
A Game-Based Approximate Verification of Deep
Neural Networks with Provable Guarantees

Min Wua, Matthew Wickerb,1, Wenjie Ruana, Xiaowei Huangc, Marta
Kwiatkowskaa,∗

aUniversity of Oxford, UK
bUniversity of Georgia, USA
cUniversity of Liverpool, UK

Abstract

Despite the improved accuracy of deep neural networks, the discovery of adver-
sarial examples has raised serious safety concerns. In this paper, we study two
variants of pointwise robustness, the maximum safe radius problem, which for a
given input sample computes the minimum distance to an adversarial example,
and the feature robustness problem, which aims to quantify the robustness of
individual features to adversarial perturbations. We demonstrate that, under
the assumption of Lipschitz continuity, both problems can be approximated us-
ing finite optimisation by discretising the input space, and the approximation
has provable guarantees, i.e., the error is bounded. We then show that the
resulting optimisation problems can be reduced to the solution of two-player
turn-based games, where the first player selects features and the second per-
turbs the image within the feature. While the second player aims to minimise
the distance to an adversarial example, depending on the optimisation objec-
tive the first player can be cooperative or competitive. We employ an anytime
approach to solve the games, in the sense of approximating the value of a game
by monotonically improving its upper and lower bounds. The Monte Carlo tree
search algorithm is applied to compute upper bounds for both games, and the
Admissible A* and the Alpha-Beta Pruning algorithms are, respectively, used
to compute lower bounds for the maximum safety radius and feature robustness
games. When working on the upper bound of the maximum safe radius prob-
lem, our tool demonstrates competitive performance against existing adversarial
example crafting algorithms. Furthermore, we show how our framework can be
deployed to evaluate pointwise robustness of neural networks in safety-critical
applications such as traffic sign recognition in self-driving cars.

∗Corresponding author
Email addresses: min.wu@cs.ox.ac.uk (Min Wu), matthew.wicker25@uga.edu

(Matthew Wicker), wenjie.ruan@cs.ox.ac.uk (Wenjie Ruan),
xiaowei.huang@liverpool.ac.uk (Xiaowei Huang),
marta.kwiatkowska@cs.ox.ac.uk (Marta Kwiatkowska)

1Matthew conducted this research when he was a visiting undergraduate student at the
University of Oxford.

Preprint submitted to Journal of LATEX Templates May 31, 2019

Figure 1: An adversarial example for a neural network trained on the GTSRB dataset. After
a slight perturbation of Euclidean distance 0.88, the image classi�cation changes from \go
right or straight" to \go left or straight".

Keywords: Automated Veri�cation, Deep Neural Networks, Adversarial
Examples, Two-Player Game

1. Introduction

Deep neural networks (DNNs or networks, for simplicity) have been devel-
oped for a variety of tasks, including malware detection [1], abnormal network
activity detection [2], and self-driving cars [3, 4, 5]. A classi�cation network
N can be used as a decision-making algorithm: given an input� , it suggests a5

decisionN (�) among a set of possible decisions. While the accuracy of neural
networks has greatly improved, matching the cognitive ability of humans [6],
they are susceptible to adversarial examples [7, 8]. An adversarial example
is an input which, though initially classi�ed correctly, is misclassi�ed after a
minor, perhaps imperceptible, perturbation. Adversarial examples pose chal-10

lenges for self-driving cars, where neural network solutions have been proposed
for tasks such as end-to-end steering [3], road segmentation [4], and tra�c sign
classi�cation [5]. In the context of steering and road segmentation, an adver-
sarial example may cause a car to steer o� the road or drive into barriers, and
misclassifying tra�c signs may cause a vehicle to drive into oncoming tra�c.15

Figure 1 shows an image of a tra�c light correctly classi�ed by a state-of-the-art
network, which is then misclassi�ed after only a few pixels have been changed.
Though somewhat arti�cial, since in practice the controller would rely on ad-
ditional sensor input when making a decision, such cases strongly suggest that,
before deployment in safety-critical tasks, DNNs' resilience (or robustness) to20

adversarial examples must be strengthened.
Robustness of neural networks is an active topic of investigation and a num-

ber of approaches have been proposed to search for adversarial examples (see
Related Work). They are based on computing the gradients [9], along which
a heuristic search moves; computing a Jacobian-based saliency map [10], based25

on which pixels are selected to be changed; transforming the existence of ad-
versarial examples into an optimisation problem [11], on which an optimisation
algorithm can be applied; transforming the existence of adversarial examples
into a constraint solving problem [12], on which a constraint solver can be ap-
plied; or discretising the neighbourhood of a point and searching it exhaustively30

in a layer-by-layer manner [13].

2

In this paper, we propose a novel game-based approach for safety veri�ca-
tion of DNNs. We consider two pointwise robustness problems, referred to as
the maximum safe radiusproblem and feature robustnessproblem, respectively.
The former aims to compute for a given input the minimum distance to an35

adversarial example, and therefore can be regarded as the computation of an
absolute safety radius, within which no adversarial example exists. The latter
problem studies whether the crafting of adversarial examples can be controlled
by restricting perturbations to only certain features (disjoint sets of input di-
mensions), and therefore can be seen as the computation of arelative safety40

radius, within which the existence of adversarial examples is controllable.
Both pointwise robustness problems are formally expressed in terms of non-

linear optimisation, which is computationally challenging for realistically-sized
networks. We thus utilise Lipschitz continuity of DNN layers, which bounds
the maximal rate of change of outputs of a function with respect to the change45

of inputs, as proposed for neural networks with di�erentiable layers in [14, 15].
This enables safety veri�cation by relying on Lipschitz constants to provide
guaranteed bounds on DNN output for all possible inputs. We work with mod-
ern DNNs whose layers, e.g., ReLU, may not be di�erentiable, and reduce the
veri�cation to �nite optimisation. More precisely, we prove that under the as-50

sumption of Lipschitz continuity [16] it is su�cient to consider a �nite number
of uniformly sampled inputs when the distances between the inputs are small,
and that this reduction has provable guarantees, in the sense of the error being
bounded by the distance between sampled inputs.

