-SONFIS and SONFIS on WI, OD, OR and PR datasets 

is compared with the following state-of-the-art algorithms: 

1) SVM classifier [10];  

2) Decision tree (DT) classifier [37]; 

3) KNN classifier [35]; 

4) SOM classifier [30]; 

5) Back-propagation neural network (BPNN); 

6) LVQ [23]; 

7) Long short-term memory (LSTM) network [14].  

8) ESAFIS classifier [36]; 

9) eClass0 classifier [6]; 

10) Simpl_eClass0 classifier [7], and; 

11) ALMMo0 classifier [3]. 

In the following numerical examples, SVM uses Gaussian kernel;  𝑘  is equal to 10 for KNN; SOM 

classifier applies “winner takes all” principle for decision-making and the net size is 6 × 6;  BPNN has three 

hidden layers and each hidden layer has 20 neurons; LVQ has one hidden layer, which is composed of 32 

neurons; LSTM has three hidden layers and each hidden layer has 20 neurons. It has to be stressed that eClass0, 

Simpl_eClass0 and ALMMo0 classifiers are also prototype-based neuro-fuzzy systems and are of the same type 

as SONFIS. For fair comparison, SONFIS is trained offline and the level of granularity is set to be 𝐺 = 5 to 

avoid overfitting. The statistic performance of the involved classification algorithms (accuracy, ACC and 

execution time, texe in sec) is reported in Table 6 in the form of 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 after 10 times 

Monte-Carlo experiments by randomly scrambling the order of training samples. 

 

