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A numerical approach based on dynamic importance sampling (DIMS) is applied to in-
vestigate polarization switches in vertical-cavity surface-emitting lasers. A polarization
switch is described as an activation process in a two-dimensional nonequilibrium system.
DIMS accelerates the simulations and allows access to noise intensities that were previ-
ously forbidden, revealing qualitative changes in the shape of the transition paths with
noise intensity.
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1. Introduction

Activation processes form a very wide and important subject within modern physics.
Due to the presence of noise in real systems, dramatic qualitative changes in the
dynamics may be observed [1–4]. The strong changes in the polarization-resolved
light intensity in vertical cavity surface emitting lasers (VCSELs) [5] represent a
particularly remarkable example of activation processes. VCSELs are a relatively
new class of semiconductor lasers [6, 7]. Among the many features that make the
VCSEL a promising device for applications, one of the most important is its emission
of a narrow beam that is more nearly circular than those from traditional edge
emitting devices. This is due to the cylindrical design of the active cavity, and it
makes VCSELs more effective in driving energy into optical fibres than standard
lasers. However, applications requiring a well defined polarization state are limited
by a spontaneous switching of the device between two orthogonal linearly polarized
modes [8].
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The use of numerical simulation to investigate such switching processes is lim-
ited by the exponentially long times required to collect a statistically satisfactory
distribution of events. Different methods have been proposed to speed up the sim-
ulations. For example in [9] the process of building the probability distribution of
a nonequilibrium system is accelerated by performing the simulations by steps and
then matching two consecutive “slices” of the distribution. However, this method
is not effective when activation events are considered. In [10] a scheme based on
dynamic importance sampling (DIMS) was proposed, allowing fast simulations of
one-dimensional dynamical systems in the limit of very small noise intensity. In [11]
the method was extended to systems of higher dimensionality. So far, however it
has been tested successfully only on simple models such as the overdamped driven
Duffing and inverted van der Pol oscillators, and it has not yet been applied to
systems of practical interest such as VCSELs.

The DIMS algorithm accelerates the simulations in the following way. Instead
of exploring irrelevant parts of the coordinate-space, the simulations are performed
in the vicinity of the trajectory that the laser is most likely to follow during a
switch. Such a most probable escape path (MPEP) can be obtained by solution of
an auxiliary Hamiltonian system [12, 13].

In this letter, we apply the DIMS scheme to the dynamics of VCSEL polariza-
tion. The most probable escape path is calculated theoretically using the Hamil-
tonian technique, and the numerical simulations are performed for a wide range of
noise intensities. The transition from the basin of attraction of one linearly polar-
ized mode to the orthogonally polarized one is shown to alter its path with noise
intensity. Some of the results discussed here were presented during SPIE Second

International Symposium on Fluctuations and Noise [14].

2. Theory

Consider a device with small linear dichroism emitting in the transverse fundamental
mode [5] whose polarization may switch between two orthogonal directions due to
spontaneous emission.

When the dichroism is small enough (i.e. when pumping is sufficiently large),
the changes in the beam intensity during the polarization dynamics can be ne-
glected. Under this condition, the polarization dynamics can be described using
the polarization angle φ and the ellipticity χ:

χ̇ = fχ (χ, φ) + ξχ(t) (1)

fχ = ωl sin(2φ)− γn sin(2χ) cos(2χ) + γl sin(2χ) cos(2φ) + ξχ(t) (2)

φ̇ = fφ (χ, φ) + ξφ(t) (3)

fφ = −ωl

sin(2χ)

cos(2χ)
cos(2φ) + γl

sin(2φ)

cos(2χ)
− ωn sin(2χ) + ξφ(t), (4)

χ varies between −π
4

and π
4

and φ between 0 and π. With a proper choice of
the parameters, two linear polarization modes are stable: the x̂-polarized mode
(corresponding to χ = 0 and φ = 0) and the ŷ-polarized mode (corresponding to
χ = 0 and φ = π

