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Abstract—This article concerns a previously developed,
Fractional–order, Generalised Predictive Control (FGPC) ap-
proach to control system design. Here, fractional order con-
cepts are utilised to extend the design flexibility of the FGPC
algorithm, in comparison to conventional Generalised Predictive
Control (GPC). The performance of FGPC is investigated via
Monte Carlo simulation. With a focus on plots of the closed-loop
eigenvalues, these results are utilised to develop recommendations
for how to optimise the extra design coefficients introduced
in the fractional order case. One of the simulation examples
involves a hydraulically actuated robotic manipulator. Finally,
FGPC methods are applied to control airflow in a laboratory 1 m
by 2 m by 2 m forced ventilation environmental test chamber.

Index Terms—generalised predictive control; fractional–order
control; robotic manipulator; ventilation control

I. INTRODUCTION

This article concerns a Fractional–order, Generalised Pre-
dictive Control (FGPC) design approach, as introduced by
Romero et al. [1]–[4]. Although fractional order calculus has
a long history in mathematics and engineering, the uptake
of fractional order concepts for control system design and
practical implementation has been slower than for equivalent
integer order methods. Hence, the FGPC approach is of
potential interest because of its relationship with the well-
known, conventional control algorithm, Generalised Predictive
Control (GPC) [5]–[7]. In fact, the algorithms take the same,
relatively straightforward implementation form, making them
potentially attractive to practitioners.

Fractional calculus can be defined as a generalization of
derivatives and integrals to non-integer orders [8]. Fractional-
order operators are commonly represented by αD, representing
the α order derivative. Negative values of α correspond to
fractional-order integrals, −αD ≡ αI . This operator can
be evaluated using the Grunwald-Letnikov definition for nu-
merical integration and simulation purposes. To illustrate,
one of the more active areas of research into fractional
order control concerns Fractional order Proportional–Integral–
Derivative (FPID) methods, with illustrative citations includ-
ing [8]–[10]. Here, straightforward PID concepts, such as
frequency domain analysis, are sometimes used to design
higher order (once converted into an approximated form
that can be implemented in practice) FPID control systems.
These potentially yield improved performance in comparison
to standard PID design. Further examples of fractional control
include, for example, CRONE [11], fractional fuzzy adaptive
control [12] and optimal control [13].

In general terms, the design task involves either integer-
order or fractional-order control systems, as applied to either
integer-order or fractional-order models. Hence, for example,
Allafi et al. [14] consider parameter estimation methods for
fractional-order Hammerstein-Wiener models, using a Sim-
plified Refined Instrumental Variable (SRIV) fractional-order
continuous time algorithm. By contrast, the present article
concerns the application of FGPC design to discrete-time,
linear integer-order models. For the laboratory example, such
models are estimated from data using the standard SRIV
algorithm in the CAPTAIN toolbox for MATLAB [15].

Hence, the aim is to design FGPC systems that potentially
yield improved performance over conventional GPC design.
The FGPC methodology is briefly reviewed (section II), and
a worked example using MATLAB is developed to illustrate
the FGPC design approach (section III). Further simulation
examples are utilised to demonstrate how fractional order
methods increase the control design flexibility compared to
GPC. In contrast to references [1]–[4], the influence of the
new FGPC tuning coefficients, α and β, are systematically
investigated via Monte Carlo simulation. The focus is on cloud
plots of the closed-loop eigenvalues (poles). The study is ex-
tended to a laboratory example, namely the control of airflow
in a 1 m by 2 m by 2 m forced ventilation environmental
test chamber (section IV). Discussion and conclusions follow
(sections V and VI).

