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River network data are absent or out of date in most developing countries
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Technique can provide essential river network data for many countries
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Abstract

In many regions of the world, especially in developing countries, river network data are
outdated or completely absent, yet such information is critical for supporting important
functions such as flood mitigation efforts, land use and transportation mpdaremd the
management of water resources. In this studyw method was developed for delineating
river networks usingsentinell imagery. Unsupervised classification was applied to multi
temporalSentinell data to discriminate water bodies from othemd covertypesthen the
outputs were combined to generate a single persistent water bodies product. A thinning
algorithm was then used to delineate river centre lines which were converted into vector
features and built into a topologically structured getsiia network. The complex river system

of the Niger Delta was used to compare the performance of the Sduatseel method against
alternative feely available watéody products from USGS, ESA af@penStredilap and a

river network derived from a SRTM DENFrom both rastelbbased and vectdrased accuracy
assessments it was found that the Senbiaskd river network products were superior to the
comparator data sets by a substantial margin.ré@stinggeometric river networkvas used

to performflow routing analysis which is important for a variety of environmental management
and planning applications. The approach developed in this study holds considerable potential
for generating up to date, detailed river network data for the many cougltkesly where

such data are deficient.

Key words

Sentinell, image processing, river delineation, large scale mapping, data comparison,

geometric network
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1. Introduction

Rivers aramportantresources that sustasnsubstantial proportioof thew o r [pdpélation,
through the vital ecosystems services they pro{Zeag et al 2015) Determining thespatial
and temporal dynamics of surface wategmains challengingkhandelwal et al., 2017)
Globally, therehasbeen increased need for monitoring natural wiasourcesn response to
changingclimate and pollution fromanthropogenisourcegHaddeland et al., 2014esource
managersneed efficient ways of monitoring watetetermining flow regimes, extent and
dischargeModellers andgcientistalike need hydrological information fdorecastingextreme
events such as floods, and accurate river netdat&to model the fate of pollutants in rivers
globally (Garneau et al., 2017; Zeng et al., 20H)wever,detailed maps of river netwak
do not exist for many developing countrasleven where previous surveys have taken place

they are oftersignificantly out of date, especially for dynamic systems such as deltas.

Remote sensing offeis low-cost and efficienalternative to grountbhased surves/for river
network delineationparticularly in light of recenimprovement in the temporal andspatial
resolutionof satellite datae.g. using frequent acquisitions from MOD{ghandelwal et al.,
2017) Optical remote sensing has beedely used foriver network delineationsing a range
of automatic and serautomatictechniquegsikdogan et al., 2017For examplelLandsat
data was used to delineatemplexbraided networlof the Brahmaputraiver which flows
through China, India and Bangladeshd a tidal river network in BenaBay, New Guinea
(Yang et al., 2014)The study revealetthat spectral mixture within pixels resulting frothe
spatial resolution of the imageryresultedin commission and omission errors in river
classification. Others have noted that this approach is swoitable for smaller rivers
(Domeneghetti et al., 2014; Ogilvie et al., 201A)en and Pavelsky (201%eveloped NAR
Width (North American River Widthyvhich uses Landsatlata in a software saitcalled

RivWidth todelineateandestimatehe width of rivers in North America&ddowever the model
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91 islargelyrestrictedto North Americadue to the input data and some aspefcthe algorithm

92 thatpreventst use inotherglobalregions

93 Water bodyextraction from optical imageryas also been achieved usmwifyerapproaches
94 Theseincluderegion growth and edge detectiandwater indices such abke Normalised
95 Difference Water Index (NDWIYIsikdogan et al., 2017; Zeng et al., 2019odified
96 Normalised Difference Water index (MNDW(Ogilvie et al., 2015; Yang et al., 2014)
97 Automated Water Extraction Index (AWE(Feyisa et al., 2014)and Land Surface Water
98 Index (LSWI)(Ogilvie et al., 2015)Isikdogan et al(2017)introduced th&RivaMap mapping
99 enginewhich isbasedon Landsat datand was used to delineate rivatsa continental scale
100 (North America) However,the output of RivaMap ian urstructuredvectornetwork which
101 canlimit itsapplicabilityin studies of hydrological flows-urthermoreall of the methodghat
102 are applied to optical data such as MODIS and Landsat, can be Ibyitddud coverwhich
103 restricts useable repeat image acquisitiand limits the ability to detect the persistemce