We then show that the �nite optimisation problems can be computed as55

the solution of two-player turn-based games, where PlayerI selects features
and Player II then performs a perturbation within the selected features. After
both players have made their choices, the input is perturbed and the game
continues. While Player II aims to minimise the distance to an adversarial
example, Player I can be cooperative or competitive. When it is cooperative,60

the optimal reward of Player I is equal to the maximum safe radius. On the
other hand, when it is competitive the optimal reward of Player I quanti�es
feature robustness. Finally, because the state space of the game models is
intractable, we employ an anytime approach to compute the upper and lower
bounds of Player I optimal reward. The anytime approach ensures that the65

bounds can be gradually, but strictly, improved so that they eventually converge.
More speci�cally, we apply Monte Carlo tree search algorithm to compute the
upper bounds for both games, and Admissible A* and Alpha-Beta Pruning,
respectively, to compute the lower bounds for the games.

We implement the method in a software tool DeepGame2, and conduct ex-70

periments on DNNs to show convergence of lower and upper bounds for the
maximum safe radius and feature robustness problems. Our approach can be
con�gured to work with a variety of feature extraction methods that parti-
tion the input, for example image segmentation, with simple adaptations. For

2The software package is available from https://github.com/TrustAI/DeepGame

3

the image classi�cation networks we consider in the experiments, we employ75

both the saliency-guidedgrey-box approach adapted from [17] and the feature-
guided black-box method based on the SIFT object detection technique [18].
For the maximum safety radius problem, our experiments show that, on net-
works trained on the benchmark datasets such as MNIST [19], CIFAR10 [20]
and GTSRB [21], the upper bound computation method is competitive with80

state-of-the-art heuristic methods (i.e., without provable guarantees) that rely
on white-box saliency matrices or sophisticated optimisation procedures. Fi-
nally, to show that our framework is well suited to safety testing and decision
support for deploying DNNs in safety-critical applications, we experiment on
state-of-the-art networks, including the winner of the Nexar tra�c light chal-85

lenge [22].
The paper signi�cantly extends work published in [23], where the game-based

approach was �rst introduced for the case of cooperative games and evaluated on
the computation of upper bounds for the maximum safety radius problem using
the SIFT feature extraction method. In contrast, in this paper we additionally90

study feature robustness, generalise the game to allow for the competitive player,
and develop algorithms for the computation of both lower and upper bounds.
We also give detailed proofs of the theoretical guarantees and error bounds.

The structure of the paper is as follows. After introducing preliminaries
in Section 2, we formalise the maximum safety radius and feature robustness95

problems in Section 3. We present our game-based approximate veri�cation
approach and state the guarantees in Section 4. Algorithms and implementation
are described in Section 5, while experimental results are given in Section 6. We
discuss the related work in Section 7 and conclude the paper in Section 8.

2. Preliminaries100

Let N be a neural network with a set C of classes. Given an input� and a
classc 2 C, we useN (�; c) to denote the con�dence (expressed as a probability
value obtained from normalising the score) ofN believing that � is in class
c. Moreover, we write N (�) = arg max c2 C N (�; c) for the class into which N
classi�es � . We let P0 be the set of input dimensions,n = jP0j be the number
of input dimensions, and remark that without loss of generality the dimensions
of an input are normalised as real values in [0; 1]. The input domain is thus a
vector space

D = [0 ; 1]n :

For image classi�cation networks, the input domain D can be represented as
[0; 1]w� h� ch

[0;255] , where w; h; ch are the width, height, and number of channels of
an image, respectively. That is, we haveP0 = w � h � ch. We may refer to an
element in w � h as apixel and an element inP0 as adimension. We use� [i]
for i 2 P0 to denote the value of thei -th dimension of � .105

4

2.1. Distance Metric and Lipschitz Continuity

As is common in the �eld, we will work with L k distance functions to measure
the distance between inputs, denotedjj � � � 0jj k with k � 1, and satisfying the
standard axioms of a metric space:

� jj � � � 0jj k � 0 (non-negativity),110

� jj � � � 0jj k = 0 implies that � = � 0 (identity of indiscernibles),

� jj � � � 0jj k = jj � 0 � � jj k (symmetry),

� jj � � � 00jj k � jj � � � 0jj k + jj � 0 � � 00jj k (triangle inequality).

While we focus onL k distances, including L 1 (Manhattan distance), L 2 (Eu-
clidean distance), andL 1 (Chebyshev distance), we emphasise that the results115

of this paper hold for any distance metric and can be adapted to image simi-
larity distances such as SSIM [24]. Though our results do not generalise toL 0

(Hamming distance), we utilise it for the comparison with existing approaches to
generate adversarial examples, i.e., without provable guarantees (Section 6.4).

Since we work with pointwise robustness [25], we need to consider theneigh-120

bourhood of a given input.

De�nition 1. Given an input � , a distance function L k , and a distanced, we
de�ne the d-neighbourhood � (�; L k ; d) of � wrt L k

� (�; L k ; d) = f � 0 j jj � 0 � � jj k � dg

as the set of inputs whose distance to� is no greater than d with respect to L k .

