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Abstract

We show that the noncommutative Central Limit Theorem of Speicher can be adapted to produce
the Gaussian statistics associated to Coxeter groups of type B, in the sense of Bożejko, Ejsmont,
and Hasebe. Viewed through the lens of central limits, the passage from q-Gaussian statistics,
associated with symmetric groups, to the Gaussian statistics associated with Coxeter groups of
type B is precisely the passage from a sequence of independent elements that pairwise commute
or anticommute, to a coupled pair of such sequences. The results pave the way for the transfer of
known results from the bosonic/fermionic settings to such broader contexts.

1. Introduction

Noncommutative probability is broadly concerned with the (noncommutative) distributions of
objects arising from algebraic or operator algebraic contexts. Outside of the rich setting of quantum
probability (see e.g. [Mey13]) and the celebrated free probability of Voiculescu [VDN92], there
exists a number of noncommutative probabilistic frameworks, such as the ‘q-deformed’ probability
[BS91, Zag92, BKS97], that mirror to varying extents the central ideas of classical probability
theory. Despite their seemingly specialist nature, these exhibit far-reaching connections to other
areas of pure and applied mathematics, including combinatorics, q-series, and physics (see e.g.
[Bli12] and the references therein) and are therefore of broader mathematical interest. A recent
addition to this body of work is the generalized Gaussian process arising from Coxeter groups of
type B, introduced by Bożejko, Ejsmont, and Hasebe in [BEH15].

While quantum probability is grounded in physical reality through its ties to the bosonic/fermionic
frameworks, the free probability naturally captures the scaling limits of large random matrices (see
e.g. [Bia03]), and the q-deformed probability can be traced back to questions in quantum optics
(see the review article [Dod02]), the idea of a generalized Gaussian process arising from Coxeter
groups of type B may, at first sight, appear significantly more abstract and perhaps also farther
removed from classical probabilistic intuition.

On the contrary, we show that this generalized Gaussian process naturally occurs in systems of
‘mixed spins’. Namely, through a new construction that draws on Speicher’s noncommutative take
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on the classical Central Limit Theorem [Spe92], the noncommutative Gaussian distribution arising
from Coxeter groups of type B is the central limit for ensembles of ‘independent’ elements that pair-
wise commute or anticommute. In this sense, similarly to [BS91, Spe92] and [Bli12, Bli14], these
generalized Gaussian statistics are a mixture of bosonic and fermionic statistics. Furthermore, under
the lens of the Central Limit Theorem, the passage from q-Gaussian statistics, associated with sym-
metric groups (in the sense made clear in the following section), to the Gaussian statistics associated
with Coxeter groups of type B is precisely the passage from a sequence of independent elements
that pairwise commute or anticommute, to a coupled pair of such sequences. The construction is
surprisingly elegant and paves the way to transferring known results from the bosonic/fermionic
settings to the case at hand.

Prior to formulating our results, we begin by outlining the construction of the Gaussian statistics
of ‘type B’ and of a prototypical noncommutative Central Limit Theorem.

1.1. Noncommutative Probability and the Type B Gaussian Statistics

The results in this paper take place in a noncommutative probability space (A, ϕ). The latter is
formed by a unital ∗-algebra A, whose elements are to be interpreted as ‘noncommutative random
variables’, and a state ϕ onA (that is a linear functional onA satisfying ϕ(a∗a) ≥ 0 for all a ∈ A and
ϕ(1) = 1), playing the role of classical expectation. The distribution of a noncommutative random
variable a ∈ A is encoded by its mixed moments, i.e. expressions of the form ϕ(aε(1) . . . aε(k)) for
all k ∈ N and ε(1), . . . , ε(k) ∈ {1, ∗}. The distribution of a self-adjoint element a = a∗ is encoded
by its moment sequence (ϕ(ak))k∈N.

The type B Gaussian elements of [BEH15] ‘live’ in the algebra of bounded linear operators on a
deformed Fock space. We briefly outline their construction and its context. Recall that the Coxeter
group of type B (also known as hyperoctahedral group) of degree n, denoted by Σ(n), is generated
by the elements π0, π1, . . . , πn−1 subject to the defining relations

π2
i = 1 for 0 ≤ i ≤ n− 1, πiπj = πjπi for 0 ≤ i, j ≤ n− 1 s.t. |i− j| > 1,

π0π1π0π1 = π1π0π1π0, πiπi+1πi = πi+1πiπi+1 for 1 ≤ i ≤ n− 2.

Equivalently, Σ(n) is the semidirect product S(n) n Zn2 for the obvious action of the symmetric
group S(n) on the group Zn2 , or the wreath product Z2 o S(n) for the natural action of S(n) on the
set [n] := {1, . . . , n}. More concretely, setting [n]± := {±1, · · · ,±n}, Σ(n) is the subgroup of the
permutation group of [n]± consisting of those elements that commute with the permutation τ given
by inversion k 7→ −k (k ∈ [n]±). As generators of Σ(n), one may now take π0 to be the transposition
(−1, 1) and, for 1 ≤ i ≤ n− 1, πi to be the product of transpositions (i, i+ 1)(−i,−i− 1). For each
element σ of Σ(n) there is a unique non-negative integer k = k(σ) such that σ = πi1 · · ·πik where
0 ≤ i1, · · · , ik ≤ n− 1 and σ cannot be expressed as such a composition of less than k generators.
Moreover the following quantities do not depend on the choice of such minimal representation (see
[BS94], Theorem 2.1):

`0(σ) := #
{
p ∈ {1, . . . , k(σ)} | ip = 0

}
and `(σ) := #

{
p ∈ {1, . . . , k(σ)} | ip 6= 0

}
.