104 dynamicsof surface water bodies

105 Digital Elevation Models (DEMs) derived from different satellite missions have been widely
106 used for hydaulic studies hydrologic modelling and river network delineat{@iilgen, 2017;

107 Kumar et al., 2017)Commonly used DEMs include tl@huttle Radar TopograpghMission

108 (SRTM) 1 arc secondSRTM 3 arc secondndAdvanced Spaceborne Thermal Emission and
109 Reflection Radiomete(ASTER) 30m products(Vimal et al., 2012) Algorithms for river

110 network delineatiorsuch as the hydrological todls ArcGIS version 10, Arc Hydr@Kim et

111 al., 2015) TauDEM(Castronova and Goodall, 2014)ydroSHEDS (Lehner et al., 2008) and

112 GWD-LR (Yamazaki, 2014all use DEMs as input dafghan et al., 2014)This approachs

113 popular because important hydrological parameters such as river length, area, slope, flow
114  direction, accumulatiomaspect and watshed are@an beextractedfrom DEMs However,

115 because these methods use the direction of steepest decent for delitteatoamead to over
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estimation of river networlelementsin lowland and delta environmen{§&ilgen, 2017;
Isikdogan et al., 2017; Vimal et al., 201Rphman, et al (201@emonstratedh a study of the
delta region of Bangladesh that errsese proportional to degree of flatnegsaddition,some
researcherbave highlighted the inaccuraciesusing DEMsfor river delineatiorsuch as the
inability of the algorithms to consider mandesfeature¢Kumar et al., 2017)DEMscan also
containerroneouschanges in elevation in some areaserred to as sinksvhich result in
computational errors in flow direction and ambiguity in alignmenthefdelineatedriver

network(Kumar et al., 2017)

Airborne Light Detection and Ranging (RDAR) has beenapplied in stream network
delineation(Maderal et al., 2016)iDAR data provides height informatidinat has beensed

to characterise catchmentgenerate flow direction and delineativersin wide range of
landscapegLi & Wong, 2010) Waveletbased filtering techniqe curvature analysis, and
geodesic operationsaveall been previously applied toiDAR data for stream delineation
(Cho etal., 2011; Lashermes et al., 2007; Passalacqua et al.,l2002)er airborneLiDAR

data capturas expensive, spatially limited in application and requires significant time to
processthe large point clougHamadaet al., 2016)Hence, for thescale ofwhole fluvial
systems the coss associated withthe use of LDAR can be prohibitive, especially in

developing countries

Citizen sciencanitiatives such as OpenStrétap (OSM) also constitute genuinesource of
digital geographic datgHaklay, 2010) Suchweb mapping systems offer a step change in the
availability of important geographic data such as river netaoAs a result, data is now
accessible in a searchable and usable foramat the data quality can be as good as that of
national mapping agenci¢daklay, 2010) However,the quality of data from such sourades
contingent orthelevel of participatiorand the experience and knowledge of the contributors

(Haklay, 2010) with lower levels of mapping activity in the Global Soyittner, 2017;
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Graham et al., 2015particularly in rural areas, with little emphasis on natural features such

as rivers.

