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Abstract 42 

In many regions of the world, especially in developing countries, river network data are 43 

outdated or completely absent, yet such information is critical for supporting important 44 

functions such as flood mitigation efforts, land use and transportation planning, and the 45 

management of water resources. In this study a new method was developed for delineating 46 

river networks using Sentinel-1 imagery. Unsupervised classification was applied to multi-47 

temporal Sentinel-1 data to discriminate water bodies from other land cover types then the 48 

outputs were combined to generate a single persistent water bodies product. A thinning 49 

algorithm was then used to delineate river centre lines which were converted into vector 50 

features and built into a topologically structured geometric network. The complex river system 51 

of the Niger Delta was used to compare the performance of the Sentinel-based method against 52 

alternative freely available waterbody products from USGS, ESA and OpenStreetMap and a 53 

river network derived from a SRTM DEM. From both raster-based and vector-based accuracy 54 

assessments it was found that the Sentinel-based river network products were superior to the 55 

comparator data sets by a substantial margin. The resulting geometric river network was used 56 

to perform flow routing analysis which is important for a variety of environmental management 57 

and planning applications. The approach developed in this study holds considerable potential 58 

for generating up to date, detailed river network data for the many countries globally where 59 

such data are deficient. 60 
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1. Introduction 66 

Rivers are important resources that sustain a substantial proportion of the world’s population, 67 

through the vital ecosystems services they provide (Zeng et al., 2015). Determining the spatial 68 

and temporal dynamics of surface waters remains challenging (Khandelwal et al., 2017). 69 

Globally, there has been increased need for monitoring natural water resources in response to 70 

changing climate  and pollution from anthropogenic sources (Haddeland et al., 2014). Resource 71 

managers need efficient ways of monitoring water, determining flow regimes, extent and 72 

discharge. Modellers and scientist alike need hydrological information for forecasting extreme 73 

events such as floods, and accurate river network data to model the fate of pollutants in rivers 74 

globally (Garneau et al., 2017; Zeng et al., 2015). However, detailed maps of river networks 75 

do not exist for many developing countries and even where previous surveys have taken place 76 

they are often significantly out of date, especially for dynamic systems such as deltas. 77 

Remote sensing offers a low-cost and efficient alternative to ground-based surveys for river 78 

network delineation, particularly in light of recent improvements in the temporal and spatial 79 

resolution of satellite data, e.g. using frequent acquisitions from MODIS (Khandelwal et al., 80 

2017). Optical remote sensing has been widely used for river network delineation using a range 81 

of automatic and semi-automatic techniques (Isikdogan et al., 2017). For example, Landsat 82 

data was used to delineate complex braided network of the  Brahmaputra river which flows 83 

through China, India and Bangladesh and a tidal river network in Berau Bay, New Guinea 84 

(Yang et al., 2014). The study revealed that spectral mixture within pixels resulting from the 85 

spatial resolution of the imagery resulted in commission and omission errors in river 86 

classification. Others have noted that this approach is not suitable for smaller rivers 87 

(Domeneghetti et al., 2014; Ogilvie et al., 2015). Allen and Pavelsky (2015) developed NAR-88 

Width (North American River Width) which uses Landsat data in a software suite called 89 

RivWidth to delineate and estimate the width of rivers in North America. However, the model 90 
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is largely restricted to North America, due to the input data and some aspects of the algorithm 91 

that prevents it use in other global regions. 92 

Water body extraction from optical imagery has also been achieved using other approaches. 93 

These include region growth and edge detection, and water indices such as the Normalised 94 

Difference Water Index (NDWI) (Isikdogan et al., 2017; Zeng et al., 2015), Modified 95 

Normalised Difference Water index (MNDWI) (Ogilvie et al., 2015; Yang et al., 2014), 96 

Automated Water Extraction Index (AWEI) (Feyisa et al., 2014), and Land Surface Water 97 

Index (LSWI) (Ogilvie et al., 2015). Isikdogan et al. (2017) introduced the RivaMap mapping 98 

engine which is based on Landsat data and was used to delineate rivers at a continental scale 99 

(North America). However, the output of RivaMap is an unstructured vector network, which 100 

can limit its applicability in studies of hydrological flows. Furthermore, all of the methods that 101 

are applied to optical data such as MODIS and Landsat, can be limited by cloud cover, which 102 

restricts useable repeat image acquisitions and limits the ability to detect the persistence or 103 

dynamics of surface water bodies. 104 

Digital Elevation Models (DEMs) derived from different satellite missions have been widely 105 

used for hydraulic studies, hydrologic modelling and river network delineation (Gülgen, 2017; 106 