To view the symmetric group S(n) as a subgroup of Σ(n), identify λ ∈ S(n) with the element

λ̂ ∈ Σ(n) defined by

λ̂(i) :=

{
λ(i) i ∈ {1, · · · , n}
−λ(−i) i ∈ {−1, · · · ,−n}

.
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Thus, for 1 ≤ i ≤ n− 1, πi = λ̂ where λ is the transposition (i, i+ 1).
Next, let H be a complex separable Hilbert space and consider an involutive unitary operator

Π0 on H so that Π0 is self-adjoint and (Π0)2 = IH . Then, for each n ∈ N, the group Σ(n) acts
unitarily on the Hilbert space H⊗n as follows:

Uπ0
:= Π0 ⊗ I⊗(n−1)

H and, for λ ∈ S(n), Uλ̂(x1 ⊗ · · · ⊗ xn) := xλ(1) ⊗ · · · ⊗ xλ(n).

Denote by Ffin(H) the algebraic full Fock space, namely, the algebraic direct sum
⊕

n≥0H
⊗n with

H⊗0 := C. For α, q ∈ [−1, 1], define the symmetrization operator on Ffin(H) by Pα,q :=
⊕

n≥0 P
(n)
α,q ,

where P
(0)
α,q := IC and, for n ∈ N,

P (n)
α,q :=

∑
σ∈Σ(n)

α`0(σ)q`(σ)Uσ.

Then Pα,q is positive semi-definite, i.e.

〈ξ, Pα,qξ〉 =
∑
n≥0

〈ξn, P (n)
α,q ξn〉 ≥ 0 for ξ = (ξn) ∈ Ffin(H),

with strict inequality for ξ 6= 0 if |α|, |q| < 1 ([BS94], Theorem 2.1). Therefore,

〈ζ, η〉α,q :=
〈
ζ, Pα,qη

〉
.

is an inner product on Ffin(H) for α, q ∈ (−1, 1). The completion of the pre-Hilbert space
(Ffin(H), 〈 , 〉α,q) is denoted Fα,q(H) and termed the (α, q)-Fock space or Fock space of type B.

The Fock space of type B is a generalization of the q-Fock space of Bożejko and Speicher
[BS91], the latter identified with the case α = 0, for which many interesting probabilistic results
are known (see e.g. [Ans01, Bia97, DM03, Kem05, ABBL10, DNN13, GS14]). In the setting of
Fock spaces, the relevant probabilistic aspects manifest through a family of operators that play the
role of ‘noncommutative Gaussian’ random variables. Specifically, for the Fock space of type B, the
operators of interest are the following.

Fix α and q in the interval (−1, 1). The (α, q)-creation operator with test vector x ∈ H is defined
first on the dense subspace Ffin(H) by

b∗α,q(x)ξ := (ξn ⊗ x)n = (0, ξ0x, ξ1 ⊗ x, · · · ) for ξ = (ξn) ∈ Ffin(H),

and then extended to an operator on Fα,q(H) by continuity. (Its boundedness is proved in [BEH15],
Theorem 2.9.) Its adjoint is called the (α, q)-annihilation operator with test vector x and denoted
bα,q(x). The (α, q)-Gaussian operators are then defined by Gα,q(x) := bα,q(x)+b∗α,q(x), generalizing
the q-Gaussian operators of [BS91]. Use of the right creation operator (as opposed to the more

usual left creation) gives more transparent compatibility with the symmetrizing operators P
(n)
α,q and

the subgroup embeddings Σ(n− 1)→ Σ(n).
The distribution µα,q,x of the (α, q)-Gaussian Gα,q(x) in the vacuum state T 7→ 〈Ω, TΩ〉, where

Ω := (1, 0, 0, · · · ) ∈ Fα,q(H), is the orthogonalizing probability measure of the q-Meixner–Pollaczek
polynomials MPα〈x,Π0x〉,q ([BEH15], Theorem 3.3). As previously noted, the case (α = 0, q) reduces
to the q-Gaussian measure, while (α, q = 0) recovers the symmetric free Meixner laws [SY00, Ans01].

The above operators satisfy the (α, q)-commutation relations ([BEH15], Proposition 2.6):

bα,q(x)b∗α,q(y)− qb∗α,q(y)bα,q(x) = 〈x, y〉I + α〈x,Π0y〉q2N (x, y ∈ H), (1)
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in which I denotes the identity operator on Fα,q(H) and q2N is the contraction operator on Fα,q(H)
given by ξ = (ξn) 7→ (q2nξn).

Corresponding Gaussian processes arise by fixing a conjugation on H, so that H is the com-
plexification of a real Hilbert space HR. One way of doing this is by fixing an orthonormal basis
(en) for H and letting HR be the closed real-linear span of the basis; the conjugation is then given
by
∑
znen 7→

∑
znen.