The d-neighbourhood of� is simply the L k ball with radius d. For example,
� (�; L 1; d) includes those inputs such that the sum of the di�erences of individ-
ual dimensions from the original input � is no greater than d, i.e., jj � 0 � � jj1 =125

P
i 2 P0

j� [i] � � 0[i]j. Furthermore, we have jj � 0 � � jj2 =
q P

i 2 P0
(� [i] � � 0[i])2

and jj � 0 � � jj1 = max i 2 P0 j� [i] � � 0[i]j. We will sometimes work with d� -
neighbourhood, where, given a numberd, d� = d + � for any real number � > 0
denotes a number greater thand.

We will restrict the neural networks we consider to those that satisfy the130

Lipschitz continuity assumption, noting that all networks whose inputs are
bounded, including all image classi�cation networks we studied, are Lipschitz
continuous. Speci�cally, it is shown in [25, 16] that most known types of layers,
including fully-connected, convolutional, ReLU, maxpooling, sigmoid, softmax,
etc., are Lipschitz continuous.135

De�nition 2. Network N is a Lipschitz network with respect to distance func-
tion L k if there exists a constant~c > 0 for every classc 2 C such that, for all
�; � 0 2 D, we have

jN (� 0; c) � N (�; c)j � ~c � jj � 0 � � jj k ; (1)

where ~c is the Lipschitz constant for class c.

5

2.2. Input Manipulations

To study the crafting of adversarial examples, we require the following oper-
ations for manipulating inputs. Let � > 0 be a positive real number representing
the manipulation magnitude, then we can de�ne input manipulation operations
� �;X; : D ! D for X � P0, a subset of input dimensions, and : P0 ! N, an
instruction function by:

� �;X; (� [i]) =

(
� [i] + (i) � �; if i 2 X
� [i]; otherwise

(2)

for all i 2 P0. Note that if the values are bounded, e.g., in the interval [0; 1],
then � �;X; (� [i]) needs to be restricted to be within the bounds. Let 	 be the
set of possible instruction functions.140

The following lemma shows that input manipulation operations allow one to
map one input to another by changing the values of input dimensions, regardless
of the distance measureL k .

Lemma 1. Given any two inputs � 1 and � 2, and a distance jj � 1 � � 2jj k for
any measureL k , there exists a magnitude� > 0, an instruction function 2 	 ,
and a subsetX � P0 of input dimensions, such that

jj � 2 � � �;X; (� 1)jj k � �

where � > 0 is an error bound.

Intuitively, any distance can be implemented through an input manipulation145

with an error bound � . The error bound � is needed because input� 2
D = [0 ; 1]n is bounded, and thus reaching another precise input point via a
manipulation is di�cult when each input dimension is a real number.

We will also distinguish a subset of atomic input manipulations, each of
which changes a single dimension for a single magnitude.150

De�nition 3. Given a set X , we let �(X) be the set of atomic input manip-
ulations � �;X 1 ; 1 such that

� X 1 � X and jX 1j = 1 , and

� 1(i) 2 f� 1; +1g for all i 2 P0.

Lemma 2. Any input manipulation � �;X; (�) for some X and can be imple-155

mented with a �nite sequence of input manipulations� �;X 1 ; 1 (�); :::; � �;X m ; m (�) 2
�(X).

While the existence of a sequence of atomic manipulations implementing a
given manipulation is determined, there may exist multiple sequences. On the
other hand, from a given sequence of atomic manipulations we can construct a160

single input manipulation by sequentially applying the atomic manipulations.

6

2.3. Feature-Based Partitioning
Natural data, for example natural images and sounds, forms a high-dimensional

manifold, which embeds tangled manifolds to represent their features [26]. Fea-
ture manifolds usually have lower dimensions than the data manifold. Intu-165

itively, the set of features form a partition of the input dimensions P0. In this
paper, we use a variety of feature extraction methods to partition the setP0

into disjoint subsets.

De�nition 4. Let � be a feature of an input � 2 D, then we useP� � P0 to
denote the dimensions represented by� . Given an input � , a feature extraction170

function � maps an input � into a set of features �(�) such that (1) P0 =S
� 2 �(�) P� , and (2) P� i \ P� j = ; for any � i ; � j 2 �(�) with i 6= j .

We remark that our technique is not limited to image classi�cation networks
and is able to work with general classi�cation tasks, as long as there is a suitable
feature extraction method that generates a partition of the input dimensions.175

In our experiments we focus on image classi�cation for illustrative purposes and
to enable better comparison, and employsaliency-guidedgrey-box and feature-
guided black-box approaches to extract features, described in Section 4.

3. Problem Statement

In this paper we focus onpointwise robustness[25], de�ned as the invariance180

of the network's classi�cation over a small neighbourhood of a given input.
This is a key concept, which also allows one to de�ne robustness as a network
property, by averaging with respect to the distribution of the test data set.
Pointwise robustness can be used to de�nesafety of a classi�cation decision for
a speci�c input, understood as the non-existence of an adversarial example in a185

small neighbourhood of the input. We work with this notion and consider two
problems for quantifying the robustness of the decision, the computation of the
maximum safe radiusand feature robustness, which we introduce next.

First we recall the concept of an adversarial example, as well as what we
mean by targeted and non-targeted safety.190

De�nition 5. Given an input � 2 D, a distance measureL k for some k �
0, and a distance d, an adversarial example � 0 of class c is such that � 0 2
� (�; L k ; d), N (�) 6= N (� 0), and N (� 0) = c. Moreover, we write advk;d (�; c) for
the set of adversarial examples of classc and let

advk;d (�) =
[

c2 C;c 6= N (�)

advk;d (�; c):

A targeted safety of class c is de�ned as advk;d (�; c) = ; , and non-targeted
safety is advk;d (�) = ; .