Given the above limitations in existing techniques and produets yemote sensing methods
are neededor repeatedlymapping river networkan a timely fashion particularly in
developing countriesSentinell SAR Cdataacquiredby the Europeaspace AgencyESA)
has the potentiab overcomethe identified limitations. The dual satelstéSentinels 1A and

B) launched in 2014 and 2016 offglobal coverage(Haas and Ban, 2017; Miranda et al.,
2016) with acombinedtemporal resolution of-6 days and spatial resolutiof 20m by5m
and ground sampling distano&10m (Ardhuin et al., 2017; Malenovsky et al., 2012; Veloso
et al., 2017) Utilizing these data capotentially enhance scientific studies requiring detailed

river networkdelineation in complex environments

Therefore, he aimof this studywas to develop @& effective method ofdelineatingriver
networksusingSentinell data The djectiveswere to:(a)investigae the potentiabf utilizing
a time series dbentinell imagedor accurateiver network déneation (b) compae Sentinel
1 outputswith existingriver network data set (c) build a completetopologically structured
geometriaiver networkdataset(d) demonstrathepotential ofthe network dataséty tracing

the movement gbollution froma point source everthroughthe fluvial system
2. Method
2.1 Study site

The Niger DeltgFigure 1)is the largestiver delta in Africa and the third largest in the world
(Kadafa, 2012; UNEP, 2011)t occupies an estimated 70,000 %im area and supports a
populationof 30 million people Information on the river network in the region is therefore
important because this can enable effective monitorinthahges in théistribution of this

highly dynamic fluvial system, and the resultamipacts onresources and threats to the
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population Since most of the population depend on fishing ewdr water for domestic

activities, detailed information nmothe river network is wal within the framework of

management and monitorig key resourced.ikewise, flooding is a common occurrence in

the Niger Delta which can have devastating effects on the population and infrasiitkéwre

WeiandBlackburn, 2018; NHSA, 2014However there is a paucity afigital spatial dat&or

the Niger Delta, and there is no national spatial data infrastructure (Anifowose et al., 2012;

Nwilo and Badejo, 2005Accurate and up to date data on the river network@rneededo

support the development @ibod mitigation shemes and appropriate land use strategies.

Furthermore,lt e  Ni ger Del t a i

extracton takes place (Anejionu et al2015). There is a long and welbcumented history of

oil pollution incidents in the region, with rivers among the worst affeet@dronments

S

t

he

region in

whi

therefore, river network data are crucial in employing pollution mitigation measures (Obida et

al, 2019. In particular there is a pressing need for a detailed topololgicdituctured river

network dataset for use in modelling the dispersion and fatide oil in the Niger Deltand

its impact on the environment and human health.
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181 Fig.1l. The study area, the Niger Delta. Inset map shows the location of the Niger Delta in

182 relation the drainage basin that supplies water and sediment to the delta.

183 2.2Methodological Framework

184 In this study, multtemporalSentinell SAR Cwereused for both rastdsasedand vector
185 basedriver channel delineation. Raster chann&lsre delineated using classification
186 techniques and thinning algorithm&re appliedto generatevector dataBoth the raster and
187 vectorriver delineationdrom Sentinell were compaed to existingriver dataproductsby
188 performing accuracy assessments relative to reference river channéletatark topology
189 and attributionwerethen addedo the Sentineterived rivers t@allow more complex network

190 analysis. The methodological framework is shown in Figure
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Fig.2. Methodological framework foaccuracyassessmerandriver network extractiorased

on the different data sources

2.3. SourceData

2.3.1 Sentinell data

The Sentinell dataweresourced free of chardgeom the ESA Copernicus Open Access Hub
Here we used the Interferometric Wigeath moe datg the predefined mode for ovand
applications. The Level Ground Rang®etected product typwas usedwhich has been
detected, multlooked and projected to ground range using an Earth ellipsoid rf\éeleso
et al., 2017)We used the epolarised VVdatabecause noise restricts the use of déida as
water hasa lower radarcross section in cross polarization than irpotarized channels (HH

or VV) (Bolanos et al., 2016pual polarisd HH+HV was not available for the study area.
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The data hae a spatial resolution of 5m by 20m with a growsaimpling distance of 10m

(Imperatore et al., 2017)