We now fix a conjugation x 7→ x on H and set HR := {x ∈ H : x = x}. The corresponding
type B Gaussian process,

(
Gα,q(x) = bα,q(x) + b∗α,q(x)

)
x∈HR

, has moments in the vacuum state
expressible via a Wick-type formula

〈Ω, Gα,q(x2n−1) . . . Gα,q(x1)Ω〉α,q = 0 (2)

〈Ω, Gα,q(x2n) . . . Gα,q(x1)Ω〉α,q =∑
(π,f)∈PB

2 (2n)

αNB(π,f) qCr(π)+2CNB(π,f)
∏

(i,j)∈π
f(i,j)=1

〈xi, xj〉
∏

(i,j)∈π
f(i,j)=−1

〈xi,Π0 xj〉 (3)

where x1, . . . , xn ∈ HR, PB2 (2n) denotes the set of pair partitions of type B on {1, . . . , 2n}, NB(π, f)
is the number of negative blocks of (π, f), and Cr and CNB are the crossing and asymmetric nesting
statistics defined further in this paper (see Section 2).

1.2. Noncommutative Central Limit Theorems

Our starting observation is that the form of (3) is evocative: by appearing as a product of
covariances multiplied by a combinatorial statistic, the moments of the Gaussian operator of type
B hint at the existence of a (noncommutative) Central Limit Theorem, whose combinatorial proof
brings to the fore such pairwise structure.

Indeed, in [Spe92], Speicher showed that the q-Gaussian statistics (α = 0 case) arise from
a noncommutative Central Limit Theorem. Speicher’s central argument considers a sequence of
elements with ‘mixed spins’. In its simplest form, the theorem concerns a sequence of self-adjoint
elements (ai)i∈N of a noncommutative probability space (A, ϕ) that are zero mean (ϕ(ai) = 0),
unit variance (ϕ(a2

i ) = 1), are identically distributed or are subject to some uniform bounds on
the higher moments (see hypothesis H3 further on), are ‘independent’ (see hypothesis H4), and
pair-wise satisfy the commutation relations

aiaj = si,j ajai

where (si,j)i,j∈N is some prescribed sequence of elements of {−1, 1}. The central question is that
of the asymptotic distribution of the sums

ZN :=
1√
N

N∑
i=1

ai.

When all of the (ai)i∈N commute, i.e. s(i, j) = 1 for all i, j ∈ N, the above setting reduces to
the classical case; that is, ZN converges in distribution (equivalently, in moments) to a standard
Gaussian random variable:

lim
N→∞

ϕ(ZkN ) =

{
0, k odd,

(k − 1)!!, k even,

4



for all k ∈ N. More generally, given an arbitrary sequence of commutation coefficients (s(i, j))1≤i<j ,
the moments ϕ(ZkN ) may not converge as N →∞. To circumvent the pathological cases, Speicher
employed a ‘stochastic interpolation’ step, showing that if the commutation coefficients are drawn
i.i.d. at random with mean E(s(i, j)) = q, almost every sequence of commutation coefficients yields
a limit. Furthermore, this limit equals

lim
N→∞

ϕ(ZkN ) =

{
0, k odd,∑
π∈P2(k) q

Cr(π), k even,

in which the reader may recognize the moments of the standard q-Gaussian distribution of [BS91].
As such, Speicher’s theorem provides both an independent proof of the positivity of the q-commutation
relations (see e.g. [FB70, Zag92, BKS97] for some related work and historical notes) as well as a
useful method of transferring results from the bosonic/fermionic frameworks to the q-Gaussian
setting [Bia97, Kem05].

Some 20 years following the original result, Blitvić generalized Speicher’s theorem by showing
that, with some additional care, the commutation ‘spins’ can be extended to real-valued commu-
tation coefficients [Bli14]. The corresponding central limits are the (q, t)-Gaussian statistics (for
|q| < t), associated with the commutation relation

aq,t(x)a∗q,t(y)− qa∗q,t(y)aq,t(x) = 〈x, y〉tN (x, y ∈ H), (4)

where a∗q,t(x) and a∗q,t(x) now denote the creation and annihilation operators on the (q, t)-Fock
space of [Bli12]. This two-parameter family also includes the q-Gaussian statistics as a special case
(t = 1) and turns out to have connections to a wealth of objects in physics, combinatorics, q-series,
and other areas (see [Bli12]). The similarity between (1) and the above commutation relation (4)
has been observed in [BEH15], and extends down to the moment formulas. Indeed, the moments
of the (q, t)-Gaussian elements, presently denoted by G̃q,t(x), also draw on the combinatorics of
crossings and nestings in pair-partitions, as

〈Ω, G̃q,t(x2n−1) . . . G̃q,t(x1)Ω〉q,t = 0, (5)

〈Ω, G̃q,t(xn) . . . G̃q,t(x1)Ω〉q,t =
∑

π∈P2(2n)

qCr(π)tNest(π)
∏

(i,j)∈π

〈xi, xj〉. (6)

(See Section 2 for the relevant combinatorial definitions.) The apparent similarities between the
noncommutative processes in [Bli12] and [BEH15] raise the question of how these may be related.
As we now show, both arise from a noncommutative Central Limit Theorem, by generalizing the
central argument of [Spe92] in two very different directions.

1.3. Main Results

In the present article, we show that the theorem of Speicher [Spe92] can be adapted to recover the
Gaussian statistics of type B. Rather than generalizing at the level of the commutation coefficients
as in [Bli12], we retain the commuting/anticommuting structure of [Spe92] and instead obtain the
desired limits by passing to two (coupled) sequences of elements.

