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Abstract

Deployment of deep neural networks (DNNs) in
safety-critical systems requires provable guarantees
for their correct behaviours. We compute the maxi-
mal radius of a safe norm ball around a given input,
within which there are no adversarial examples for
a trained DNN. We define global robustness as an
expectation of the maximal safe radius over a test
dataset, and develop an algorithm to approximate
the global robustness measure by iteratively com-
puting its lower and upper bounds. Our algorithm is
the first efficient method for the Hamming (L) dis-
tance, and we hypothesise that this norm is a good
proxy for a certain class of physical attacks. The
algorithm is anytime, i.e., it returns intermediate
bounds and robustness estimates that are gradually,
but strictly, improved as the computation proceeds;
tensor-based, i.e., the computation is conducted over
a set of inputs simultaneously to enable efficient
GPU computation; and has provable guarantees,
i.e., both the bounds and the robustness estimates
can converge to their optimal values. Finally, we
demonstrate the utility of our approach by applying
the algorithm to a set of challenging problems.

1 Introduction

Safety certification for DNNs is challenging owing to the lack
of symbolic models and formal specifications. An important
requirement specification for DNNS is their robustness to input
perturbations. DNNs have been shown to suffer from poor
robustness because of their susceptibility to adversarial ex-
amples [Szegedy et al., 2014; [Biggio ef al., 2013]]. These
are small modifications to an input, sometimes imperceptible
to humans, that make the neural network unstable. As a re-
sult, significant effort has been directed towards approaches
for crafting adversarial examples [Goodfellow et al., 2015}
Papernot et al., 2016} |Carlini and Wagner, 2017]]. However,
these provide no formal guarantees, i.e., no conclusion can be
drawn on whether adversarial examples remain.

By contrast, recent efforts in the area of automated verifica-
tion, e.g.,[Huang er al., 2017; Katz e al., 2017; |Lomuscio and
Maganti, 2017; Narodytska et al., 2017; [Dutta et al., 2017}

Ruan et al., 2018a; ‘Wu et al., 2018} |Gehr et al., 2018;
Mirman et al., 2018]], have focused on methods that generate
adversarial examples, if they exist, and provide rigorous lo-
cal robustness proofs otherwise. This paper proposes a novel
approach to quantify the robustness of DNNs that offers a
balance between the guaranteed accuracy of the method (thus,
a feature so far exclusive to formal approaches) and the com-
putational efficiency of algorithms that search for adversarial
examples (without providing any guarantees).

We focus on the Hamming distance (i.e., the Ly norm),
which measures the number of different vector components
given two inputs. In the case of images, this is the number of
pixels that are different. On the other hand, L, Lo and L
norms compare how much each pixel has changed. The Lg
distance is fast to compute and is an upper bound on the size of
an adversarial perturbation [Papernot et al., 2016;|Carlini et al..
2017]l. However, the non-continuity and non-differentiability
of Ly is a challenge for the discovery of adversarial attacks.
Furthermore, the existing safety verification methods that are
designed for other distance metrics are not efficient when
using the Hamming distance. This includes SMT/SAT-based
methods [Katz et al., 2017, MILP-based work [Dutta et al.)
20170, exhaustive search or MCTS-based methods [Huang ef
al., 2017; Wu et al., 2018|], and methods based on abstract
interpretation [Gehr er al., 2018]. We remark that, while all
L, norms can be used to identify physical adversarial attacks
and have a role to play, on their own or in combination, we
hypothesise that the Hamming distance is a good proxy for a
particular category of realistic physical attacks in which small
modifications (e.g., a sticker) are applied to objects that the
system is trained to recognise (e.g., a street sign), leaving the
rest of the image unchanged.

In this paper we consider the global robustness problem,
defined as the expected maximum safe radius over a (finite)
test dataset, which is a generalisation of the local, pointwise
robustness problem. The key idea of our approach is to gen-
erate sequences of lower and upper bounds for global robust-
ness simultaneously for a set of inputs by using tensor-based
parallelisation. Thus, global robustness aims to capture the
worst case local robustness (worst case maximal safety radius)
among a set of inputs. The usefulness of global robustness
lies in that it quantifies the size of the perturbation that the
system can withstand for a set of inputs, instead of just a sin-
gle input, since it gives both lower and upper bounds on the



