SuperDARN observations during geomagnetic storms, geomagnetically active times and enhanced solar wind driving

M.-T. Walach¹, A. Grocott³

¹Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom

Key Points:

• During geomagnetic storms and enhanced solar wind driving ionospheric convection expands to latitudes as low as 40° magnetic latitude.

• Initial and recovery phases of geomagnetic storms show similar convection as enhanced solar wind driving when no geomagnetic storm occurs.

• Main phase shows most scatter, fastest flows (CPCP ~80 kV instead of ~40 kV during initial and recovery) due to higher solar wind driving.

Corresponding author: M.-T. Walach, m.walach@lancaster.ac.uk
Abstract
The Super Dual Auroral Radar Network (SuperDARN) was built to study ionospheric
convection at Earth and has in recent years been expanded to lower latitudes to observe
ionospheric flows over a larger latitude range. This enables us to study extreme space
weather events, such as geomagnetic storms, which are a global phenomenon, on a large
scale (from the pole to magnetic latitudes of 40°). We study the backscatter observa-
tions from the SuperDARN radars during all geomagnetic storm phases from the most
recent solar cycle and compare them to other active times to understand radar backscat-
ter and ionospheric convection characteristics during extreme conditions and to discern
differences specific to geomagnetic storms and other geomagnetically active times. We
show that there are clear differences in the number of measurements the radars make,
the maximum flow speeds observed and the locations where they are observed during
the initial, main and recovery phase. We show that these differences are linked to dif-
ferent levels of solar wind driving. We also show that when studying ionospheric con-
vection during geomagnetically active times, it is crucial to consider data at mid-latitudes,
as we find that during 19% of storm-time the equatorward boundary of the convection
is located below 50° of magnetic latitude.

1 Introduction
Geomagnetic storms are one of the more extreme examples of geomagnetic responses
to solar wind driving. Typically, they are driven by interplanetary coronal mass ejections
(ICMEs) or interplanetary co-rotating interaction regions (CIRs) in the solar wind and
result in strong enhancements in the radiation belt region around the Earth (e.g. Gon-
zalez et al., 1994; Gonzalez, Tsurutani, & Chía de Gonzalez, 1999; Kilpua, Balogh, von
Steiger, & Liu, 2017; Turner et al., 2019, and references therein). Sheath regions, which
precede ICMEs in the solar wind, are often associated with fast solar wind, shock fronts
and followed by magnetic clouds, which manifest themselves as prolonged intervals of
strong and steady interplanetary magnetic field (IMF) (e.g. Kilpua et al., 2017, and ref-
ences therein). Southward IMF in particular is known to be an important driver of ac-
tivity in the magnetospheric-ionospheric system, which manifests itself as enhanced plasma
transport through the magnetosphere due to an increase in dayside reconnection rates
(e.g. Cowley & Lockwood, 1992; Milan, 2015; Milan, Gosling, & Hubert, 2012; Walach,
Milan, Yeoman, Hubert, & Hairston, 2017, and references therein). This is particularly
relevant for geomagnetic storms, as it has been shown that the recovery phase of a storm, when the geomagnetic activity decreases, is coupled to a decrease in southward IMF and thus solar wind driving (Gonzalez et al., 1999). After a period of southward IMF (or solar wind driving) and open flux accumulation known as the growth phase, explosive unloading events, known as substorms follow (e.g. Baker, Pulkkinen, Angelopoulos, Baumjohann, & McPherron, 1996; McPherron, 1970). Following substorm onset, the polar cap decreases in size as nightside reconnection dominates over dayside reconnection (Milan, Hutchinson, Boakes, & Hubert, 2009; Milan, Provan, & Hubert, 2007). As this happens, particles are injected on the nightside into the inner magnetosphere. Whilst substorms may be critical in energising the ring current (Kamide et al., 1998), it has been shown that the Dst ring current index, which is similar to the Sym-H index (Wanliss & Showalter, 2006), can be simulated well using solar wind data alone (O’Brien & McPherron, 2000). This is no coincidence, as substorms are also driven by the solar wind.