Kumar et al., 2017). Commonly used DEMs include the Shuttle Radar Topographic Mission 107 

(SRTM) 1 arc second, SRTM 3 arc second and Advanced Spaceborne Thermal Emission and 108 

Reflection Radiometer (ASTER) 30m products (Vimal et al., 2012). Algorithms for river 109 

network delineation such as the hydrological tools in ArcGIS version 10, Arc Hydro (Kim et 110 

al., 2015), TauDEM (Castronova and Goodall, 2014), HydroSHEDS (Lehner et al., 2008) and 111 

GWD-LR  (Yamazaki, 2014) all use DEMs as input data (Khan et al., 2014). This approach is 112 

popular because important hydrological parameters such as river length, area, slope, flow 113 

direction, accumulation, aspect and watershed area can be extracted from DEMs.  However, 114 

because these methods use the direction of steepest decent for delineation, this can lead to over 115 
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estimation of river network elements in lowland and delta environments (Gülgen, 2017; 116 

Isikdogan et al., 2017; Vimal et al., 2012). Rahman, et al (2010) demonstrated in a study of the 117 

delta region of Bangladesh that errors were proportional to degree of flatness. In addition, some 118 

researchers have highlighted the inaccuracies of using DEMs for river delineation such as the 119 

inability of the algorithms to consider manmade features (Kumar et al., 2017). DEMs can also 120 

contain erroneous changes in elevation in some areas, referred to as sinks, which result in 121 

computational errors in flow direction and ambiguity in alignment of the delineated river 122 

network (Kumar et al., 2017). 123 

Airborne Light Detection and Ranging (LiDAR) has been applied in stream network 124 

delineation (Maderal et al., 2016). LiDAR data provides height information that has been used 125 

to characterise catchments, generate flow direction and delineate rivers in wide range of 126 

landscapes (Li & Wong, 2010). Wavelet-based filtering techniques, curvature analysis, and 127 

geodesic operations have all been previously applied to LiDAR data for stream delineation 128 

(Cho et al., 2011; Lashermes et al., 2007; Passalacqua et al., 2012). However, airborne LiDAR 129 

data capture is expensive, spatially limited in application and requires significant time to 130 

process the large point cloud (Hamada et al., 2016). Hence, for the scale of whole fluvial 131 

systems, the costs associated with the use of LiDAR can be prohibitive, especially in 132 

developing countries. 133 

Citizen science initiatives such as OpenStreetMap (OSM) also constitute a genuine source of 134 

digital geographic data (Haklay, 2010). Such web mapping systems offer a step change in the 135 

availability of important geographic data such as river networks. As a result, data is now 136 

accessible in a searchable and usable format, and the data quality can be as good as that of 137 

national mapping agencies (Haklay, 2010). However, the quality of data from such sources is 138 

contingent on the level of participation and the experience and knowledge of the contributors 139 

(Haklay, 2010), with lower levels of mapping activity in the Global South (Bittner, 2017; 140 
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Graham et al., 2015), particularly in rural areas, with little emphasis on natural features such 141 

as rivers. 142 

Given the above limitations in existing techniques and products, new remote sensing methods 143 

are needed for repeatedly mapping river networks in a timely fashion, particularly in 144 

developing countries. Sentinel-1 SAR C data acquired by the European Space Agency (ESA) 145 

has the potential to overcome the identified limitations. The dual satellites (Sentinels 1A and 146 

B) launched in 2014 and 2016 offer global coverage (Haas and Ban, 2017; Miranda et al., 147 

2016), with a combined temporal resolution of 5-6 days and spatial resolution of 20m by 5m 148 

and ground sampling distance of 10m (Ardhuin et al., 2017; Malenovský et al., 2012; Veloso 149 

et al., 2017).  Utilizing these data can potentially enhance scientific studies requiring detailed 150 

river network delineation in complex environments.  151 

Therefore, the aim of this study was to develop an effective method of delineating river 152 

networks using Sentinel-1 data. The objectives were to: (a) investigate the potential of utilizing 153 

a time series of Sentinel-1 images for accurate river network delineation; (b) compare Sentinel-154 

1 outputs with existing river network data sets; (c) build a complete topologically structured 155 

geometric river network dataset; (d) demonstrate the potential of the network dataset by tracing 156 

the movement of pollution from a point source event through the fluvial system. 157 

2. Method 158 

2.1. Study site  159 

The Niger Delta (Figure 1) is the largest river delta in Africa and the third largest in the world 160 