Table 6. Performance comparison on WI, OD, OR and PR datasets 

Dataset Algorithm ACC texe 

WI LO-SONFIS 0.8040±0.0000 1.57±0.05 

SONFIS 0.7960±0.0000 1.12±0.04 

SVM 0.6280±0.0000 1.83±0.90 

DT 0.8140±0.0000 0.04±0.06 

KNN 0.6920±0.0000 0.04±0.07 

SOM 0.6260±0.0000 2.73±1.83 

BPNN 0.6316±0.0171 0.65±0.51 

LVQ 0.6260±0.0000 179.12±2.48 

LSTM 0.6260±0.0000 5.51±0.78 

ESAFIS 0.6266±0.0025 5.53±3.09 

eClass0 0.4604±0.0025 0.25±0.04 

Simpl_eClass0 0.5428±0.0054 0.28±0.05 

ALMMo0 0.7640±0.0000 0.39±0.08 

OD LO-SONFIS 0.9410±0.0000 2.95±0.09 

SONFIS 0.9382±0.0000 2.51±0.07 

SVM 0.7607±0.0000 4.25±0.43 

DT 0.9314±0.0000 0.04±0.05 

KNN 0.9664±0.0000 0.04±0.04 

SOM 0.9651±0.0065 4.62±1.33 

BPNN 0.9259±0.0468 0.81±0.23 

LVQ 0.8859±0.0008 336.85±8.96 

LSTM 0.9634±0.0125 6.59±0.65 



ESAFIS 0.9617±0.0157 16.12±9.80 

eClass0 0.8858±0.0003 1.02±0.20 

Simpl_eClass0 0.9471±0.0006 1.04±0.11 

ALMMo0 0.9394±0.0000 0.63±0.11 

OR LO-SONFIS 0.9777±0.0000 0.15±0.07 

SONFIS 0.9766±0.0000 0.09±0.06 

SVM 0.1013±0.0000 2.74±0.70 

DT 0.8525±0.0000 0.06±0.03 

KNN 0.9766±0.0000 0.02±0.04 

SOM 0.9297±0.0075 8.83±1.49 

BPNN 0.9243±0.0077 0.70±0.24 

LVQ 0.8380±0.0275 174.27±14.81 

LSTM 0.7726±0.0544 5.61±0. 91 

ESAFIS 0.9538±0.0067 32.24±10.36 

eClass0 0.8937±0.0000 0.75±0.07 

Simpl_eClass0 0.9081±0.0002 1.63±0.21 

ALMMo0 0.9789±0.0000 0.33±0.09 

PR LO-SONFIS 0.9746±0.0000 0.40±0.09 

SONFIS 0.9743±0.0000 0.29±0.08 

SVM 0.1038±0.0000 8.90±0.91 

DT 0.9125±0.0000 0.06±0.06 

KNN 0.9748±0.0000 0.03±0.06 

SOM 0.8664±0.0022 5.27±1.39 

BPNN 0.9188±0.0097 1.05±0.24 

LVQ 0.8225±0.0035 326.29±14.28 

LSTM 0.8147±0.0410 6.88±1.09 

ESAFIS 0.9155±0.0131 30.00±1.69 

eClass0 0.8274±0.0002 0.56±0.06 

Simpl_eClass0 0.8768±0.0001 0.81±0.03 

ALMMo0 0.9706±0.0000 0.43±0.10 

 

Furthermore, the performance of the involved algorithms in the previous numerical example is compared 

on MF, ES, LR and CM datasets. In the following numerical example, for MF, ES and LR datasets, all the data 

samples are firstly split into 10 folds evenly. Then, we randomly select five of the 10 folds to train the 

algorithms and use the remaining for validation. For CM dataset, the order of the training samples is randomly 

scrambled. The same experiment is repeated for 10 times with the statistical results reported in Table 7. 

 

Table 7. Performance comparison on MF, ES and LR datasets 

Dataset Algorithm ACC texe 

MF LO-SONFIS 0.9210±0.0093 0.12±0.07 

SONFIS 0.9192±0.0090 0.08±0.06 

SVM 0.1027±0.0013 0.74±0.32 

DT 0.9210±0.0121 0.12±0.04 

KNN 0.9122±0.0094 0.02±0.03 

SOM 0.8192±0.0146 14.45±0.82 

BPNN 0.8648±0.0331 0.53±0.25 

LVQ 0.6529±0.0116 64.46±2.90 

LSTM 0.2054±0.0283 4.95±0.72 

ESAFIS 0.5938±0.1896 278.62±58.83 

eClass0 0.7990±0.0113 2.22±0.27 

Simpl_eClass0 0.8417±0.0118 4.53±0.89 

ALMMo0 0.9347±0.0050 0.12±0.04 

ES LO-SONFIS 0.9023±0.0077 6.98±0.72 

SONFIS 0.8884±0.0140 2.24±0.07 



SVM 0.8005±0.0042 4.35±0.84 

DT 0.9353±0.0038 0.57±0.08 

KNN 0.9032±0.0059 0.02±0.03 

SOM 0.9127±0.0073 29.65±5.55 

BPNN 0.9570±0.0045 1.02±0.40 

LVQ 0.8891±0.0073 324.10±52.76 

LSTM 0.8142±0.0042 7.98±5.91 

ESAFIS 0.2270±0.0278 349.11±65.37 

eClass0 0.8504±0.0260 2.63±0.10 

Simpl_eClass0 0.8427±0.0228 7.24±0.47 

ALMMo0 0.8936±0.0023 25.77±3.19 

LR LO-SONFIS 0.9240±0.0049 0.37±0.16 

SONFIS 0.9223±0.0052 0.27±0.15 

SVM 0.3799±0.0373 14.21±1.23 

DT 0.8235±0.0068 0.12±0.05 

KNN 0.9201±0.0032 0.04±0.04 

SOM 0.3231±0.0074 14.60±1.50 

BPNN 0.4799±0.0328 1.34±0.23 

LVQ 0.0379±0.0015 762.20±46.92 

LSTM 0.4727±0.0290 24.42±11.00 

ESAFIS 0.4394±0.0116 5.90±0.53 

eClass0 0.4833±0.0087 1.26±0.13 

Simpl_eClass0 0.5736±0.0065 1.68±0.07 

ALMMo0 0.9179±0.0029 0.76±0.19 

CM LO-SONFIS 0.6433±0.0000 4.38±0.29 

SONFIS 0.6500±0.0000 3.52±0.27 

SVM 0.2600±0.0000 30.74±3.81 

DT 0.5767±0.0000 0.16±0.06 

KNN 0.6267±0.0000 0.03±0.05 

SOM 0.4447±0.0149 10.03±1.58 

BPNN 0.4757±0.0352 0.76±0.20 

LVQ 0.4317±0.0069 457.30±26.83 

LSTM 0.2940±0.0203 29.83±6.46 

ESAFIS 0.5503±0.0135 63.33±9.45 

eClass0 0.3480±0.0063 1.41±0.20 

Simpl_eClass0 0.3333±0.0000 2.46±0.11 

ALMMo0 0.5740±0.0216 5.79±0.83 

 

