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Abstract
Deployment of deep neural networks (DNNs) in
safety-critical systems requires provable guarantees
for their correct behaviours. We compute the maxi-
mal radius of a safe norm ball around a given input,
within which there are no adversarial examples for
a trained DNN. We define global robustness as an
expectation of the maximal safe radius over a test
dataset, and develop an algorithm to approximate
the global robustness measure by iteratively com-
puting its lower and upper bounds. Our algorithm is
the first efficient method for the Hamming (L0) dis-
tance, and we hypothesise that this norm is a good
proxy for a certain class of physical attacks. The
algorithm is anytime, i.e., it returns intermediate
bounds and robustness estimates that are gradually,
but strictly, improved as the computation proceeds;
tensor-based, i.e., the computation is conducted over
a set of inputs simultaneously to enable efficient
GPU computation; and has provable guarantees,
i.e., both the bounds and the robustness estimates
can converge to their optimal values. Finally, we
demonstrate the utility of our approach by applying
the algorithm to a set of challenging problems.

1 Introduction
Safety certification for DNNs is challenging owing to the lack
of symbolic models and formal specifications. An important
requirement specification for DNNs is their robustness to input
perturbations. DNNs have been shown to suffer from poor
robustness because of their susceptibility to adversarial ex-
amples [Szegedy et al., 2014; Biggio et al., 2013]. These
are small modifications to an input, sometimes imperceptible
to humans, that make the neural network unstable. As a re-
sult, significant effort has been directed towards approaches
for crafting adversarial examples [Goodfellow et al., 2015;
Papernot et al., 2016; Carlini and Wagner, 2017]. However,
these provide no formal guarantees, i.e., no conclusion can be
drawn on whether adversarial examples remain.

By contrast, recent efforts in the area of automated verifica-
tion, e.g.,[Huang et al., 2017; Katz et al., 2017; Lomuscio and
Maganti, 2017; Narodytska et al., 2017; Dutta et al., 2017;

Ruan et al., 2018a; Wu et al., 2018; Gehr et al., 2018;
Mirman et al., 2018], have focused on methods that generate
adversarial examples, if they exist, and provide rigorous lo-
cal robustness proofs otherwise. This paper proposes a novel
approach to quantify the robustness of DNNs that offers a
balance between the guaranteed accuracy of the method (thus,
a feature so far exclusive to formal approaches) and the com-
putational efficiency of algorithms that search for adversarial
examples (without providing any guarantees).

We focus on the Hamming distance (i.e., the L0 norm),
which measures the number of different vector components
given two inputs. In the case of images, this is the number of
pixels that are different. On the other hand, L1, L2 and L∞
norms compare how much each pixel has changed. The L0

distance is fast to compute and is an upper bound on the size of
an adversarial perturbation [Papernot et al., 2016; Carlini et al.,
2017]. However, the non-continuity and non-differentiability
of L0 is a challenge for the discovery of adversarial attacks.
Furthermore, the existing safety verification methods that are
designed for other distance metrics are not efficient when
using the Hamming distance. This includes SMT/SAT-based
methods [Katz et al., 2017], MILP-based work [Dutta et al.,
2017], exhaustive search or MCTS-based methods [Huang et
al., 2017; Wu et al., 2018], and methods based on abstract
interpretation [Gehr et al., 2018]. We remark that, while all
Lp norms can be used to identify physical adversarial attacks
and have a role to play, on their own or in combination, we
hypothesise that the Hamming distance is a good proxy for a
particular category of realistic physical attacks in which small
modifications (e.g., a sticker) are applied to objects that the
system is trained to recognise (e.g., a street sign), leaving the
rest of the image unchanged.

