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Highlights  19 

¶ River network data are absent or out of date in most developing countries  20 

¶ Sentinel-1 data used here to generate high resolution river map 21 

¶ Sentinel-1 river product superior to alternative remotely-sensed sources  22 

¶ Topologically structured geometric river network supports flow routing  23 

¶ Technique can provide essential river network data for many countries 24 
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Abstract 42 

In many regions of the world, especially in developing countries, river network data are 43 

outdated or completely absent, yet such information is critical for supporting important 44 

functions such as flood mitigation efforts, land use and transportation planning, and the 45 

management of water resources. In this study a new method was developed for delineating 46 

river networks using Sentinel-1 imagery. Unsupervised classification was applied to multi-47 

temporal Sentinel-1 data to discriminate water bodies from other land cover types then the 48 

outputs were combined to generate a single persistent water bodies product. A thinning 49 

algorithm was then used to delineate river centre lines which were converted into vector 50 

features and built into a topologically structured geometric network. The complex river system 51 

of the Niger Delta was used to compare the performance of the Sentinel-based method against 52 

alternative freely available waterbody products from USGS, ESA and OpenStreetMap and a 53 

river network derived from a SRTM DEM. From both raster-based and vector-based accuracy 54 

assessments it was found that the Sentinel-based river network products were superior to the 55 

comparator data sets by a substantial margin. The resulting geometric river network was used 56 

to perform flow routing analysis which is important for a variety of environmental management 57 

and planning applications. The approach developed in this study holds considerable potential 58 

for generating up to date, detailed river network data for the many countries globally where 59 

such data are deficient. 60 
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1. Introduction  66 

Rivers are important resources that sustain a substantial proportion of the worldôs population, 67 

through the vital ecosystems services they provide (Zeng et al., 2015). Determining the spatial 68 

and temporal dynamics of surface waters remains challenging (Khandelwal et al., 2017). 69 

Globally, there has been increased need for monitoring natural water resources in response to 70 

changing climate  and pollution from anthropogenic sources (Haddeland et al., 2014). Resource 71 

managers need efficient ways of monitoring water, determining flow regimes, extent and 72 

discharge. Modellers and scientist alike need hydrological information for forecasting extreme 73 

events such as floods, and accurate river network data to model the fate of pollutants in rivers 74 

globally (Garneau et al., 2017; Zeng et al., 2015). However, detailed maps of river networks 75 

do not exist for many developing countries and even where previous surveys have taken place 76 

they are often significantly out of date, especially for dynamic systems such as deltas. 77 

Remote sensing offers a low-cost and efficient alternative to ground-based surveys for river 78 

network delineation, particularly in light of recent improvements in the temporal and spatial 79 

resolution of satellite data, e.g. using frequent acquisitions from MODIS (Khandelwal et al., 80 

2017). Optical remote sensing has been widely used for river network delineation using a range 81 

of automatic and semi-automatic techniques (Isikdogan et al., 2017). For example, Landsat 82 

data was used to delineate complex braided network of the  Brahmaputra river which flows 83 

through China, India and Bangladesh and a tidal river network in Berau Bay, New Guinea 84 

(Yang et al., 2014). The study revealed that spectral mixture within pixels resulting from the 85 

spatial resolution of the imagery resulted in commission and omission errors in river 86 

classification. Others have noted that this approach is not suitable for smaller rivers 87 

(Domeneghetti et al., 2014; Ogilvie et al., 2015). Allen and Pavelsky (2015) developed NAR-88 

Width (North American River Width) which uses Landsat data in a software suite called 89 

RivWidth to delineate and estimate the width of rivers in North America. However, the model 90 
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is largely restricted to North America, due to the input data and some aspects of the algorithm 91 

that prevents it use in other global regions. 92 

Water body extraction from optical imagery has also been achieved using other approaches. 93 

These include region growth and edge detection, and water indices such as the Normalised 94 

Difference Water Index (NDWI) (Isikdogan et al., 2017; Zeng et al., 2015), Modified 95 

Normalised Difference Water index (MNDWI) (Ogilvie et al., 2015; Yang et al., 2014), 96 