(Kadafa, 2012; UNEP, 2011). It occupies an estimated 70,000 km2 in area and supports a 161 

population of 30 million people. Information on the river network in the region is therefore 162 

important because this can enable effective monitoring of changes in the distribution of this 163 

highly dynamic fluvial system, and the resultant impacts on resources and threats to the 164 
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population. Since most of the population depend on fishing and river water for domestic 165 

activities, detailed information on the river network is vital within the framework of 166 

management and monitoring of key resources. Likewise, flooding is a common occurrence in 167 

the Niger Delta which can have devastating effects on the population and infrastructure (Ekeu-168 

Wei and Blackburn, 2018; NHSA, 2014). However, there is a paucity of digital spatial data for 169 

the Niger Delta, and there is no national spatial data infrastructure (Anifowose et al., 2012; 170 

Nwilo and Badejo, 2005). Accurate and up to date data on the river network are now needed to 171 

support the development of flood mitigation schemes and appropriate land use strategies. 172 

Furthermore, the Niger Delta is the region in which the majority of Nigeria’s oil and gas 173 

extraction takes place (Anejionu et al., 2015). There is a long and well-documented history of 174 

oil pollution incidents in the region, with rivers among the worst affected environments, 175 

therefore, river network data are crucial in employing pollution mitigation measures (Obida et 176 

al, 2018). In particular, there is a pressing need for a detailed topologically-structured river 177 

network dataset for use in modelling the dispersion and fate of crude oil in the Niger Delta and 178 

its impact on the environment and human health.  179 
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 180 

Fig.1. The study area, the Niger Delta. Inset map shows the location of the Niger Delta in 181 

relation the drainage basin that supplies water and sediment to the delta. 182 

2.2 Methodological Framework 183 

In this study, multi-temporal Sentinel-1 SAR C were used for both raster-based and vector-184 

based river channel delineation. Raster channels were delineated using classification 185 

techniques and thinning algorithms were applied to generate vector data. Both the raster and 186 

vector river delineations from Sentinel-1 were compared to existing river data products by 187 

performing accuracy assessments relative to reference river channel data. Network topology 188 

and attribution were then added to the Sentinel-derived rivers to allow more complex network 189 

analysis. The methodological framework is shown in Figure 2. 190 
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 191 

Fig.2. Methodological framework for accuracy assessment and river network extraction based 192 

on the different data sources. 193 

2.3. Source Data 194 

2.3.1 Sentinel-1 data 195 

The Sentinel-1 data were sourced free of charge from the ESA Copernicus Open Access Hub. 196 

Here we used the Interferometric Wide swath mode data, the predefined mode for overland 197 

applications. The Level-1 Ground Range Detected product type was used, which has been 198 

detected, multi-looked and projected to ground range using an Earth ellipsoid model (Veloso 199 

et al., 2017). We used the co-polarised VV data because noise restricts the use of VH data as 200 

water has a lower radar-cross section in cross polarization than in co-polarized channels (HH 201 

or VV) (Bolanos et al., 2016). Dual polarised HH+HV was not available for the study area. 202 
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The data have a spatial resolution of 5m by 20m with a ground sampling distance of 10m 203 

(Imperatore et al., 2017). 204 

2.3.2 Comparator data 205 

The Landsat global water bodies product was the result of a collaboration between the United 206 

States Geological Survey (USGS) and University of Maryland. This raster dataset represents 207 

persistent global surface water bodies over the 2000-2012 time period, and is the highest spatial 208 

resolution product available globally. ESA global water cover data derived from Envisat ASAR 209 

and MERIS data at 300m resolution over the period 2005-2010 were also used.  210 

OpenStreetMap (OSM) vector data were also used for comparative purposes. Finally, a river 211 

network that we derived from 1 arc second SRTM data (method described in 2.5.2 below) was 212 

also used. The SRTM data are available globally and were sourced from the USGS Earth 213 

Explorer platform. 214 

2.4 Raster-based analysis  215 

2.4.1 Sentinel-1 data processing and analysis 216 

Image pre-processing routines were performed in the Sentinel Application Platform (SNAP). 217 