Main Hypotheses. Given a noncommutative probability space (A, ϕ), the main hypotheses for
two sequences (ai)i∈N and (bi)i∈N of self-adjoint elements of A are as follows:

(H1) (Vanishing means) For all i ∈ N, ϕ(ai) = ϕ(bi) = 0.
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(H2) (Fixed second moments) For all i ∈ N, ϕ(a2
i ) = ϕ(b2i ) = 1 and ϕ(aibi) = ρ ∈ (−1, 1).

(H3) (Uniform moment bounds) There exists a sequence (γn)n∈N in R+ such that for all n ∈ N,
i(1), . . . , i(n) ∈ N and c1,i(1) ∈ {ai(1), bi(1)}, . . . , cn,i(n) ∈ {ai(n), bi(n)}, we have∣∣∣∣∣∣ϕ

 n∏
j=1

cj,i(j)

∣∣∣∣∣∣ ≤ γn.
(H4) (“Independence”) ϕ factorizes over the naturally ordered products in {ai, bi}i∈N. That is,

denoting by Ai the unital ∗-subalgebra generated by {ai, bi} and letting gi ∈ Ai (i ∈ N), we
have

ϕ(gi(1) . . . gi(k)) = ϕ(gi(1)) . . . ϕ(gi(k)),

for all k ∈ N, whenever i(1) < i(2) < . . . < i(k).

(H5) (Commutation relations) There are sequences (si,j)i,j∈N and (ri,j)i,j∈N in {−1, 1} such that
for all i 6= j,

aiaj = si,j ajai, bibj = si,j bjbi, aibj = ri,j bjai.

Observe that the second part of the hypothesis (H2) is partially redundant. Indeed, by the
Cauchy-Schwarz inequality, the unit variances of the elements constrain the range of the parameter
ρ to the interval [−1, 1], as

|ρ| = |ϕ(aibi)| ≤
√
ϕ(aiai)ϕ(bibi) = 1.

The reasons for restricting the hypothesis to ρ ∈ (−1, 1) will become apparent shortly.
Compared to [Spe92], there are now two sequences of elements of A rather than one. Further-

more, we are interested in the asymptotic distribution of the sums

1√
N

N∑
i=1

ai + bi√
2

.

While ai + bi and aj + bj may neither commute nor anticommute, with a little care the proof
technique of [Spe92] remains applicable. We thus show the following.

Theorem 1. Let (A, ϕ) be a noncommutative probability space and fix q ∈ (−1, 1). Let (ai)i∈N
and (bi)i∈N be sequences from A that satisfy the Main Hypotheses with respect to commutation
coefficients (si,j)1≤i<j and (ri,j)1≤i<j drawn i.i.d. at random from {−1, 1}, with

E(si,j) = E(ri,j) = q. (7)

Set

SN :=
1√
N

N∑
i=1

ai + bi√
2

. (8)
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Then, almost surely,

lim
N→∞

ϕ(S2n−1
N ) = 0, (9)

lim
N→∞

ϕ(S2n
N ) =

∑
(π,f)∈PB

2 (2n)

ρNB(π,f) qCr(π)+2CNB(π,f). (10)

Returning to the setting of [BEH15], given a unit vector e ∈ H, a scalar α ∈ R, and a bounded
linear self-adjoint involution Π0 on H, letting ρ = α〈e,Π0e〉 in (9) and (10) recovers the moments
of Gα,q(e), the Gaussian operator of type B associated with e.

As previously observed, the unit variance hypothesis (H2) does not in itself preclude us from
considering the boundary cases |ρ| = 1. While (10) is not applicable when |ρ| = 1, as ai becomes
a scalar multiple of bi and the commutation coefficients r(i, j) and s(i, j) can no longer be drawn
independently of one another, the random variables ϕ(S2n

N ) nevertheless converge to a limit. The
case ρ = −1 gives rise to a degenerate Gaussian element with mean and variance zero, owing to the
fact that ai + bi = 0 (hence SN = 0), whereas ρ = 1 recovers the q-Gaussian limits with mean zero
and variance equal to 2, as (ai + bi)/

√
2 =
√

2 ai.
Since Π0 is a bounded linear self-adjoint involution on H, it follows that 〈e,Π0e〉 ∈ [−1, 1] for

any unit vector e ∈ H. Since, ρ must also take values in [−1, 1], one thus independently recovers
the fact that the type B Gaussian elements, Gα,q(x) (x ∈ H), are defined for α ∈ [−1, 1], resp.
α ∈ (−1, 1) in the strictly positive definite case.

Note that the choice of considering self-adjoint elements with prescribed covariances (H2) is
made in order to directly recover the type B Gaussian statistics. To provide asymptotic models
for the creation and annihilation operators on the Fock space of type B, one may instead take
ϕ(a∗i ai) = ϕ(b∗i bi) = 1, ϕ(aia

∗
i ) = ϕ(bib

∗
i ) = ϕ(a2

i ) = ϕ(b2i ) = ϕ(aibi) = ϕ(a∗i b
∗
i ) = ϕ(aib

∗
i ) = 0, and

ϕ(a∗i bi) = ρ ∈ (−1, 1) and consider the mixed moments limN→∞ ϕ(Sε1N . . . SεkN ) for all k ∈ N and
ε1, . . . , εk ∈ {1, ∗}. The given proof adapts easily to give these.