II. METHODOLOGY

Similar to conventional discrete-time GPC, FGPC is
based on the following Auto–Regressive, Integrated Moving–
Average eXogenous variables (ARIMAX) model, sometimes
also called a Controlled Auto–Regressive Integrated Moving–
Average (CARIMA) model,

y(k) =
B(z−1)

A(z−1)
u(k) +

T (z−1)

∆A(z−1)
ζ(k) (1)

or equivalently

∆A(z−1)y(k) = B(z−1)∆u(k) + T (z−1)ζ(k) (2)

where y(k) is the output at sample k, u(k) is the control input,
ζ(k) is uncorrelated white noise and ∆ = 1 − z−1 is the
difference operator, in which z−1 is the backward operator,
i.e. z−1y(k) = y(k − 1). Finally, A(z−1) = 1 + a1z

−1 +
. . .+anz

−n, B(z−1) = b1z
−1 + . . .+ bmz

−m and C(z−1) =
1+c1z

−1 + . . .+cqz
−n are polynomials in z−1, with order n,



m and q respectively. Finally, pure time–delays of δ samples
are straightforwardly represented by setting the leading δ − 1
coefficients of B(z−1) to zero, i.e. b1 = b2 = · · · = bδ−1 = 0.

A. Standard GPC

Standard GPC is based on the following cost function,

JGPC (∆u, k) =

N2∑
i=N1

γie(k + i)2 +

Nu∑
i=1

λi∆u(k + i)2 (3)

where e(k) = r(k + i) − y(k + i), in which r(k) is the set
point, N1 and N2 are forecasting horizons associated with the
output variable, and Nu is the input forecasting horizon. When
minimizing (3), it is assumed that u(k) is time-invariant for
k > Nu, where N1 ≤ Nu ≤ N2. The simplest form of GPC
also assumes a time-invariant set point in equation (3), and
is based on the model (1) with the noise polynomial fixed as
unity, i.e. T (z−1) = 1. Finally, γi and λi are non-negative
weighting elements.

The weights are sometimes expressed in matrix form as
follows: Γ = diag (γi) and Λ = diag (λi). In fact, for many
practical applications, it is further assumed that N1 = 1,
Γ = I and Λ = diag (λ), where I is the identity matrix
and λ is a scalar weight on the input variable. This yields
a GPC algorithm that is straightforward to tune (often by trial
and error) for practical applications using just three terms i.e.
N2, NU and λ (somewhat analogous to a classical three term
industrial PID controller).

The present article concerns linear controllers that can be
analysed in block diagram terms, hence no constraints are
defined for the input and output variables. Minimising the cost
function (3) under all the above assumptions yields a fixed
gain control algorithm that can be conveniently expressed in
polynomial form as follows (see e.g. [5]–[7], [16]),

∆u(k) =
1

R′(z−1)

(
w0r(k)− S′(z−1)y(k)

)
(4)

where,

S′(z−1) = s′0 + s′1z
−1 + · · ·+ s′nz

−n (5)
R′(z−1) = 1 + r′1z

−1 + · · ·+ r′m−1z
−m+1 (6)

and w0 is a command input gain. Alternatively, defining
S(z−1) = S′(z−1)/w0 and R(z−1) = R′(z−1)/w0 yields,

∆u(k) =
1

R(z−1)

(
r(k)− S(z−1)y(k)

)
(7)

where,

S(z−1) = s0 + s1z
−1 + · · ·+ snz

−n (8)
R(z−1) = r0 + r1z

−1 + · · ·+ rm−1z
−m+1 (9)

Substituting (7) into the deterministic component of equa-
tion (1) yields the following closed–loop Transfer Function,

y(k) =
B(z−1)

∆R(z−1)A(z−1) + S(z−1)B(z−1)
r(k) (10)

The closed–loop poles pi are determined from the character-
istic equation: ∆R(z−1)A(z−1) + S(z−1)B(z−1) = 0.

B. Fractional order GPC

Initially posed in continuous-time terms, so as to allude to
selected concepts in fractional calculus, Romero et al. [1]–[4]
define the following cost function for FGPC design,

JFGPC (∆u, t) = αIN2

N1
(r(t)− y(t))

2
+ βINu

1 (∆u(t))
2 (11)

where I is the fractional-order definite integral operator,
and α, β ∈ R are user defined coefficients representing the
fractional order. The operator I and hence equation (11) is
subsequently discretized as shown by the references cited
above. Minimisation of the associated discrete–time cost func-
tion yields a controller with the same structural form as GPC,
i.e. it is defined by equations (7)–(9). The main difference is
that, whilst the GPC weighting matrices Γ and Λ are defined
explicitly via the cost function (3), or more commonly in
practice via the scalar input weight λ as described above,
FGPC defines these weights implicitly via the two scalar
tuning terms, α and β.