The following formalisation focuses on targeted safety of a �xed input �
and a �xed class c 6= N (�) for a network N . The case of non-targeted safety
(misclassi�cation into class other than c) is similar.195

7

Figure 2: The Maximum Safe Radius (MSR) problem aims to quantify the minimum distance
from an original image � to an adversarial example, equivalent to �nding the radius of a
maximum safe norm ball. The solid line represents the classi�cation boundary learned by a
DNN, while the dashed line is the decision boundary. Adversarial examples tend to lie where
the decision and classi�cation boundaries do not align. Intuitively, �nding an adversarial
example (green square) can only provide a loose upper bound of MSR.

3.1. The Maximum Safe Radius Problem

Given a targeted safety problem for � , we aim to compute the distance
jj � � � 0jj k to the nearest adversarial example within thed-neighbourhood of� ,
or in other words the radius of the maximum safe ball, illustrated in Figure 2.

De�nition 6 (Maximum Safe Radius). The maximum safe radiusproblem
is to compute the minimum distance from the original input � to an adversarial
example, i.e.,

MSR(k; d; �; c) = min
� 02 D

fjj � � � 0jj k j � 0 2 advk;d (�; c)g (3)

If advk;d (�; c) = ; , we let MSR(k; d; �; c) = d� .200

Intuitively, MSR(k; d; �; c) represents anabsolute safety radius within which all
inputs are safe. In other words, within a distance of less thanMSR(k; d; �; c),
no adversarial example is possible. When no adversarial example can be found
within radius d, i.e., advk;d (�; c) = ; , the maximum safe radius cannot be
computed, but is de�nitely greater than d. Therefore, we letMSR(k; d; �; c) = d� .205

Intuitively, �nding an adversarial example can only provide a loose upper
bound of MSR. Instead, this paper investigates a more fundamental problem {
how to approximate the true MSRdistance with provable guarantees.

8

Approximation Based on Finite Optimisation. Note that the sets advk;d (�; c)
and advk;d (�) of adversarial examples can be in�nite. We now present a discreti-210

sation method that allows us to approximate the maximum safe radius using
�nite optimisation, and show that such a reduction has provable guarantees,
provided that the network is Lipschitz continuous. Our approach proceeds by
constructing a �nite `grid' of points in the input space. Lipschitz continuity en-
ables us to reduce the veri�cation problem to manipulating just the grid points,215

through which we can bound the output behaviour of a DNN on the whole
input space, since Lipschitz continuity ensures that the network behaves well
within each cell. The number of grid points is inversely proportional to the
Lipschitz constant. However, estimating a tight Lipschitz constant is di�cult,
and so, rather than working with the Lipschitz constant directly, we assume the220

existence of a (not necessarily tight) Lipschitz constant and work instead with
a chosen �xed magnitude of an input manipulation, � 2 (0; 1]. We show how to
determine the largest � for a given Lipschitz network and give error bounds for
the computation of MSRthat depend on � . We discuss how Lipschitz constants
can be estimated in Section 6.2 and Related Work.225

We begin by constructing, for a chosen �xed magnitude � 2 (0; 1], input
manipulations to search for adversarial examples.

De�nition 7. Let � 2 (0; 1] be a manipulation magnitude. The�nite maximum
safe radiusproblem FMSR(�; k; d; �; c) based on input manipulation is as follows:

min
� 0� �(�)

min
X �

S
� 2 � 0 P �

min
 2 	

fjj � � � �;X; (�)jj k j � �;X; (�) 2 advk;d (�; c)g: (4)

If advk;d (�; c) = ; , we let FMSR(�; k; d; �; c) = d� .

Intuitively, we aim to �nd a set � 0 of features, a setX of dimensions within
� 0, and a manipulation instruction such that the application of the atomic230

manipulation � �;X; on the original input � leads to an adversarial example
� �;X; (�) that is nearest to � among all adversarial examples. Compared to
De�nition 6, the search for another input by min � 02 D over an in�nite set is
implemented by minimisation over the �nite sets of feature sets and instructions.

Since the set of input manipulations is �nite for a �xed magnitude, the above235

optimisation problems need only explore a �nite number of `grid' points in the
input domain D. We have the following lemma.

Lemma 3. For any � 2 (0; 1], we have thatMSR(k; d; �; c) � FMSR(�; k; d; �; c).

To ensure the lower bound ofMSR(k; d; �; c) in Lemma 3, we utilise the fact
that the network is Lipschitz continuous [16]. First, we need the concepts of a� -240

grid input, for a manipulation magnitude � , and a misclassi�cation aggregator.
The intuition for the � -grid is illustrated in Figure 3. We construct a �nite set
of grid points uniformly spaced by � in such a way that they can be covered
by small subspaces centred on grid points. We select a su�ciently small value
for � based on a given Lipschiz constant so that all points in these subspaces245

9

are are classi�ed the same. We then show that an optimum point on the grid is
within an error bound dependent on � from the true optimum, i.e., the closest
adversarial example.

De�nition 8. An image � 0 2 � (�; L k ; d) is a � -grid input if for all dimensions
p 2 P0 we havej� 0(p) � � (p)j = n � � for some n � 0. Let G(�; k; d) be the set250

of � -grid inputs in � (�; L k ; d).

We note that � -grid inputs in the set G(�; k; d) are reachable from each other
by applying an input manipulation. The main purpose of de�ning � -grid inputs
is to ensure that the space� (�; L k ; d) can be covered by small subspaces centred
on grid points. To implement this, we need the following lemma.255

Lemma 4. We have� (�; L k ; d) �
S

� 02 G(�;k;d) � (� 0; L k ; 1
2 d(k; �)) , whered(k; �) =

(jP0j� k)
1
k .