Theorem 1 can be generalized to a type B Gaussian process analogously to [Spe92, Bli14],
with a little additional care. Observe that by (3), depending on the choice of the self-adjoint
unitary operator Π0, the type B Gaussian elements associated to orthogonal test vectors need
not be orthogonal with respect to the vacuum state. For example, fixing an o.n. basis (en) of
H and letting Π0 transpose e1 with e2 while leaving the other basis vectors invariant, we have
ϕα,q(Gα,q(e1)Gα,q(e2)) = α. In order to obtain a noncommutative analogue of Brownian motions
in this setting, and, in particular, for ϕα,q(Gα,q(ei)Gα,q(ej)) = 〈ei, (I+αΠ0)ej〉 to vanish whenever
i 6= j, it suffices for the vectors (en) to be orthogonal and the operator Π0 to be diagonal with
respect to (en). For any N, k ∈ N, let

SN,k :=
1√
N

N∑
i=1

a
(k)
i + b

(k)
i√

2
, (11)

where, (a
(k)
i ) and (b

(k)
i ) are pairs of sequences that are uncorrelated in k, in the sense that for each

i, j ∈ N,

ϕ(a
(k)
i a

(k′)
j ) = ϕ(b

(k)
i a

(k′)
j ) = ϕ(b

(k)
i b

(k′)
j ) = 0 whenever k 6= k′,

and, for each k ∈ N, (a
(k)
i ) and (b

(k)
i ) satisfy the Main Hypotheses with covariance ρk = α〈ek,Π0ek〉.

We then recover the moments of the Gaussian process of type B. Namely, the reader may verify
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that for any choice of k and i(1), . . . , i(k) ∈ N,

lim
N→∞

ϕ(SN,i(1) . . . SN,i(k)) = ϕα,q(Gα,q(ei(1)) . . . Gα,q(ei(k))). (12)

Finally, one can construct matrices satisfying the Main Hypotheses with respect to a suitable
state, as follows. The result may be referred to as a Jordan-Wigner transform (see [CL93, Bia97,
Kem05, Bli14] for some related constructions), extended to accomodate additional moment hy-
potheses (H3) and the additional commutativity structure (H5).

Theorem 2. Fix |ρ| < 1, as well as the commutation coefficients {si,j}1≤i<j and {ri,j}i,j∈N.
Consider the Hilbert space C2, vector (1, 0) ∈ C2, and let (K, v) =

⊗
i∈N(C2, (1, 0)) be the infinite

tensor product of C2 with itself with respect to the constant stabilizing sequence given by (1, 0).
For any x ∈ {−1, 1}, let σx, γ, τ ∈ B(C2) be as follows:

σx =

[
1 0
0 x

]
, γ =

[
0 1
1 0

]
, τ =

[
ρ

√
1− ρ2√

1− ρ2 −ρ

]
.

Furthermore, for i = 1, 2 . . ., consider the following elements of B(K):

ζi = σs(1,i) ⊗ σs(2,i) ⊗ . . .⊗ σs(i−1,i) ⊗ γ ⊗ I ⊗ I ⊗ . . . ,
αi = I⊗(i−1) ⊗ γ ⊗ I ⊗ I ⊗ . . . ,
βi = σs(1,i)r(1,i) ⊗ . . .⊗ σs(i−1,i)r(i−1,i) ⊗ γ ⊗ σs(i+1,i)r(i+1,i) ⊗ σs(i+2,i)r(i+2,i) ⊗ . . . ,
ηi = I⊗(i−1) ⊗ τ ⊗ I ⊗ I ⊗ . . . ,
θi = I ⊗ I ⊗ . . . ,

where I denotes the identity on C2.
Let A := B(K⊗3) and let ϕ be the vector state on A corresponding to the vector v⊗3. Then,

the sequences (ai)i∈N and (bi)i∈N of elements of A given by

ai = ζi ⊗ αi ⊗ ηi (13)

bi = ζi ⊗ βi ⊗ θi (14)

satisfy the Main Hypotheses with respect to ϕ.

2. Combinatorial Objects

We briefly survey the objects that provide the combinatorial underpinnings of Theorem 1. Let
P(n) denote the collection of partitions of the set [n] = {1, . . . , n}. Given π ∈ P(n), elements of π
are referred to as the blocks of π. The size of a block is the cardinality of the underlying set. (E.g.
π = {{1, 2, 4}, {3}, {5}} ∈ P(5) is formed by three blocks, one of which has size three and two have
size one.)

Two vectors of indices will be declared equivalent if element repetitions occur at same locations
in both vectors, namely for (i(1), . . . , i(r)), (j(1), . . . , j(r)) ∈ [n]r,

(i(1), . . . , i(r)) ∼ (j(1), . . . , j(r)) ⇐⇒ for all 1 ≤ k1 < k2 ≤ r,
i(k1) = i(k2) iff j(k1) = j(k2). (15)
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1-1
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Figure 1: (a) A crossing of two blocks of a pair partition, (b) a nesting of two blocks of a pair partition, (c) an
‘asymmetric’ nesting (CNB) of two blocks of a type B pair partition.

The equivalence classes of [n]r under “∼” are in obvious correspondence with elements of P(r).
(E.g. (2, 2, 3, 2, 4) is in the equivalence class corresponding to π = {(1, 2, 4), (3), (5)}.)