Hutchinson, Wright, and Milan (2011) identified geomagnetic storms over a solar cycle and split them into categories of strength as well as storm phases: The initial phase, main phase and recovery phase. The initial phase is accompanied by increases in solar wind pressure, often associated with a CME or CIR and causes a compression of the magnetosphere on the dayside, resulting in positive increases to Sym-H. The main phase then follows when solar wind driving (i.e. dayside reconnection) is high depositing a large amount of energy, of the order of a few 10^{31} keV, into the magnetosphere (Kozyra et al., 1998). The ring current is then enhanced, which we see in a sudden depression in Sym-H. The main phase is followed by a recovery phase, which occurs due to a decrease in solar wind driving and is marked by a return to less enhanced values of Sym-H. Contrary to a previous result by Yokoyama and Kamide (1997), Hutchinson, Wright, and Milan (2011) showed that the average length of the main phase of a geomagnetic storm is anti-correlated with the intensity of a geomagnetic storm (given by the Sym-H minimum), whereas the duration of the recovery phase is correlated with the magnitude of the geomagnetic storm.

Hutchinson, Grocott, Wright, Milan, and Boakes (2011) used the same geomagnetic storm list to study ionospheric convection during storms, although they did not attempt to compare their observations to those made during intervals with similar solar wind driving, or geomagnetic activity in general. They used the Super Dual Auroral Radar Network (SuperDARN), which is an international network of ground-based high-frequency radars, built for the purpose of studying ionospheric convection (Chisham et al., 2007;
Greenwald et al., 1995). They also looked at auroral data from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite (Mende et al., 2000) in conjunction with the radar data. They showed that the latitudinal extent of the return flow region maps well to the auroral region on the nightside during geomagnetic storms, although their analysis only extended to 50° magnetic latitude due to the years of study being limited to 1997-2008. For the most recent years of SuperDARN data, this has been expanded to 40° as a result of building new mid-latitude radars, which we utilise here.

To look at how the ionosphere responds during geomagnetic storms of the most recent solar cycle, we use SuperDARN data from the years 2010-2016 to study high-latitude ionospheric convection in a holistic way. We address a number of questions, for example: Do we make similar SuperDARN observations during similar solar wind driving during non-storm time as during storm time? Do SuperDARN observations change throughout the different phases of a storm? Where do we see the fastest flows with SuperDARN and is it linked to the extent of latitudinal coverage from the radars? Does the latitudinal range of the convection, given for example by the return flow region, stay constant throughout a storm?

In this paper, we will compare ionospheric convection parameters and features during geomagnetic storms and geomagnetically active times when the Sym-H index is enhanced, as well as times when solar wind driving is high, but geomagnetic activity is low. Periods of solar wind driving typically lead to substorms, but in this case we will only select periods of driving that are not sufficiently driven for geomagnetic storms to occur. We will discuss the selection criteria in the next section.

2 Data selection

In this section we introduce the primary datasets used for this study: the geomagnetic storm data, and the SuperDARN radar data.

2.1 Geomagnetic storm data

Our storm identification procedure is similar to that of Hutchinson, Wright, and Milan (2011), which provides us with a way of comparing our event distribution.

Each storm is found and divided into storm phases, using an automated algorithm, as illustrated in Figure 1. The minimum in Sym-H of each storm is found, which marks
the beginning of the recovery phase and the end of the main phase. The end of the recovery phase is marked by the point where Sym-H reaches the quiet level (-15 nT) thereafter. The beginning of the main phase is marked by the last point where Sym-H crosses the quiet level prior to the minimum. From there, we then find the maximum in Sym-H above the quiet level phase, prior to the main phase with a maximum time separation of 18 hours between the maximum and the start of the main phase. To find the beginning of the initial phase, we simply find where Sym-H reaches a quiet level, before the maximum of the initial phase occurs. This ensures that we do not miss any storm sudden commencements or sudden impulses. The only difference between our algorithm and the one from Hutchinson, Wright, and Milan (2011) is the definition of the start of the main phase. We use the crossing of the quiet level, whereas they use the maximum in Sym-H. The main reason for choosing this, was that when we inspected the Sym-H traces of the storms visually, the maximum in Sym-H during the initial phase was not always very clearly defined, whereas the crossing of the quiet level is always very clear.

![Figure 1](image.png)

Figure 1. Figure showing typical Sym-H trace of a geomagnetic storm. The colours show our phase identification with the initial phase in orange, the main phase in red and the recovery phase in green.

We have divided our storms into the same categories as Hutchinson, Wright, and Milan (2011) for comparative purposes, but look at the more recent solar cycle (2010-2016) instead of 1997-2008.