Geometric correction was carried out by the initial application of orbital files to correct orbit 218 

vectors (Zhang et al., 2016).  Range-Doppler Terrain Correction was applied to each image for 219 

accurate geocoding, using the 3 arc second SRTM DEM, thus accounting for variations in local 220 

elevations (Veloso et al., 2017). Multi-temporal image co-registration was then carried out, 221 

since the study involved application of multi-temporal data, consisting of the 14 images 222 

available for the study site acquired between May 2015 and January 2017, using the first 223 

available image as the master (Sowter et al., 2016).  Radiometric correction was applied to the 224 

images by calibrating the data to sigma nought, which is the backscatter coefficient (Misra and 225 
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Balaji, 2017). To reduce speckle in the SAR data, the refined Lee Sigma speckle filter was 226 

applied (Fu et al., 2017; Haas and Ban, 2017).  227 

Unsupervised classification was used to distinguish between water and land in the multi-228 

temporal Sentinel-1 data (Ogilvie et al., 2015) as this performed better than supervised 229 

classification and thresholding in this context. A K-means unsupervised classification approach 230 

was applied to the data in SNAP (Jain, 2010). Since water has a distinctive response in C–band 231 

SAR signals, water bodies were partitioned into an output class as a result of the K-means 232 

procedure. 233 

Following classification, the outputs were combined into a single image in ArcMap 10.4 with 234 

pixel values ranging from 1-14 based on a count of the number of times each pixel was 235 

classified as water across the time series of images (Khandelwal et al., 2017). This was to 236 

differentiate between persistent and ephemeral water bodies, particularly due to high tides and 237 

floods (Rahman & Thakur, 2017). In the combined image, a value of 1 indicates a low 238 

probability of the pixel being a persistent water body, while pixels with a value of 14 indicates 239 

a high probability of the pixel being a persistent water body. Reference data on the locations 240 

of permanent river channels were collected by visual interpretation of ArcGIS World Imagery 241 

(Digital Globe GeoEye-1 images from 2013 – 2017 at 0.5m resolution). Using the reference 242 

data an optimum threshold was identified for the number of times each pixel was classified as 243 

water in order to delineate the river network most effectively. This was determined by 244 

incrementally increasing (from 1 to 14) the persistence value required for classifying a pixel as 245 

a permanent water body, and for each increment, the output water body map was tested for 246 

accuracy against the reference data set. This analysis showed that users’ accuracy of the output 247 

water body map increased substantially as the required level of persistence increased, up to a 248 

value of 12 where it reached a plateau of 89%. Hence, all pixels with persistence values of 12 249 

and above were used to map permanent water bodies in the study area. 250 
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2.4.2 Raster-based accuracy assessment 251 

High-resolution  Google Imagery, acquired in 2018, was visually evaluated in order to generate 252 

reference data (Feyisa et al., 2014). A total of 700 reference points were captured through 253 

‘heads up’ digitizing, 350 of which were located in rivers and 350 in other land cover types. 254 

The reference data were then compared to the raster-based river networks generated from the 255 

Sentinel-1, USGS and ESA data by computing error matrices. Subsequently, user’s, 256 

producer’s, overall accuracies and kappa coefficients were calculated (Felipe De Almeida 257 

Furtado et al., 2016; Feyisa et al., 2014). 258 

2.5 Vector-based analysis 259 

2.5.1 River network extraction 260 

Here we firstly applied a raster-based centre line extraction method using the thin tool in the 261 

Spatial Analyst extension of ArcGIS 10.4 on the river raster generated from the Sentinel-1, 262 

USGS and ESA data sets. Secondly, we applied the raster to polyline tool in ArcGIS to convert 263 

the thinned centre pixels to a series of vector lines. The rationale of reducing variable river 264 

widths to centre pixels and subsequently to lines is to develop a network model where 265 

connectivity is the most important property. 266 

2.5.2 River extraction from the SRTM 1 arc second DEM 267 

Methods of extracting river channels from DEMs are well established and have been applied 268 

at a variety of scales  (Khan et al., 2014; Kumar et al., 2017; Vimal et al., 2012). Here we used 269 

the hydrological toolset in ArcGIS 10.4 to extract the river network from the SRTM 1 arc 270 

second DEM.  271 

 272 

 273 



Page 14 of 39 

2.5.3 Vector-based accuracy assessment 274 

An independent river network dataset, covering a river length of 800km within the study site, 275 

was captured through ‘heads up’ digitizing of high resolution ArcGIS World Imagery. This 276 

generated a vector network of river centre lines for use as reference data. These reference data 277 

were then used to assess the accuracy of the vector networks derived from Sentinel-1 and the 278 

comparator data. Among the comparator data, the OSM and SRTM-derived network data 279 

contained river centre lines which could directly be compared to the reference data. In order to 280 

facilitate a vector-based accuracy assessment of the ESA and USGS data, these raster based 281 