We will be particularly interested in the collection P2(2n) of pair partitions (aka pairings) of
[2n], which are partitions whose blocks all have size two. It will be further convenient to represent
a pair partition as an ordered list of ordered pairs, that is, P2(2n) 3 π = {(w1, z1), . . . , (wn, zn)},
where wi < zi for i ∈ [n] and w1 < . . . < wn. A pair partition of type B (in the sense of [BEH15])
is a pair (π, f), with π ∈ P2(2n) (for some n ∈ N) and f : π → {−1, 1} a coloring of the blocks of
π.

The pair partitions of type B will appear with the following combinatorial refinements. For π =
{(w1, z1), . . . , (wn, zn)} ∈ P2(2n), pairs (wi, zi) and (wj , zj) are said to cross if wi < wj < zi < zj .
Let Cr(π) denote the number of pairs of blocks in π that cross, namely

Cr(π) := #{(wi, wj , zi, zj) | (wi, zi), (wj , zj) ∈ π with wi < wj < zi < zj}. (16)

Crossings are analogously defined for pair partitions of type B by ignoring the coloring of the blocks,
namely Cr(π, f) := Cr(π).

Analogously, for π = {(w1, z1), . . . , (wn, zn)} ∈ P2(2n), pairs (wi, zi) and (wj , zj) are said to
nest if wi < wj < zj < zi, and we let

Nest(π) := #{(wi, wj , zi, zj) | (wi, zi), (wj , zj) ∈ π with wi < wj < zj < zi}. (17)

Note that nestings are a natural combinatorial counterpart to crossings; for example, the two
combinatorial statistics are equidistributed, in the sense that∑

π∈P2(2n)

qCr(π) =
∑

π∈P2(2n)

qNest(π).

Nestings play a central role in [Bli14], arising as a consequence of the passage from commutation
signs to real-valued commutation coefficients. In the present case, when extended to pair partitions
of type B, the notion of a nesting ceases to be symmetric, depending instead of the coloring of the
blocks. Namely, let

CNB(π, f) := #{(wi, wj , zi, zj) | (wi, zi), (wj , zj) ∈ π with wi < wj < zj < zi

and f(wj , zj) = −1}. (18)

(In [BEH15], CNB stands for the number of pairs of “a covering block” and a “negative block”.)
Crossings and nestings in pair-partitions and pair partitions of Type B are illustrated in Figure 1 .
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3. The Proofs

Prior to proving the main theorems, several remarks are in order.

Remark 1. As si,j , ri,j ∈ {−1, 1}, the commutation relations are compatible with the ∗-structure
and the positivity of ϕ. In particular, the consistency relations (A), (B) and (C) of [Bli14] (see p.
1464 and p. 1469) are automatically met.

Remark 2. As s2
i,j = r2

i,j = 1, the moment-factorizing hypothesis (H4) above takes on a simpler
form when restricted to products whose underlying set partition (see Section 2) is a pair partition.
For instance, for the fourth moment ϕ(ajbja

2
i ) with i < j, the commutation relations and the

independence hypothesis yield

ϕ(ajbja
2
i ) = r2

i,js
2
i,jϕ(a2

i ajbj) = ϕ(a2
i )ϕ(ajbj).

More generally, for all ci, di ∈ {ai, bi} (i ∈ N) and distinct indices i(1), . . . , i(k) ∈ N, we have

ϕ(ci(1)di(1)ci(2)di(2) . . . ci(k)di(k)) = ϕ(ci(1)di(1))ϕ(ci(2)di(2)) . . . ϕ(ci(k)di(k)),

regardless of the ordering of i(1), . . . , i(k). In other words, ϕ factorizes over words indexed by pair
partitions regardless of the ordering of the pairs. (This is the analogue of Remark 2 of [Bli14].)

Proof of Theorem 1. The proof proceeds along analogous lines to [Spe92] (see also [Bli14]). Given
any k ∈ N, consider the kth moment ϕ(SkN ). By (8), expressing the product of sums as a sum of
products yields the identity

ϕ(SkN ) =
1

(2N)k/2

∑
i(1),...,i(k)∈[N ]

∑
c

ϕ
(
c(1, i(1)) . . . c(k, i(k))

)
, (19)

where the inner-most sum is over all

c(1, i(1)) ∈
{
ai(1), bi(1)

}
, . . . , c(k, i(k)) ∈

{
ai(k), bi(k)

}
. (20)

(Note that the heavier indexing notation, compared to [Spe92, Bli14] is due to the fact that we are
working with two generators.) Following [Spe92], in order to keep track of which of the elements
in the product arise from the same subalgebra, we consider the equivalence class of each k-tuple
(i(1), . . . , i(k)). Specifically,

ϕ(SkN ) =
∑

π∈P(k)

1

(2N)k/2

∑
i(1),...,i(k)∈[N ] s.t.

(i(1),...,i(k))∼π

∑
c

ϕ
(
c(1, i(1)) . . . c(k, i(k))

)
,

where we made use of the equivalence relation (15) to group together the noncommutative words
whose second indices are in the same equivalence class. (For example, ϕ(a5 b1 b5 b7) is indexed by
the quadruple (5, 1, 5, 7), which is in the equivalence class of the set partition π = {(1, 3), (2), (4)}.)