Automated Water Extraction Index (AWEI) (Feyisa et al., 2014), and Land Surface Water 97 

Index (LSWI) (Ogilvie et al., 2015). Isikdogan et al. (2017) introduced the RivaMap mapping 98 

engine which is based on Landsat data and was used to delineate rivers at a continental scale 99 

(North America). However, the output of RivaMap is an unstructured vector network, which 100 

can limit it s applicability in studies of hydrological flows. Furthermore, all of the methods that 101 

are applied to optical data such as MODIS and Landsat, can be limited by cloud cover, which 102 

restricts useable repeat image acquisitions and limits the ability to detect the persistence or 103 

dynamics of surface water bodies. 104 

Digital Elevation Models (DEMs) derived from different satellite missions have been widely 105 

used for hydraulic studies, hydrologic modelling and river network delineation (Gülgen, 2017; 106 

Kumar et al., 2017). Commonly used DEMs include the Shuttle Radar Topographic Mission 107 

(SRTM) 1 arc second, SRTM 3 arc second and Advanced Spaceborne Thermal Emission and 108 

Reflection Radiometer (ASTER) 30m products (Vimal et al., 2012). Algorithms for river 109 

network delineation such as the hydrological tools in ArcGIS version 10, Arc Hydro (Kim et 110 

al., 2015), TauDEM (Castronova and Goodall, 2014), HydroSHEDS (Lehner et al., 2008) and 111 

GWD-LR  (Yamazaki, 2014) all use DEMs as input data (Khan et al., 2014). This approach is 112 

popular because important hydrological parameters such as river length, area, slope, flow 113 

direction, accumulation, aspect and watershed area can be extracted from DEMs.  However, 114 

because these methods use the direction of steepest decent for delineation, this can lead to over 115 
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estimation of river network elements in lowland and delta environments (Gülgen, 2017; 116 

Isikdogan et al., 2017; Vimal et al., 2012). Rahman, et al (2010) demonstrated in a study of the 117 

delta region of Bangladesh that errors were proportional to degree of flatness. In addition, some 118 

researchers have highlighted the inaccuracies of using DEMs for river delineation such as the 119 

inability of the algorithms to consider manmade features (Kumar et al., 2017). DEMs can also 120 

contain erroneous changes in elevation in some areas, referred to as sinks, which result in 121 

computational errors in flow direction and ambiguity in alignment of the delineated river 122 

network (Kumar et al., 2017). 123 

Airborne Light Detection and Ranging (LiDAR) has been applied in stream network 124 

delineation (Maderal et al., 2016). LiDAR data provides height information that has been used 125 

to characterise catchments, generate flow direction and delineate rivers in wide range of 126 

landscapes (Li & Wong, 2010). Wavelet-based filtering techniques, curvature analysis, and 127 

geodesic operations have all been previously applied to LiDAR data for stream delineation 128 

(Cho et al., 2011; Lashermes et al., 2007; Passalacqua et al., 2012). However, airborne LiDAR 129 

data capture is expensive, spatially limited in application and requires significant time to 130 

process the large point cloud (Hamada et al., 2016). Hence, for the scale of whole fluvial 131 

systems, the costs associated with the use of LiDAR can be prohibitive, especially in 132 

developing countries. 133 

Citizen science initiatives such as OpenStreetMap (OSM) also constitute a genuine source of 134 

digital geographic data (Haklay, 2010). Such web mapping systems offer a step change in the 135 

availability of important geographic data such as river networks. As a result, data is now 136 

accessible in a searchable and usable format, and the data quality can be as good as that of 137 

national mapping agencies (Haklay, 2010). However, the quality of data from such sources is 138 

contingent on the level of participation and the experience and knowledge of the contributors 139 

(Haklay, 2010), with lower levels of mapping activity in the Global South (Bittner, 2017; 140 
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Graham et al., 2015), particularly in rural areas, with little emphasis on natural features such 141 

as rivers. 142 

Given the above limitations in existing techniques and products, new remote sensing methods 143 

are needed for repeatedly mapping river networks in a timely fashion, particularly in 144 

developing countries. Sentinel-1 SAR C data acquired by the European Space Agency (ESA) 145 

has the potential to overcome the identified limitations. The dual satellites (Sentinels 1A and 146 

