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Abstract

We extend the regression discontinuity design model to the case in

which the line of best �t is replaced by a stochastic frontier. The method

allows causality issues to be examined in a context where the perfor-

mance measure is subject to ine�ciency, and where, in addition to the

relationship between dependent and explanatory variables, there may be

a discontinuity in the ine�ciency measure at the break. In the tradition

of Battese and Coelli (1995), the ine�ciency scores are modelled as part

of the system but we follow a novel non-parametric approach. We illus-

trate the method with an application to data from Texas on class size

and pupil performance, exploiting a Maimonides rule discontinuity. We

�nd that class size a�ects performance in the expected direction, but that

there is a corresponding e�ect in the opposite direction on e�ciency. This

may contribute to the di�culty experienced by authors of earlier studies

in identifying a class size e�ect.
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1 Introduction

Regression discontinuity designs or RDD (Thistlewaite and Campbell, 1960)

have, in recent years, become an important tool in the armoury of applied

economists interested in establishing the direction of causality. Surveys by Im-

bens and Lemieux (2008) and Lee and Lemieux (2010) have served to add fur-

ther to their popularity. In many instances, the dependent variable of interest

is some measure of performance. This being the case, it would be both appro-

priate and instructive to cast the model - including the discontinuity - within

the framework of a stochastic frontier (SF) of the type devised by Aigner, Lovell

and Schmidt (1977). Doing so would allow di�erences in performance due to

idiosyncratic variation across observations in technical e�ciency to be investi-

gated alongside those due to variation in the explanatory variables. The early

literature on frontier models has been surveyed by Schmidt (1985). The ap-

proach has since been extended in a wide variety of ways, such as by modelling

the determinants of the e�ciency score (Battese and Coelli, 1995), through the

introduction of Bayesian features (Koop, Osiewalski and Steel, 1994), by ac-

commodating endogeneity issues (Amsler, Prokhorov and Schmidt, 2016) and

by considering dynamics within longitudinal data sets (Amsler, Prokhorov and

Schmidt, 2014). A useful recent survey is due to Lampe and Hilgers (2015).

In this paper, we introduce a method for estimating a regression disconti-

nuity within the stochastic frontier framework. The discontinuity in this case

is fuzzy, with our method itself determining the exact location of the break

(s). Moreover, the window of observations used to compare behaviour either

side of the discontinuity is endogenously determined within the model. Both

the parameters of the model and the e�ciencies measuring distance from the

stochastic frontier are subject to the discontinuity. In common with Battese

and Coelli (1995) the e�ciency measures are themselves explained by a vector

of cofactors. For reasons that we make clear below, we expect this methodology

to have wide applicability.

We illustrate the method using data on class size for 4th grade pupils on

school campuses in Texas. A variant of Maimonides' rule (Agrist and Lavy,

1999) ensures that, with a small number of authorised exceptions, class size

is limited to 22. As the school roll increases, discontinuties arise such that a

marginal increase in roll results in the creation of a new class and hence smaller

class sizes. In applying our new method to this problem, we contribute to an

extensive literature that has produced ambiguous results (Hanushek, 2010).
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The remainder of our paper is structured as follows. We present the model

in the next section. This is followed by the empirical example. The paper ends

with a discussion and conclusion.

2 Model

Suppose xi ∈ <k is a vector of covariates and zi ∈ <m is a vector of environ-

mental variables not necessarily all of them distinct from xi. The classical SF,

due to Aigner, Lovell and Schmidt (1977) is

yi = x′iβ + vi − ui, vi ∼ N (0, σ2
v)

ui|zi ∼ N+(z′iγ, σ
2
u) , i = 1, ..., n.

(1)

Here, we propose a RDD-SF with di�erent models on the two sides of discon-

tinuity. First, we remove the assumption that functional forms such as x′iβ and

z′iγ are known and we replace them by unknown nonlinear functions f(xi;β)

and g1(zi; γ1) respectively. Second, we model the discontinuity around x∗ us-

ing di�erent functions around the discontinuity but not necessarily polynomials

(Lee and Lemieux (2010)). To be more precise, we can assume:

log σ2
v = g2(xi; γ2),

log σ2
u = g3(xi; γ3),

(2)

as in Kumbhakar, Park, Simar, and Tsionas (2007, KPST). Here, gj(zi; γj) are

di�erent unknown functional forms (j = 1, 2, 3).

