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Abstract—The well-known electrical analogy for thermal mod-
elling is based on the observation that Fourier’s equation for one
dimensional heat transfer takes the same form as Ohm’s law.
This provides a system for creating and resolving complex heat
transfer problems using an established set of physically-based
laws. The present article illustrates the concept for adjacent
rooms in a modern university building, and investigates some
of the modelling issues involved. The electrical analogy is chosen
so that the models can be extended and used for future research
into demand-side control of multiple buildings on the university
network, requiring a fast computation time. For illustrative pur-
poses, the present article is limited to a relatively straightforward
two-room system, for which the modelling equations are conve-
niently represented and solved using MATLAB-SIMULINK. The
coefficients of this model are estimated from data using standard
nonlinear optimisation tools. For comparison, the article also
develops an equivalent multiple-input Transfer Function form
of the model. Finally, suggestions are made for the inclusion of
occupancy estimates in the model.

Index Terms—thermal modelling; building occupancy; micro-
climate; transfer function; electrical analogy

I. INTRODUCTION

The research behind this article ultimately concerns control
system robustness and overall system optimisation, for the
regulation of temperatures in buildings that are linked to
a controllable external heating supply network. This is the
case, for example, with the Lancaster University campus, for
which a central energy centre supplies the hot water used to
heat around 50% of the buildings. More generally, Heating,
Ventilation and Air Conditioning (HVAC) systems have high
energy requirements, hence there is considerable interest in the
development of improved optimisation tools, micro—climate
control algorithms and energy management systems. Selected
examples of such research include [1]-[7].

In this regard, numerous approaches for modelling heat
transfer phenomena and energy use have been developed over
the past few decades. The models obtained are commonly
categorised into physically-based models and models that
are statistically identified from data [8]. Within this context,
various zonal and multi—zone approaches exist. Of particular
relevance to the present article, these include thermal models
constructed using an analogy with electrical systems. An
early reference by Paschkis and Baker [9] describes how
components of a building are considered to store or resist
heat flows, equivalent to capacitors and resistors in electrical
systems [10]. Research on the concept includes consideration
of multiple layered walls [11], heat exchanger networks [12],

global building models [13], parameter estimation, optimal
model order identification and model reduction [14]-[16].

Following a brief overview of the methodology (section II),
the present article illustrates the concept for two adjacent
rooms in a modern university building (sections III and IV),
and discusses some of the modelling issues involved. The
electrical analogy is chosen so that the models obtained
can be quickly extended and used for future research into
demand-side control [4] of multiple buildings on the uni-
versity network, requiring a fast computation time for energy
optimisation purposes. With this objective in mind, the model
should be simple to construct and implement, initially using
readily available physical parameters, such as room dimen-
sions and estimates of thermal resistance. However, since the
University’s Building Management System (BMS) includes
comprehensive data collection for many parts of the campus,
temperature measurements are exploited where possible to
optimise the model coefficients (section V).

Finally, the model is represented using an alternative
multiple—input Transfer Function form (section VI). By gen-
eralising and exploiting this structure, the model is identified
and estimated directly from the BMS data set and subsequently
interpreted in terms of the electrical analogy, representing an
example of data—based mechanistic (DBM) analysis [1]. How-
ever, this approach raises identifiability challenges because of
direct and indirect associations between the inputs and outputs
of the model. Analysis of the initial model highlights another
limitation, namely the lack of a time—varying internal heat
source to represent changing occupancy rates. As a result, the
model is extended to include novel occupancy estimation using
data from both Wi-Fi usage and CO; levels.

II. METHODOLOGY

The electrical analogy for thermal modelling is based on the
observation that Fourier’s equation for one dimensional heat
transfer takes the same form as Ohm’s law. Table I shows the
equivalent circuit elements that comprise the analogy. This
is useful as it provides a system for creating and resolving
complex heat transfer problems using an established set of
physically—based laws. For selected examples of this approach,
considered from various theoretical and application perspec-
tives, see references [9]-[16]. Relatively high order resistor—
capacitor (RC) networks are sometimes employed in order to
model building components. For example, Peng and Xu [11]
represent a wall consisting of multiple layers of materials with



TABLE I
ANALOGOUS ELECTRICAL AND THERMAL PARAMETERS.