maximal safe radius. Intuitively, a lower bourdneans that an inputxg 2 R" and a real numbed 2 R, a norm
no adversarial example is possible for perturbation of up to ball B(f;x o;jj jjp;d) is a subspace oR" such that
pixel changes, whereas an upper boxrdeans thax pixel B(f;Xo;jj jip;d)=fXjjjXxo Xjjo dg: The numbed
changes are suf cient to attack a network. By considering ds called theradiusof B (f; X o;jj jjo;d). A norm ballB (f;
distribution over the set of inputs, we can quantify the robustxg;jj jjp;d) is safeif for all x 2 B(f;xo;jj jjp;d) we
ness of a DNN for this input distribution. Our de nition is havecl(f;x ) = cl(f; x o). Furthermore, if for alld®> d we
thus a natural extension of the robustness concefir@dkei  have thaB (f; x o;jj jj o ;dY) is not safe, thed is called the
al., 2017. maximum safe radiygind denoted by, (f; X 0;jj jip)-

Our method isanytime tensor-basegand offergprovable
guaranteesFirst, the method ianytimein the sense that it can

return intermediate results, including upper and lower bounds We de ne the global) robustness evaluation problem over
and robustness estimates. We prove that our approach C@Nest dataser, which is a set of i.i.d. inputs sampled from

gradually, bUt. strictly, improve these bqunds and estimates a3 distribution representing the probleifn is working on.
the computation proceeds. Second, teissor-basedAs we .

are working with a set of inputs, a straightforward approache usgfT) to denote the number of inputs Th WhenjTj = 1,

: . . o ol e call itlocal robustness.

is to perform robustness evaluation for the inputs individually - _ _

and to then merge the results. However, this is inef cient, ad2e nition 2 (Robustness Evaluation) Given a networkf ,
the set of inputs is large. To exploit the parallelism offereda nite setTo of Inputs, an_olj Jlo, _ro_bus_tness evaluatipn
by GPUs, our approach uses tensors. A tensor can formulagenoted afk(f; To;jj jjp), is an optimisation problem:

a nite set of inputs (e.g., images) into a multi-dimensional oo ; . oy

array which can be ef ciently processed by GPUs in parallel. minjTo Tip st cl(fixi) 6 cl(fixoi) (1)
An algorithm that is well-suited for GPUs uses tensor operag AP T

A . . oralli2f1

tions whenever possible. Third, our approach offems/able (Xoi ) - S

guarantees We show that the intermediate bounds and ror"%1/i=1::iToj-

bustness estimates converge to optimal values in nite timdntuitively, we aim to nd a minimum distance between the
Our experimental results suggest that the algorithm convergegriginal setTy and a new, homogeneousZ&tof inputs such

Intuitively, a norm balB (f; X o;]j jj o;d) includes all inputs
whose distance try, measured byj jjp, is withind.

quickly in practice. that all inputs inTy are mis-classi ed.
We implement our approach in a tool we naDeepTRE| Lo Norm The distance metrij jjp can be any mapping
(“Tensor-base®obustnes&valuation forDeepNeural Net- i iio :R" R"! [0;1 ]thatsatis es the metric conditions.

works”), and present experiments via ve case studies, N, this paper, we focus on they nornﬂ For two inputsxo
cluding global robustness evaluation; competitieattacks;  andx, theirL , distance, denoted diX  Xojjo, is the number

saliency map generation for model interpretability and localyf thejr components that are different. When working with a
robustness evaluation on ImageNet DNNs including AlexNetagt dataseT, (all inputs inT, are i.i.d.), we de ne
VGG-16/19 and ResNet-50/101; guidance to the design of

robust DNN architectures; and test case generation. All appli-JiT ~ Tojjo Eo21liX  Xojiol (our de nition)
cations above require only simple adaptations of our method, 1 X

e.g., slight modi cations of the constraints or objective func- = iTol X Xollo 2

tions, or adding further constraints. This demonstrates that our X02To

tool is exible enough to deliver a wide range of promising wherex 2 Tis a homogeneous input tq 2 T,. While

applications. o N other norms such ds;, L, andL; have been widely applied
Owing to space limitations, we focus on describing the corefor generating adversarial examplEzapernoet al, 2016;

theoretical concepts, tensor-based parallelization and conv@{urakin et al, 2014, studies of robustness evaluation for

gence guarantees, and make an extended companion papmNs based on th&, norm are few and far betwedRa-

available agRuanet al,, 2018H. pernotet al, 2016; Carliniet al, 2017{ Wickeret al, 2018;
. Huanget al., 2017] Wuet al, 201{. In Appendix B of[Ruan
2 Problem Formulation et al, 2018l}, we discuss why_ g is an important distance