In our study, we have 43 weak storms \((-150 \text{ nT} < \text{Sym-H} < -80 \text{ nT})\), 5 moderate storms \((-300 \text{ nT} < \text{Sym-H} < -150 \text{ nT})\) and no intense storms (Sym-H < -300 nT),
whereas Hutchinson, Wright, and Milan (2011) found 8 intense storms during the years of 1997-2008. It is worth noting however that this is not a problem: As we will show later, the convection pattern reaches the observable limit for our storm list, reaching 40° magnetic latitude for moderate storms, 10° lower than Hutchinson, Wright, and Milan (2011) could observe, so it is highly unlikely that we or they could accurately inspect the intense category. Overall, their study also contains more storms in general: 143 storms, as opposed to our 48 storms. This means Hutchinson, Wright, and Milan (2011) observed on average 12 geomagnetic storms per year, whereas we found 8 per year on average. This is likely due to the fact that the most recent solar cycle has been weaker than the previous one with less solar wind driving of the magnetosphere (Selvakumaran et al., 2016).

It was found by Gillies, McWilliams, St. Maurice, and Milan (2011) that geomagnetic storms are a continuum of intensities, rather than separate classes. Furthermore, they found that the Sym-H index responds predictably to the strength of the southward IMF, regardless of storm driver. As such, we will not discuss storm drivers or classes any further, but rather focus on comparing storm characteristics during the different storm phases to geomagnetically active times in general and other times of solar wind driving.

To select times when solar wind driving is high and similar to the solar wind conditions during storms, we set a lower threshold for the solar wind speed ($V_{SW} \geq 350\text{km/s}$), the total magnetic field component of the IMF ($B_{TOT} > 8\text{nT}$), and the absolute of the clock angle ($|\theta| > 100^\circ$). We also specify that for these conditions, no geomagnetic storm must occur (Sym-H $>-80\text{nT}$). These selection criteria were chosen such that the driving conditions are similar to a geomagnetic storm, as we will later see in Fig. 3. Additionally, to investigate the significance of storms and storm phase on the ionospheric convection, we also compare to times of high geomagnetic activity (SYM-H $<-80\text{nT}$), but in this case not binned by storm phase.

2.2 SuperDARN radar data

The Super Dual Auroral Radar Network (SuperDARN) is an international network of ground-based high-frequency radars located in the auroral regions of the northern and southern hemispheres (Chisham et al., 2007; Greenwald et al., 1995). Transmitted signals from the radars are backscattered by magnetic field-aligned irregularities in the ionospheric plasma. The Doppler shift of the signal is then used to calculate the line-of-sight velocity of the plasma. The line-of-sight velocities from all the radars in the network from
a given hemisphere are then combined to produce large-scale maps of the convection pattern.

The SuperDARN data is processed in steps and thus there are different levels of data products: First, an autocorrelation function fitting is performed on the raw data for the years 2010-2016 using the FITACF routines, contained in the Radar Software Toolkit. This is the standard procedure for determining line-of-sight velocities from the SuperDARN observations, and we downloaded these data with the FITACF completed. We then spatially and temporally average the line-of-sight data onto an equal-area magnetic latitude and longitude grid in Altitude-Adjusted Corrected Geomagnetic Coordinates (Shepherd, 2014) using an updated version of the gridding technique first introduced by Ruohoniemi and Baker (1998) (SuperDARN Data Analysis Working Group, Thomas, Ponomarenko, Billett, et al., 2018). The recent updates made to the gridding technique in the Radar Software Toolkit versions 4.1 and 4.2 (SuperDARN Data Analysis Working Group, Thomas, Ponomarenko, Billett, et al., 2018; SuperDARN Data Analysis Working Group, Thomas, Ponomarenko, Bland, et al., 2018) include numerous bug fixes as well as implementation of the World Geodetic System 84 reference ellipsoid and the refined Altitude-Adjusted Corrected Geomagnetic Coordinates methodology (Shepherd, 2014). For our analysis we use RST version 4.2. To grid the data we use a two-minute cadence for the records, using the standard empirical height model of Chisham, Yeoman, and Sofko (2008). We limit the slant ranges from 800km to 2000km to exclude ionospheric E-region backscatter and scatter where the error in the location may be very large, as was done by Thomas and Shepherd (2018). When gridding the data, we also exclude data from the secondary channels of the stereo radars (Lester et al., 2004) in order to exclude experimental data. Using RST v4.2 we then utilise the spherical harmonic map fitting method from Ruohoniemi and Baker (1998), to produce an archive of large-scale two-minute northern hemisphere SuperDARN maps using a fitting order of 6. This involves adding model vectors from the climatologies of Thomas and Shepherd (2018), parametrised by the upstream solar wind conditions measured by the ACE satellite (Stone et al., 1998), to stabilise the fit in regions of limited data coverage. The solar wind data is time-lagged to better represent the local conditions using the solar wind propagation time from Khan and Cowley (1999). The Heppner-Maynard boundary (Heppner & Maynard, 1987), which is equivalent to where the zero potential contours are set in the map fitting, is chosen to match the lowest possible latitude for which a minimum of three line-of-sight vectors
with velocities greater than 100 ms\(^{-1}\) lie along its boundary (Imber, Milan, & Lester, 2013; Thomas & Shepherd, 2018). In our implementation of the fitting routine, we also changed the 50° latitude hard limit on the Heppner-Maynard boundary in RST 4.2 to 40°, to better represent the latitudinal extent of the radar data (see https://github.com/SuperDARN/rst/pull/216).