B) launched in 2014 and 2016 offer global coverage (Haas and Ban, 2017; Miranda et al., 147 

2016), with a combined temporal resolution of 5-6 days and spatial resolution of 20m by 5m 148 

and ground sampling distance of 10m (Ardhuin et al., 2017; Malenovský et al., 2012; Veloso 149 

et al., 2017).  Utilizing these data can potentially enhance scientific studies requiring detailed 150 

river network delineation in complex environments.  151 

Therefore, the aim of this study was to develop an effective method of delineating river 152 

networks using Sentinel-1 data. The objectives were to: (a) investigate the potential of utilizing 153 

a time series of Sentinel-1 images for accurate river network delineation; (b) compare Sentinel-154 

1 outputs with existing river network data sets; (c) build a complete topologically structured 155 

geometric river network dataset; (d) demonstrate the potential of the network dataset by tracing 156 

the movement of pollution from a point source event through the fluvial system. 157 

2. Method 158 

2.1. Study site  159 

The Niger Delta (Figure 1) is the largest river delta in Africa and the third largest in the world 160 

(Kadafa, 2012; UNEP, 2011). It occupies an estimated 70,000 km2 in area and supports a 161 

population of 30 million people. Information on the river network in the region is therefore 162 

important because this can enable effective monitoring of changes in the distribution of this 163 

highly dynamic fluvial system, and the resultant impacts on resources and threats to the 164 
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population. Since most of the population depend on fishing and river water for domestic 165 

activities, detailed information on the river network is vital within the framework of 166 

management and monitoring of key resources. Likewise, flooding is a common occurrence in 167 

the Niger Delta which can have devastating effects on the population and infrastructure (Ekeu-168 

Wei and Blackburn, 2018; NHSA, 2014). However, there is a paucity of digital spatial data for 169 

the Niger Delta, and there is no national spatial data infrastructure (Anifowose et al., 2012; 170 

Nwilo and Badejo, 2005). Accurate and up to date data on the river network are now needed to 171 

support the development of flood mitigation schemes and appropriate land use strategies. 172 

Furthermore, the Niger Delta is the region in which the majority of Nigeriaôs oil and gas 173 

extraction takes place (Anejionu et al., 2015). There is a long and well-documented history of 174 

oil pollution incidents in the region, with rivers among the worst affected environments, 175 

therefore, river network data are crucial in employing pollution mitigation measures (Obida et 176 

al, 2018). In particular, there is a pressing need for a detailed topologically-structured river 177 

network dataset for use in modelling the dispersion and fate of crude oil in the Niger Delta and 178 

its impact on the environment and human health.  179 
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 180 

Fig.1. The study area, the Niger Delta. Inset map shows the location of the Niger Delta in 181 

relation the drainage basin that supplies water and sediment to the delta. 182 

2.2 Methodological Framework 183 

In this study, multi-temporal Sentinel-1 SAR C were used for both raster-based and vector-184 

based river channel delineation. Raster channels were delineated using classification 185 

techniques and thinning algorithms were applied to generate vector data. Both the raster and 186 

vector river delineations from Sentinel-1 were compared to existing river data products by 187 

performing accuracy assessments relative to reference river channel data. Network topology 188 

and attribution were then added to the Sentinel-derived rivers to allow more complex network 189 

analysis. The methodological framework is shown in Figure 2. 190 



Page 10 of 39 

 191 

Fig.2. Methodological framework for accuracy assessment and river network extraction based 192 

on the different data sources. 193 

2.3. Source Data 194 

2.3.1 Sentinel-1 data 195 

The Sentinel-1 data were sourced free of charge from the ESA Copernicus Open Access Hub. 196 

Here we used the Interferometric Wide swath mode data, the predefined mode for overland 197 

applications. The Level-1 Ground Range Detected product type was used, which has been 198 

detected, multi-looked and projected to ground range using an Earth ellipsoid model (Veloso 199 

et al., 2017). We used the co-polarised VV data because noise restricts the use of VH data as 200 

water has a lower radar-cross section in cross polarization than in co-polarized channels (HH 201 

or VV) (Bolanos et al., 2016). Dual polarised HH+HV was not available for the study area. 202 
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The data have a spatial resolution of 5m by 20m with a ground sampling distance of 10m 203 