river networks were thinned and converted to polylines. 282 

The vector river networks derived from Sentinel-1 and comparator data were assessed for data 283 

completeness (length) and positional accuracy (overlap) against the manually digitised  284 

reference network (Li and Wong, 2010; Hamada et al., 2016). The percentage data 285 

completeness was calculated based on the stream orders in the network, from small 1st order 286 

streams to larger 3rd order streams. In terms of the positional accuracy, 3 different sample 287 

sections of the network were assessed by generating 10m, 20m and 30m buffers around the 288 

reference network.  The percentage of data from the Sentinel-1 and comparator data networks 289 

that fell within each of the buffers was used to measure the spatial overlap with the reference 290 

data and thereby indicate positional accuracy (Goodchild & and Hunter, 1997). 291 

2.5.4 Building river network topology and attributes 292 

Most river networks derived from remote sensing are devoid of topological properties and 293 

connectivity rules such as edges and junctions, meaning that connectivity, flow direction, and 294 

flow rate cannot be derived. Building a geometric river network is important to enable its use 295 

in a range of applications, including hydrological modelling (Jiang, 2011). Based on the results 296 

of the vector-based accuracy assessment the Sentinel-1 river centre line product was selected 297 
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for building a geometric river network. Initially, the network was cleaned in ArcMap by closing 298 

gaps to ensure network connectivity. Gaps <20m were automatically closed by the software, 299 

with the few remaining larger gaps being closed manually to ensure complete connectivity. 300 

Consequently, the ArcGIS geometric network toolbox was used to build a topologically 301 

structured network. In a manually digitised network the flow direction is determined by the 302 

direction of digitization as recorded by the software. However, since our network was 303 

generated from image data there was no direction of digitization, hence, we used the ‘set flow 304 

direction’ tool in ArcGIS’s geometric network toolbox.  305 

2.5.5 Application of the river network for tracing the movement of a point source 306 

pollution event 307 

To demonstrate the potential utility of the delineated river network and the attributed topology 308 

parameters such as network connectivity and flow direction, an example application was 309 

performed. This involves using the geometric network analysis tool to trace the potential 310 

pathway of oil released from a spill which enters the river network and moves downstream. 311 

We used the example of a known event which occurred on 20th April 2012, where 19,350 litres 312 

of crude oil were spilt from a sabotaged 24-inch pipeline in the Nembe LGA of Bayelsa state. 313 

The location of this event was recorded in a database maintained by the Nigerian National Oil 314 

Spill Detection and Response Agency (https://oilspillmonitor.ng/).  315 

3. Results 316 

3.1 Raster-based Analysis 317 

3.1.1 Raster river network derived from Sentinel-1 318 

Figure 3 shows the binary land cover classifications of the 14 Sentinel-1 images covering the 319 

period May 2015 to January 2017. The images show a high degree of visual similarity, but 320 

there are differences, especially in the southern part of the study area, which are attributable to 321 
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the different prevailing hydrological conditions (e.g. river discharge or tidal state) at the time 322 

of image capture. The k-means unsupervised classification appears to effectively distinguish 323 

between water and other land cover types.  324 

 325 

Fig.3. Binary land cover classifications of the Sentinel-1 image time series. 326 

Figure 4 shows the outputs of the Sentinel-1 time series combined into a single image with 327 

each pixel placed into one of three categories based on a count of the number of times the pixel 328 

was classified as water (the persistence). Pixels with lower values (i.e. in the 1-11 category) 329 

represent ephemeral water bodies, whilst pixels with higher values (12-14 category) denote 330 

permanent river channels.  331 
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 332 

Fig.4. Combined product from the Sentinel-1 time series with each pixel placed into one of 333 

three categories based on a count of the number of times the pixel was classified as water.  334 

3.1.2 Raster-based accuracy assessment 335 

Figure 5 shows a comparison of the ESA and USGS water body products with the Sentinel-336 

derived map for a small sample area. It shows the degree to which raster resolution can impact 337 

upon river network delineation and potential to further determine the quality of extracted vector 338 

data. Table 1 shows the results of the accuracy assessment of the raster-based river networks 339 

derived from the Sentinel-1, USGS and ESA data sets.  The overall accuracy of the river 340 

network derived from Sentinel-1 was much higher than the USGS and ESA products. The 341 

user’s accuracy for water bodies was consistently higher that than the producer’s accuracy 342 

which indicated low false positives, across all three data sources. In addition, both the USGS 343 

and ESA data had much lower producer’s accuracies than the Sentinel-1-derived data which 344 