III. SIMULATION STUDY

Romero et al. [1] define three types of GPC or FGPC
design. This is illustrated by their numerical example, which
is reproduced in the first case study example below.

A. Worked example

Consider a first order, non-minimum phase model based on
equation (1), with T (z−1) = 1,

y(k) =
z−1 − 2z−2

1− 0.9−1
u(k) + ζ(k) (12)

For illustrative purposes, arbitrarily define N1 = 1, N2 =
10, Nu = 2 and λ = 10−6 i.e. the GPC weighting matrices
are Γ = I10 and Λ = 10−6 I2. Minimising the GPC cost
function (3) yields equations (7)–(9) with s0 = 3.9539, s1 =
−2.9539, r0 = −1.7892 and r1 = −6.5642. The associated
closed–loop poles are p1 = p2 = 0 and p3 = 0.4411. The
input and output responses to a unit step in the set point are
shown in Fig. 1 (i.e. the traces labelled GPC in the legend).

Utilising N1 = 1, N2 = 10 and Nu = 2 as above, together
with α = β = 2.5, FGPC design yields s0 = 4.2999, s1 =
−3.2999, r0 = −2.2982 and r1 = −7.3331. The closed–loop
poles are p1 = 0, p2 = 0.0277 and p3 = 0.5525, with the
response shown as the dashed black traces in Fig. 1. This
response is labelled FPGC–2 on the legend, since Romero et
al. [1] define this as an example of Type 2 FGPC control.

In fact, conventional GPC design can be utilised to de-
termine identical control gains as for Type 2 FGPC. This
is achieved by appropriate bespoke choice of Γ and Λ. For
this example, the relevant diagonal elements of Γ are: 23.67,
21.14, 17.81, 14.66, 11.73, 9.02, 6.56, 4.38, 2.5, and 1.0; and
the diagonal elements of Λ are: 1.5 and 1.0. In other words,
for this example, α = β = 2.5 represent high level tuning
parameters (hyper-parameters) that determine the Γ and Λ
weighting matrices.

Romero et al. [1] call GPC design either Type 1 or Type 2
control. If the GPC algorithm can can be exactly reproduced



Fig. 1. Closed-loop response of the model (12) to a unit step in the set point
for GPC, FGPC with α = 1.2 and β = 0.8 (FGPC–3), and FGPC with
α = β = 2.5 (FGPC–2). Upper plot: output y(k) against sample number k.
Lower: control input u(k). Based on reference [1].

using the FGPC tuning approach, they call it Type 2, other-
wise it is Type 1. Finally, Type 3 control is obtained when
α < 1 or β < 1 in FGPC design. In the latter case, the
weighting sequences can include negative terms in Γ and/or
Λ respectively. For example, solving the FGPC cost (11) for
α = 1.2 and β = 0.8 yields diagonal elements of Γ: 0.71,
1.68, 1.63, 1.59, 1.54, 1.48, 1.41, 1.32, 1.2 and 1.0; and
diagonal elements of Λ: −0.2 and 1.0. Here, FGPC design
yields equations (7)–(9) with s0 = 3.7146, s1 = −2.7146,
r0 = −1.4264 and r1 = −6.0325. The closed–loop poles are
p1 = 0, p2 = −0.0695 and p3 = 0.3445, with the response to
a unit step in the set point shown in Fig. 1 (labelled FGPC–3).
Note that one of the input weights is a negative number and
also that a closed–loop pole appears on the left hand side of
the complex z–plane.