(Imperatore et al., 2017). 204 

2.3.2 Comparator data 205 

The Landsat global water bodies product was the result of a collaboration between the United 206 

States Geological Survey (USGS) and University of Maryland. This raster dataset represents 207 

persistent global surface water bodies over the 2000-2012 time period, and is the highest spatial 208 

resolution product available globally. ESA global water cover data derived from Envisat ASAR 209 

and MERIS data at 300m resolution over the period 2005-2010 were also used.  210 

OpenStreetMap (OSM) vector data were also used for comparative purposes. Finally, a river 211 

network that we derived from 1 arc second SRTM data (method described in 2.5.2 below) was 212 

also used. The SRTM data are available globally and were sourced from the USGS Earth 213 

Explorer platform. 214 

2.4 Raster-based analysis  215 

2.4.1 Sentinel-1 data processing and analysis 216 

Image pre-processing routines were performed in the Sentinel Application Platform (SNAP). 217 

Geometric correction was carried out by the initial application of orbital files to correct orbit 218 

vectors (Zhang et al., 2016).  Range-Doppler Terrain Correction was applied to each image for 219 

accurate geocoding, using the 3 arc second SRTM DEM, thus accounting for variations in local 220 

elevations (Veloso et al., 2017). Multi-temporal image co-registration was then carried out, 221 

since the study involved application of multi-temporal data, consisting of the 14 images 222 

available for the study site acquired between May 2015 and January 2017, using the first 223 

available image as the master (Sowter et al., 2016).  Radiometric correction was applied to the 224 

images by calibrating the data to sigma nought, which is the backscatter coefficient (Misra and 225 
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Balaji, 2017). To reduce speckle in the SAR data, the refined Lee Sigma speckle filter was 226 

applied (Fu et al., 2017; Haas and Ban, 2017).  227 

Unsupervised classification was used to distinguish between water and land in the multi-228 

temporal Sentinel-1 data (Ogilvie et al., 2015) as this performed better than supervised 229 

classification and thresholding in this context. A K-means unsupervised classification approach 230 

was applied to the data in SNAP (Jain, 2010). Since water has a distinctive response in Cïband 231 

SAR signals, water bodies were partitioned into an output class as a result of the K-means 232 

procedure. 233 

Following classification, the outputs were combined into a single image in ArcMap 10.4 with 234 

pixel values ranging from 1-14 based on a count of the number of times each pixel was 235 

classified as water across the time series of images (Khandelwal et al., 2017). This was to 236 

differentiate between persistent and ephemeral water bodies, particularly due to high tides and 237 

floods (Rahman & Thakur, 2017). In the combined image, a value of 1 indicates a low 238 

probability of the pixel being a persistent water body, while pixels with a value of 14 indicates 239 

a high probability of the pixel being a persistent water body. Reference data on the locations 240 

of permanent river channels were collected by visual interpretation of ArcGIS World Imagery 241 

(Digital Globe GeoEye-1 images from 2013 ï 2017 at 0.5m resolution). Using the reference 242 

data an optimum threshold was identified for the number of times each pixel was classified as 243 

water in order to delineate the river network most effectively. This was determined by 244 

incrementally increasing (from 1 to 14) the persistence value required for classifying a pixel as 245 

a permanent water body, and for each increment, the output water body map was tested for 246 

accuracy against the reference data set. This analysis showed that usersô accuracy of the output 247 

water body map increased substantially as the required level of persistence increased, up to a 248 

value of 12 where it reached a plateau of 89%. Hence, all pixels with persistence values of 12 249 

and above were used to map permanent water bodies in the study area. 250 
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2.4.2 Raster-based accuracy assessment 251 

High-resolution  Google Imagery, acquired in 2018, was visually evaluated in order to generate 252 

reference data (Feyisa et al., 2014). A total of 700 reference points were captured through 253 

óheads upô digitizing, 350 of which were located in rivers and 350 in other land cover types. 254 