Since the proposed PO algorithm is a generic approach and can be used for optimising other learning 

algorithms with similar operating mechanisms, in the following example, we use the PO algorithm for 

optimising the eClass0, Simpl_eClass0 and ALMMo0 classifiers. The same experiments presented in Tables 6 

and 7 are repeated under the same experimental protocols and the numerical results are reported in Table 8. The 

optimised classifiers by the proposed PO algorithm are re-denoted as LO-eClass0, LO-Simpl_eClass0 and LO-

ALMMo0, respectively. The original results obtained by the three classifiers are reported as baseline. The 

results of the LO-SONFIS and SONFIS are also given for better illustration. 

 

Table 8. Performance of the locally optimised eClass0, Simpl_eClass0 and ALMMo-0 classifiers 

Dataset Algorithm NP ACC texe 

WI LO-SONFIS 110.00±0.00 0.8040±0.0000 1.57±0.05 

SONFIS 0.7960±0.0000 1.12±0.04 

LO-eClass0 6.80±0.63 0.6704±0.0358 0.21±0.04 

eClass0 0.4604±0.0025 0.19±0.04    

LO-Simpl_eClass0 13.00±0.00 0.6938±0.0321 0.20±0.03 

Simpl_eClass0 0.5428±0.0054 0.18±0.03 



LO-ALMMo0 462.50±9.50 0.7748±0.0224 0.96±0.10 

ALMMo0 0.7640±0.0000 0.39±0.08 

OD LO-SONFIS 201.00±0.00 0.9410±0.0000 2.95±0.09 

SONFIS 0.9382±0.0000 2.51±0.07 

LO-eClass0 17.00±0.00 0.9507±0.0002 0.57±0.20 

eClass0 0.8858±0.0003 0.53±0.21 

LO-Simpl_eClass0 27.00±0.00 0.9658±0.0006 1.71±0.09 

Simpl_eClass0 0.9471±0.0006 0.39±0.02 

LO-ALMMo0 432.70±19.02 0.9423±0.0058 1.23±0.19 

ALMMo0 0.9394±0.0000 0.63±0.11 

OR LO-SONFIS 409.00±0.00 0.9777±0.0000 0.15±0.07 

SONFIS 0.9766±0.0000 0.09±0.06 

LO-eClass0 75.00±0.00 0.9563±0.0013 0.79±0.07 

eClass0 0.8937±0.0000 0.72±0.05 

LO-Simpl_eClass0 142.00±0.00 0.9613±0.0004 1.45±0.03 

Simpl_eClass0 0.9081±0.0002 1.37±0.04 

LO-ALMMo0 1573.40±13.78 0.9787±0.0017 0.37±0.10 

ALMMo0 0.9789±0.0000 0.33±0.09 

PR LO-SONFIS 747.00±0.00 0.9746±0.0000 0.40±0.09 

SONFIS 0.9743±0.0000 0.29±0.08 

LO-eClass0 62.90±0.32 0.9000±0.0016 0.58±0.07 

eClass0 0.8274±0.0002 0.52±0.06 

LO-Simpl_eClass0 139.90±0.32 0.9376±0.0016 0.96±0.11 

Simpl_eClass0 0.8768±0.0001 0.89±0.11 

LO-ALMMo0 1565.70±13.82 0.9759±0.0022 0.63±0.13 

ALMMo0 0.9706±0.0000 0.43±0.10 

MF LO-SONFIS 179.70±4.99 0.9210±0.0093 0.12±0.07 

SONFIS 0.9192±0.0090 0.08±0.06 

LO-eClass0 70.80±2.97 0.9104±0.0067 1.92±0.08 

eClass0 0.7990±0.0113 1.84±0.10 

LO-Simpl_eClass0 100.20±4.52 0.9247±0.0055 2.94±0.25 

Simpl_eClass0 0.8417±0.0118 2.87±0.26 

LO-ALMMo0 220.90±5.74 0.9358±0.0038 0.17±0.04 

ALMMo0 0.9347±0.0050 0.12±0.04 

ES LO-SONFIS 944.70±13.47 0.9023±0.0077 6.98±0.72 

SONFIS 0.8884±0.0140 2.24±0.07 

LO-eClass0 6.00±0.00 0.8669±0.0091 2.48±0.11 

eClass0 0.8504±0.0260 2.26±0.07 