Applying the commutation relations (H5) and the moment-factorizing hypothesis (H4), any
expression of the form

ϕ
(
c(1, i(1)) . . . c(k, i(k))

)
(21)
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can now be factorized according to the blocks of the underlying set partition π. The hypothesis on
the vanishing of the means (H1) ensures that no partitions containing a singleton block contribute
to (19). (In the previous example, ϕ(a5 b1 b5 b7) = s5,1 ϕ(a5 b5)ϕ(b1)ϕ(b7) = 0.) Furthermore, a
standard counting argument in conjunction with the uniform bounds (H3) ensures that no partitions
containing a block of cardinality at least three contribute to limN→∞ ϕ(SkN ) (there being too few
such partitions compared to the normalizing factor Nk/2). It follows that

lim
N→∞

ϕ(S2n−1
N ) = 0,

while

lim
N→∞

ϕ(S2n
N )

= lim
N→∞

∑
π∈P2(2n)

1

2nNn

∑
i(1),...,i(2n)∈[N ] s.t.

(i(1),...,i(2n))∼π

∑
c

ϕ
(
c(1, i(1)) . . . c(2n, i(2n))

)
, (22)

where we emphasize that the only contributing set partitions are now the pair partitions.
When π ∈ P2(2n), as per Remark 2, (21) can be expressed as a product of commutation coef-

ficients times a product of (mixed) second moments. Furthermore, it is convenient to notationally
distinguish the cases where the second moments arising from the factorization are mixed moments,
of the form ϕ(aibi) and ϕ(biai), as opposed to ϕ(aiai) and ϕ(bibi). This distinction induces a type
B pair partition (see Section 2), whose negative blocks are those indexing moments of the former
form, while the positive blocks are indexing the moments of the latter. Hence, (22) can be expressed
as

lim
N→∞

ϕ(S2n
N )

= lim
N→∞

∑
(π,f)∈PB

2 (2n)

1

2nNn

∑
i(1),...,i(2n)∈[N ] s.t.

(i(1),...,i(2n))∼π

∑
c respecting f

ϕ
(
c(1, i(1)) . . . c(2n, i(2n))

)
, (23)

where the inner-most sum is over all c(1, i(1)) ∈
{
ai(1), bi(1)

}
, . . . , c(2n, i(2n)) ∈

{
ai(2n), bi(2n)

}
such that for every (w, z) ∈ π, c(w, i(w)) 6= c(z, i(w)) if f(z, w) = −1 and c(w, i(w)) = c(z, i(w)) if
f(z, w) = 1. (Recall that i(w) = i(z) for all (z, w) ∈ π.)

Since by (H2), ϕ(a2
i ) = ϕ(b2i ) = 1 and ϕ(aibi) = ρ, it follows that for all indices i(1), . . . , i(k) ∈ N

in the equivalence class of a given (π, f) ∈ PB2 (2n),∑
c respecting f

ϕ
(
c(1, i(1)) . . . c(2n, i(2n))

)
= θc(1,i(1))...c(2n,i(2n)) ρ

NB(π,f)2n, (24)

where θc(1,i(1))...c(2n,i(2n)) is the product of the commutation coefficients incurred by commuting the
word c(1, i(1)) . . . c(2n, i(2n)) into naturally ordered form (see (H4) as well as Remark 2), while the
factor 2n accounts for the fact that there are two choices for each positive block (namely, aiai and
bibi) and similarly two choices for each negative block (that is, aibi and biai).

To fully recover (10), it remains to characterize the family θc(1,i(1))...c(2n,i(2n)). Since π ∈ P2(2n),
it suffices to consider how two pairs of elements commute. First, consider moments of the form
ϕ(cicjdidj), that is, where the indices in the product are in the equivalence class of the pair-partition
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{(1, 3), (2, 4)} (two pairs that cross). Letting i 6= j, by parts (H2), (H4), and (H5) of the Main
Hypotheses,

ϕ(aiajaiaj) = si,j = ϕ(bibjbibj)

ϕ(aiajbibj) = ri,j ρ
2 = ϕ(bibjaiaj)

ϕ(aiajbiaj) = ri,j ρ = ϕ(bibjaibj)

ϕ(aiajaibj) = si,j ρ = ϕ(bibjbiaj)

ϕ(aibjaiaj) = ri,j ρ = ϕ(biajbibj)

ϕ(aibjbiaj) = si,j ρ
2 = ϕ(biajaibj)

ϕ(aibjbibj) = si,j ρ = ϕ(biajaiaj)

ϕ(aibjaibj) = ri,j = ϕ(biajbiaj).

Similarly, for the moments of the form ϕ(cicjdjdi) where the indices in the product are in the
equivalence class of the pair-partition {(1, 4), (2, 3)} (two pairs that nest), we obtain

ϕ(aia
2
jai) = s2

i,j = ϕ(bib
2
jbi)

ϕ(aiajbjbi) = si,jri,j ρ
2 = ϕ(bibjajai)

ϕ(aiajbjai) = si,jri,j ρ = ϕ(bibjajbi)

ϕ(aia
2
jbi) = r2

i,j ρ = ϕ(bib
2
jai)

ϕ(aibjajai) = si,jri,j ρ = ϕ(biajbjbi)

ϕ(aib
2
jai) = r2

i,j = ϕ(bia
2
jbi)

ϕ(aib
2
jbi) = s2

i,j ρ = ϕ(bia
2
jai)

ϕ(aibjajbi) = si,jri,jρ
2 = ϕ(biajbjai).