For the case of a discontinuity arising from a maximum class size rule, a

standard model (cf De La Mata, 2012) is as follows:

y = f(x;β) = β0 +
(
β1,(1)C + β2,(1)D1 + β3,(1)C ·D1

)
·B1+(

β1,(2)C + β2,(2)D2 + β3,(2)C ·D2

)
·B2 + ...+(

β1,(G)C + β2,(G)DG + β3,(G)C ·DG

)
·BG + v − u,

(3)

where C = s

[ s−1
x ]+1

is expected class size, [a] denotes the integer part of a, x is

the cuto�, D1 = I (s ≥ x), D2 = I (s ≥ 2x), etc., B1 = I {s ∈ [x−∆, x+ ∆]}
, B2 = I {s ∈ [2x−∆, 2x+ ∆]} etc., and u ≥ 0 denotes technical ine�ciency.

This recognises the existence of several discontinuities, at or near the legislated

maximum class size and multiples thereof ; it tests for the signi�cance of these

discontinuities by considering a window around each. Choice of bandwidth is
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discussed by Imbens and Kalyanaraman (2012). Our model di�ers from this

standard speci�cation in that we assume that the cuto�s x and the window

interval ∆ are unknown. In the context of the application discussed in the

sequel, the �exibility a�orded by this fuzzy de�nition of the cuto�s and window

interval has considerable appeal. A school may, for example, wish to create

an extra class as existing classes approach the maximum permitted class size,

but before that maximum is actually reached, in order to insure itself against

within-year moves of pupils into the school. We denote the regressors in (3) by

z(x,∆) so that it may be written as

y = z(x,∆)′β + v − u (4)

We assume that the ine�ciency is independent of v and

v ∼ N (0, σ2
v), u ∼ N+

(
m(z), σ2

u

)
, (5)

where

m(z) = γ0 +
(
γ1,(1)C + γ2,(1)D1 + γ3,(1)C ·D1

)
·B1+(

γ1,(2)C + γ2,(2D2 + γ3,(2)C ·D2

)
·B2 + ...+(

γ1,(G)C + γ2,(G)D2 + γ3,(G)C ·D2

)
·BG + γ∗CHARTERz (x,∆)

′
γ

(6)

Here, CHARTER is an additional explanatory variable, needed as a means of

identifying the e�ciency part of the model. In practice it may be di�cult to

judge whether variables in z should be included also in x. An oft used rule of

thumb is that environmental variables outwith the control of the decision making

unit should not be in x (Simar and Wilson, 2011). In our case, CHARTER is a

binary variable taking unit value for Charter schools. Our a priori expectation

is that such schools should be more e�cient than others. Besides x and ∆

the other unknown parameter is G which determines the number of unknown

parameters in β and γ. Note that, if constraints are imposed on parameters in

(6) such that

m(z) = γ0 (7)

the model reduces to a straightforward stochastic frontier in which the technical

e�ciency scores are evaluated but not explained.

We use the method of local linear likelihood (Kumbhakar, Park, Simar and

Tsionas, 2007) in which the unknown functional forms are approximated as
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follows:
f(x;β) = βo + β′1(x− xi),
gj(z; γj) = γj0 + γ′j1(z − zj).

(8)

The local linear likelihood can be formulated easily as in KPST. Suppose x∗

and z∗ are known and let x̃ = x− x∗ and z̃ = z − z∗. We modify the equations

above as follows:

f(x̃;β) = βo + β′1(x̃− xi) + ρ1Di + β′2Di(x̃− xi),
gj(z̃; γj) = γj0 + γ′j1(z̃ − zj) + ρjDi + γ′j2(z̃ − zj)Di.

(9)

Again, the idea is that the likelihood terms will be weighted by a kernel

KH(x − xi) following the general approach in KPST where H is a diagonal

bandwidth matrix whose elements are chosen by cross-validation. Here, the

treatment e�ect at x̃ is ρ1 and the treatment e�ect at z̃ is ρ2. The treatment

e�ect at xi−x̃ = c is ρ1+β′2c. Using (9), the coe�cients are localised. We use the

log-likelihood function corresponding to a normal-truncated-normal stochastic

frontier model using a direct search over x,∆, G. Standard errors are obtained

using the wild bootstrap with 200 replications. Further detail on the local

likelihood approach are provided in the technical appendix.

Our method thus represents an innovation in three respects: localised esti-

mation of the coe�cients; search for the location of the cuto�; and search for

window size.