LO-Simpl_eClass0 24.00±0.00 0.8508±0.0202 5.48±0.28 

Simpl_eClass0 0.8427±0.0228 5.04±0.10 

LO-ALMMo0 5369.90±10.01 0.8935±0.0023 33.54±1.17 

ALMMo0 0.8936±0.0023 25.77±3.19 

LR LO-SONFIS 1510.50±25.79 0.9240±0.0049 0.37±0.16 

SONFIS 0.9223±0.0052 0.27±0.15 

LO-eClass0 153.60±1.51 0.7079±0.0287 1.04±0.04 

eClass0 0.4833±0.0087 0.94±0.04 

LO-Simpl_eClass0 332.70±7.63 0.8012±0.0123 0.73±0.06 

Simpl_eClass0 0.5736±0.0065 0.64±0.04 

LO-ALMMo0 2036.30±36.16 0.9252±0.0024 1.00±0.15 

ALMMo0 0.9179±0.0029 0.76±0.19 

CM LO-SONFIS 509.00±0.00 0.6433±0.0000 4.38±0.29 

SONFIS 0.6500±0.0000 3.52±0.27 

LO-eClass0 53.90±9.22 0.5543±0.0127     2.19±0.47 

eClass0 0.3480±0.0063 1.41±0.20 

LO-Simpl_eClass0 112.30±29.13 0.5560±0.0107 5.25±1.28 



Simpl_eClass0 0.3333±0.0000 2.46±0.11 

LO-ALMMo0 3397.60±21.33 0.5717±0.0178 3.15±0.60 

ALMMo0 0.5740±0.0216 5.79±0.83 

 

Finally, we conduct numerical experiments on FC dataset to further evaluate the effectiveness of the 

proposed PO algorithm on improving the classification performance of SONFIS, eClass0, Simpl_eClass0 and 

ALMMo0. We follow the same experimental protocol as used in the numerical examples presented in Table 7 

by evenly splitting all the data samples into 10 folds and randomly selecting five of the 10 folds to train the 

algorithms and using the remaining for validation. LVQ, LSTM, SOM and ESAFIS algorithms are not involved 

for comparison because their computational efficiency is significantly low on large-scale datasets. In this 

experiment, the SONFIS is primed with 10% training samples in an offline manner and continuously updated 

with the remaining data on a sample-by-sample basis; the level of granularity of SONFIS is set as: 𝐺 = 12 due 

to the larger scale and more complex structure of the problem. Classification performance of the involved 

algorithms in terms of accuracy (ACC) is reported in Table 9. 

 

Table 9. Performance comparison on FC dataset 

Algorithm ACC 

LO-SONFIS 0.9259±0.0005 

SONFIS 0.9245±0.0007 

LO-eClass0 0.5330±0.0011 

eClass0 0.4281±0.0006 

LO-Simpl_eClass0 0.4878±0.0103 

Simpl_eClass0 0.3479±0.0005 

LO-ALMMo0 0.9046±0.0003 

ALMMo0 0.8934±0.0006 

SVM 0.7981±0.0003 

DT 0.9181±0.0010 

KNN 0.9107±0.0006 

BPNN 0.7227±0.0063 

 

7.2. Experiments on Benchmark Image Sets 

In this subsection, we further use the following benchmark image sets to justify the validity and 

effectiveness of the proposed PO algorithm on image classification problems: 

1) MNIST image set11;  

2) Fashion MNIST image set 12; 

3) Singapore image set13; 

4) RSSCN7 image set14; 

5) Caltech101 image set15, and; 

6) Caltech256 image set16. 

Detailed descriptions of the six image sets are as follows. 