In this paper we consider the global robustness problem,
defined as the expected maximum safe radius over a (finite)
test dataset, which is a generalisation of the local, pointwise
robustness problem. The key idea of our approach is to gen-
erate sequences of lower and upper bounds for global robust-
ness simultaneously for a set of inputs by using tensor-based
parallelisation. Thus, global robustness aims to capture the
worst case local robustness (worst case maximal safety radius)
among a set of inputs. The usefulness of global robustness
lies in that it quantifies the size of the perturbation that the
system can withstand for a set of inputs, instead of just a sin-
gle input, since it gives both lower and upper bounds on the



maximal safe radius. Intuitively, a lower boundx means that
no adversarial example is possible for perturbation of up tox
pixel changes, whereas an upper boundx means thatx pixel
changes are suf�cient to attack a network. By considering a
distribution over the set of inputs, we can quantify the robust-
ness of a DNN for this input distribution. Our de�nition is
thus a natural extension of the robustness concept of[Pecket
al., 2017].

Our method isanytime, tensor-based, and offersprovable
guarantees. First, the method isanytimein the sense that it can
return intermediate results, including upper and lower bounds
and robustness estimates. We prove that our approach can
gradually, but strictly, improve these bounds and estimates as
the computation proceeds. Second, it istensor-based. As we
are working with a set of inputs, a straightforward approach
is to perform robustness evaluation for the inputs individually
and to then merge the results. However, this is inef�cient, as
the set of inputs is large. To exploit the parallelism offered
by GPUs, our approach uses tensors. A tensor can formulate
a �nite set of inputs (e.g., images) into a multi-dimensional
array which can be ef�ciently processed by GPUs in parallel.
An algorithm that is well-suited for GPUs uses tensor opera-
tions whenever possible. Third, our approach offersprovable
guarantees. We show that the intermediate bounds and ro-
bustness estimates converge to optimal values in �nite time.
Our experimental results suggest that the algorithm converges
quickly in practice.

We implement our approach in a tool we nameDeepTRE1

(“Tensor-basedRobustnessEvaluation forDeepNeural Net-
works”), and present experiments via �ve case studies, in-
cluding global robustness evaluation; competitiveL 0 attacks;
saliency map generation for model interpretability and local
robustness evaluation on ImageNet DNNs including AlexNet,
VGG-16/19 and ResNet-50/101; guidance to the design of
robust DNN architectures; and test case generation. All appli-
cations above require only simple adaptations of our method,
e.g., slight modi�cations of the constraints or objective func-
tions, or adding further constraints. This demonstrates that our
tool is �exible enough to deliver a wide range of promising
applications.

Owing to space limitations, we focus on describing the core
theoretical concepts, tensor-based parallelization and conver-
gence guarantees, and make an extended companion paper
available as[Ruanet al., 2018b].

2 Problem Formulation
Let f : Rn ! Rm be anN -layer neural network such that,
for a given inputx 2 Rn , f (x) = ( c1(x); : : : ; cm (x)) 2 Rm

represents the con�dence values form classi�cation labels.
Without loss of generality, we normalise the input tox 2

[0; 1]n . The outputf (x) is usually normalised to be in[0; 1]m

using a softmax layer. We denote the classi�cation label of
inputx by cl(f; x ) = arg max j =1 ;:::;m cj (x). Note that both
f andcl can be generalised to apply to a setT0 of inputs, i.e.,
f (T0) andcl(f; T0), in the standard way.
De�nition 1 (Maximum Radius of a Safe Norm Ball)
Given a networkf : Rn ! Rm , a distance metricjj � jj D ,

1Available on GitHub: https://github.com/TrustAI/L0-TRE.

an input x0 2 Rn and a real numberd 2 R, a norm
ball B (f; x 0; jj � jj D ; d) is a subspace ofRn such that
B (f; x 0; jj � jj D ; d) = f x j jj x0 � xjjD � dg: The numberd
is called theradiusof B (f; x 0; jj � jj D ; d). A norm ballB (f;
x0; jj � jj D ; d) is safeif for all x 2 B (f; x 0; jj � jj D ; d) we
havecl(f; x ) = cl(f; x 0). Furthermore, if for alld0 > d we
have thatB (f; x 0; jj � jj D ; d0) is not safe, thend is called the
maximum safe radius, and denoted bydm (f; x 0; jj � jj D ).

Intuitively, a norm ballB (f; x 0; jj � jj D ; d) includes all inputs
whose distance tox0, measured byjj � jj D , is within d.