3 Empirical results

We use 2014-15 Texas Education Agency (tea.texas.gov) data on the number

of 4th grade pupils on the roll at each school campus, and on the percentage

achieving at least a satisfactory grade in the State of Texas Assessment of Aca-

demic Readiness (STARR) reading instrument. The latter is the dependent

variable, y, while the former is the forcing variable, denoted C.

To provide a point of comparison, we begin by running some conventional

models on the data. These are reported in Table 1, where four models are

considered. The �rst is a standard OLS, the second is a frontier model (with

half-normal residuals capturing e�ciency), and the others are two alternative

speci�cations of frontier models in which the e�ciency scores are themselves

modelled as a function of an 'environmental' variable, namely an indicator of

whether or not the school is a Charter school. In all four speci�cations, the
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explanatory variables are the expected class size, C, and - in order to consider

scale e�ects - the school's total roll of 4th grade pupils.

Results are robust across all four speci�cations, and suggest that there is a

statistically and numerically signi�cant class size e�ect, with larger class sizes

leading to worse performance, other things being equal. The fourth model

reported here suggests that, while (expected) class size in�uences performance

in the expected direction - with larger classes resulting in a deterioration of

performance - it has no e�ect on e�ciency.

We now proceed to discuss the results of the modelling procedure described

in Section 2 above. Following cross-validation we determine the optimal values

of x,∆ and G = 5. It turns out that the log-likelihood is maximized at G = 5

and using higher values produces numerical problems in convergence and in-

verting certain Hessian matrices involved in our Gauss-Newton techniques for

implementing ML estimation.

Results are reported in Table 2. The �rst three columns show a clear im-

provement in performance as class size is reduced at each cuto�, and indicate

also a worsening of performance as the roll increases at points distant from the

cuto�. These results con�rm a deleterious e�ect of raising class size. The re-

maining columns indicate that e�ciency works in the opposite direction, with

e�ciency falling as class size increases, notably at the cuto�. This last �nding

is in marked contrast to the results obtained in Table 1, and suggests that our

new method is picking up a heretofore unnoticed pattern in the data. The cuto�

point estimated by the model, 22.4, appears reasonable in light of what is known

about legislated class size. Finally, the sign on the Charter school dummy is

counterintuitive, but the coe�cient is insigni�cant.

The distributions of e�ciencies at the various discontinuities are reported

in Figure 1. These exhibit an increasingly pronounced bimodality as the roll

of the school campus increases. In Figure 2, the distributions of e�ciencies are

reported for Charter and non-Charter schools. These paint a mixed picture;

at the extremes of the distribution, Charter schools appear to be the least

e�cient, while non-Charter schools are most e�cient. Nearer the middle of

the distribution, however, this pattern is reversed. Overall, as we have seen,

there is no signi�cant di�erence in the e�ciency of the two types of school. The

likelihood function in the neighborhood of the optimal values of the cuto�s is

illustrated in Figure 3 (for G = 5 ) and appears well-behaved but step-sized as

expected.

To examine further the behavior of our new approach we conduct a simula-
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tion experiment. For the explanatory variable (school size) we generate from a

normal with mean 88.5 and standard deviation 37.7 which match the descrip-

tive statistics in our sample. For x we assume it is normal with mean 22 and

a small standard deviation, 0.1. For ∆ we assume a normal distribution with

mean 4.80 and standard deviation 0.1 (which is close to our estimated value of

0.082). Expected class size is generated as before as C = s
[(s−1)/x]+1 , where s is

generated from a discrete uniform distribution taking values in {15, 150}. We

set σv = 5 and σu = 20. All β and γ parameters are set equal to one. We

are mainly interested in the root-mean-squared-errors (RMSE) of the param-

eters. The sample size, n, varies from 200 to 5000. We denote λ = σu

σv
and

σ =
√
σ2
v + σ2

u. For each sample size, we run 5,000 simulations.1

From these results it turns out that the new method performs well and the

results are acceptable when n = 1, 500 which is, roughly, the sample size in our

empirical application. The RMSEs of γ coe�cients are not the same (as those

corresponding to β) but they decrease, roughly, as the square root of the sample

size. For λ, σ, x and ∆ this does not seem to be the case (although RMSEs are

acceptably small when n ≥ 1, 000) suggesting non-normality persisting even

in relatively large samples. We conducted some additional experiments (not

reported here) when the sample size is much higher (n = 20, 000 compared to

n = 15, 000 and n = 10, 000) and the RMSEs of these parameters scaled like
√
n

verifying that asymptotic theory is con�rmed but large samples are required to

get close to what it delivers. Naturally, when the sample size is less than about

500 the results, particularly for λ, σ, x and ∆ show larger RMSEs implying that

in very small samples the estimates for these parameters can be somewhat far

from the truth. As we use a non - parametric approach this result is expected

and should not cause particular concerns other than the usual ones in applied

non - parametric estimation exercises.