                                                           
11 Available from http://yann.lecun.com/exdb/mnist/ 
12 Available from https://github.com/zalandoresearch/fashion-mnist 
13 Available from http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx 
14 Available from https://sites.google.com/view/zhouwx/dataset 
15 Available from http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 
16 Available from http://www.vision.caltech.edu/Image_Datasets/Caltech256/ 

http://icn.bjtu.edu.cn/Visint/resources/Scenesig.aspx
https://sites.google.com/view/zhouwx/dataset


1)  MNIST dataset 

MNIST dataset is a famous benchmark database for handwritten digit recognition. This dataset contains 

70000 greyscale images of handwritten digits from “0” to “9”, 60000 of which are used for training and the 

remaining 10000 images are for validation/testing. The amounts of training and validation images of the 10 

classes are more or less balanced. The size of both training and validation images is 28 × 28 pixels. 

2) Fashion MNIST dataset 

Fashion MNIST dataset is a new dataset composed of 70000 greyscale images of different fashion 

product from 10 classes: 1) T-shirt; 2) trouser; 3) pullover; 4) dress; 5) coat; 6) sandals; 7) shirt; 8) sneaker; 9) 

bag and 10) ankle boots. Each category has 7000 images with the 28 × 28 pixel size, 6000 of them are used for 

training, and the other 1000 images are used for testing. 

3) Singapore dataset 

Singapore dataset is a recently introduced benchmark image set for remote sensing scene classification. 

This dataset consists of 1086 images of 256×256 pixels size. These images belong to nine land-use categories: i) 

airplane; ii) forest; iii) harbour; iv) industry; v) meadow; vi) overpass; vii) residential; viii) river and ix) runway. 

The numbers of images of the nine land-use categories are imbalanced varying from 42 to 179.  

4) RSSCN7 dataset 

RSSCN7 dataset is collected from Google Earth (Google Inc.). This dataset has seven land-use categories 

including: i) grassland; ii) forest; iii) farmland; iv) parking lot; v) resident; vi) industry and vii) river and lake. 

Each land-use category contains 400 images of size 600×600 pixels. The images of each land-use category are 

sampled at four different scales (100 images per scale) with different angles and, thus, classifying images of this 

dataset is very challenging.  

5) Caltech101 dataset and 6) Caltech256 dataset 

Caltech101 dataset has more than 8677 images belonging to 101 classes. There are 31 to 800 images for 

each class, and the size of each image is roughly 200 × 300 pixels. Caltech256 dataset is the extended dataset 

of Caltech101, which has 256 classes. The minimum number of images per class for the Caltech256 dataset is 

80, and in total, there are 29780 images. Caltech101 and Caltech256 datasets both contain classes corresponding 

to rigid object (like bikes and cars) and classes corresponding to non-rigid object (like animals and flowers) with 

various backgrounds, and, thus, they are very challenging problems. Example images of the six benchmark 

datasets are given in Fig. 11(a)-(f).  

For MNIST and Fashion MNIST image sets, images are firstly converted into 784 × 1  dimensional 

vectors and, then, directly used for training and testing the classification algorithms. For Singapore, RSSCN7, 

Caltech101 and Caltech256 datasets, a high-level ensemble descriptor using the pre-trained AlexNet [24] and 

VGG-VD-16 [39] deep learning neural networks is created for feature extraction. The feature extraction process 

for converting a particular image 𝐈 into a feature vector 𝒙 is expressed as: 

𝒙 = F(𝐈) = [
AN(𝐈)

‖AN(𝐈)‖
,

VN(𝐈)

‖VN(𝐈)‖
]

𝑇

                                                                                                                    (35) 

where F(𝐈) represents 9192 × 1 dimensional representation extracted from 𝐈 by the ensemble feature descriptor; 

AN(𝐈) and VN(𝐈) are the 1 × 4096 dimensional feature vectors extracted from the first fully connected layer of 

the AlexNet and VGG-VD-16 models, respectively. In addition, for Singapore and RSSCN7 datasets, we adopt 

the commonly used “centre, four corners and horizontal flipping” data augmentation process and use the mean 

of feature vectors of the 10 sub-images created from each remote sensing image as its corresponding feature 

vector [24]. In the numerical examples presented in this subsection, SONFIS and LO-SONFIS use cosine 

dissimilarity for classification [18], and the level of granularity is set to be 𝐺 = 12. 