Thermal Electrical
Symbol Parameter Symbol Parameter

AT Temperature Difference AV Voltage Difference

q Heat Flow 1 Current

C Heat Capacity C Capacitance

R Thermal Resistance R Resistance

TABLE II
NOTATION AND UNITS
Symbol Brief explanation Units

T Temperature of Room One K
Ts Temperature of Room Two K
Tis Supply Air Temperature to Room One K
Tos Supply Air Temperature to Room One K
Ta Ambient (Outside) Air Temperature K
T External (Surrounding) Air Temperature K
Ry Thermal Resistance Between Room One and Surroundings K/W
R2 Thermal Resistance Between Room Two and Surroundings K/W
Ria Thermal Resistance Between Rooms One and Two K/W
C1 Thermal Capacitance of Room One J/K
Cy Thermal Capacitance of Room Two J/K
q1 Heat Flow into Room One w
q2 Heat Flow into Room Two w
mi Mass Flow Rate into Room One kg/s
Tha Mass Flow Rate into Room Two kg/s
Uy Internal Heat Generation in Room One w
Us Internal Heat Generation in Room Two w
cp Specific Heat Capacity of Air J/Kkg

P Air Density kg/m3
L Wall Thickness m

k Thermal Conductivity W/mK
A Wall Area m?
1% Room Volume m3
Q Flow Rate m3/s
P Power level

n Number of Vents

air gaps, as a system with three resistors and one capacitor
(denoted 3RI1C). However, as a greater number of zones are
modelled concurrently, the network diagrams can become very
large. In this case, programs such as TRNSYS [17] have been
used to collate the models. Since the present article is limited
to a two-room system, the modelling equations are conve-
niently represented and solved using MATLAB-SIMULINK.
Table II summarises the notation and associated units utilised
throughout the article. Selected model coefficients are esti-
mated from data using fminsearch. The Transfer Function
form is estimated using Refined—Instrumental Variable (RIV)
methods in the CAPTAIN Toolbox [18].

III. CASE STUDY

Lancaster University campus has several recently con-
structed buildings fully instrumented with a range of sensors
and actuators, and seems well suited for research into the
optimisation of energy efficiency because of the associated
BMS data collection capacity. Charles Carter Building, for
example, is a freestanding building lying in the south part of
the university’s main campus. Named after the founding Vice-
Chancellor, the architects integrated various energy—reducing
features into the building design, which achieved a BREEAM
Excellent rating. The south elevation is designed to shade the
building while the concrete roof protects the top floor from

TABLE III
TEMPERATURE RANGE, MEAN AND VARIANCE.

Variable | Range | Mean o
T 2.8 21.8 | 0.401
Ty 3.8 21.3 | 0.453
Ts1 20.0 19.9 | 5.111
Tso 20.0 18.7 | 4.839
Tg 4.4 18.9 | 0.753

heating up in the sun. The building footprint is 33 m by
36 m with four floors (A-D). Internally the building is laid
out around a central atrium that is open from the floor to
the roof. Surrounding this area are lecture theatres, offices,
meeting rooms and break-out spaces. Detailed micro-climate
data are collected by the BMS every 10 minutes including, for
example, the supply and return air temperatures for various
rooms, ventilation power levels and HVAC set points.

For illustrative purposes in the present article, data from
September 2017 are selected for analysis. The data and asso-
ciated model focus on two research student office spaces on
C floor, termed room one and room two in this article. The
corner of room one meets the north—east corner of the central
atrium, while room two adjoins room one, stretching along
the south side of the atrium, as shown in Fig. 1. For context,
Table III provides some descriptive statistics for the first week
of September 2017, while Fig. 2 show typical temperatures
in each room, denoted 73 and 75, as well as the associated
air supply temperatures, T3 and Tgo, and the surrounding
‘external’ temperature Tz (taken from adjacent meeting rooms
and assumed to be representative).

For the data under consideration here, the supply tempera-
tures are reduced during the working day in order to maintain
the room set points, as illustrated by Fig. 2. The supply
temperatures are constant during the weekend. This pattern
is repeated during the first 25 days of the month, during
which time the rooms are generally warmer than the supply
and ambient temperatures. By contrast, the right hand side
of Fig. 2 shows that the supply temperatures are significantly
higher during the last few days of September, although there
is no obvious change in the outside temperature profile to
explain this. For the model optimisation example considered
later, the first two weeks of September 2017 are used for
estimation purposes and the final two weeks for validation.
This approach ignores the changing dynamics noted above and
clearly requires more research. Finally, it is clear that room
two is consistently a little colder than room one, and suffers
greater variation in temperature, which is likely to be due to
its position next to the atrium, with the associated heat losses.