Letf : R" I R™ be anN -layer neural network such that, metric from various perspectives.

represents the con dence values forclassi cation labels. 3 Anytime Robustness Evaluation

Without loss of generality, we normalise the inputt@ The evaluation of robustness followin - ;

i ; . i g De nitidnf 2 is hard for
[0; 1]". The outpuff (x) is usually normalised to be ; 1] fheLo-norm. In Appendix A.1 ofRuanet al, ZO%H, we dis-
using a softmax layer. We denote the classi cation label of¢, 55 its computational complexity and prove that the problem

S ) . is NP-hard. We propose to compute lower and upper bounds
f andcl can be generalised to apply to a $gof inputs, i.e., 5 ropustness, and then gradually, btrtctly, improve the
f (To) andcl(f; To), in the standard way.
De nition 1 (Maximum Radius of a Safe Norm Ball) 2Two setsT, andT are homogeneous if they have the same num-

Given a network : R" | R™, a distance metrigj jjp, Perofelementsand are of the same type.
3Strictly speakingL o is not a norm, but it is commonly referred

! Available on GitHub! https://github.com/TrustAl/LO-TRE. to as such.


https://github.com/TrustAI/L0-TRE.

bounds so that the gap between them can eventually be clos&2k nition 6 (Subspace Sensitivity) Given an input sub-
Although in practice run times can be long, thisytimeap- spaceX  [0;1]", an inputxg 2 [0; 1]" and a labelj, the
proach provides pragmatic means to make progress. Sectionsbibspace sensitivity.r.t. X , Xo, andj is de ned as

shows that our approach achievgght boundsef ciently on , )
dif cult instances. S(Xix0:j) = G (xo)  inf ¢ (x): (6)

De nition 3 (Sequences of Bounds)Given a robustness

evaluation problenR (- Tojj Jio). a sequence (To) = Lett be an integer. We de ne the subspace sensitivitylfor

fli;12; 000 1kg 2 Ris anincremental lower bound sequerif,e andt as

forall 1 i<j k,we have; |, _ R(f; TO;J]_JJD_). The S(To;t) = ( S(Xxe3 X051 x0) Xxg2X (xot)02To  (7)
sequence is strict, denotedlag(Ty), ifforall 1 i< k,

we have eithel; <1; orl; = I; = R(f; To;jj jip). Similarly, wherejy, = argmax;a 1...m ¢ G (Xo) is the classi cation

we can de ne adecremental upper bound sequeii{do)  label ofxo by networkf .
and a strict decremental upper bound sequedgdo). Intuitively, S(X; X o;] ) is the maximal decrease of con dence

~ We will, in Section 4, introduce our algorithms for comput- value of the output lab¢lthat can be witnessed from the ¥et
ing these two sequences of lower and upper bounds. For noand S(To; t) is the two-dimensional array of the maximal

assume they exist, then at a certain tinxe 0, decreases of con dence values of the classi cation labels for
S all subspaces iX (xo; t) and all inputs ifly. It is not hard to
It R(f1 TO!” | D) Ut (3) see thaS(X,Xo,j) 0.
holds. Given a test datasdy and an integet > 0, the number

De nition 4 (Anytime Robustness Evaluation) Based on ©Of elements ir5(To; 1) is in O(jToj n‘), i.e., polynomial in
two given bound§;: u;], we de ne its centre and radius as 1Toj @nd exponential in. Note that, by Equation (6), every
follows. element inS(Tp; t) represents an optimisation problem. That

is, for Ty, a set of 20 MNIST images, arid= 1, this would be
Ue(li; up) = }(h +u) and U (lg;u) = }(Ut ) (4) 28 28 20= 15;68(_)one-dim_ensional optimisation prob_—
2 2 lems. In the next section, we give a tensor-based formulation
Theanytime evaluation oR(f; To;jji jip) attimet, denoted ~and an algorithm to solve this challenging problem via GPU
asR.(f; Tosji Jio), is the pair(Ue(le; up); Ur (It; ur)). parallelisation.