Proof: Let � 1 be any point in � (�; L k ; d). We need to show� 1 2 � (� 0; L k ; 1
2 d(k; �))

for some� -grid input � 0. Because every point in� (�; L k ; d) belongs to a� -grid
cell, we assume that� 1 is in a � -grid cell which, without loss of generality, has260

a set T of � -grid inputs as its vertices. Now for any two � -grid inputs � 2 and
� 3 in T, we have that jj � 2 � � 3jj k � d(k; �), by the construction of the grid.
Therefore, we have� 1 2 � (� 0; L k ; 1

2 d(k; �)) for some � 0 2 T. �
As shown in Figure 3, the distance 1

2 d(k; �) is the radius of norm ball
subspaces covering the input space. It is easy to see thatd(1; �) = jP0j� ,265

d(2; �) =
p

jP0j� 2, and d(1 ; �) = � .

De�nition 9. An input � 1 2 � (�; L k ; d) is a misclassi�cation aggregator with
respect to a number� > 0 if, for any � 2 2 � (� 1; L k ; �), we have thatN (� 2) 6=
N (�) implies N (� 1) 6= N (�).

Intuitively, if a misclassi�cation aggregator � 1 with respect to � is classi�ed270

correctly, then all inputs in � (� 1; L k ; �) are classi�ed correctly.

Error Bounds. We now bound the error of usingFMSR(�; k; d; �; c) to estimate
MSR(k; d; �; c) in 1

2 d(k; �), as illustrated in Figure 3. First of all, we have the
following lemma. Recall from Lemma 3 that we already haveMSR(k; d; �; c) �
FMSR(�; k; d; �; c).275

Lemma 5. If all � -grid inputs are misclassi�cation aggregators with respect to
1
2 d(k; �), then MSR(k; d; �; c) � FMSR(�; k; d; �; c) � 1

2 d(k; �).

Proof: We prove by contradiction. Assume that FMSR(�; k; d; �; c) = d0 for
somed0 > 0, and MSR(k; d; �; c) < d 0� 1

2 d(k; �). Then there must exist an input
� 0 such that � 0 2 advk;d (�; c) and

jj � 0 � � jj k = MSR(k; d; �; c) < d 0 �
1
2

d(k; �); (5)

10

Figure 3: Provable guarantees for the MSRand FR� problems on a dense � -grid (green dots)
that is reached upon convergence. In the worst case, the true optimum (the red dot) lies in
the middle between two hyper-points of the � -grid, with the distance of at most 1

2 d(k; �) from
the found optimum.

and � 0 is not a � -grid input. By Lemma 4, there must exist a � -grid input � 00

such that � 0 2 � (� 00; L k ; 1
2 d(k; �)). Now because all� -grid inputs are misclassi-

�cation aggregators with respect to 1
2 d(k; �), we have � 002 advk;d (�; c).280

By � 002 advk;d (�; c) and the fact that � 00is a � -grid input, we have that

FMSR(�; k; d; �; c) � jj � � � 00jj k � jj � � � 0jj k +
1
2

d(k; �): (6)

Now, combining Equations (5) and (6), we have thatFMSR(�; k; d; �; c) < d 0,
which contradicts the hypothesis that FMSR(�; k; d; �; c) = d0. �

In the following, we discuss how to determine the largest� for a Lipschitz
network in order to satisfy the condition in Lemma 5 that all � -grid inputs are
misclassi�cation aggregators with respect to 1

2 d(k; �).285

De�nition 10. Given a class labelc, we let

g(� 0; c) = min
c02 C;c 06= c

f N (� 0; c) � N (� 0; c0)g (7)

be a function maintaining for an input � 0 the minimum con�dence margin be-
tween the classc and another classc0 6= N (� 0).

Note that, given an input � 0 and a classc, we can computeg(� 0; c) in constant
time. The following lemma shows that the above-mentioned condition about
misclassi�cation aggregators can be obtained if� is su�ciently small.290

11

Lemma 6. Let N be a Lipschitz network with a Lipschitz constant~c for every
classc 2 C. If

d(k; �) �
2g(� 0; N (� 0))

maxc2 C;c 6= N (� 0) (~N (� 0) + ~c)
(8)

for all � -grid input � 0 2 G(�; k; d), then all � -grid inputs are misclassi�cation
aggregators with respect to1

2 d(k; �).

Proof: For any input � 00whose closest� -grid input is � 0, we have

g(� 0; N (� 0)) � g(� 00; N (� 0))

= min
c2 C;c 6= N (� 0)

f N (� 0; N (� 0)) � N (� 0; c)g � min
c02 C;c 06= N (� 0)

f N (� 00; N (� 0)) � N (� 00; c0)g

� max
c02 C;c 06= N (� 0)

f N (� 0; N (� 0)) � N (� 0; c0) � N (� 00; N (� 0)) + N (� 00; c0)g

� max
c02 C;c 06= N (� 0)

fj N (� 0; N (� 0)) � N (� 00; N (� 0)) j + jN (� 00; c0) � N (� 0; c0)jg

� max
c02 C;c 06= N (� 0)

(~N (� 0) + ~c0)jj � 0 � � 00jj k

� max
c02 C;c 06= N (� 0)

(~N (� 0) + ~c0)
1
2

d(k; �)

(9)
Now, to ensure that no class change occurs between� 00and � 0, we need to have
g(� 00; N (� 0)) � 0, which means thatg(� 0; N (� 0)) � g(� 00; N (� 0)) � g(� 0; N (� 0)).
Therefore, we can let

max
c02 C;c 06= N (� 0)

(~N (� 0) + ~c0)
1
2

d(k; �) � g(� 0; N (� 0)) : (10)

Note that g(� 0; N (� 0)) is dependent on the � -grid input � 0, and thus can be
computed when we construct the grid. Finally, we let

d(k; �) �
2g(� 0; N (� 0))

maxc02 C;c 06= N (� 0) (~N (� 0) + ~c0)
(11)

Therefore, if we have the above inequality for every� -grid input, then we
can concludeg(� 00; N (� 0)) � 0 for any � 00 2 � (� 0; k; d), i.e., N (� 00; N (� 0)) �
N (� 00; c) for all c 2 C. The latter means that no class change occurs. �295

Combining Lemmas 3, 5, and 6, we have the following theorem which shows
that the reduction has a provable guarantee, dependent on the choice of the
manipulation magnitude.