We de�ne the (global) robustness evaluation problem over
a test datasetT, which is a set of i.i.d. inputs sampled from
a distribution� representing the problemf is working on.
We usejTj to denote the number of inputs inT. WhenjTj = 1 ,
we call it local robustness.

De�nition 2 (Robustness Evaluation) Given a networkf ,
a �nite set T0 of inputs, andjj � jj D , robustness evaluation,
denoted asR(f; T0; jj � jj D ), is an optimisation problem:

min
T

jjT0 � TjjD s.t. cl(f; x i ) 6= cl(f; x 0;i ) (1)

for all i 2 f 1; : : : ; jT0jg whereT = ( x i ) i =1 ;:::; jT0 j andT0 =
(x0;i ) i =1 ;:::; jT0 j .

Intuitively, we aim to �nd a minimum distance between the
original setT0 and a new, homogeneous set2 T of inputs such
that all inputs inT0 are mis-classi�ed.

L 0 Norm The distance metricjj � jj D can be any mapping
jj � jj D : Rn � Rn ! [0; 1 ] that satis�es the metric conditions.
In this paper, we focus on theL 0 norm3. For two inputsx0
andx, theirL 0 distance, denoted asjjx � x0jj0, is the number
of their components that are different. When working with a
test datasetT0 (all inputs inT0 are i.i.d.), we de�ne

jjT � T0jj0 = Ex 0 2 T0 [jj x � x0jj0] (our de�nition)

=
1

jT0j

X

x 0 2 T0

jj x � x0jj0 (2)

wherex 2 T is a homogeneous input tox0 2 T0. While
other norms such asL 1, L 2 andL 1 have been widely applied
for generating adversarial examples[Papernotet al., 2016;
Kurakin et al., 2016], studies of robustness evaluation for
DNNs based on theL 0 norm are few and far between[Pa-
pernotet al., 2016; Carliniet al., 2017; Wickeret al., 2018;
Huanget al., 2017; Wuet al., 2018]. In Appendix B of[Ruan
et al., 2018b], we discuss whyL 0 is an important distance
metric from various perspectives.

3 Anytime Robustness Evaluation
The evaluation of robustness following De�nition 2 is hard for
theL 0-norm. In Appendix A.1 of[Ruanet al., 2018b], we dis-
cuss its computational complexity and prove that the problem
is NP-hard. We propose to compute lower and upper bounds
on robustness, and then gradually, butstrictly, improve the

2Two setsT0 andT are homogeneous if they have the same num-
ber of elements and are of the same type.

3Strictly speaking,L 0 is not a norm, but it is commonly referred
to as such.

https://github.com/TrustAI/L0-TRE.


bounds so that the gap between them can eventually be closed.
Although in practice run times can be long, thisanytimeap-
proach provides pragmatic means to make progress. Section 5
shows that our approach achievestight boundsef�ciently on
dif�cult instances.

De�nition 3 (Sequences of Bounds)Given a robustness
evaluation problemR(f; T0; jj � jj D ), a sequenceL (T0) =
f l1; l2; : : : ; lk g 2 R is anincremental lower bound sequenceif,
for all 1 � i < j � k, we havel i � l j � R(f; T0; jj�jj D ). The
sequence is strict, denoted asL s(T0), if for all 1 � i < j � k,
we have eitherl i < l j or l i = l j = R(f; T0; jj � jj D ). Similarly,
we can de�ne adecremental upper bound sequenceU(T0)
and a strict decremental upper bound sequenceUs(T0).

We will, in Section 4, introduce our algorithms for comput-
ing these two sequences of lower and upper bounds. For now,
assume they exist, then at a certain timet > 0,

l t � R(f; T0; jj � jj D ) � ut (3)

holds.

De�nition 4 (Anytime Robustness Evaluation) Based on
two given bounds[l t ; ut ], we de�ne its centre and radius as
follows.

Uc(l t ; ut ) =
1
2

(l t + ut ) and Ur (l t ; ut ) =
1
2

(ut � l t ) (4)

Theanytime evaluation ofR(f; T0; jj � jj D ) at timet, denoted
asRt (f; T0; jj � jj D ), is the pair(Uc(l t ; ut ); Ur (l t ; ut )) .