The reference data were then compared to the raster-based river networks generated from the 255 

Sentinel-1, USGS and ESA data by computing error matrices. Subsequently, userôs, 256 

producerôs, overall accuracies and kappa coefficients were calculated (Felipe De Almeida 257 

Furtado et al., 2016; Feyisa et al., 2014). 258 

2.5 Vector-based analysis 259 

2.5.1 River network extraction 260 

Here we firstly applied a raster-based centre line extraction method using the thin tool in the 261 

Spatial Analyst extension of ArcGIS 10.4 on the river raster generated from the Sentinel-1, 262 

USGS and ESA data sets. Secondly, we applied the raster to polyline tool in ArcGIS to convert 263 

the thinned centre pixels to a series of vector lines. The rationale of reducing variable river 264 

widths to centre pixels and subsequently to lines is to develop a network model where 265 

connectivity is the most important property. 266 

2.5.2 River extraction from the SRTM 1 arc second DEM 267 

Methods of extracting river channels from DEMs are well established and have been applied 268 

at a variety of scales  (Khan et al., 2014; Kumar et al., 2017; Vimal et al., 2012). Here we used 269 

the hydrological toolset in ArcGIS 10.4 to extract the river network from the SRTM 1 arc 270 

second DEM.  271 

 272 

 273 
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2.5.3 Vector-based accuracy assessment 274 

An independent river network dataset, covering a river length of 800km within the study site, 275 

was captured through óheads upô digitizing of high resolution ArcGIS World Imagery. This 276 

generated a vector network of river centre lines for use as reference data. These reference data 277 

were then used to assess the accuracy of the vector networks derived from Sentinel-1 and the 278 

comparator data. Among the comparator data, the OSM and SRTM-derived network data 279 

contained river centre lines which could directly be compared to the reference data. In order to 280 

facilitate a vector-based accuracy assessment of the ESA and USGS data, these raster based 281 

river networks were thinned and converted to polylines. 282 

The vector river networks derived from Sentinel-1 and comparator data were assessed for data 283 

completeness (length) and positional accuracy (overlap) against the manually digitised  284 

reference network (Li and Wong, 2010; Hamada et al., 2016). The percentage data 285 

completeness was calculated based on the stream orders in the network, from small 1st order 286 

streams to larger 3rd order streams. In terms of the positional accuracy, 3 different sample 287 

sections of the network were assessed by generating 10m, 20m and 30m buffers around the 288 

reference network.  The percentage of data from the Sentinel-1 and comparator data networks 289 

that fell within each of the buffers was used to measure the spatial overlap with the reference 290 

data and thereby indicate positional accuracy (Goodchild & and Hunter, 1997). 291 

2.5.4 Building river network topology and attributes 292 

Most river networks derived from remote sensing are devoid of topological properties and 293 

connectivity rules such as edges and junctions, meaning that connectivity, flow direction, and 294 

flow rate cannot be derived. Building a geometric river network is important to enable its use 295 

in a range of applications, including hydrological modelling (Jiang, 2011). Based on the results 296 

of the vector-based accuracy assessment the Sentinel-1 river centre line product was selected 297 
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for building a geometric river network. Initially, the network was cleaned in ArcMap by closing 298 

gaps to ensure network connectivity. Gaps <20m were automatically closed by the software, 299 

with the few remaining larger gaps being closed manually to ensure complete connectivity. 300 

Consequently, the ArcGIS geometric network toolbox was used to build a topologically 301 

structured network. In a manually digitised network the flow direction is determined by the 302 

direction of digitization as recorded by the software. However, since our network was 303 

generated from image data there was no direction of digitization, hence, we used the óset flow 304 

directionô tool in ArcGISôs geometric network toolbox.  305 

2.5.5 Application of the river network  for tracing the movement of a point source 306 

pollution event 307 

To demonstrate the potential utility of the delineated river network and the attributed topology 308 

parameters such as network connectivity and flow direction, an example application was 309 

performed. This involves using the geometric network analysis tool to trace the potential 310 

pathway of oil released from a spill which enters the river network and moves downstream. 311 