Page 18 of 39 

implies an under representation of water in the existing products. USGS and ESA data had low 345 

Kappa coefficients while that for the Sentinel-1-derived product was much higher and 346 

suggested that classification accuracy was better than random occurrence. 347 

 348 

Fig.5. Comparison of extracted raster data sets from: A) Sentinel-1, and comparator data, B) 349 

USGS and C) ESA. Blue pixels indicate water. 350 

 351 

 352 

 353 
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Table 1 354 

 Image based classification accuracies for raster-based river networks derived from Sentinel-355 

1, USGS and ESA data. 356 

Accuracy metric Sentinel-1 USGS  ESA  

Overall accuracy (%) 76 69 60 

Producer’s accuracy (%) 61 38 21 

User’s accuracy (%) 89 100 78 

Kappa coefficient 0.52 0.38 0.20 

 357 

3.2 Vector-based analysis 358 

3.2.1 River network extraction from the Sentinel-derived river raster. 359 

Figure 6 shows the effectiveness of the thinning algorithm used to generate the river centreline 360 

vector data from the raster map. It also shows how isolated water bodies that are separated from 361 

the river system are not included in the vector data as the thinning algorithm emphasises the 362 

production of a linear network. Figure 7 shows the extracted centre line representation of the 363 

river network for the entire Niger Delta derived from Sentinel-1 data. The figure reveals a 364 

classic deltaic drainage pattern with multiple outlets into the Atlantic Ocean. This pattern is 365 

unlike a typical dendritic hydrological catchment with all tributaries draining into one main 366 

channel, then into a larger body of water. Here we have a complex network of distributary 367 

channels typical of deltaic systems.   368 
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 369 

Fig.6. River centrelines overlaid on the raster river data produced from Sentinel-1 data. Inset 370 

maps A and B highlight the detail of the raster thinning and river centreline extraction 371 

processes. 372 

  373 
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 374 

Fig.7. Extracted vector-based river centreline network for the entire delta. 375 

3.2.2 Vector-based accuracy assessment  376 

Figure 8 shows the extent to which the river centre line networks derived from Sentinel-1 and 377 

the comparator data sets agree with the reference data. Figures 8B - D show that the networks 378 

derived from the comparator data have significant limitations in terms of their completeness 379 

and positional accuracy relative to the reference data. This confirms that the higher resolution 380 

Sentinel-1 data produces a network that has the closest correspondence with the reference data. 381 

This is quantified in Table 2 which shows the results of the vector-based accuracy assessment 382 

and demonstrates the superiority of the Sentinel-derived network in terms of completeness. 383 

Importantly, delineation of 1st order streams from Sentinel-1 is more than twice as effective as 384 

the next-best performing USGS-derived river network. In terms of positional accuracy, Table 385 

3 shows that in all three sections of the network analysed for accuracy, the Sentinel-derived 386 
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network outperforms all other data sources. It is likely that the superior results for completeness 387 

and positional accuracy generated by the Sentinel-derived network result from the higher 388 

spatial resolution of the original imagery relative to comparator data sets. 389 

 390 

Fig.8. A sample of the river network used to show the reference network data, networks derived 391 

from the comparator data sets (SRTM DEM, ESA, USGS and OSM) and the network derived 392 
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from Sentinel-1 data. The grey lines shown in all plots are the reference river centrelines which 393 

were used for the accuracy assessment.  394 

Table 2. 395 

Results of the network completeness assessment, showing the percentage of the reference 396 

network captured by the networks derived from Sentinel-1 and comparator data, for different 397 

stream orders and overall. 398 

  399 

Data 3rd 

order 

2nd  

order 

1st  

order 

Overall 

%  

Sentinel-1 95 76 45 70 

USGS 83 46 20 47 

ESA data 54 13 2 14 

DEM 81 40 15 42 

OSM 10 - -  3 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 



Page 24 of 39 

Table 3. 411 

Results of the positional accuracy assessment, showing the percentage of the networks 412 

derived from Sentinel-1 and comparator data laying within varied sizes of buffers from the 413 

reference network, for three sample sections of the network and on average. 414 

Data 1st Section 2nd Section 3rd Section Average % 

Buffer size 30m 20m 10m 30m 20m 10m 30m 20m 10m 30m 20m 10m 

Sentinel-1 81 72 50 98 95 77 100 93 75 93 87 67 

USGS 81 60 30 87 70 37 91 78 44 89 69 37 

ESA data 14 11 5 17 13 8 26 17 9 19 14 7 

OSM 60 47 32 49 35 20 27 17 9 45 33 20 

DEM 4 3 1 8 5 6 13 10 7 16 6 5 

 415 

3.2.3 Case study: application of the geometric river network product to oil pollution 416 

dispersal.  417 

Figure 9 shows an example application of the geometric river network in the Niger Delta. This 418 