The anytime evaluation will be returned whenever the com-
putational procedure is interrupted. Intuitively, we use the
centreUc(l t ; ut ) to represent the current estimate, and the ra-
diusUr (l t ; ut ) to represent its error bound. Essentially, we
can bound the true robustnessR(f; T0; jj � jj D ) via the anytime
robustness evaluation.

4 Tensor-based Algorithms for Upper and
Lower Bounds

We present our approach to generate the sequence of bounds.
For both the lower bounds and the upper bounds, we need the
following de�nition.

De�nition 5 (Complete Set of Subspaces for an Input)
Given an inputx0 2 [0; 1]n and a set oft dimensions
T � f 1; :::; ng such thatjT j = t, the subspacefor x0,
denoted byX x 0 ;T , is a set of inputsx 2 [0; 1]n such that
x(i ) 2 [0; 1] for i 2 T andx(i ) = x0(i ) for i 2 f 1; :::; ngnT.
Furthermore, given an inputx0 2 [0; 1]n and a numbert � n,
we de�ne

X (x0; t) = f X x 0 ;T j T � f 1; :::; ng; jT j = tg (5)

as thecompleteset of subspaces for inputx0.

Intuitively, elements inX x 0 ;T share the same value withx0
on the dimensions other thanT, and may take any legal value
for the dimensions inT. Moreover,X (x0; t) includes all sets
X x 0 ;T for any possible combinationT with t dimensions.

Next, we de�ne the subspace sensitivity for a subspace w.r.t.
a neural networkf , an inputx0 and a test datasetT0. Recall
thatf (x) = ( c1(x); : : : ; cm (x)) .

De�nition 6 (Subspace Sensitivity) Given an input sub-
spaceX � [0; 1]n , an inputx0 2 [0; 1]n and a labelj , the
subspace sensitivityw.r.t. X , x0, andj is de�ned as

S(X; x 0; j ) = cj (x0) � inf
x 2 X

cj (x): (6)

Let t be an integer. We de�ne the subspace sensitivity forT0
andt as

S(T0; t) = ( S(X x 0 ; x0; j x 0 ))X x 0 2X (x 0 ;t ) ;x 0 2 T0 (7)

wherej x 0 = arg max i 2f 1;:::;m g ci (x0) is the classi�cation
label ofx0 by networkf .

Intuitively, S(X; x 0; j ) is the maximal decrease of con�dence
value of the output labelj that can be witnessed from the setX ,
and S(T0; t) is the two-dimensional array of the maximal
decreases of con�dence values of the classi�cation labels for
all subspaces inX (x0; t) and all inputs inT0. It is not hard to
see thatS(X; x 0; j ) � 0.

Given a test datasetT0 and an integert > 0, the number
of elements inS(T0; t) is in O(jT0j � nt ), i.e., polynomial in
jT0j and exponential int. Note that, by Equation (6), every
element inS(T0; t) represents an optimisation problem. That
is, for T0, a set of 20 MNIST images, andt = 1 , this would be
28 � 28 � 20 = 15;680one-dimensional optimisation prob-
lems. In the next section, we give a tensor-based formulation
and an algorithm to solve this challenging problem via GPU
parallelisation.

4.1 Tensor-based Parallelisation for Computing
Subspace Sensitivity

A tensorT 2 RI 1 � I 2 � ::: � I N in anN -dimensional space is
a mathematical object that has

Q N
m =1 I m components and

obeys certain transformation rules. Intuitively, tensors are gen-
eralisations of vectors (i.e., one index) and matrices (i.e., two
indices) to an arbitrary number of indices. Many state-of-the-
art deep learning libraries, such as Tensor�ow and pyTorch,
are utilising tensors to parallelise the computation with GPUs.
However, it is nontrivial to write an algorithm working with
tensors owing to the limited set of operations on tensors.

The basic idea of our algorithm is to transform a set of non-
linear, non-convex optimisation problems as given in Equa-
tion (7) into a tensor formulation, and solve a set of optimisa-
tion problems via a few DNN queries. First, we introduce the
following operations on tensors that are used in our algorithm.