2.3.2 Comparator data

TheLandsat global water bodies produas the resulbf acollaboration betweetihe United
States Geological Survey (USG&)d University of MarylandThis raster dataseepreserd
persistent global surfageaterbodies over the 206012 time periodandis thehighestspatial
resolution product availabggobally. ESAglobal water cover dat#erived from Envisat ASAR
and MERIS data at 300m resolution over the period ZII®H were also used
OpenStredtlap (OSM)vectordata verealso used for comparative purpsseinally, ariver
networkthat wederived froml arc secon&RTM datamethod described i2.5.2below) was
alsoused. TheSRTM dataare available globally andvere sourced from the USGS Earth

Explorerplatform

2.4 Rasterbasedanalysis

2.4.1 Sentinell data processingand analysis

Image preprocessing routines were performed in the Sentinel Application Platform (SNAP).
Geometric correction was carried out by the initial application of orbital files to correct orbit
vectors(Zhang et al., 2016)RangeDoppler Terrain Correction was applied to each image for
accurate geocoding, using the 3sgs®ndSRTM DEM, thus accounting for variations in local
elevations(Veloso et al., 2017)Multi-temporal image coegistration waghen carried out,
since the study involved apghtion of multitemporal dataconsisting of the 14 image
available for the study sitacquired between May 2015 addnuary 201,7using he first
available imagasthe maste(Sowter et al., 2016)Radiometric correction was applied to the

images by calibrating the data to sigma nought, which is the backscatter codffftszatand
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Balaji, 2017) To reduce speckle in the SAR data, the refined Lee Sigma speckle filter was

applied(Fu et al., 2017; Haas and Ban, 2017)

Unsupervised classification was used to distinglostweenwater and landn the multi-
temporal Sentinell data (Ogilvie et al., 2015)as this performedbetter than supervised
classification and thresholding in tlusntext A K-means unsupervised classification approach
was applied to the data in SNARain 2010) Since water has a distinctive respoims€i band
SAR signals, water bodiewere partitioned into & outputclassas a result of the neans

procedure

Following classificationthe outputs were combined into a singieagein ArcMap 10.4with

pixel values ranging from-14 based on a count of the number of times each pixel was
classified as watesicross the time series of imagghandelwal et al., 2017)This was to
differentiate between persistent and ephemeral water bodies, partiduiatighigh tides and

floods (Rahman & Thakur, 2017)n the combinedimage, a valueof 1 indicates a low
probability of the pixel being persistentvater bodywhile pixels withavalueof 14 indicates

a high probability of the pixel keing a persistent water bodgeference datan the locations

of permanent river channelgerecollected by visual interpretation 8fcGIS World Imagery

(Digital Globe GeoEyd images from 2018 2017 at 0.5m resolution)Jsing the reference

data aroptimumthresholdwas identifiedfor the number of times each pixel was classified as
water in order todelineaé the river network most effectivelyThis was determined by
incrementally increasing (from 1 to 14) the persistence value required for classifying a pixel as
a permanent water body, and for each increment, the output water body map was tested for
accuracy against the reference data set.dfmsal ysi s showed that users
water body map increased substantially as the required level of persistence increased, up to a
value of 12 where it reached a plateau of 89%. Hence, all pixels with persistence values of 12

and above weresed to map permanent water bodies in the study area.
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2.4.2 Raster-based @&curacy assessment

High-resolution Google Imageryacquired in 2018yasvisudly evaluated in order to generate
reference dat@Feyisa et al., 2014)A total of 700reference pointsvere captured through
6heads up850dwhigh were zocated in rivermnd 350in other land cover types.