We used the example of a known event which occurred on 20th April 2012, where 19,350 litres 312 

of crude oil were spilt from a sabotaged 24-inch pipeline in the Nembe LGA of Bayelsa state. 313 

The location of this event was recorded in a database maintained by the Nigerian National Oil 314 

Spill Detection and Response Agency (https://oilspillmonitor.ng/).  315 

3. Results 316 

3.1 Raster-based Analysis 317 

3.1.1 Raster river network derived from Sentinel-1 318 

Figure 3 shows the binary land cover classifications of the 14 Sentinel-1 images covering the 319 

period May 2015 to January 2017. The images show a high degree of visual similarity, but 320 

there are differences, especially in the southern part of the study area, which are attributable to 321 
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the different prevailing hydrological conditions (e.g. river discharge or tidal state) at the time 322 

of image capture. The k-means unsupervised classification appears to effectively distinguish 323 

between water and other land cover types.  324 

 325 

Fig.3. Binary land cover classifications of the Sentinel-1 image time series. 326 

Figure 4 shows the outputs of the Sentinel-1 time series combined into a single image with 327 

each pixel placed into one of three categories based on a count of the number of times the pixel 328 

was classified as water (the persistence). Pixels with lower values (i.e. in the 1-11 category) 329 

represent ephemeral water bodies, whilst pixels with higher values (12-14 category) denote 330 

permanent river channels.  331 
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 332 

Fig.4. Combined product from the Sentinel-1 time series with each pixel placed into one of 333 

three categories based on a count of the number of times the pixel was classified as water.  334 

3.1.2 Raster-based accuracy assessment 335 

Figure 5 shows a comparison of the ESA and USGS water body products with the Sentinel-336 

derived map for a small sample area. It shows the degree to which raster resolution can impact 337 

upon river network delineation and potential to further determine the quality of extracted vector 338 

data. Table 1 shows the results of the accuracy assessment of the raster-based river networks 339 

derived from the Sentinel-1, USGS and ESA data sets.  The overall accuracy of the river 340 

network derived from Sentinel-1 was much higher than the USGS and ESA products. The 341 

userôs accuracy for water bodies was consistently higher that than the producerôs accuracy 342 

which indicated low false positives, across all three data sources. In addition, both the USGS 343 

and ESA data had much lower producerôs accuracies than the Sentinel-1-derived data which 344 
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implies an under representation of water in the existing products. USGS and ESA data had low 345 

Kappa coefficients while that for the Sentinel-1-derived product was much higher and 346 

suggested that classification accuracy was better than random occurrence. 347 

 348 

Fig.5. Comparison of extracted raster data sets from: A) Sentinel-1, and comparator data, B) 349 

USGS and C) ESA. Blue pixels indicate water. 350 

 351 

 352 

 353 
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Table 1 354 

 Image based classification accuracies for raster-based river networks derived from Sentinel-355 

1, USGS and ESA data. 356 

Accuracy metric Sentinel-1 USGS  ESA  

Overall accuracy (%) 76 69 60 

Producerôs accuracy (%) 61 38 21 

Userôs accuracy (%) 89 100 78 

Kappa coefficient 0.52 0.38 0.20 

 357 

3.2 Vector-based analysis 358 

3.2.1 River network extraction from the Sentinel-derived river raster.  359 

Figure 6 shows the effectiveness of the thinning algorithm used to generate the river centreline 360 

vector data from the raster map. It also shows how isolated water bodies that are separated from 361 

the river system are not included in the vector data as the thinning algorithm emphasises the 362 

production of a linear network. Figure 7 shows the extracted centre line representation of the 363 

river network for the entire Niger Delta derived from Sentinel-1 data. The figure reveals a 364 

classic deltaic drainage pattern with multiple outlets into the Atlantic Ocean. This pattern is 365 

unlike a typical dendritic hydrological catchment with all tributaries draining into one main 366 

channel, then into a larger body of water. Here we have a complex network of distributary 367 

channels typical of deltaic systems.   368 
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 369 

Fig.6. River centrelines overlaid on the raster river data produced from Sentinel-1 data. Inset 370 

maps A and B highlight the detail of the raster thinning and river centreline extraction 371 

processes. 372 

  373 