The SuperDARN radar data which we use in this study includes gridded line-of-sight data, as well as the location of the Heppner-Maynard boundary and the cross polar cap potential information. We use data from the years 2010-2016, corresponding to the years of the Thomas and Shepherd (2018) SuperDARN climatological convection model, which means that parameters stemming from the fitted maps, such as the cross polar cap potential and the Heppner-Maynard boundary are estimated to the best of our ability. To analyse the SuperDARN data with respect to the different storm phases, we perform a superposed epoch analysis with the beginning and end of each phase as reference points, and with the duration of each phase normalised by resampling the data to a cadence that yields 100 points in each phase.

3 Results

In this section we show the measurements made during storms with SuperDARN, which we then compare to measurements during times of high solar wind driving when no geomagnetic storm occurs and to measurements made during times when geomagnetic activity is high, irrespective of storm phases.

3.1 Storm phase response

Figure 2 shows how the observations from SuperDARN and the corresponding solar wind data and geomagnetic indices progress through the different storms and storm phases. Each panel shows the initial, main, and recovery phases, on a normalised timescale for a different parameter. Each storm is normalised by the absolute duration of the storm and colour-coded accordingly and the black lines show the median, the lower (25%), and upper (75%) quartiles.

On average, our initial storm phases are much longer (median: 19 hours, 35 minutes) than those from Hutchinson, Wright, and Milan (2011) (6 hours, 59 minutes) (see table S1 in Supporting Information). We find that the main phase (median: 9 hours, 5 minutes; HS2011: 7 hours, 43 minutes) and recovery phase (median: 55 hours, 46 min-
utes; HS2011: 57 hours, 27 minutes) are comparable in duration, albeit they are very vari-
able from storm to storm. Fig. 2 does not show any clear ordering by storm duration,
although some very long storms (in dark red) appear to exhibit the strongest Sym-H min-
ima. There is however no clear trend for the shorter storms.

Fig. 2a shows the Sym-H index for the geomagnetic storm phases. The behaviour
of the Sym-H index is defined by our selection criteria and shows that as the convection
increases during the main phase of the storm, the ring current enhances, as expected.
Fig. 2b shows the average number of gridded SuperDARN velocity vectors, which increases
during the main phase, showing that we are likely to get more measurements during this
time.

The data for Fig. 2 c, d, and f were extracted from the SuperDARN maps with the
spherical harmonic fitting procedure applied to them. The cross polar cap potential, or
CPCP, (see Fig. 2 panel d) clearly increases as the main phase of a storm is approached
from 40 kV to 80 kV, and is much higher during the main phase (in excess of 100 kV),
indicating that plasma convection across the polar cap is higher. During the recovery
phase, this then decreases again to \sim 40 kV. Panel c shows that the dawn and dusk cells
in the convection maps increase and decrease in a similar way, though the dusk cell is
dominant, holding \sim2/3 of the potential.

Panel e shows the maximum line-of-sight velocity measured by SuperDARN, which
clearly increases during the main phase of a storm. This is further evidence that over-
all ionospheric convection strength is higher during the main phase of a storm.