Firstly, the effectiveness and validity of the proposed PO algorithm on image classification problems are 

justified on MNIST and Fashion MNIST datasets. In the following numerical example, SONFIS is primed 

offline with 10000 training images, and then, uses 20000, 30000, 40000 and 50000 training images for online 

learning. Thus, in total, there are 30000, 40000, 50000 and 60000 training images used for experiments, 



respectively. After the online learning process, the identified prototypes of SONFIS are optimised by the PO 

algorithm with the images involved during the overall learning process. After being optimised, the performance 

of LO-SONFIS is, then, evaluated on the testing images. The average accuracy (ACC) of the classification 

results by LO-SONFIS after 10 times Monte-Carlo experiments are tabulated in Table 10. The results by 

SONFIS under the same experimental protocol are reported as the baseline. Furthermore, the following 

algorithms are involved for comparison: 

1) SVM classifier [10];  

2) KNN classifier [35]; 

3) eClass0 classifier [6]; 

4) Simpl_eClass0 classifier [7], and; 

5) ALMMo0 classifier [3]. 

In the experiments, SVM uses linear kernel; k is equal to 1 for KNN. The optimised eClass0, Simpl_eClass0 and 

ALMMo0 by using the proposed PO algorithm, namely, LO-eClass0, LO-Simpl_eClass0 and LO-ALMMo0 are 

also involved. 

 

 

(a) MNIST 

 

(b) Fashion MNIST 

 

(c) Singapore 



 

(d) RSSCN7 

 

(e) Caltech101 

 

(f) Caltech256 

Fig. 11. Examples of the benchmark image sets 

 

Table 10. Performance comparison on MNSIT and Fashion MNIST datasets 

Dataset Algorithm 30000 40000 50000 60000 

M
N

S
IT

 LO-SONFIS 0.9617±0.0017 0.9650±0.0013 0.9665±0.0008 0.9686±0.0010 

SONFIS 0.9621±0.0017 0.9646±0.0013 0.9662±0.0010 0.9681±0.0011 

LO-eClass0 0.9231±0.0034 0.9255±0.0012 0.9240±0.0014 0.9250±0.0045 

eClass0 0.7557±0.0024 0.7565±0.0000 0.7569±0.0003 0.7354±0.0000 

LO-Simpl_eClass0 0.9340±0.0014 0.9361±0.0015 0.9384±0.0019 0.9362±0.0009 

Simpl_eClass0 0.7719±0.0004 0.7717±0.0000 0.7743±0.0009 0.7528±0.0000 

LO-ALMMo0 0.9624±0.0014 0.9651±0.0014 0.9678±0.0014 0.9690±0.0013 

ALMMo0 0.9621±0.0018 0.9649±0.0015 0.9672±0.0016 0.9683±0.0013 

SVM 0.9370±0.0016 0.9403±0.0012 0.9424±0.0016 0.9438±0.0000 

KNN 0.9632±0.0011 0.9661±0.0013 0.9672±0.0010 0.9691±0.0000 

F
as

h
io

n
 

M
N

IS
T

 LO-SONFIS 0.8478±0.0032 0.8523±0.0028 0.8575±0.0015 0.8610±0.0021 

SONFIS 0.8483±0.0027 0.8537±0.0020 0.8583±0.0016 0.8610±0.0015 

LO-eClass0 0.7790±0.0037 0.7785±0.0022 0.7785±0.0053 0.7798±0.0068 

eClass0 0.6535±0.0012 0.6539±0.0000 0.6539±0.0000 0.6539±0.0000 

LO-Simpl_eClass0 0.7825±0.0028 0.7852±0.0020 0.7943±0.0043 0.7942±0.0032 



Simpl_eClass0 0.6624±0.0009 0.6618±0.0000 0.6618±0.0000 0.6618±0.0000 

LO-ALMMo0 0.8429±0.0017 0.8503±0.0018 0.8547±0.0014 0.8597±0.0012 

ALMMo0 0.8432±0.0021 0.8498±0.0023 0.8543±0.0017 0.8589±0.0015 

SVM 0.8417±0.0016 0.8457±0.0011 0.8486±0.0018 0.8498±0.0001 

KNN 0.8349±0.0020 0.8384±0.0020 0.8444±0.0017 0.8497±0.0000 

 

Then, we use Singapore and RSSCN7 datasets to further evaluate the effectiveness of the proposed PO 

algorithm on improving the classification accuracy of zero-order EISs, namely, SONFIS, eClass0, 