1All programs were written in Fortran 77 making extensive use of IMSL libraries as well
as NAG libraries for checking our optimizations. All runs were performed at the High End
Computing (HEC) facility of Lancaster University. The High End Computing Cluster (HEC)
is a centrally-run service which o�ers over 6,500 cores, 28 TB of aggregate memory, 70TB of
high performance �lestore and 1.5PB of medium performance �lestore. A number of nodes
o�er Nvidia GPU cards, which suport CUDA and OpenCL applications. The cluster operating
system is Scienti�c Linux, with job submission handled by Son of Grid Engine (SoGE). The
service supports a wide variety of third-party software including numerical packages, libraries
and C and Fortran compilers.
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4 Conclusion

We anticipate that the development of a method that combines the regression

discontinuity design and stochastic frontier models will be welcomed widely by

applied researchers, not least because the functions characteristically estimated

in discontinuity models - measuring, as they do, some aspect of performance -

should properly be regarded as frontiers, though this has not typically been the

practice. Our methodological contribution is therefore one that we expect to

have widespread applicability.

Our results on the e�ect on performance of class size are also noteworthy

in their own right. Many studies (for example, Hanushek, 2008) have failed to

�nd the expected negative impact of class size on performance. Our �nding

that class size in�uences performance in the expected direction while there is

a countervailing impact on e�ciency may contribute an explanation for the

ambiguous results obtained in earlier research.

The e�ciency scores reported in this paper (in Figure 2) are in line with

our prior expectations, given the parsimonious nature of the empirical model.

The distribution of e�ciencies, particularly for charter schools, is bimodal, re-

�ecting heterogeneity within this category of schools (Center for Research on

Education Outcomes, 2017, p.37). Richer data would allow such heterogeneity

to be modelled more fully thus likely explaining some of the variation that now

appears in the asymmetric residual, but we keep such investigation as a subject

for future research.
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Table 1. Empirical results - conventional models

Standard errors appear in parentheses

variable OLS frontier frontier

(Battese &

Coelli)

frontier

(Battese &

Coelli)

constant 78.740

(2.184)

98.989

(1.698)

99.138

(1.702)

99.592

(1.956)

expected class size -0.437

(0.128)

-0.432

(0.095)

-0.436

(0.096)

-0.438

(0.111)

school size 0.038

(0.007)

0.031

(0.006)

0.030

(0.006)

0.025

(0.007)

constant 6.353

(0.044)

6.475

(0.281)

CHARTER 0.179

(0.095)

0.150

(0.097)

expected class size -0.001

(0.016)

school size -0.001

(0.001)

σ2 612.840

(22.220)

λ 4.331

(0.878)

N 4186 4186 4186 4186

R2 0.0063

Log likelihood -17157.55 -17155.72 -17154.58
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Table 2. Empirical results - new model

Standard errors appear in parentheses

g = 1, ..., G β1 β2 β3 γ1 γ2 γ3

g = 1 -0.332

(0.027)

0.272

(0.044)

-0.246

(0.017)

0.121

(0.015)

-0.117

(0.025)

0.045

(0.013)

g = 2 -0.387

(0.031)

0.334

(0.040)

-0.293

(0.018)

0.235

(0.017)

-0.213

(0.017)

0.062

(0.015)

g = 3 -0.515

(0.036)

0.362

(0.044)

-0.302

(0.027)

0.286

(0.019)

-0.226

(0.018)

0.077

(0.022)

g = 4 -0.703

(0.041)

0.414

(0.052)

-0.388

(0.028)

0.292

(0.022)

-0.233

(0.017)

0.081

(0.017)

g = 5 -0.952

(0.048)

0.463

(0.049)

-0.414

(0.030)

0.3 02

(0.025)

-0.288

(0.016)

0.112

(0.017)

CHARTER 0.166 (0.244)

x 22.40 (0.015)

∆ 4.80 (0.082)
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Table 3. Simulation results
As the RMSEs of βjs are quite similar we take their average and report the RMSE in the row

calledβ. Bandwidths for local likelihood estimation are chosen using cross-validation and the optimal

G is selected through a search procedure as described in the main text. Our sample corresponds,

approximately, to the case n = 1, 500.