The anytime evaluation will be returned whenever the com4 .1 Tensor-based Parallelisation for Computing
putational procedure is interrupted. Intwtl_vely, we use the Subspace Sensitivity
centreU(l;; ut) to represent the current estimate, and the ra- Ll e g . . )
dius U, (I;; uy) to represent its error bound. Essentially, weA t€nsorT 2 Rt 7z = N in r’LN -dimensional space is
can bound the true robustne®éf; To;jj jjp) viathe anytime a mathematical object that has,,_, Im components and
robustness evaluation. obeys certain transformation rules. Intuitively, tensors are gen-
eralisations of vectors (i.e., one index) and matrices (i.e., two
4 Tensor-based Algorithms for Upper and indices) to an arbitrary number of indices. Many state-of-the-
Lower Bounds art de_e_p. learning libraries, su_ch as Tensor ow and.pyTorch,
are utilising tensors to parallelise the computation with GPUs.
We present our approach to generate the sequence of bound®wever, it is nontrivial to write an algorithm working with
For both the lower bounds and the upper bounds, we need thensors owing to the limited set of operations on tensors.
following de nition. The basic idea of our algorithm is to transform a set of non-
De nition 5 (Complete Set of Subspaces for an Input) linear, non-convex optimisation problems as given in Equa-
Given an inputx, 2 [0;1]" and a set oft dimensions tion (7) into a tensor formulation, and solve a set of optimisa-
T f 1;::;ng such thatjTj = t, the subspaceor xo, tion problems via a few DNN queries. First, we introduce the

denoted byX,,.7, is a set of inputsx 2 [0;1]" such that following operations on tensors that are used in our algorithm.
x(i) 2 [0; 1]fori 2 T andx(i) = xo(i) fori 2f 1;::5;ngnT.  pe pition 7 (Mode- n Unfolding and Folding) Given a ten-

Furthermore, given an inpwo 2 [0;1]" and anumbet  n, o T 2 R: 2 = In  the moden unf&lding of T is a

we de ne matrixUq)(T) 2 R'» 'v suchthaM = =\, ., Ik and
X(Xo;t) = fXoor JT f LingijTi=tg  (5)  U(T) is de ned by the mapping from elemdit;:::;in)

as thecompleteset of subspaces for inpxp. to(in;J), with ) 3

Intuitively, elements irX .+ share the same value witfy X W

on the dimensions other thdn and may take any legal value j= 4i, lm: (8)

for the dimensions ifT. Moreover,X (Xo; t) includes all sets k=1 k6 n m=k+1:m6 n

Xx,:1 for any possible combinatiofi with t dimensions.

Next, we de ne the subspace sensitivity for a subspace w.r.6imilarly, the tensofolding F folds an unfolded tensor back
a neural networlt , an inputxg and a test datas&g. Recall  from a matrix into a full tensor. Tensor unfolding and folding
thatf (x) = (¢ (X);: 11 em(X)). are dual operations and link tensors and matrices.



Given a neural network, a numbet and a test datas@&, Lower Bounds
eachx; 2 To generates a complete s€(x;;t) of subspaces. We reorderS(Ty;t) andS(Ty;t) w.r.t. decreasing values in
LetjToj = p andjX (x;;t)j = k. Note that, for different S(Ty;t). Then, we retrieve the rst row of the third dimension
xi andx;, we havejX (x;;t)j = X (x;;t)j. Given an er- in tensorS(To;t), i.e., S(To;t)[:;:;1] 2 R™ P, and check
ror tolerance > 0, by applying grid search, we can recur- whethercl(f; S(To;t)[:;:; 1]) = cl(f; To). The result is an
sively sample =1 = numbers in each dimension, and turn array of Boolean values, each of which is associated with
each subspacé,, 2 X (x;;t) into a two-dimensional grid an inputx; 2 To. If any element associated with in the
G(Xx,) 2 R" . We thus can formulate the following ten- resulting array igalse, we conclude thath, (f; x i;jj jip) =
sor: t 1, i.e., the maximum safe radius has been obtained and

4 = n ' p k the computation fog; has converged. On the other hand, if

T(To;t) = Tensof(G(Xx; D xi2Tox s, 2x (xi1)) 2 R ©) the element associated with is true,, we update the lower

In Appendix A.2 ofRuanet al, 20188, we show that grid bound forx; tot. After computingS(Tp;t), no further DNN

search provides the guarantee of reaching the global minimuA=€"Y 15 needed to compute the lower bounds.