B. Eigenvalues

Continuing with the model (12), Fig. 2, Fig. 3 and Fig. 4
investigate how the control tuning coefficients determine the
closed-loop pole positions (eigenvalues) and hence the time
response. With N1 = 1, N2 = 10 and Nu = 2, the
left hand side subplots of Fig. 2 show the output responses
(upper subplot) and the eigenvalues (lower subplot), when α
is varied in the range 0 → 5. For α <≈ 1.6, a complex
conjugate pair of poles appears, with the complex component
gradually increasing as α is decreased further. The associated
poorly damped, oscillatory responses are particularly evident
for α < 1, for which the responses and eigenvalues are shown
in red colour in Fig. 2. In a similar manner, the right hand
side subplots of Fig. 2 consider β varied in the range 0→ 10.
Here, with β < 1, for which the responses and eigenvalues
are again plotted in red colour, one of the eigenvalues moves
into the left hand side of the complex z–plane.

Fig. 2. Closed-loop FGPC responses of the model (12) to a unit step in the
set point with N2 = 10 and Nu = 2. Left hand side plots: β = 2.5 and
α = [0 : 0.2 : 5]. Right hand side plots: α = 1.2 and β = [0 : 0.1 : 10].
Upper plots: y(k) against k. Lower plots: eigenvalues shown on the complex
z–plane. Red colour shows the case with α or β < 1, otherwise black.

Fig. 3 represents a systematic variation of both α and β
across the same range of values (right hand side subplots).
For comparison, the left hand side subplots consider GPC
with λ in the range 10−7 → 107. Here, it is clear that many
combinations of α and β yield an unsatisfactory closed–loop
response, especially when either α or β are less than unity
i.e. Romero et al. [1] Type 3 control. Nonetheless, Fig. 3
demonstrates how FGPC can be used to extend the range
of closed-loop realisations that are possible and, in principle,
some of these realisations might represent a controller that
meets a defined set of control objectives (e.g. for performance
and robustness).

Finally, Fig. 4 illustrates this result in more general terms
(albeit limited to the same model). Here, the various tuning
coefficients considered in this article (N2, Nu, λ, α and β) are
all varied simultaneously, to show how FGPC potentially cap-
tures more of the complex z–plane than the more constrained
GPC approach. However, whether or not the increased range
of eigenvalues facilitates a better control algorithm for a given
practical application requires further research. Indeed, it is well
understood from the literature on GPC that straightforward
tuning of N2, Nu and λ already yields a satisfactory design for
many applications. By contrast, inadvisable choice of α and β
can clearly yield a highly unsatisfactory and even unstable
FGPC design. To illustrate, the left hand side eigenvalues
in Fig. 4 are typically associated with an oscillatory closed-
loop response (for brevity, these time-responses are omitted).

C. Marginally stable system

The following second order, non-minimum phase oscillator
with two samples time delay has been studied by a number of



Fig. 3. Closed-loop GPC (left) and FGPC (right) responses of the model (12)
to a unit step in the set point with N2 = 10 and Nu = 2. Left hand
side plots: GPC with λ = 10[−7:0.2:7]. Right hand side plots: FGPC with
α = [0 : 0.2 : 5] and β = [0 : 0.1 : 10] (all possible realisations). Upper
plots: y(k) against k. Lower plots: eigenvalues shown on the complex z–
plane. Red colour shows the case with α or β < 1, otherwise black.

Fig. 4. Closed-loop GPC (left) and FGPC (right) eigenvalues shown on the
complex z–plane, for 10000 random realisations of the tuning coefficients
from the following uniformly distributed ranges: N2 = [3 : 20], Nu = [1 :
N2 − 1], λ = 10[−7:7], β = [0 : 10] and α = [0 : 10]. Red colour shows
the case with α or β < 1, otherwise black.

authors including e.g. [15] (p. 70).

y(k) =
−z−2 + 2z−3

1− 1.7z−1 + z−2
u(k) (13)

Fig. 5 shows the eigenvalues and time-responses of the
model (13) for a range of values of λ (GPC) and β (FGPC).
The envelope of time responses for GPC and FGPC cover
a similar range, whilst the main difference for FGPC is that
one of the closed–loop poles moves along the real axis of
the complex z–plane (close to but not at the origin). The
authors are presently investigating if these poles can provide
any improvements over GPC in terms of robustness for this
marginally stable system, and these results will be reported in
future articles.