Simpl_eClass0 and ALMMo0. The same SVM and KNN algorithms used in the previous numerical example are 

also involved. Following the commonly used experimental protocols [12],[44], for Singapore dataset, 20% 

images per class are randomly selected out for training and the remaining images are used for validation. For 

RSSCN7 dataset, 20% and 50% images per class are randomly selected out for training, respectively, and the 

remaining images are used for validation. The average classification accuracy rates by the classification 

algorithms on the two datasets are reported in Tables 11 and 12, respectively, after 10 times Monte-Carlo 

experiments. Furthermore, selected state-of-the-art results in the literature are reported in the two tables for 

informed comparison.  

Table 11. Numerical results on Singapore dataset 

Algorithm ACC 

LO-SONFIS 0.9718±0.0051 

SONFIS 0.9713±0.0054 

LO-eClass0 0.9685±0.0051 

eClass0 0.9379±0.0070 

LO-Simpl_eClass0 0.9713±0.0054 

Simpl_eClass0 0.9528±0.0061 

LO-ALMMo0 0.9685±0.0060 

ALMMo0 0.9684±0.0060 

SVM 0.9726±0.0053 

KNN 0.9700±0.0066 

TLFP [12] 0.9094  

BoVW [45] 0.8741 

VLAD [21] 0.8878 

SPM [26] 0.8285 

 

Table 12. Numerical results on RSSCN7 datasets 

Algorithm ACC 

20% Training Images 50% Training Images 

LO-SONFIS 0.8741±0.0081 0.9041±0.0071 

SONFIS 0.8741±0.0082 0.9042±0.0074 

LO-eClass0 0.8568±0.0114 0.8732±0.0079 

eClass0 0.7436±0.0137 0.7511±0.0075 

LO-Simpl_eClass0 0.8778±0.0079 0.9003±0.0078 

Simpl_eClass0 0.7671±0.0084 0.7770±0.0075 

LO-ALMMo0 0.8681±0.0068 0.9041±0.0072 

ALMMo0 0.8681±0.0069 0.9043±0.0071 

SVM 0.8798±0.0085 0.9073±0.0070 

KNN 0.8707±0.0075 0.9072±0.0070 

CaffeNet [44] 0.8557±0.0095 0.8885±0.0062 

GoogLeNet [44] 0.8398±0.0087 0.8718±0.0094 

VGG-VD-16 [44] 0.8255±0.0111 0.8584±0.0092 

BoVW(SIFT) [44] 0.7633±0.0088 0.8134±0.0055 

VLAD(SIFT) [44] 0.8082±0.0215 0.7727±0.0058 

DBNFS [50] 0.7581 0.7119 

 



Finally, the classification performance (in terms of accuracy, ACC) of LO-SONFIS and SONFIS are 

tested on Caltech101 and Caltech256 datasets. Following the commonly used experimental protocol [13], for 

Caltech101 dataset, 15, 30 images per class are randomly selected out for training, respectively, and the 

remaining images are used for validation. For Caltech256 dataset, 15, 30, 45 and 60 images per class are 

randomly selected out for training, respectively, and the remaining images are used for validation. The average 

classification accuracy obtained by LO-SONFIS and SONFIS on the two datasets is reported in Tables 13 and 

14 after 10 times Monte-Carlo experiments. The same SVM and KNN algorithms used in the previous examples 

are tested on the two datasets as well, and their classification accuracy rates are reported in Tables 13 and 14. 

We further report the selected state-of-the-art results in the literature for informed comparison. The average 

numbers of prototypes (NP) per class identified by SONFIS during the experiments are given in Fig. 12. 

From the numerical examples presented in this subsection one can see that both SONFIS and LO-SONFIS 

produced the highly accurate classification results surpassing or on par with the state-of-the-art approaches.  