The reference data were then compared to the #laased river networks generated frime

Sentinell, USGS and ESAdata by computing gor matrces . Subsequentl vy,

producer 0s, overal/l a ¢ c u rcalaulatedéelie Del Alnkeida p a

Furtado et al., 2016; Feyisa et al., 2014)

2.5 Vectorbased analysis

25.1 River network extraction

Here we firstly applied a rastbased centrerie extraction method using thart tool in the
Spatial Analyst gtension of ArcGIS 10.4n theriver rastergenerated fronthe Sentineil,
USGS and ESA data se®econdly, we appd the raster to polylineol in ArcGISto convert
the thinnedcentre pixels ta seriesof vectorlines The rationale of reducing variable river
widths to centre pixels andultsequently to lines is to develop a network moaklere

connectivity isthe most important property

2 5.2 River extraction from the SRTM 1 arc secondDEM

Methods of extracting rivethanneldrom DEMs are well establisheahd have been applied
at a variety of scalegKhan et al., 2014; Kumar et al., 20Mimal et al., 2012)Here we used
the hydrological toolsetn ArcGIS 10.4to extractthe river network fromthe SRTM 1 arc

secondDEM.
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2.5.3 Vector-based accuracy assessment

An independentiver networkdatasetcovering ariver length of 800knwithin the stuly site,
wascaptured t hr ough ofbigheemausonAuc@l8 Warld knagery This n g
generate vector network of river centre liné&s use as reference daléhesereference data
were then usetb assess the accuracy of thextor networks derived froi@entinell and the
comparatordata Among thecomparatordatg the OSM and SRTMderived network data
contained river centre lines whichuld directly be compared to the reference detarder to
facilitate a vectobasedaccuracy assessment of th8A and USGS data, thesssterbased

river networkswere thinned and converted to polylines.

The vector river networks derived froBentinell andcomparatodata were assessed fata
completeness (length) and positional accuracy (overdag@inst themanually digitised
reference network (Li and Wong, 2010; Hamada et al., 201@he percentage ata
completeness wasalculatedbased on the stream orders in the network, from sritairder
streams to larger'Border streams. In terms of the positional accuracy, 3 diffesamiple
sections of thenetworkwere assessdaly generatindlOm, 20m and 30m buffe@round the
reference networkThe percentage aflata from theSentinell andcomparatordatanetworks
that fellwithin each ofthe bufferswas used to measure the spatial overlap with the reference

data and thereby indicate positional accur@gyodchild &and Hunter, 1997)
2.5.4Building river network topology and attributes

Most river networksderived from remote sensirgge devoid of topological properties and
connectivity rules such as edgendjunctions meaning thatonnectivity,flow direction, and
flow ratecamot be derived Building a geometriciver network isimportant toenable is use

in arange of applications, including hydrological modell{igang, 2011)Based on the results

of the vectotbased accuracy assessment3bkatinell river centre line product was selected
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for building ageometriaiver network.Initially, the network was clean@&a ArcMapby closing
gaps to ensure network connectiviBaps<20m were automatically closed by the software
with the few remaining larger gajieingclosed manually to ensure complete connectivity.
Consequentlythe ArcGIS geometric network toolbox was ugedbuild a topologically
structurednetwork. In amanually digitised networkhe flow direction isdetermined bythe
direction of digitizationas recorded by the softwarélowever, sinceour network was
generated from image dateere was no direction of digitizatiphencewe used théset flow

directiordtoolin A r ¢ G hgedraedric network tobbx.

25.5 Application of the river network for tracing the movement of a point source

pollution event

To demonstrate thpotentialutility of the delineated river network and tlagributed topology
parameters such as network connectivity #od direction, an example application was
performed. This involves using the geometric network analysis tool to trace the potential
pathwayof oil released from a spiWhich enters the rivenetwork and movedownstream

We usedhe example of Bnowneventwhich occurred on 2B April 2012, where 19,350 litres

of crude oil verespilt from a sabotage2é-inch pipeline inthe Nembe LGA of Bayelsa state

The location of tis event was recorded adatabase maintained by the Nigeridational Oil

Spill Detection and Response Ager{bytps://oilspillmonitor.ng/)
3. Results

3.1 Rasterbased Analysis

3.11 Raster river network derived from Sentinel1

Figure3 shows thédinaryland coverclassificatiors of the 14 Sentinell imagescovering the
periodMay 2015 to Jamary 2017 The images show a high degree of visual similarityut

there aredifferencesespecially in thesouthern part of thetudy areawhich areattributable to
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322 the different prevailing hydrological conditiofe.g. river discharge or tidal stats)the time
323 of imagecapture The kmeans unsupervised classification appears to effectively distinguish