network is topologically structured and comprises edges with attributes such as flow direction 419 

and junctions which define connectivity rules between edges.  It shows the potential pathway 420 

of oil released into the river network from a known point source of crude oil pollution from a 421 

broken pipeline and routes pollutants will flow through to the ocean, contingent on network 422 

connectivity and flow direction. This example is intended to demonstrate the functionality of 423 

the network in permitting a flow routing analysis, rather than a depicting the actual spread of 424 

oil from this spill event. While the figure represents a potential route and maximum spread 425 

from the source to the ocean sink, the actual spread will depend on a number of factors such as 426 

river discharge and rates of oil emulsification and dispersion. Accounting for these additional 427 

factors requires a more sophisticated model, which is being developed in our ongoing work, 428 
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but the river network product developed here provides a spatial framework for defining the key 429 

flow pathways in rivers which enable the long distance dissemination of oil pollution in the 430 

Niger Delta. 431 

 432 

Fig.9. Tracing the potential pathway of oil released from a spill using the extracted river 433 

network based on connectivity and attributed flow direction. 434 
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4. Discussion 435 

4.1. Unsupervised classification of Sentinel-1 data for water body delineation 436 

As the results demonstrate, the application of unsupervised classification to Sentinel-1 data was 437 

effective for mapping water bodies in the study area. This accords with previous work which 438 

has found that the application of unsupervised classification to satellite data is an objective, 439 

fast and repeatable method of water body delineation (Ogilvie et al., 2015). Unsupervised 440 

classification, especially for distinct spectral classes such as water, has been reported to 441 

outperform supervised classification or simple thresholding approaches (Zeng et al., 2015). 442 

The shortcomings of supervised classification and thresholding in this instance are likely to be 443 

associated with the time costs and user subjectivity introduced in selecting training data or 444 

appropriate threshold values  (Yang et al., 2014; Zeng et al., 2015). The implication is that 445 

unsupervised classification is more efficient and accurate. 446 

The k-means unsupervised classification algorithm used in the present study further enhances 447 

the robustness of the procedures (Ogilvie et al., 2015; Capó et al, 2017). This is because the 448 

algorithm is effective for carrying out segmentation in solving clustering problems (Shah et al., 449 

2011) and because class clustering is performed without prior knowledge of relationships 450 

(Tzortzis and Likas, 2014). This is emphasised by the generally high user’s accuracy of the 451 

Sentinel-1 image classification as shown in Table 1. This suggests that, for anywhere classified 452 

as a water body using this algorithm, there is 89% confidence that it is water in the field, 453 

meaning that resource managers can be sure of the accuracy of the product (Kennedy et al., 454 

2009). 455 

The time series of Sentinel-1 images used in this study enabled the differentiation of  permanent 456 

and transient water bodies, in a similar fashion to the use of a MODIS time series by Ogilvie 457 

et al. (2015). As shown in Figure 3, the Niger Delta contains a complex network of rivers, 458 
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creeks, lakes and ponds and flooded areas. Identifying what is permanent and ephemeral is 459 

therefore important, particularly for determining the hydrological dynamics of the area during 460 

extreme events. Analysis of persistence provides an effective means of mapping permanent 461 

water bodies (Figure 4). This type of output is especially important in applications that require 462 

only permanent channels, such as for navigation. These data also provide a more effective input 463 

for the process of extracting a vector-based representation of the river system, as a connected 464 

geometric network of permanent channels.  465 

4.2. River network extraction, topology building and attribution 466 

Vectorization of the classified outputs ensures network data is available in vector formats to 467 

accommodate wide-ranging applications (Webster et al., 2016). Figure 7 shows the entire 468 

extent of the river network that has been delineated in this study. Automation of the river 469 

delineation process can ensure high levels of accuracy and consistency relative to traditional 470 

cartographic approaches (Maderal et al., 2016; Yang et al., 2014; Zeng et al., 2015) and the 471 

awareness that, in this study, the input data for the delineation was accurately classified, gives 472 

further confidence in the network data set. However, it is acknowledged that the river network 473 

produced in this study has some limitations. This is illustrated in Table 3, where although 474 

Sentinel-1 presents the best results for network delineation in comparison to existing freely 475 

available data sets, it cannot resolve all of the first order streams. This is because some of the 476 

individual creeks are less than 10m in width, and in some cases no more than 3m wide 477 