Recalling that the commutation coefficients are drawn at random, consider E(θc(1,i(1))...c(2n,i(2n))).
By assumption, E(ri,j) = E(si,j) = q and the distinct commutation coefficients are independent.
Hence, each pair of crossing blocks in the underlying pair partition π, i.e. every pair of blocks
(w`, z`), (wm, zm) ∈ π s.t. w` < wm < z` < zm, contributes a factor of q to E(θc(1,i(1))...c(2n,i(2n))),
arising as either E(si,j) or E(ri,j). Furthermore, since E(s2

i,j) = E(r2
i,j) = 1 and E(si,jri,j) = q2, only

certain nesting pairs contribute nontrivially, namely, those giving rise to terms of the form si,jri,j .
Specifically, each pair of nesting blocks in the underlying pair partition π, i.e. (w`, z`), (wm, zm) ∈ π
s.t. w` < wm < zm < z`, either contributes a factor of 1, if the terms of the product indexed by
the inner block are (ai(wm), ai(wm)) or (bi(wm), bi(wm)), or a factor of q2, if the terms of the product
indexed by the inner block are (ai(wm), bi(wm)) or (bi(wm), ai(wm)). In other words, it is only those
nestings whose inner block (seen as belonging to a partition of type B) is negative which contribute
a non-trivial factor, and that factor is q2. Hence,

E(θc(1,i(1))...c(2n,i(2n))) = qCr(π)+2CNB(π,f),

where we recall that CNB(π, f) := {(w`, z`), (wm, zm) ∈ π | w` < wm < zm < z`, f(wm, zm) = −1}
(see Section 2).

We showed that (10) holds on average. To show that the limit exists and is as stated for a.e.
sequence of commutation coefficients one may for instance use the Borel-Cantelli lemma. The
required estimates can be obtained as in the proof of Lemma 1 of [Spe92], with the calculation
following through subject to minor (obvious) modifications.
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Figure 2: Matrix models for a1, a2, . . . , b1, b2, . . .

Proof of Theorem 2. Start by observing that all the elements are self-adjoint. Let ϕ0 be the vector
state on B(C2) with respect to the vector (1, 0) and ϕ1 the vector state on B(K) with respect to
the vector v. In the following, we verify each of the five parts of the Main Hypotheses.

As ϕ0(γ) = 0, hypothesis (H1) is satisfied.
Next, since ϕ0(σ2

x) = ϕ0(γ2) = ϕ0(τ2) = 1, it follows that ϕ(a2
i ) = ϕ(b2i ) = 1. Furthermore,

since ϕ0(τ) = ρ, it follows that ϕ(aibi) = ρ and hypothesis (H2) is satisfied.
Let k ∈ N and i1, . . . , ik ∈ N. Since the commutation coefficients take values in {−1, 1}, it follows

that |ϕ1(ζi1 . . . ζik)| ≤ 1. Furthermore, letting ω1,i(1) ∈ {αi(1), βi(1)}, . . . , ωk,i(k) ∈ {αi(k), βi(k)}, we
have |ϕ1(ω1,i(1) . . . ωk,i(k))| ≤ 1. Letting instead ω1,i(1) ∈ {ηi(1), θi(1)}, . . . , ωk,i(k) ∈ {ηi(k), θi(k)} we
similarly obtain |ϕ1(ω1,i(1) . . . ωk,i(k))| ≤ 1, as τ2 = I and |ρ| < 1. So hypothesis (H3) holds.

Now fix 1 ≤ i1 < i2 < . . . < ik. By linearity of ϕ, it suffices to consider the case where each
gi in hypothesis (H4) is a product of elements in {ai, bi}. Start by observing that σxσy = σxy and
ϕ0(σmx ) = 1 for all m ∈ N (hence, ϕ0(σmx ) = ϕ0(σx)m). Furthermore, γ2 = I and ϕ0(σxγ

mσy) =
ϕ0(σx)ϕ(γm)ϕ(σy). (Given the ordering 1 ≤ i1 < i2 < . . . < ik and the fact that σxσy = σxy,
these are the only cases to consider.) Hence, ϕ1(ζi1 . . . ζik) = ϕ1(ζi1) . . . ϕ1(ζik). Similarly, let-
ting ωj ∈ {αj , βj} for all j ∈ {i1, . . . ik}, it follows that ϕ1(ωi1 . . . ωik) = ϕ1(ωi1) . . . ϕ1(ωik).
Finally, letting instead ωj ∈ {ηj , θj} for all j ∈ {i1, . . . ik}, we observe that ϕ0(IkτmIn) =
ϕ0(Ik)ϕ0(τm)ϕ0(In). (Given the ordering 1 ≤ i1 < i2 < . . . < ik, this is the only case to consider.)
Hence, ϕ1(ωi1 . . . ωik) = ϕ1(ωi1) . . . ϕ1(ωik). Assumption (H4) therefore holds.

For the final hypothesis, observe that for x ∈ {−1, 1}, γσx = xσxγ. Hence, ζiζj = s(i, j)ζjζi.
Furthermore, αiαj = αjαi and βiβj = βjβi, as s(i, j) = s(j, i) and s(i, j)2 = 1 for all i, j ∈ N.
Similarly, αiβj = s(i, j)r(i, j)βjαi. Finally, ηiηj = ηjηi, θiθj = θjθi, and ηiθj = θjηi. All together,
aiaj = s(i, j)ajai, bibj = s(i, j)bjbi, and aibj = r(i, j)bjai, as required.

For ease of reference, the key ideas behind this construction are summarized in Figure 2.
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