2
). The basins of attractions of the two polarization modes are

separated by an unstable limit cycle. The parameters ωl and γl are respectively the
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linear birefringence and linear dichroism; γn and ωn are the nonlinear anisotropies.
The stochastic terms xiχ,φ describe the spontaneous emission. They are additive in
Eq.(1)-(3). However, their intensity is related to the beam intensity and their effect
is ultimately multiplicative. Yet, for a device with small dichroism and operating
with large enough pumping, the intensity can be considered to be a constant:

〈ξχ(t)〉 = 〈ξφ(t)〉 = 0 ∀t (5)

〈ξχ(t)ξχ(s)〉 = 〈ξφ(t)ξφ(s)〉 = ǫδ(t− s) 〈ξφ(t)ξχ(s)〉 = 0 ∀t, s (6)

The time evolution of the probability density for the system (2), (4), is regulated
by the following Fokker-Planck equation

∂̺

∂t
= −∂ (fχ̺)

∂χ
− ∂ (fφ̺)

∂φ
+

ǫ

2

(

∂2̺

∂χ2
+

∂2̺

∂φ2

)

(7)

In the limit ǫ → 0, (7) can be solved using the WKB expansion [12, 13]. The
probability distribution is considered to have the form

̺(χ, φ, t) = z(χ, φ, t) exp

(

−S(χ, φ, t)

ǫ

)

, ǫ → 0, (8)

where S(x, t) and z(x, t) are two functions. We insert (8) in (7) and consider different
orders of expansion in ǫ. At leading order ǫ−1 the auxiliary function S turns out to
be the solution of the Hamilton-Jacobi equation for a classical action

∂S

∂t
= −H

(

χ, φ,
∂S

∂χ
,
∂S

∂φ

)

. (9)

The Hamiltonian for the system, H(x, p) = p2

2
+ p · f , is known as the Wentzell-

Freidlin Hamiltonian [13]. The function S evolves along the characteristics of (9)
according to dS

dt
= 1

2

(

p2χ + pφ
)

. In the limit ǫ → 0, the activation process is ruled
by the trajectory that minimises the “action” S at the boundary. This is the
MPEP, and the action calculated along it is the “activation energy”. It is a known
result that, in this limit, the MPEP reaches the cycle asymptotically [16, 17] and
tangentially.

3. Algorithm

In this section we describe how DIMS integration scheme [10,11,18] can be extended
to the investigation of multidimensional systems such as (2)-(4). The method is
applicable to systems characterised by a stable attractor with a sizable basin of
attraction, where activation takes place via a large fluctuation.

Consider a generic dynamical system of the form ẋ = f(x) + ξ(t); we will focus
on transitions from a stable attractor As toward a final saddle Fs. The process takes
place in three steps: in the vicinity of As the dynamics of the stochastic system is
purely diffusive; then, when the system leaves the vicinity of As (the length scale
is defined by

√
ǫ), the escape becomes essentially ballistic, along the MPEP and,

in the vicinity of Fs, finite noise diffusion dominates. In order to take into account
the existence of these three regimes, the integration method is built as follow: the
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system is initially set close to As, the exact equations of motion are integrated using
a standard SDE (stochastic differential equation) integrator. This reproduces the
diffusive regime in the vicinity of As. We also set a boundary at some distance from
the stable attractor: this boundary has nothing to do with the boundary of the basin
of attraction, but it delineates where we define the diffusive regimes to change to
ballistic. When the boundary is crossed, we switch from standard SDE integration
to DIMS integration. Although the final result does not appear to depend on the
choice of boundary, the boundary should nevertheless be chosen on some rational
basis: we require that the boundary should be fairly easily reached by the dynamical
system when using straight SDE integration, but also that this event should not be
too probable. In practise, a reasonable boundary could be e.g. a circle centred on
the stable attractor, with a radius of a few

√
ǫ. This choice reproduces the diffusive

dynamics in the vicinity of the stable state. When the system hits the boundary,
we switch to the DIMS integrator: from the above discussion, we know that the
SDE ẋ = f(x) + ξ(t) maps onto the Hamiltonian equation, so we switch to the
integration of