De�nition 7 (Mode- n Unfolding and Folding) Given a ten-
sor T 2 RI 1 � I 2 � ::: � I N , the mode-n unfolding of T is a
matrix U [n ](T ) 2 RI n � I M such thatM =

Q N
k=1 ;k 6= n I k and

U [n ](T ) is de�ned by the mapping from element(i 1; : : : ; i N )
to (i n ; j ), with

j =
NX

k=1 ;k 6= n

2

4i k �
NY

m = k+1 ;m 6= n

I m

3

5 : (8)

Similarly, the tensorfolding F folds an unfolded tensor back
from a matrix into a full tensor. Tensor unfolding and folding
are dual operations and link tensors and matrices.



Given a neural networkf , a numbert and a test datasetT0,
eachx i 2 T0 generates a complete setX (x i ; t) of subspaces.
Let jT0j = p and jX (x i ; t)j = k. Note that, for different
x i and x j , we havejX (x i ; t)j = jX (x j ; t)j. Given an er-
ror tolerance� > 0, by applying grid search, we can recur-
sively sample� = 1 =� numbers in each dimension, and turn
each subspaceX x i 2 X (x i ; t) into a two-dimensional grid
G(X x i ) 2 Rn � � t

. We thus can formulate the following ten-
sor:

T (T0; t) = Tensor((G(X x i )) x i 2 T0 ;X x i 2X (x i ;t ) ) 2 Rn � � t � p� k

(9)
In Appendix A.2 of[Ruanet al., 2018b], we show that grid

search provides the guarantee of reaching the global minimum
by utilising the Lipschitz continuity in DNNs.

Then, we apply the mode-1 tensor unfolding operation to
haveT [1] (T (T0; t)) 2 Rn � M such thatM = � t � p � k. Then
this tensor can be fed into the DNNf to obtain

Y (T0; t) = f (T [1] (T (T0; t))) 2 RM : (10)

After computingY(T0; t), we apply a tensor folding opera-
tion to obtain

Y(T0; t) = F(Y (T0; t)) 2 R� t � p� k : (11)

Here, we should note the difference betweenR� t �p�k and
R� t � p� k , with the former being a one-dimensional array and
the latter a tensor. OnY(T0; t), we search the minimum values
along the �rst dimension to obtain4

V(T0; t)min = min( Y(T0; t); 1) 2 Rp� k : (12)

Thus, we have now solved allp � k optimisation problems.
We then construct the tensor

V (T0; t) = (

kz }| {
cj x i

(x i ); :::; cj x i
(x i )) x i 2 T0 2 Rp� k (13)

from the setT0. Recall thatj x i = arg max k2f 1;:::;m g ck (x i ).
Intuitively, V (T0; t) is the tensor that contains the starting
points of the optimisation problems andV(T0; t)min the re-
sulting optimal values. The following theorem shows the cor-
rectness of our computation, whereS(T0; t) has been de�ned
in De�nition 6.
Theorem 1 LetT0 be a test dataset andt an integer. We have
S(T0; t) = V (T0; t) � V (T0; t)min .
We remark that we only need a single DNN query in Equa-
tion (10) to perform the computation above.

4.2 Tensor-based Parallelisation for Computing
Lower and Upper Bounds

Let S(T0; t) 2 Rn � p� k be the tensor obtained by replacing
every element inS(T0; t) by its corresponding input that, ac-
cording to the computation ofV (T0; t)min , causes the largest
decreases of the con�dence values of the classi�cation la-
bels. We callS(T0; t) the solution tensorof S(T0; t). The
computation ofS(T0; t) can be done using very few tensor
operations overT (T0; t) andY(T0; t), which have been given
in Section 4.1. We omit the details.

4Here we use the Matlab notationmin( Y; k), which computes
the minimum values over thek-th dimension for a multi-dimensional
arrayY . We use similar notation in the remainder of the paper.