IV. MODEL FORMULATION

The thermal model for the adjoining research student rooms
consists of two coupled first order differential equations,
analogous to a RC network. In the analogy R is the thermal
resistance of the walls and C is the capacitance of the air in the
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Fig. 1. Approximate layout of the Charles Carter Building, C-floor.
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Fig. 2. Room, supply and external temperatures for September 2017.

rooms. As the intention is to formulate a simple model, a IR1C
system is initially assumed for each room. The heat balance
diagram and equivalent RC circuits are illustrated in Fig. 3.
Hence, assuming two rooms of internal temperature 77 and
T5, and heat capacity C; and C5 respectively, are joined by a
wall of resistance Rj9, then the heat balance equations yield,

dlh Th -1 T, —-Tg
=(C,— 1
¢ T + 7 + 7 (D

dT2 T2 —Tl T2 _TE
=(Cy—= 2
q2 20 + o + 7 ()

where R; and Ro represent the thermal resistance between
each room and the surrounding temperature 7', and in which

the rooms are supplied with heat flows ¢; and ¢o. The latter
are not directly measured hence are represented in the model
as ¢; = m;cp(Ts; — T;) where ¢ = 1, 2. Finally, equations (1)
and (2) are re-arranged to isolate the room temperatures,

dT1 1 T2 - Tl TE - Tl
a1 3
dt O [ ! ) } )
dT2 1 T1 - T2 TE - T2
¢ o 4
dt Oy { 2t ., YR } @

Equations (3) and (4) represent a system with two coupled
temperature output variables of interest and three input signals
i.e. Ts1, Tso and Tr. Having defined the model structure, the
subsequent task is to determine the model coefficients such
that the output satisfactorily tracks the measured values. In the
first instance, the coefficients are all determined from standard
physical relationships, as follows,

L .
Ri:m;Ci:VPCp§mi:QPn )
where ¢ = 1,2 and referring to Table II for the notation.

Table IV states the values of these coefficients, as determined
using the room dimensions and other known physical prop-
erties. The model is implemented in MATLAB-SIMULINK
using the coefficients in Table IV. However, the initial results
are very poor, with the model consistently underestimating the
room temperatures. Trial and error ‘tuning’ of the coefficients
yields some improvement, but significantly higher resistances
are required and this is difficult to justify physically.
Analysis of the model gain (see later section VI), shows
that the simulated room temperatures cannot exceed the input
signals at steady state. However, since Fig. 2 shows that the
measured room temperatures are consistently 1 or 2 degrees
above the supply and external temperatures, there is clearly an
unmodelled heat source: these rooms are office spaces, hence
human occupancy and electrical equipment will contribute
heat [19], [20]. Assuming an average heat output of 100W
per occupant [21], and estimating the occupancy based on
the number of desks (i.e. 8 and 16 for rooms one and two
respectively), the revised heat flow equations are,

¢ = micy(Tsi — T;) + U; 6)

with 7 = 1,2 and initially time—invariant U; = 800 and
U, = 1600. This arrangement yields satisfactory results for
the present purposes.

V. RESULTS

Table V shows the mean absolute error (MAE) between the
measured and simulated temperatures for each room, com-
paring the response of the original model, U; = Us; = 0, to
three scenarios based on the revised model. With the exception
of the final row (see later), Table V considers simulated and
measured data for the first two weeks of September 2017,
and shows that the introduction of an internal heat source has
significantly improved the results.

To illustrate the numerical optimisation approach, these two
weeks of training data are used to estimate new values of the



TABLE IV
PHYSICALLY DETERMINED COEFFICIENTS.