Theorem 1. Let N be a Lipschitz network with a Lipschitz constant~c for
every classc 2 C. If d(k; �) � 2g(� 0;N (� 0))

max c 02 C;c 06= N (� 0) (~N (� 0) + ~c 0) for all � -grid inputs300

� 0 2 G(�; k; d), then we can useFMSR(�; k; d; �; c) to estimate MSR(k; d; �; c) with
an error bound 1

2 d(k; �).

Proof: By Lemma 3, we haveMSR(k; d; �; c) � FMSR(�; k; d; �; c) for any � > 0.
By Lemma 5 and Lemma 6, whenFMSR(�; k; d; �; c) = d0, we haveMSR(k; d; �; c) �

12

Figure 4: Illustration of the feature robustness (FR�) problem, which aims to �nd, on an
original image � , a feature, or a subset of features, that is the most robust against adversarial
perturbations. Given a benign image, we �rst apply feature extraction or semantic partitioning
methods to produce a set of disjoint features (`Sky', `Trees', `Cat', etc.), then we �nd a set
of robust features that is most resilient to adversarial perturbations (`Grass' in the �gure),
which quanti�es the most robust direction in a safe norm ball.

d0� 1
2 d(k; �), under the condition that d(k; �) � 2g(� 0;N (� 0))

max c 02 C;c 06= N (� 0) (~N (� 0) + ~c 0) for all305

� -grid inputs � 0 2 G(�; k; d). Therefore, whend(k; �) � 2g(� 0;N (� 0))
max c 02 C;c 06= N (� 0) (~N (� 0) + ~c 0)

for all � -grid inputs � 0 2 G(�; k; d), if we use d0 to estimate MSR(k; d; �; c), we
will have d0� 1

2 d(k; �) � MSR(k; d; �; c) � d0, i.e., the error bound is 1
2 d(k; �). �

3.2. The Feature Robustness Problem

The second problem studied in this paper concerns which features are the310

most robust against perturbations, illustrated in Figure 4. The feature robust-
ness problem has been studied in explainable AI. For example, [27] explains
the decision making of an image classi�cation network through di�erent con-
tributions of the superpixels (i.e., features) and [28] presents a general additive
model for explaining the decisions of a network by the Shapley value computed315

over the set of features.
Let P0(� 1; � 2) � P0 be the set of input dimensions on which� 1 and � 2 have

di�erent values.

De�nition 11 (Feature Robustness). The feature robustnessproblem is de-
�ned as follows.

FR� (k; d; �; c) = max
� 2 �(�)

f xFR� (�; k; d; �; c)g (12)

13

where xFR� (� m ; k; d; � m ; c) =
8
>><

>>:

min
� m +1 2 � (�;L k ;d)

fjj � m � � m +1 jj k + FR� (k; d; � m +1 ; c) j

; 6= P0(� m ; � m +1) � P� m g; if � m =2 advk;d (�; c)
0; otherwise

(13)
where � is a feature extraction function, and � m ; � m +1 (m 2 N) are the in-
puts before and after the application of some manipulation on a feature� m ,320

respectively. If after selecting a feature � m no adversarial example can be
reached, i.e., 8� m +1 : P0(� m ; � m +1) � P� m) � m +1 =2 advk;d (�; c), then we let
xFR� (� m ; k; d; � m ; c) = d� .

Intuitively, the search for the most robust feature alternates between max-
imising over the features and minimising over the possible input dimensions325

within the selected feature, with the distance to the adversarial example as the
objective. Starting from FR� (k; d; � 0; c) where � 0 is the original image, the pro-
cess moves toFR� (k; d; � 1; c) by a max-min alternation on selecting feature � 0

and next input � 1. This continues until either an adversarial example is found,
or the next input � i for somei > 0 is outside thed-neighbourhood� (�; L k ; d).330

The value d� is used is to di�erentiate from the case where the minimal adversar-
ial example has exactly distanced from � 0 and the manipulations are within � 0.
In such a case, according to Equation (13), we havexFR� (� 0; k; d; � 0; c) = d.

Assuming FR� (k; d; �; c) has been computed and adistance budgetd0 � d is
given to manipulate the input � , the following cases can be considered.335

� If FR� (k; d; �; c) > d , then there are robust features, and if manipulations
are restricted to those features no adversarial example is possible.

� If FR� (k; d; �; c) � d0 � d, then, no matter how one restricts the features to
be manipulated, an adversarial example can be found within the budget.

� If MSR(k; d; �; c) � d0 < FR� (k; d; �; c) � d, then the existence of adversar-340

ial examples is controllable, i.e., we can choose a set of features on which
the given distance budgetd0 is insu�cient to �nd an adversarial example.
This di�ers from the �rst case in that an adversarial example can be found
if given a larger budget d.

Therefore, studying the feature robustness problem enables a better under-345

standing of the robustness of individual features and how the features contribute
to the robustness of an image.