Lower Bounds
We reorderS(T0; t) andS(T0; t) w.r.t. decreasing values in
S(T0; t). Then, we retrieve the �rst row of the third dimension
in tensorS(T0; t), i.e., S(T0; t)[:; :; 1] 2 Rn � p, and check
whethercl(f; S(T0; t)[:; :; 1]) = cl(f; T0). The result is an
array of Boolean values, each of which is associated with
an inputx i 2 T0. If any element associated withx i in the
resulting array isfalse, we conclude thatdm (f; x i ; jj � jj D ) =
t � 1, i.e., the maximum safe radius has been obtained and
the computation forx i has converged. On the other hand, if
the element associated withx i is true, we update the lower
bound forx i to t. After computingS(T0; t), no further DNN
query is needed to compute the lower bounds.

Upper Bounds
The upper bounds are computed by iteratively applying pertur-
bations based on the matrixS(T0; t) for every input inT0 until
a misclassi�cation occurs. However, doing this sequentially
for all inputs would be inef�cient, since we need to query the
networkf after every perturbation on each image.

We present an ef�cient tensor-based algorithm, which en-
ables GPU parallelisation. The key idea is to construct a new
tensorN 2 Rn � p� k to maintain all the accumulated perturba-
tions over the original inputsT.

� Initialisation: N [:; :; 1] = S(T0; t)[:; :; 1].

� Iteratively construct thei -th row until i = k:

N [:; :; i ] = fN [:; :; i � 1]� fN [:; :; i � 1]e S(T0; t)[:; :; i ]gg

dfS (T0; t)[:; :; i ] � fN [:; :; i � 1] e S(T0; t)[:; :; i ]gg

where� , e , andd are tensor operations:N1 � N2 removes
the corresponding non-zero elements inN2 from N1; further,
N1 e N2 retains those elements that have the same values
and sets the other elements to 0; �nally,N1 d N2 merges
the non-zero elements from two tensors. The two operands
of these operations are required to have the same type. In-
tuitively, N [:; :; i ] represents the result of applying the �rsti
perturbations recorded inS(T0; t)[:; :; 1 : i ], which contains
the perturbations up to indexi � 1 (i.e.,N :;i; :) plus the new
perturbation recorded in~X:;i; :.

Subsequently, we unfoldN and pass the result to the
DNN f , which yields the classi�cation labelsY (U [1] (N )) 2
f 1; : : : ; mgp�k . After that, a tensor folding operation is ap-
plied to obtainY(U [1] (N )) 2 f 1; : : : ; mgp� k . Then we do
the tensor folding operation to obtainC = fold(Yc) 2 RK � P .
Finally, we can compute the minimum column index along
each row such that a misclassi�cation occurs, denoted by
f m1; :::; mpg such that1 � mi � k. Then we let

T = fN :;i;m i 2 Rn � p j x i 2 T0g; (14)

which is the optimal set of inputs as required in De�nition 2.
After computingS(T0; t), we only need one further DNN

query to obtain all upper bounds for a given test datasetT0.

Tightening the Upper Bounds
There may be redundancies inT � T0, i.e., not all the changes
in T � T0 are necessary to observe a misclassi�cation. We
therefore remove the redundancies and thereby tighten the



Figure 1: (Left) Convergence of lower bound, upper bound, and estimation ofdm for one
image; (Middle) That of global robustness; (Right) Boxplots of the computational time.

Figure 2: Robustness evaluation of DNN-0 for
t 2 f 1; 2g and box-plots of computation time.

upper bounds. We reduce the tightening problem to an optimi-
sation problem similar to that of De�nition 2, which enables
us to reuse the tensor-based algorithms given above. Assume
that x0;i andx i are two corresponding inputs inT andT0,
respectively, fori 2 f 1; : : : ; jT0jg. By abuse of notation, we
let z0;i = x0;i � x i be the part ofx0;i on whichx0;i andx i
are different, andl0;i = x i e x0;i be the part ofx0;i on which
x0;1 andx i are the same. Therefore,x0;i = z0;i d l0;i .