 

 

Fig. 12. The average numbers of prototypes (NP) per class identified by SONFIS during the experiments 

 

Table 13. Numerical results on Caltech101 dataset 

Algorithm ACC 

15 Training Images 30 Training Images 

LO-SONFIS 0.8978±0.0050 0.9230±0.0034 

SONFIS 0.8979±0.0048 0.9231±0.0036 

SVM 0.8729±0.0104 0.9027±0.0087 

KNN 0.8670±0.0063 0.8999±0.0051 

ICAC [47] 0.7148±0.0056 0.7663±0.0079 

CASE-LLC-SVM [42] 0.6400±0.0040 0.7140±0.0120 

ScSPM [46] 0.6700±0.0045 0.7320±0.0054 

DEFEATnet [13] 0.7128±0.0061  0.7760±0.0096 

 

Table 14. Numerical results on Caltech256 dataset 

Algorithm ACC 

15 Training 

Images 

30 Training 

Images 

45 Training 

Images 

60 Training 

Images 

LO-SONFIS 0.6799±0.0033 0.7113±0.0029 0.7272±0.0033 0.7416±0.0041 

SONFIS 0.6798±0.0033 0.7114±0.0029 0.7270±0.0034 0.7407±0.0040 

SVM Out of System Memory 

KNN 0.6249±0.0033 0.6723±0.0026 0.6986±0.0032 0.7210±0.0027 

SWSS-DeCAF [48] 0.6152±0.0039  0.6768±0.0065  0.6977±0.0053 0.7283±0.0044  

SWSS-FV [48] 0.4246±0.0038 0.4985±0.0042 0.5466±0.0047 0.5652±0.0041 

SC2-CNN [49] 0.4758±0.0062 0.5542±0.0056 0.5912±0.0051 0.6174±0.0050 



ScSPM [46] 0.2773±0.0051 0.3402±0.0035 0.3746±0.0055 0.4014±0.0091 

DEFEATnet [13] 0.3507±0.0038 0.4206±0.0025 0.4598±0.0026 0.4852±0.0032 

 

7.3. Discussions 

Numerical examples on benchmark numerical datasets and image sets presented in this section 

demonstrate that the proposed PO algorithm can effectively improve the classification accuracy of SONFIS, 

eClass0, Simpl_eClass0 and ALMMo0 on various types of problems. The proposed PO algorithm is more 

computationally efficient than PSO algorithms and more effective on complex, large-scale problems. In 

addition, it only has slight influence on the computational efficiency of the learning algorithms and costs little 

extra memory resources. 

However, one may notice that the performance of eClass0 and Simpl_eClass0 increases much more after 

being optimised by the proposed PO algorithm compared with SONFIS and ALMMo0. This is due to the 

differences in the operating mechanisms of the classification algorithms. eClass0 and Simpl_eClass0 usually 

extract a smaller number of prototypes from data samples compared with SONFIS and ALMMo0 (see Table 8), 

which results in a coarse partitioning of the data space and leaves more space for further improvement. As a 

result, the PO algorithm is able to play a more significant role in improving their classification performance.  

It is also interesting to notice that when the training set contains many incorrect labelled samples, PO 

algorithm actually decreases the classification accuracy of SONFIS and ALMMo0 as they are more sensitive to 

noise because of the larger number of prototypes identified from data. In such cases, anomalies are highly likely 

to be recognised as prototypes because of their very different patterns from the majority, and they create lots of 

confusions during the validation stage. 

8. Conclusion and Future Work 

In this paper, we use the recently introduced SONFIS as an example to study the local optimality of zero-

order EISs. Based on a detailed mathematical analysis, it is proven that SONFIS is not able to obtain a locally 

optimal solution from data through the “one pass” type learning process. Following this conclusion, we, then, 

propose an optimisation algorithm that enables SONFIS to self-adjust the locations of its prototypes based on 

historically observed data and finally achieve the local optimal solution. Numerical examples on benchmark 

datasets demonstrate the validity of the optimality analysis and the effectiveness of the proposed optimisation 

algorithm. Moreover, it is further numerically proven that the proposed concepts and general principles are also 

applicable to other types of zero-order EISs with similar operating mechanisms 

As future work, we will extend this study to first-order EISs by further investigating the optimality of both 

the premise, IF and consequent, THEN parts. Since the optimality analysis conducted within this paper mostly 

concerns the data partitioning results obtained by zero-order EISs, we will also extend this study to clustering 

algorithms and other prototype-based semi-supervised classification approaches. Another interesting direction 

for more future works is to find an effective way to reduce the number of prototypes during the optimisation 

process for simplifying the system structure and, meanwhile, maintain the same level of classification accuracy.  
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