Walls L k A R;
Ry 00l 078 63 2.0 x10°3
Ry 0.01 078 90 1.4 x1073
Ria 0.01 078 15 85 x1073
Room Vv p Cp C;
C1 93 123 1.01 115
Ca 188 123 1.01 231
Supply Q P n m;
m1 0.0275 07 8 0.154
o 0.0275 0.7 6 0.116
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Fig. 3. Schematic diagram for the heat balance of two adjacent rooms (upper)
and equivalent RC circuit diagram (lower).

coefficients that further reduce the modelling errors. While
most parameters remain close to the calculated values, the
estimated resistance between the rooms is increased by a
factor of ten. Further research is required into this and related
optimisation issues but, in this particular example, higher
resistances might be explained by the fact that storage units
are placed along the wall on both sides of the glass partition.
The middle rows of Table V compare the MAE for the initial
(based on the values in Table IV) and optimised coefficients,
while Fig. 4 shows the time responses. The MAE values are
much reduced but Fig. 4 shows that there remains scope for
further improvement in the model fit, and additional research
is also required into model identifiability. Nonetheless, these
preliminary results suggest that numerical optimisation of the
parameters from BMS data, using initial conditions based on
the physically determined values, is a viable approach.
Finally, Fig. 5 and the bottom row of Table V show the
results from a typical validation experiment, in which the

TABLE V
SUM OF MEAN ABSOLUTE ERROR BETWEEN DATA AND MODEL RESPONSE.

Model Room 1 | Room 2 | Sum

No internal heat source 3.01 2.20 5.21
Physically—based coefficients 0.83 0.88 1.71
Optimised coefficients 0.26 0.34 0.60
Validation experiment 0.54 0.54 1.08
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Fig. 4. Model estimation: measured room temperatures (red) for the first two
weeks of September 2017, compared with the output of a model that includes
an internal heat source. The response of an initial model with physically—
based coefficients (dashed) is compared to the response with coefficients that
have been numerically optimised to fit these data (solid).

thermal model is simulated using the input signals for the final
two weeks of September 2017, whilst the coefficients are those
estimated above. The magnitude of the room temperatures are
broadly correctly predicted, especially for room one during
the first 10 days. It is noteworthy, however, that the model
overestimates the temperature in room one towards the end of
the simulation experiment: this is associated with the change
in HVAC activity for the last few days of September (see
section III). In this regard, one option might be to develop a
scheduled modelling approach, with different coefficients and
settings for heating and air conditioning scenarios.

VI. ANALYSIS AND DISCUSSION

Denoting s = d/dt, equations (3) and (4) yields Transfer
Function models for room temperature. Introducing the heat
input (6), substituting for ¢; and grouping parameters yields,

b1 bQ b3 b4
T, = T. T T:
1 A(s) 51+A1(s) E+A1(S) 2+A1(5)U1 @)
b5 bﬁ b? bS
T, = Ty + Tp + T+ U, @®
S R P R O A RC
where,

Aq(s) = C1R1R125 + micpRiR12 + R1 + Rao
As(s) = CaRoR125 + mhacpRoR12 + Ro + R
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Fig. 5. Model validation: measured room temperatures (red) for the final two
weeks of September 2017, compared with the output of a model that includes
an internal heat source (and which has been numerically optimised for data
collected during the first two weeks of September).

by =micpRiR12 ; by = Ria; b3 =Ry ; by = R Ry
bs = macpRaR12 3 bg = Ri2; by = Ry ; by = RoRy»

In principle the composite parameters stated above can be
estimated from the BMS data using techniques from the
system identification literature e.g. the RIV algorithm in
the CAPTAIN toolbox [18]. Furthermore, generalising this
formulation by defining e.g. A(s) = s"+...+a,—15+ay, in
which n is the polynomial order, allows for the identification of
higher order model structures that are not necessarily limited
to the 1IR1C form assumed above. However, since the room
temperatures are dependent on each other, multi—input, single—
output (MISO) estimation using the standard RIV algorithm
may yield biased estimates of the parameters, and this is the
subject of current research by the authors.