De�nition 8 (Tightening the Upper Bounds) Given a net-
work f , a �nite test datasetT0 with their upper boundsT,
andjj � jj D , the tightening problem is an optimisation problem:

min
L1

jjL0 � L1jjD s.t. cl(f; z 0;i d l1;i ) 6= cl(f; z 0;i d l0;i )

where i 2 f 1; : : : ; jL0jg, L0 = ( l0;i ) i =1 ::: jT0 j , L1 =
(l1;i ) i =1 ::: jL0 j , and l1;i ; l0;i 2 [0; 1]j L0 j . To solve this opti-
misation problem, we can re-use the tensor-based algorithm
for computing lower bounds with minor modi�cations to the
DNN query: before querying the DNN, we apply thed op-
eration to merge withz0;i as in the above equation. Owing
to space limitations, we provide the convergence analysis in
Appendix A.2 of[Ruanet al., 2018b].

5 Experimental Results
We report experimental evidence for the utilit of our algorithm.
Some experiments require simple modi�cations of the optimi-
sation problem given in De�nition 2, e.g., small changes to
the constraints. No signi�cant modi�cation to our algorithm
is needed to process these variants. In this section, we use �ve
case studies to demonstrate the broad applicability of our tool.

5.1 Convergence Analysis and Global Robustness
Evaluation

We study the convergence and running time of our anytime
global robustness evaluation algorithm on several DNNs in
terms of theL 0-norm. To the best of our knowledge, no
baseline method exists for this case study. Adversarial attack
algorithms for theL 0 norm, which we compare against in
Section 5.2, cannot perform robustness evaluation based on
both lower and upper bounds with provable guarantees.

We train two DNNs on the MNIST dataset. DNN-0 is
trained on the original images with size28 � 28 and sDNN

on images resized to14 � 14. The latter is less robust and
used here for the purpose of discussing the convergence of
our method. The DNN models are given in Appendix D
of [Ruanet al., 2018b], together with training and accuracy
statistics. For DNN-0, we work with a set of 2,400 randomly
sampled images, and for sDNN we use a set of 5,300 images.
We perform the computation on a PC with I7-7700HQ CPU,
16 GB of RAM and NVIDIA GTX-1050Ti GPU.

sDNN: Convergence and Robustness Evaluation

Figure 1 (Left) illustrates the speed of convergence of lower
and upper bounds and the estimate fordm (i.e., the maximum
safe radius) for an image with a large initial upper bound at
L 0 distance 27. This image is chosen to demonstrate theworst
casefor our approach. Working with a single image (i.e., local
robustness) is the special case of our optimisation problem
wherejTj = 1 . We choose one of the worst examples among
our dataset since the initial upper bound computed is very
large: TheL 0 distance to the original image is 27. We observe
that, when transitioning fromt = 1 to t = 2 , the uncertainty
radiusUr (l t ; ut ) of dm is reduced signi�cantly from 26 to 1.
Figure 1 (Middle) illustrates the speed of convergence of the
global robustness evaluation on the test dataset: our method
obtains tight lower and upper bounds ef�ciently and converges
quickly. Notably, we haveUc(l t ; ut ) = 1 :97 at t = 1 ; the
�nal global robustness is2:1, so the relative error of the global
robustness att = 1 is < 7%. The estimate att = 1 can be
obtained in polynomial time, and thus the results demonstrate
that our approach is able to provide a good approximation
with reasonable error at very low computational cost. Fig-
ure 1 (Right) gives the box-plots of the computational time
required for individual iterations (i.e., subspace dimensiont).
We remark that att = 1 it takes less than0:1s to process
one image, which suggests that the algorithm has potential for
real-time applications.

In Figure 3 (a), we plot the upper and lower bounds as well
as the estimate fordm for all tested images. The images are
ordered using their upper bounds att = 1 . The dashed blue
line indicates that all images to the left of this line have con-
verged. The charts show a clear overall trend: our algorithm
converges for most images after a few iterations.



(a) sDNN

(b) DNN-0

Figure 3: (a) sDNN: Upper bounds, lower bounds, and estimations
of dm for all sampled images fort 2 f 1; 2; 3g ordered from the top
to bottom. (b) DNN-0: Upper bounds, lower bounds, and estimations
of dm for all sampled input images fort 2 f 1; 2g.