n = 200 n = 500 n = 1, 000 n = 1, 500 n = 3, 000 n = 4, 000 n = 5, 000
β 0.085 0.017 0.010 0.008 0.006 0.0051 0.0046
γ1 1.373 0.227 0.160 0.129 0.092 0.082 0.070
γ2 0.845 0.147 0.103 0.080 0.058 0.052 0.044
γ3 1.303 0.220 0.152 0.125 0.089 0.078 0.063
λ 2.233 0.383 0.159 0.117 0.103 0.081 0.072
σ 9.86 1.622 0.366 0.117 0.075 0.030 0.022
∆ 1.364 0.232 0.158 0.044 0.032 0.027 0.018
x 7.244 1.330 0.833 0.701 0.495 0.323 0.252
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Figure 1: Distributions of educational e�ciency
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Figure 2: E�ciency distributions by type of school
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Figure 3: Likelihood in terms of x and ∆
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Technical Appendix: Local likelihood

Using the notation in the previous section, suppose the density of the composed

error εi = vi − ui is pε(εi; θ) where θ ∈ <d denotes the vector of all unknown

parameters and d is the dimensionality of the parameter. The corresponding

density of the dependent variable given the explanatory variables zi = z(xi,∆) ∈
<m is denoted by p(yi; zi, θ). We can write our model (omitting i subscripts for

simplicity) as:

y = f(z;β) + v − u
v ∼ N (0, σ2

v), u ∼ N+(g(z; γ), σ2
u).

(10)

If f(z;β) and g(z; γ) were given parametrically, then the density of the com-

posed error, ε = v − u = y − f(z;β), would have been (Kumbhakar and Lovell,

2000, p. 84):

pε(ε) = σ−1ϕ

(
ε+ g(z; γ)

σ

)
· Φ
(
g(z; γ)

σλ
− ελ

σ

)
/Φ

(
g(z; γ)

σu

)
, (11)

where σ2 = σ2
v + σ2

u, λ = σu

σv
, and ϕ, Φ denote the standard normal density

and distribution functions respectively. Technical ine�ciency can be estimated

using the expected value of u given ε which is:

û = σ∗

{
µ̃

σ∗
+

ϕ (µ̃/σ∗)

Φ (µ̃i/σ∗)

}
, (12)

where µ̃ = −(σ2
uε+ σ2

vg(z; γ))/σ2 and σ2
∗ =

σ2
vσ

2
u

σ2
v+σ2

u
(Kumbhakar and Lovell,

2000, pp. 85-86).

Suppose we have a multivariate kernel K(u) satisfying the following proper-

ties: ˆ
<d

K(u)du = 1,

ˆ
<d

uu′K(u)du = τ2Id, (13)

where τ2 > 0. Then the local linear log likelihood is given by:

L(θo,Θo; z) =

n∑
i=1

ln p(yi; θo + Θo(zi − z)) ·KH(zi − z), (14)

where θo is d × 1, Θo is d ×m, m is the dimensionality of zi, H is a posi-

tive de�nite and symmetric bandwidth matrix, and KH(u) = |H|−1K(H−1u).
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Following KPST, we choose a product kernel of the form:

K(u) =

d∏
i=1

K1(ui),

where K1() is any univariate density function. In this case, we have:

ˆ
uu′K(u)du =

(ˆ
u2

1K1(u1)du1

)
Id.

Then the local linear estimator at zi = z is θ(z) = θ̂o(z), where
(
θ̂o(z), Θ̂o(z)

)
maximize L(θo,Θo; z). Under certain regularity conditions, from Theorem 2.2

of KPST the local linear estimator converges to a normal distribution.

We use a bandwidth matrix of the form: H = hId and the product kernel:

h−d
∏d
j=1K(h−1(zj)), where:

h = hon
−1/5sz,

where ho is a baseline bandwidth parameter and sz is the vector of standard

deviations of all explanatory variables. Therefore, the bandwidth is adjusted

for di�erent scales of the variables and di�erent sample sizes. In turn, we use

cross-validation over a grid of values for ho. As in KPST our cross-validation

rests upon choosing ho to minimize:

n−1
n∑
i=1

(
yi − f̂ (i)(zi) + û(i)(zi)

)2

, (15)

where f̂ (i)(zi) and û
(i)(z) are the leave-one-out equivalents of the local like-

lihood estimator described above. In the empirical application we use the full

leave-one-out procedure. In the Monte Carlo simulation procedure, to reduce

computational burden, we perform the cross-validation on a random subsample

of M � n units (we set M = [0.1n]).
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