by utilising the Lipschitz continuity in DNNSs. Upper Bounds
Then, we apply the mode-1 tensor unfolding operation tarhe upper bounds are computed by iteratively applying pertur-
haveT 3(T (To;t)) 2 R M suchthaM = ' p k.Then bations based on the mati®(To;t) for every input inTo until
this tensor can be fed into the DNiNto obtain a misclassi cation occurs. However, doing this sequentially
Y (Tost) = f (T (T (Toi 1)) 2 RM - (10) for all inputs would be inef cient, since we need to query the

i . networkf after every perturbation on each image.
_ Aiter computingY (To; 1), we apply a tensor folding opera- e present an ef cient tensor-based algorithm, which en-
tion to obtain 1 ables GPU parallelisation. The key idea is to construct a new
Y(To;t) = F(Y(To;t)) 2R P X (11) tensoN 2 R" P K to maintain all the accumulated perturba-

Here, we should note the difference betwden Pk and tions over the original inputs.

R ' P k with the former being a one-dimensional array and  Initialisation:N [1; ;1] = S(To; t)[:; 5 1].

the latter a tensor. O¥i(To; t), we search the minimum values Iteratively construct thé-th row untili = k:
along the rst dimension to obtafn N[:oi]= N [ 1 N i 10e S(To O =]
e g i e O
V(T mn =min(Y(Toi )i D2 RP & (12) 0L L9
dfs (To;t)[:; 5] N [ 1]e S(Tost)[:5 5 ilgg

Thus, we have now solved gl k optimisation problems.
We then construct the tensor where , e, andd are tensor operationsl; N, removes
5 the corresponding non-zero elementdin from N 1; further,
V(To;t) = (g, ()56, (Xi)xzmn 2 RP K @3) NieN; retains those elements that have the same values
' ' and sets the other elements to 0; naly; d N, merges
from the seflo. Recall thaf x; = argmaxas 1::5m g & (Xi)-  the non-zero elements from two tensors. The two operands
Intuitively, V (To; t) is the tensor that contains the starting of these operations are required to have the same type. In-
points of the optimisation problems a{(To; t)min the re-  tuitively, N [:; :; i] represents the result of applying the st
sulting optimal values. The following theorem shows the corperturbations recorded B(To;t)[:;:; 1 : i], which contains
rectness of our computation, whe8€To; t) has been de ned  the perturbations up to indéx 1 (i.e.,N.;;. .) plus the new

in De nition 6. _ perturbation recorded iX:;; ..
Theorem 1 Let Ty be a test dataset artdan integer. We have Subsequently, we unfol®l and pass the result to the

S(To:t) = V(Tost)  V(To; Omin - DNN f , which yields the classi cation label (U 3(N)) 2
We remark that we only need a single DNN query in Equaf 1;:::;mgP ¥. After that, a tensor folding operation is ap-
tion (10) to perform the computation above. plied to obtainY (U;;(N)) 2 f1;:::; mg° K. Then we do

L . the tensor folding operation to obtat= fold(Y.) 2 RK P.

4.2 Tensor-based Parallelisation for Computing Finally, we can compute the minimum column index along
Lower and Upper Bounds each row such that a misclassi cation occurs, denoted by

Let S(To;t) 2 R" P X be the tensor obtained by replacing fm;;:::: mpgsuchthatt m; k. Then we let

every element it8(Tp; t) by its corresponding input that, ac-

cording to the computation &f (To; t)min , causes the largest T=1N;im, 2R" Pjx 2 Tog; (14)

decreases of the con dence values of the classi cation Ia\7vhich is the optimal set of input ired in De nition 2

bels. We callS(Tp;t) the solution tensorof S(Tp;t). The pt ) puts as required in e nition 2.

computation ofS(Ty;t) can be done using very few tensor After comp_utmgS(To, B, we only neepl one further DNN

operations oveT (To:t) andY (To; t), which have been given query to obtain all upper bounds for a given test datéget

in Section 4.1. We omit the details. Tightening the Upper Bounds

“Here we use the Matlab notationin(Y; k), which computes T here may be redundanciesin To, i.e., not all the changes

the minimum values over theth dimension for a multi-dimensional in T To are necessary to observe a misclassi cation. We
arrayY . We use similar notation in the remainder of the paper. therefore remove the redundancies and thereby tighten the



Figure 1: (Left) Convergence of lower bound, upper bound, and estimatidn ér one  Figure 2: Robustness evaluation of DNN-O for
image; (Middle) That of global robustness; (Right) Boxplots of the computational timeé.2 f 1; 2g and box-plots of computation time.