324 betweerwaterand other land cover types

() <" [28May2015| (2) <7 BLL = 20 A 2015

. §6Dec2015 (g) . . " 23 Jan 2016| (9) ~ - ¥ 11 Mar2016|(10y<~_ |4 April 2016
; T(‘) \\J = _,(_) .ﬂ’\ i (10? N ‘Jp 4

325

326 Fig.3 Binary land coveclassificatiors of the Sentinell image time series

327 Figure4 showsthe outputs ofthe Sentinell time seriescombined into a single image with
328 eachpixel placed into one of thremategoriedased on a count of the number of tinfepixel
329 was classified as watéthe persistencePixels with lower value§.e. in the 111 category)
330 represenephemeralvater bodies, whilst pixelsvith higher valueg12-14 categorydenote

331 permanentiver channels

Pagel6 of 39



332

333

334

335

336

337

338

339

340

341

342

343

344

Pixel Value

0 (Land)
1- 11 (Ephemeral water bodies)

I 12 - 14 (Permanent water bodies)

Fig.4. Combined producfrom the Sentinell time series with each pixel placed into one of

threecategories based on a count of the number of times the pixel was classified as water.

3.12 Raster-based accuracy assessment

Figure5 showsa comparisorof the ESA and USG®ater body productwith the Sentinel
derived magor a small sample arel shows the degree which raster resolution can impact
uponriver network delineation and potential to further determine the quality of extracted vector
data.Table1 showstheresults of the accuracy assessment of the rhsted river networks
derived fromthe Sentinell, USGS and ESAlatasets. Theoverall accuracy of the river
network derivedirom Sentinell was muchhigherthan theUSGSand ESAproducts The

u s eacdusacy for water bodies was consistently higher that than the pré&daceuracy
which indicated low false positigeacross all three data sourcesaddition, botlthe USGS

and ESAdata hadnuchl ower pr oducer 06 Sentnelkcderiveddataevisicht h an
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345 impliesanunderrepresentationf waterin the existing product$&JSGS and ESA data téow
346 Kappa coefficierd while that for the Sentinell-derived product was much higher and

347 suggestd thatclassification accuracy was better thand@mn occurrence.

A) Sentinel 1 }N\
B) USGS
C) ESA
Legend
- Water pixels 0 1 Km
348 | B |

349 Fig.5. Comparison of &racted raster data sets froA) Sentinell, andcomparatodatg B)

350 USGS and CESA Blue pixels indicate water.

351
352

353
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354 Tablel
355 Image based classification accuradmsrasterbased river networks derived frdaentinel

356 1, USGS and ESAlata.

Accuracy metric Sentinetl USGS ESA
Overall accuracy (%) 76 69 60
Produceros 61 38 21
User 6s acct 89 100 78
Kappa coefficient 0.52 0.38 0.20

357

358 3.2 Vectorbased analysis

359 3.21 River network extraction from the Sentinekderived river raster.

360 Figure 6shows the effectiveness of the thinning algorithm used to generate the river centreline
361 vector data from the raster map. It also shows how isolated water bodies that are separated from
362 the river system are not included in the vector data as the thinigimgtam emphasises the

363 producton of a linear networkFigure7 shows the extracted centre line representation of the
364 river networkfor the entireNiger Delta derived fromSentinell data The figure reveals a

365 classic deltaic drainageatternwith multiple outlets into the Atlantic Ocealhis patternis

366 unlike a typical dendritic hydrologicalatchmentwith all tributaries draining into one main

367 channel then into a larger body of wateflere we have a complex network of distributary

368 channeldypical of deltaic systems.
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369

370 Fig.6. River centrénes overlaid on the raster river data produced fBentinell data. Inset
371 maps A and B highlight the detail of thraster thinning andiver centréine extraction

372 processs

373
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