It is straightforward to show that

MSR(k; d; �; c) � FR� (k; d; �; c): (14)

Compared to the absolute safety radius byMSR(k; d; �; c), FR� (k; d; �; c) can
be seen as arelative safety radius, within which the existence of adversarial
examples can be controlled. Theoretically, theMSR(k; d; �; c) problem can be350

14

Figure 5: Illustration of the maximum safe radius (MSR) and feature robustness (FR�) prob-
lems. From left to right: an adversarial example with two pixel changes, feature extraction of
the image, adversarial examples with three changed pixels on features `Sky' and `Cat', four
changed pixels on `Trees', and �ve pixel manipulations on `Grass', respectively.

seen as a special case of theFR� (k; d; �; c) problem, when we let j�(�)j = 1.
We study them separately, because theMSR(k; d; �; c) problem is interesting on
its own, and, more importantly, we show later that they can be solved using
di�erent methods.

One can also consider a simpler variant of this problem, which aims to �nd355

a subset of features that are most resilient to perturbations, and which can be
solved by only considering singleton sets of features. We omit the formalisation
for reasons of space.

We illustrate the two problems, the maximum safe radius (MSR) and (the
simpler variant of) feature robustness(FR0

�), through Example 1.360

Example 1. As shown in Figure 5, the minimum distance from the original
image to an adversary is two pixels, i.e.,MSR= 2 (for simplicity here we take
the L 0-norm). That is, for a norm ball with radius less than 2, the image
is absolutely safe. Note that, forMSR, the manipulations can span di�erent
features. After feature extraction, we �nd the maximum safe radius of each365

feature, i.e., MSR� 1 = 3 , MSR� 2 = 4 , MSR� 3 = 3 , MSR� 4 = 5 .
Assume that we have a norm ball of radiusd, and a distance budgetd0, then:

� if d = 4 , then by de�nition we have FR0
� = 4 � , i.e., manipulating `Grass'

cannot change the classi�cation;

� if d = 10 and d0 = 7 then we haveFR0
� = 5 < d 0 < d , i.e., all the features370

are fragile;

� if d = 10 and d0 = 4 then d0 < FR0
� = 5 < d , i.e., the existence of an

adversary is controllable by restricting perturbations to `Grass'.

Approximation Based on Finite Optimisation. Similarly to the case of the maxi-
mum safe radius, we reduce the feature robustness problem to �nite optimisation375

by implementing the search for adversarial examples using input manipulations.

De�nition 12. Let � 2 (0; 1] be a manipulation magnitude. The �nite feature
robustness problemFFR� (�; k; d; �; c) based on input manipulation is as follows:

FFR� (�; k; d; �; c) = max
� 2 �(�)

f xFFR� (�; �; k; d; �; c)g (15)

15

where xFFR� (� m ; �; k; d; � m ; c) =
8
<

:

min
X � P � m

min
 2 	

fjj � m � � �;X; (� m)jj k + FFR� (k; d; � �;X; (� m); c)g; if � m =2 advk;d (�; c)

0; otherwise
(16)

where � is a feature extraction function, and � m ; � �;X; (� m); m 2 N; are the
perturbed inputs before and after the application of manipulation� �;X; on a
feature � m , respectively. If after selecting a feature� m no adversarial example
can be reached, i.e.,8X � P� m 8 2 	 : � �;X; (� m) =2 advk;d (�; c), then we let380

xFFR� (� m ; �; k; d; � m ; c) = d� .

Compared to De�nition 11, the search for another input by min � m +1 2 � (�;L k ;d)

is implemented by combinatorial search over the �nite sets of feature sets and
instructions.

Error Bounds. The case for the feature robustness problem largely follows that385

of the maximum safe radius problem. First of all, we have the following lemma
which bounds the error of FFR� (�; k; d; �; c) to 1

2 d(k; �), which depends on the
value of magnitude.

Lemma 7. If all � -grid inputs are misclassi�cation aggregators with respect to
1
2 d(k; �), then FR� (k; d; �; c) � FFR� (�; k; d; �; c) � 1

2 d(k; �).390

Proof: We prove by contradiction. Assume that FFR� (�; k; d; �; c) = d0 for
somed0 > 0, andFR� (k; d; �; c) < d 0� 1

2 d(k; �). Then, for all subsets � � �(�) of
features, either for allX �

S
� 2 � P� and 2 	 we have � �;X; (�) =2 advk;d (�; c),

or there must exist X �
S

� 2 � P� and 2 	 such that

� 0 = � �;X; (�) 2 advk;d (�; c) and jj � 0 � � jj k < d 0 �
1
2

d(k; �); (17)

and � 0 is not a � -grid input.
For the latter case, by Lemma 4, there must exist a� -grid input � 00 such

that � 0 2 � (� 00; L k ; 1
2 d(k; �)). Now because all� -grid inputs are misclassi�cation

aggregators with respect to 1
2 d(k; �), we have � 00 2 advk;d (�; c). By � 00 2

advk;d (�; c) and the fact that � 00is a � -grid input, we have that

jj � � � 00jj k � jj � � � 0jj k +
1
2

d(k; �): (18)

Therefore, we haveFFR� (�; k; d; �; c) < d 0 by the combining Equations (17) and
(18). However, this contradicts the hypothesis that FFR� (�; k; d; �; c) = d0.

For the former case, we haveFFR� (�; k; d; �; c) = d0 > d . If FR� (k; d; �; c) <
d0� 1

2 d(k; �), then there exists an� 0 such that � 0 2 � (� 00; L k ; 1
2 d(k; �)) for some395

� -grid input � 00. By the de�nition of misclassi�cation aggregator, we have � 002
advk;d (�; c). This contradicts the hypothesis that FFR� (�; k; d; �; c) = d0 > d .
�

16

Combining Lemmas 3, 6, and 7, we have the following theorem which shows
that the reduction has a provable guarantee under the assumption of Lipschitz400

continuity. The approximation error depends linearly on the prediction con�-
dence on discretised `grid' inputs and is inversely proportional with respect to
the Lipschitz constants of the network.