Consideration of a first order Transfer Function K /(7s+1),
where 7 is the time constant and K is the steady state gain,
yields the following time constants for the thermal model,

TC(T1) = - il Fu )
micpR1Ri2 + Ry + Ry
CoRo Ry
macpRaR12 + Ro + R

TC(T») = (10)
Furthermore, the component steady state gains are obtained
by setting s = 1 in each Transfer Function model. Hence, for
illustration, assuming time—invariant T 1, T and 15, together
with U; = Us = 0 (i.e. the initial model without an internal
heat source), yields,

mycpR1R19Ts1 + Ri2Te + RiTo

Ty (t =
1t = 00) micpyR1Ri2 + Ry + Rio

(1)

In this case, using the physically-based parameters in Ta-
ble IV, less than 0.03% of the output is associated with the
supply temperature, with 81% from the external temperature

and 19% from the second room temperature, hence the poor
performance of this initial model is perhaps not too surpris-
ing. Furthermore, because of the constrained nature of the
composite parameters in the Transfer Function (and regardless
of the numerical value of each physical coefficient), the sum
of the component steady state gains equals unity — the room
temperature is always the weighted (summed to unity) sum of
each steady state input temperature. This is inconsistent with
the Charles Carter Building September 2017 data, in which
the room temperatures are a degree or two hotter than all the
supply (and external) temperatures, and hence provides further
motivation for the introduction of the internal heat source.

To improve on the time-invariant heat source introduced
by equation (6), the model is further developed to address
how the occupancy levels vary over the course of the day
in different parts of the building. Two sets of data gathered
by the BMS are combined: the number of devices connected
to the Wi-Fi hubs and the returning CO4 levels. There are
four Wi-Fi hubs in the Charles Carter Building, one per floor,
which log the total number of connected devices every 10
minutes. As the staff and research student offices have desktop
PCs with a wired connection, one device per person seems a
reasonable approximation, and proves to work well in practice.
Furthermore, this approach is appealing since existing sensors
and readily available data sets are used i.e. there is scope
for general implementation throughout the university, without
requiring the installation of bespoke sensors.

However, since there is only one Wi-Fi hub per floor,
this count provides no insight into to how the occupants are
distributed between different rooms or zones on the floor. The
latter is provided by the relative changes in CO, levels. To
illustrate the approach, A—floor is divided into five zones, each
served by one Air Handling Unit (AHU), with the occupancy
in the new model represented as follows,

An(t) = P(H)— H,(t+b) — mm(Hn)
Zn:l(Hn(t + b) - mzn(H’ﬂ))

where A, (t) represents the number of occupants in zone n at
time ¢, H,(t) the COy level (ppm) in zone n at time ¢, P(t)
is the total number of occupants on this floor as recorded by
the Wi-Fi hub, and b is the time—delay.

For a preliminary evaluation, a head count or ‘ground truth’
measurement was taken by the first author every 10 minutes
during a week day in September 2018 (Fig. 6). Unfortunately,
since this date does not fall during term time, the building was
relatively under-occupied. In particular, in the late morning
both meeting rooms were fully occupied by attendees who
may have switched off their devices, zones 11 and 12, whilst
the rest of the floor was largely unoccupied. During busier
days, the results would not be dominated by the meeting
rooms in this way, although further research by the authors
into such issues is on-going. However, even for this limited
example, Fig. 6 suggests that the CO5 and Wi-Fi data provide
some indication of occupancy for inclusion in the model.
The authors are presently developing this concept further and
evaluating it against additional data sets [22].
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Fig. 6. Estimated and observed (‘ground truth’) occupancy for four zones on
floors B and C, for an illustrative day outside of term time, September 2018.

VII. CONCLUSIONS

A simplified model of two rooms in a building on Lancaster
University’s campus has been developed using the thermal-
electrical analogy. Using physically derived parameters yields
unsatisfactory model performance but this is significantly
improved when an internal heat source is added and the coef-
ficients are numerically optimised using data from the BMS.
Although the two—room model and equivalent transfer function
form reported in the present article provide useful insight into
the thermal-electrical concept, for representation of an entire
building a state space formulation will be utilised [22].

On the university campus, an energy centre provides the
hot water that is used to heat the buildings on the network,
and contains multiple methods of heat production, such as
gas boilers and a biomass generator. Therefore, in future
research, this type of model will be used to explore options
for a hierarchical control system, with a particular focus on
optimising the use of the boilers and generator. In this regard,
the authors are presently developing demand-side control
concepts to address multiple buildings on this network i.e.
the control actions for one building are accounted for when
choosing actions for the other buildings. This will be achieved
within a non-minimal state space model predictive control
framework [23]-[25]. Moreover by incorporating weather into
the control system and so making full use of the available data
from the local Hazelrigg weather station, it is anticipated the
entire network can be better optimised.
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