upper bounds. We reduce the tightening problem to an optimbn images resized tt4 14. The latter is less robust and
sation problem similar to that of De nition 2, which enables used here for the purpose of discussing the convergence of
us to reuse the tensor-based algorithms given above. Assuroeir method. The DNN models are given in Appendix D
thatxo; andx; are two corresponding inputs ihandTo,  of [Ruanet al, 20181, together with training and accuracy

respectively, foi 2 f 1;:::;jTojg. By abuse of notation, we statistics. For DNN-0, we work with a set of 2,400 randomly
letzo; = Xoi X; be the part okg; on whichxg; andx; sampled images, and for SDNN we use a set of 5,300 images.
are different, andh; = X; e Xo: be the part okp; onwhich  We perform the computation on a PC with 17-7700HQ CPU,
Xo:1 andx; are the same. Thereforey,; = 2o d lg; . 16 GB of RAM and NVIDIA GTX-1050Ti GPU.

De nition 8 (Tightening the Upper Bounds) Given a net-

work f, a nite test dataseflo with their upper bounds,  sDNN: Convergence and Robustness Evaluation

andjj jj o, the tightening problem is an optimisation problem: .

- . ) _ Figure 1 (Left) illustrates the speed of convergence of lower
minjjilo  Lijio s.t. cl(f;zo; d ;) & cl(f;zo; d lo;i) and upper bounds and the estimatedgr i.e., the maximum

Cm e - _ _ safe radius) for an image with a large initial upper bound at
wherei 2 T1:::jLojg, Lo = (log)iz1 ), '_‘1 ~  Lodistance 27. This image is chosen to demonstratevtst

(11 )i=1 =:jLoj> @ndlyi;log 2 [0;1)%). To solve this opti- casefor our approach. Working with a single image (i.e., local
misation problem, we can re-use the tensor-based algorithfdbustness) is the special case of our optimisation problem
for computing lower bounds with minor modi cations to the WherejTj = 1. We choose one of the worst examp|es among
DNN query: before querying the DNN, we apply teop-  our dataset since the initial upper bound computed is very
eration to merge witlzo; as in the above equation. Owing |arge: Thel , distance to the original image is 27. We observe
to space limitations, we provide the convergence analysis ighat, when transitioning from= 1 tot = 2, the uncertainty

Appendix A.2 of[Ruanet al, 20184. radiusU, (I;; u;) of dy, is reduced signi cantly from 26 to 1.
) Figure 1 (Middle) illustrates the speed of convergence of the
5 Experimental Results global robustness evaluation on the test dataset: our method

We report experimental evidence for the utilit of our algorithm.0btains tight lower and upper bounds ef ciently and converges
Some experiments require simple modi cations of the optimi-quickly. Notably, we havé.(l;;u;) = 1:97 att = 1; the
sation problem given in De nition 2, e.g., small changes to Nal global robustness i&:1, so the relative error of the global
the constraints. No signi cant modi cation to our algorithm robustness at= 1 is < 7%. The estimate at = 1 can be

is needed to process these variants. In this section, we use vabtained in polynomial time, and thus the results demonstrate

case studies to demonstrate the broad applicability of our todihat our approach is able to provide a good approximation
with reasonable error at very low computational cost. Fig-

5.1 Convergence Analysis and Global Robustness ure 1 (Right) gives the box-plots of the computational time
Evaluation required for individual iterations (i.e., subspace dimensg)jon

We study the convergence and running time of our anytim&Ve remark that at = 1 it takes less thaf:1s to process
global robustness evaluation algorithm on several DNNs if"€ image, which suggests that the algorithm has potential for
terms of theL o-norm. To the best of our knowledge, no real-time applications.
baseline method exists for this case study. Adversarial attack In Figure 3 (a), we plot the upper and lower bounds as well
algorithms for thel. o norm, which we compare against in as the estimate fat,, for all tested images. The images are
Section 5.2, cannot perform robustness evaluation based amdered using their upper boundgsat 1. The dashed blue
both lower and upper bounds with provable guarantees. line indicates that all images to the left of this line have con-
We train two DNNs on the MNIST dataset. DNN-0 is verged. The charts show a clear overall trend: our algorithm
trained on the original images with si28 28and sSDNN  converges for most images after a few iterations.