Theorem 2. Let N be a Lipschitz network with a Lipschitz constant~c for
every classc 2 C. If d(k; �) � 2g(� 0;N (� 0))

max c 02 C;c 06= N (� 0) (~N (� 0) + ~c 0) for all � -grid inputs405

� 0 2 G(�; k; d), then we can useFFR� (�; k; d; �; c) to estimate FR� (k; d; �; c)
with an error bound 1

2 d(k; �).

Proof: By Lemma 3, we haveFR� (k; d; �; c) � FFR� (�; k; d; �; c) for any � > 0.
By Lemma 6 and Lemma 7, whenFFR� (�; k; d; �; c) = d0, we haveFR� (k; d; �; c) �
d0� 1

2 d(k; �), under the condition that d(k; �) � 2g(� 0;N (� 0))
max c 02 C;c 06= N (� 0) (~N (� 0) + ~c 0) for all410

� -grid inputs � 0 2 G(�; k; d). Therefore, whend(k; �) � 2g(� 0;N (� 0))
max c 02 C;c 06= N (� 0) (~N (� 0) + ~c 0)

for all � -grid inputs � 0 2 G(�; k; d), if we use d0 to estimate FR� (k; d; �; c), we
will have d0 � 1

2 d(k; �) � FR� (k; d; �; c) � d0, i.e., the error bound is 1
2 d(k; �).

�

4. A Game-Based Approximate Veri�cation Approach415

In this section, we de�ne a two-player game and show that the solutions of
the two �nite optimisation problems, FMSR(k; d; �; c) and FFR� (k; d; �; c), given
in Expressions (4) and (15) can be reduced to the computation of the rewards of
Player I taking an optimal strategy. The two problems di�er in that they induce
games in which the two players arecooperative or competitive, respectively.420

The game proceeds by constructing a sequence of atomic input manipula-
tions to implement the optimisation objectives in Equations (4) and (15).

4.1. Problem Solving as a Two-Player Turn-Based Game

The game has two players, who take turns to act. PlayerI selects features
and Player II then selects an atomic input manipulation within the selected fea-425

tures. While Player II aims to minimise the distance to an adversarial example,
depending on the optimisation objective designed for eitherFMSR(k; d; �; c) or
FFR� (k; d; �; c), Player I can be cooperative or competitive. We remark that, in
contrast to [23] where the games were originally introduced, we do not consider
the nature player.430

Formally, we let M (k; d; �; c) = (S [(S � �(�)) ; s0; f Taga2f I ;II g; L) be a
game model, where

� S is a set of game states belonging to PlayerI such that each state repre-
sents an input in � (�; L k ; d), and S� �(�) is a set of game states belonging
to Player II where �(�) is a set of features of input� . We write � (s) for435

the input associated to the states 2 S.

17

Figure 6: Two-player turn-based solution for �nite optimisation. Player I selects features and
Player II then performs an atomic input manipulation within the selected features. For the
Maximum Safe Radius problem, both Player I and Player II aim to minimise the distance
to an adversarial example; for the Feature Robustness problem, while Player II has the same
objective, Player I plays against this, i.e., aiming to prevent the reaching of adversarial ex-
amples by taking suitable actions. The game terminates when an adversary is found or the
distance budget for adversarial perturbation has been reached.

� s0 2 S is the initial game state such that � (s0) is the original input � .

� The transition relation TI : S � �(�) ! S � �(�) is de�ned as

TI (s; �) = (s; �); (19)

and transition relation TII : (S � �(�)) � P (P0) � 	 ! S is de�ned as

TII ((s; �); X;) = � �;X; (� (s)) ; (20)

where X � P� is a set of input dimensions within feature � , : P0 !
f� 1; +1g is a manipulation instruction, and � �;X; is an atomic dimension
manipulation as de�ned in De�nition 3. Intuitively, in every game state440

s 2 S, Player I will choose a feature� , and, in response to this, PlayerII
will choose an atomic input manipulation � �;X; .

� The labelling function L : S [(S � �(�)) ! C assigns to each states or
(s; �) a classN (� (s)).

Figure 6 illustrates the game model with a partially-expanded game tree.445

Strategy Pro�le. A path (or game play) of the game model is a sequences1u1s2u2:::
of game states such that, for allk � 1, we haveuk = TI (sk ; � k) for some feature

18

	Introduction
	Preliminaries
	Distance Metric and Lipschitz Continuity
	Input Manipulations
	Feature-Based Partitioning

	Problem Statement
	The Maximum Safe Radius Problem
	The Feature Robustness Problem

	A Game-Based Approximate Verification Approach
	Problem Solving as a Two-Player Turn-Based Game
	Safety Guarantees via Optimal Strategy
	Complexity of the Problem

	Algorithms and Implementation
	Upper Bounds: Monte Carlo Tree Search (MCTS)
	Lower Bounds: Admissible A* in a Cooperative Game
	Lower Bounds: Alpha-Beta Pruning in a Competitive Game
	Anytime Convergence

	Experimental Results
	Feature-Based Partitioning
	Lipschitz Constant Estimation
	Convergence Analysis of the Upper and Lower Bounds
	Comparison with Existing Approaches for Generating Adversarial Examples
	Evaluating Safety-Critical Networks

	Related Work
	White-box Heuristic Approaches
	White-box Verification Approaches
	Lipschitz Continuity
	Lipschitz Constant Estimation
	Maximum Safe Radius Computation
	Black-box Algorithms
	Feature Extraction Techniques

	Conclusion
	Experimental Setting for Comparison between DeepGame with Existing Works
	Model Architectures
	Datasets
	Baseline Methods
	Parameter Setting
	Platforms
	Adversarial Images