D. Robotic manipulator

This simulation example is based on a robotic system in
the laboratory. The hardware configuration consists of two
off–the–shelf HydroLek 7W manipulators, whose joints are

Fig. 5. Closed-loop GPC (left) and FGPC (right) responses of the model (13)
to a unit step in the set point with N2 = 10 and Nu = 9. Left hand side plots:
GPC with λ = 10[−3:0.1:4]. Right hand side plots: FGPC with α = 2.5 and
β = [0 : 0.17 : 12]. Upper plots: y(k) against k. Lower plots: eigenvalues
shown on the complex z–plane. Red colour shows the case with β < 1,
otherwise black.

controlled using potentiometer sensors and hydraulic actuators,
and a Brokk 40 mobile platform used to support and transport
the device. Each 6–degree–of–freedom manipulator has a con-
tinuous jaw rotation mechanism and dual function gripper fit-
ted with a pressure sensor. The movements of the manipulator
joints are controlled through hardware and software integration
using Labview R© and associated National Instruments tools.
Such dual–arm mobile robots offer a powerful option for
nuclear decommissioning applications [17]–[19].

Dynamic cross–coupling affects for the various HydroLek
joints are usually relatively small, hence to illustrate the single-
input, single-output control approach developed in section II,
the present analysis focuses on an illustrative joint considered
in isolation. In this regard, open–loop step experiments suggest
that a first order linear differential equation provides an ap-
proximate representation of individual joints. In fact, using an
arbitrary (for illustrative purposes) calibration framework for
the wrist joint of the left hand side manipulator, equation (1)
with n = 1, m = 2, δ = 2, a1 = −1, b1 = 0.1 and
T (z−1) = 1 provides a suitable model for initial linear control
system design [17]. Here, y(k) represents the joint angle and
u(k) is a scaled voltage in the range ±10, where positive and
negative signs are used to indicate clockwise or anticlockwise
movement. Fig. 6 shows the simulated closed–loop response of
an illustrative FGPC design with N1 = 1, N2 = 10, Nu = 2,
α = 2.5 and β = 2.5. Here, an output step disturbance of
magnitude 0.2 is simulated from the 22nd sample onwards,
representing an applied load to the system.

Whilst the above results represent an example of FGPC,
the authors are presently investigating the use of fractional
order methods for the manipulator in more general terms. In
this regard, recent applications of fractional order methods to
robotics include e.g. [20] and [21].



Fig. 6. Simulated FGPC control of robotic manipulator joint angle with a
disturbance at sample k = 22, showing the output (upper subplot) and control
input (lower) plotted against sample number.

IV. LABORATORY EXAMPLE

Previous research has considered a laboratory forced venti-
lation chamber with an array of 30 thermocouples distributed
within a 2 m × 1 m × 2 m airspace, with airflow sensors at
the inlet and outlet [22]. Actuators include two axial fans and
a 400 W heating element, used to generate various micro-
climatic conditions for research into buildings environment
control. The operation of the chamber is controlled by National
Instruments hardware/software.

Fig. 7 considers control of airflow at the outlet y(k) (m/s),
using the applied voltage to the outlet fan as the control
input u(k) i.e. an analogue 0 → 5 V DC output from the
National Instruments card inside the control computer. Here,
the linearised model for an operating condition of 2.25 m/s
is based on equation (1) with a1 = −0.8470, b2 = 0.5325
and δ = 2, identified from open–loop data using the RIV
algorithm of the CAPTAIN Toolbox [15]. Straightforward trial
and error FGPC tuning using this control model in simulation
mode yields a satisfactory response with N1 = 1, N2 = 20,
Nu = 5, α = 0.5 and β = 2.2, as illustrated in Fig. 7. On-
going research by the first author is considering the relative
robustness and performance of the FGPCP algorithm in com-
parison to GPC. Nonetheless, the present results represent one
of the first practical implementations of the FGPC approach.