DNN-0: Global Robustness Evaluation
Figure 3 (b) illustrates the convergence trends for all 2,400
images for a large DNN. We observe that, even for a DNN with
tens of thousands of hidden neurons,DeepTREstill achieves
tight estimates fordm for most images. Figure 2 gives the
results of anytime global robustness evaluation att = 1 and
t = 2 for DNN-0, which demonstrates the ef�ciency of our
approach for anytime global robustness evaluation on DNNs.
Figure 14 in Appendix D of[Ruanet al., 2018b] features some
ground-truth adversarial images5 returned by our upper bound
algorithm.

5.2 CompetitiveL 0 Attacks
While the generation of attacks is not the primary goal of our
method, we observe that our upper bound generation method
is highly competitive with state-of-the-art methods for the
computation of adversarial images in terms of theL 0 distance.
We train MNIST and CIFAR-10 DNNs and compare with

5Ground-truth adversarial images are images at the boundary of a
safe norm ball, which was proposed in[Carlini et al., 2017].

JSMA [Papernotet al., 2016], C&W [Carlini and Wagner,
2017], DLV [Huanget al., 2017], SafeCV[Wicker et al.,
2018] and DeepGame[Wu et al., 2018], on 1,000 test images.
Details of the experimental setup are given in Appendix E of
[Ruanet al., 2018b].

Adversarial L 0 Distance
Figure 4 depicts the average and standard deviations ofL 0
distances of the adversarial images produced by the �ve meth-
ods. A smallerL 0 distance indicates an adversarial example
closer to the original image. For MNIST, the performance
of our method is better than JSMA, DLV, and SafeCV, and
comparable to C&W and DeepGame. For CIFAR-10, the bar
chart reveals that our toolDeepTREachieves the smallest
L 0 distance (modifying 2.62 pixels on average) among all
competitors. For this experiment, we stop att = 1 without
performing further iterations.

Computational Cost
Figure 5 (note in log-scale) gives running times. Our tensor-
based parallelisation method delivers extremely ef�cient at-
tacks. For example, for MNIST, our method is18� , 100� ,
1050� , and357� faster than JSMA, C&W, DLV, and SafeCV,
respectively. Figure 6 shows that the tensor-based parallelisa-
tion signi�cantly improves the computational ef�ciency:38
times faster on MNIST DNN and93times faster on CIFAR-10
DNN6. Appendix E of[Ruanet al., 2018b] compares some
of the adversarial examples found by the �ve methods. The
examples illustrate that the modi�cation of one to three pixels
suf�ces to trigger a misclassi�cation even using a well-trained
neural network.

5.3 Local Robustness Evaluation for ImageNet
We apply our method to �ve state-of-the-art ImageNet DNN
models, including AlexNet (8 layers), VGG-16 (16 layers),
VGG-19 (19 layers), ResNet50 (50 layers), and ResNet101
(101 layers). We sett = 1 and generate the lower/upper
bounds and estimates of local robustness for an input im-
age. Figure 8 gives the local robustness estimates and their
bounds for these networks. The adversarial images on the
upper boundaries are featured in the top row of Figure 7. For
AlexNet, on this speci�c image,DeepTREis able to �nd its
ground-truth adversarial example (local robustness converges
at L 0 = 2). We also observe that, for this image, the most
robust model is VGG-16 (local robustness = 15) and the most
vulnerable one is AlexNet (local robustness = 2). Figure 8 also
reveals that, for similar network structures such as VGG-16
and VGG-19, ResNet50 and ResNet101, a model with deeper
layers is less robust to adversarial perturbations.

As a byproduct, our method can also generate a saliency
map for each input image as shown by the bottom row of
Figure 7. Details of the experimental setup are given in Ap-
pendix F of[Ruanet al., 2018b].

6The hardware setups are as follows.CPU-1: Tensor�ow on
an i5-4690S CPU;GPU-1: Tensor�ow with parallelisation on an
NVIDIA GTX TITAN GPU. CPU-2: Deep Learning Toolbox (Mat-
lab2018b) on an i7-7700HQ CPU;GPU-2: Deep Learning Tool-
box (Matlab2018b) with parallelisation on an NVIDIA GTX-1050Ti
GPU.
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