ẋ = f(x) + p(x) + ξ(t) (10)

where p(x) is the momentum conjugated with x as obtained from the MPEP and
ξ(t) is the DIMS stochastic component. It is clear that in more than one dimension
the probability of being exactly on the MPEP during each integration time step
is negligible: but the idea is that we should nevertheless use in the integration of
(10) the value of p(x) which “pulls” the escape tube toward the boundary. This is
achieved by linearising the Hamilton equations near the MPEP, and using the p(x)
that keeps the system on the stable manifold of the MPEP. A step of the scheme
is explained in Fig.1. Consider a point A in the coordinate space. The momentum
p(x) to be used in the equation (10) is calculated in the following way: first, the
closest point to A on the MPEP is located, the extended Hamiltonian system is
linearized about this point, and the stable and unstable manifolds are built. The
point A∗ in the extended phase space which has the same x coordinate as A, and
lies on the stable manifold of the MPEP, is located. The momentum of the point
A∗ is then used as p(x) in (10). The integration scheme is interrupted and reset if
the trajectory leaves a small neighbourhood of the MPEP (size of a few

√
ǫ).

4. Results

We now use the algorithm of Sec. 3 to describe noise-induced polarization switching
in VCSELs. Consider a device described by the set of equations (2)-(4) emitting in
the fundamental transverse mode [5], whose polarization may switch between two
orthogonal directions due to spontaneous emission. The polarization dynamics can
be described using the polarization angle φ and the ellipticity χ. The DIMS scheme
is thus applied in the space of the angles φ and χ to investigate transitions from
the ŷ-polarized mode to the limit cycle

The most probable escape path has been located by minimizing the action on
the set of Hamiltonian trajectories emanating from the initial stationary point.
It is a one-parameter set and the space of parameters is diffeomorph to a circle
S1 [14, 19]. The most probable escape path is shown in Fig. 2a. It emanates from
the stationary point χ = 0 , φ = π/2 and reaches the limit cycle asymptotically. In
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Fig 1. The scheme for one step of the DIMS method, where: Ω is a cross-section in the extended
phase space; γ (thick line) is the optimal path predicted by the theory; the thin lines are the
stable and unstable eigenspaces (as indicated by the directions of the arrows) of the optimal path.
The dashed lines represent respectively the coordinate space x and the momentum space p. A
is a point in the coordinate space, A∗ is the corresponding point on the stable manifold of γ as
required by the integration procedure.

Figs. 2b and 2c, the simulations performed with the DIMS method are compared
with the theoretical MPEP for two different values of the noise intensity. The
‘noisy’ trajectories calculated numerically follow very closely the theoretical MPEP;
however we are interested in showing how a ‘real’ trajectory deviates from the theory
and leaves the basin of attraction of the lasing mode. In order to show explicitly
the shift of the escape point, a collection of 20 numerical trajectories was taken and
the point where more than half of the trajectories have left the basin of attraction
of the ŷ-polarized mode is marked. As expected, when the noise intensity increases,
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Fig 2. (a) The most probable path for a polarization switch as calculated using the Hamiltonian
approach. It emanates from χ = 0 , φ = π/2 for t → −∞ and reaches the limit cycle tangentially
for t → +∞. (b),(c) Comparison between theory and simulations for the polarization switches
with two different noise intensities: (b) ǫ = 2 · 10−6 and (c) ǫ = 9 · 10−6. The dashed lines are the
theoretical MPEP and the solid lines are the results of the simulation. The full circle marks the
point where the probability of a trajectory having left the basin of attraction of the initial lasing
mode has exceeded 50%. The dependence of this point on noise intensity is clearly evident.

the simulations follow the MPEP less closely, and they leave the basin of attraction
of the initial lasing mode earlier.
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5. CONCLUSIONS AND DISCUSSION

In conclusion, we have investigated polarization switching events in VCSELs using
an ultra-fast simulation scheme based on dynamical importance sampling of the
trajectories. The simulated trajectory is kept close to the MPEP by taking the
momentum so as to stay on the stable manifold. By application of the technique
we have revealed how a change in noise-intensity affects the switches by modifying
the probability of diffusion across the saddle cycle, thus shifting the escape position
as shown quantitatively in Figs. 2b and 2c.

These encouraging results on VCSELs suggest that DIMS might provide a way
of extending numerical studies to noise intensities that were previously inaccessible,
not only for VCSELs but also in many other fields of modern science, e.g. the
investigation of ion motion in the pores of cellular membranes [3].
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