(Emmanuel and Onyema, 2007). Thus, the 10m spatial resolution of the Sentinel-1 data, 478 

combined with tree canopies wholly or partially covering narrow creeks, can limit the ability 479 

to delineate the finest features of the river system in the delta. 480 

Although river delineation is an appropriate step, building a geometric network from the output 481 

enables more sophisticated forms of analysis. Most applications employing the use of 482 



Page 28 of 39 

hydrological networks usually require topological information such as flow direction and 483 

connectivity rules (Sindhu et al., 2015). As shown in Figure 7, this study was able to produce 484 

a geometric river network for the entire study area. The example application demonstrated how 485 

the network could then be used for flow routing and assessment of the spread of oil pollution, 486 

which is important in the context of the Niger Delta. The river network data will enable future 487 

detailed source-pathway-receptor modelling to be carried out to determine the fate of oil spilt 488 

as a result of sabotage or operator error (Obida et al., 2018) and similar approaches would be 489 

more widely applicable for diverse forms of pollution in other countries. Moreover, many 490 

communities in the delta are not connected to the road network, with access only by boats using 491 

the river system. Hence, the river network data produced in this study holds considerable 492 

potential for assisting in planning more effective (river-based) transportation schemes to 493 

support the many isolated and vulnerable communities. There is a pressing need for such 494 

applications of river network data in many developing countries.  495 

4.3. Mapping accuracy assessment and comparison framework 496 

Both raster and vector methods of accuracy assessment indicate that the Sentinel-derived 497 

products outperform comparator data sets (Tables 2,3,4). Although the Sentinel-based method 498 

delineated a substantial proportion of the network, smaller channels were less well 499 

discriminated. The systematic methods used in this study for assessing the accuracy of the 500 

extracted river centre line ensures consistency. The superior performance of the Sentinel-based 501 

method can likely be explained by the higher spatial resolution of the source imagery compared 502 

to the comparator data sets and the better discrimination of water bodies achieved by SAR 503 

sensing compared to optical sensing (Sabel et al., 2012).  504 

Relatively little data on rivers has been contributed to OSM in the Niger Delta. Lack of OSM 505 

content in this region may be explained by the largely rural setting and lack of access to 506 
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computing hardware and the internet in this region, and a lack of awareness of open-source 507 

geospatial technologies like OSM. This accords with studies evaluating the quality of OSM 508 

data which revealed substantially greater amounts and detail of digitized data in urban areas 509 

compared to remote rural areas (Bittner, 2017; Graham et al., 2015; Neis et al., 2013). To 510 

overcome such limitations with user-generated data, the river network data extracted from 511 

Sentinel-1 could potentially be fed into OSM to provide better coverage for regions of the 512 

world that are less well mapped. 513 

Overall the open access policy for Sentinel-1 data, together with the improved temporal and 514 

spatial resolution, constitutes a step change in data supply for resource managers, particularly 515 

in developing countries where access to high quality spatial data is limited. The geometric river 516 

network that has been generated from Sentinel-1 data in this study opens up opportunities for 517 

sophisticated forms of spatial analysis for regions where spatial data is deficient or absent. 518 

Therefore, the outputs from this research such as the raster and vector data sets can potentially 519 

be made publicly available on sites such as OSM and provided to the Nigeria Hydrological 520 

Services Agency, at their request. 521 

5. Conclusion 522 

In this study we demonstrated the capability of using Sentinel-1 data to map a complex river 523 

network. This network was assessed for data completeness (length) and positional accuracy 524 

(overlap) against a manually digitised reference network. The same accuracy assessment 525 

process was conducted for networks derived from the USGS and ESA global water body 526 

products, citizen science derived OSM data, and an SRTM DEM. This analysis showed that 527 

the network derived from Sentinel-1 is more complete and positionally accurate than those 528 

derived from comparator products. Moreover, the topologically-structured geometric river 529 

network contains critical information such as flow direction and connectivity rules which 530 
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permit a range of applications that rely on calculations of flow routes through the system. The 531 

open access policy for Sentinel-1 data combined with the straightforward and systematic 532 

analytical methods developed in this study open up the opportunity of supplying river network 533 

data to the many other regions of the world where such data are out of date, deficient or absent. 534 

Consequently, this approach has the potential to generate a step change in the capability of 535 

natural resource managers, hydrologist, researchers and government agencies to enhance their 536 

workflow and raise their effectiveness in planning and management. 537 
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