JSMA [Papernotet al,, 2014, C&W [Carlini and Wagner,
2017, DLV [Huanget al, 2017, SafeCV[Wicker et al,,
2014 and DeepGamBNu et al, 2014, on 1,000 test images.
Details of the experimental setup are given in Appendix E of
[Ruanet al, 20184.

Adversarial L Distance

Figure 4 depicts the average and standard deviatiohg of
distances of the adversarial images produced by the ve meth-
ods. A smalleL o distance indicates an adversarial example
closer to the original image. For MNIST, the performance
of our method is better than JSMA, DLV, and SafeCV, and
comparable to C&W and DeepGame. For CIFAR-10, the bar
chart reveals that our toddeepTREachieves the smallest
Lo distance (modifying 2.62 pixels on average) among all
competitors. For this experiment, we stog at 1 without
performing further iterations.

(a) sDNN Computational Cost
Figure 5 (note in log-scale) gives running times. Our tensor-
based parallelisation method delivers extremely ef cient at-
tacks. For example, for MNIST, our method18 , 100 ,
1050 , and357 faster than JISMA, C&W, DLV, and SafeCV,
respectively. Figure 6 shows that the tensor-based parallelisa-
tion signi cantly improves the computational ef ciencg8
times faster on MNIST DNN an#él3times faster on CIFAR-10
DNNS®. Appendix E of[Ruanet al, 20180 compares some
of the adversarial examples found by the ve methods. The
examples illustrate that the modi cation of one to three pixels
suf ces to trigger a misclassi cation even using a well-trained
neural network.

(b) DNN-0 5.3 Local Robustness Evaluation for ImageNet

: ) : o e apply our method to ve state-of-the-art ImageNet DNN
Figure 3: (a) SDNN: Upper bounds, lower bounds, and estlmat|0n¥v - .
of dmy for all sampled images fdr2 f 1; 2; 3g ordered from the top models, including AlexNet (8 layers), VGG-16 (16 layers),

to bottom. (b) DNN-0: Upper bounds, lower bounds, and estimations/ G-19 (19 layers), ResNet50 (50 layers), and ResNet101
of d for all sampled input images far2 f 1; 2g. (101 layers). We set = 1 and generate the lower/upper
bounds and estimates of local robustness for an input im-
. age. Figure 8 gives the local robustness estimates and their
DNN-0: Global Robustness Evaluation bounds for these networks. The adversarial images on the
Figure 3 (b) illustrates the convergence trends for all 2,40Q,pper boundaries are featured in the top row of Figure 7. For
images for a large DNN_. We observe that, even ]‘or a DNN withalexNet, on this speci c imageDeepTREis able to nd its
tens of thousands of hidden neurobeepTREstill achieves  ground-truth adversarial example (local robustness converges
tight estimates fody, for most images. Figure 2 gives the at|, = 2). We also observe that, for this image, the most
results of anytime global robustness evaluation=atl and  robust model is VGG-16 (local robustness = 15) and the most
t = 2 for DNN-0, which demonstrates the ef ciency of our yyinerable one is AlexNet (local robustness = 2). Figure 8 also
approach for anytime global robustness evaluation on DNNseveals that, for similar network structures such as VGG-16
Figure 14 in Appendix D ofRuanet al, 20181 features some  and VGG-19, ResNet50 and ResNet101, a model with deeper
ground-truth adversarial imageeturned by our upper bound |ayers is less robust to adversarial perturbations.
algorithm. As a byproduct, our method can also generate a saliency
52 Competitivel o Attacks map for each input image as shown by the bottom row of

i . ) ) Figure 7. Details of the experimental setup are given in Ap-
While the generation of attacks is not the primary goal of oufpendix F of[Ruanet al, 2018H.

method, we observe that our upper bound generation methaod
is highly competitive with state-of-the-art methods for the  ®The hardware setups are as followPU-1: Tensor ow on
computation of adversarial images in terms of thedistance. an i5-4690S CPUGPU-1: Tensor ow with parallelisation on an

We train MNIST and CIFAR-10 DNNs and compare with NVIDIA GTX TITAN GPU. CPU-2: Deep Learning Toolbox (Mat-
- lab2018b) on an i7-7700HQ CPWGBPU-2: Deep Learning Tool-

5Ground-truth adversarial images are images at the boundary of hox (Matlab2018b) with parallelisation on an NVIDIA GTX-1050Ti
safe norm ball, which was proposed[@arlini et al., 2017. GPU.
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