V. DISCUSSION

In general terms, model-based design (e.g. pole placement,
GPC, FGPC) provides a quantitative method to determine the
gains of the control system, based on the ‘desired’ performance
of the closed-loop system. For the pole assignment method,
performance relates to the poles of the closed-loop system,
for GPC it is the minimisation of the cost function (3) and for
FGPC it is the minimisation of (11). The latter cost function
includes two scalar hyper-parameters, α and β, and the impact
of these parameters has been investigated in this article. Of

Fig. 7. FGPC control of ventilation rate in environmental test chamber,
comparing the simulated (thick traces) and experimental (thin) data. Upper
subplot: output air velocity y(k) (m/s). Lower subplot: control input u(k)
(applied voltage in the range 0→ 5 V).

course, various different model-based design approaches can
all produce the same outcome if the design criteria are set
‘correctly’ [23].

For example, conventional pole assignment can be utilised
to set the closed-loop poles corresponding to the poles that
minimise the GPC or FGPC cost (once these are known).
Hence, it can be argued that the choice of α and β is somewhat
arbitrary. Indeed, Romero et al. [1]–[4] provide no academic
justification for why a fractional order cost function should be
used nor any physically-based (engineering) reasons for how
to select α and β, with trial and error via simulation being the
implicit suggestion, as used in the present work.

Within the context of the assumptions made above, FGPC
provides a generalisation of the GPC cost function weights,
which ultimately determines the numerical values of the
control gains in equations (8) and (9). Hence, the value of
the approach appears dependent on whether the extra design
flexibility provided by FGPC can be utilised to meet control
objectives that are not achievable using standard GPC; and
whether FGPC provides a straightforward to tune control
algorithm – for example, that the use of α and β in this
way provides a meaningful or convenient approach to solve
practical control problems.

The first of these issues was considered by the simulation
study in section III. The numerical results in this article show
that the new tuning coefficients α and β can indeed be used
to potentially ‘capture’ more of the complex z–plane (with
the closed-loop eigenvalues) than the more constrained GPC
approach. However, whether or not the increased range of
eigenvalues, and hence potential time responses and other
closed–loop characteristics, could facilitate a better control
algorithm (e.g. for a given practical application and set of
control objectives) requires further research.

The second issue was briefly considered in section IV, in



regard to the control of airflow in a forced ventilation chamber.
In this case, straightforward trial and error FGPC tuning yields
a satisfactory response for this laboratory system. However, it
would be true to say that the same applies to conventional
GPC design, pole assignment [15] and various other model-
based approaches [22]. Hence, on-going research by the first
author is considering the relative robustness and performance
of the FGPC algorithm in comparison to GPC.

One limitation of the present work is that whilst α is used in
FGPC design to provide a weighting on the output in the cost
function (11), it has been assumed above that γ in the GPC
cost (3) is unity throughout, as is common in many practical
applications. It has also been assumed that λi = λ (∀i) for the
GPC simulations in this article. Hence, on-going research by
the present first author concerns a comparison of FGPC and
GPC without these constraints.

VI. CONCLUSIONS

This article has used both numerical examples and a lab-
oratory test rig to investigate FGPC methods for control
system design. The simulation study shows how FGPC can be
used to extend the design flexibility of the conventional GPC
algorithm. However, the value of these results in respect to
control system robustness and performance, in both theoretical
and practical terms, requires further research. Nonetheless, the
method was applied to control airflow in a laboratory forced
ventilation test chamber, representing one of the first practical
implementations of FGPC design.

In further research, the authors are looking into other appli-
cations and the relationship with recent research into predictive
control using fractional order concepts. For example, Zou et
al. [24] apply fractional order predictive functional control
to industrial processes, whilst Shi et al. [25] apply fuzzy
generalised predictive control to a fractional-order nonlinear
hydro-turbine regulating system.
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