Panel f shows the magnetic latitude of the Heppner-Maynard boundary (HMB).
The boundary measurement shown in this paper was taken along the nightside merid-
ian. The HMB clearly moves equatorward from the start of the initial phase, until it reaches
a minimum latitude near the end of the main phase, which is on average just below 40$^\circ$
of magnetic latitude. It is clear from this panel that a minimum HMB boundary of 40$^\circ$
(instead of the previously used 50$^\circ$) is required for the main phase of a storm. We es-
timate the the old limit of 50$^\circ$ would have misplaced the boundary into the 50$^\circ$ bin (in-
stead of equatorward of it) for \sim19% of all considered 2-minute intervals for the storms
(15.1% (initial phase), 21.0% (main phase), 20.8% (recovery phase)). Although the num-
ber of datapoints may seem smaller from Fig. 2 than these percentages, we note that this
is due to the normalised timescale. The main phase for example is much shorter than
the initial and recovery phases and as such, 21.0% of main phase corresponds to fewer
maps than, for example, 21.8% of recovery phase data.

Fig. 2 panel g shows the magnetic latitude coverage of SuperDARN scatter, which
also increases during the main phase of the storm. This is to be expected as the convec-
tion pattern expands equatorward (see Fig. 2f) and the average number of observations
increases during this time (see Fig. 2b).

Panels h to k show solar wind parameters: the total IMF clearly increases during
the storm main phases, which is accompanied by a clear increase in the magnitude of
the IMF B_Z component (see panel i). Fig. 2 panel j shows the clock angle of the IMF,
which is the angle between the IMF B_Y and B_Z component, such that $\pm180^\circ$ corresponds
to purely southward IMF. As this is given by an angle, we have calculated the circular
mean instead of the median and upper and lower quartiles, which is shown by the black
dots. During the initial phase, the IMF B_Z component is often pointing northward or
the B_Y component is dominant over the B_Z component, indicated by a clock angle of
0° or $\pm90^\circ$, respectively. During the main phase, the IMF B_Z component is dominantly
negative, as the clock angle is primarily near $\pm180^\circ$, which corresponds to higher solar
wind driving (e.g. Milan et al., 2012).

Fig. 2 panel k shows the solar wind electric field, with respect to Earth, which is
a proxy for dayside reconnection and thus solar wind driving of the magnetosphere (e.g.
Milan et al., 2012). This clearly increases during the main phase of a storm, as is to be
expected by the enhanced convection, shown by panels c, d, and e.

Panel l shows the Auroral Upper and Lower indices (AU and AL, respectively). AL
and AU, which are often used as proxies for magnetospheric convection or geomagnetic
activity, also show a considerable enhancement during the storm main phase, which gradu-
ally declines during the recovery phase. AL in particular is enhanced when convection
is the highest. Although, AL and AU are on average less enhanced during the initial phase
than during the main phase, the variability is particularly high during the initial phase,
and as a result, it can be higher than during the main phase.

Overall, Fig. 2 shows that whilst the observations made with SuperDARN in the
initial and recovery phases are very similar, the main phase is characteristically differ-
ent and convection strength doubles going into the main phase.
3.2 Storm phases, geomagnetically active times, and driven times

Figure 3 shows the probability distribution function for various parameters, which we will now explain in turn. The different functions show the initial phase (orange), the main phase (red) and the recovery phase (green). These are compared to times when the solar wind driving is high, but geomagnetic activity is low (dark blue); and times when geomagnetic activity is high (Sym-H < -80 nT), irrespective of any storm phases (cyan).

Panel a shows the Sym-H component, indicating the ring current strength. We see immediately that geomagnetically active times have the strongest negative Sym-H index measurements associated with them, which was imposed by our criteria. The main phase lies in the middle, covering a similar range of Sym-H as the recovery phase, but spanning lower Sym-H indices. This is again imposed by our criteria of the storm phases. The solar wind driven times (dark blue curve) have on average a weaker negative Sym-H index, as they were selected to be occurring when no geomagnetic storm occurs. The geomagnetically active times (cyan curve) on the other hand drops to zero at a Sym-H of -80nT. The initial phase has the highest Sym-H index, peaking near 0nT, which is again given by the storm phase criteria.

Panel b shows the probability distribution functions for the duration of the storm phases (hence the absence of a dark blue or cyan curve). This panel shows that the main phase is much shorter than the initial and the recovery phase, with the recovery phase lasting on average the longest (as also shown in table S1 in the Supporting Information). We see that the distributions of the duration of the initial and main phases are comparable, whereas the recovery phase duration varies most widely and as such has no clear main peak. It is worth noting that the threshold for determining the end of the recovery phase is important for the duration statistics. We chose this threshold in-line with previous studies, however as can be seen from the example in Fig. 1 a slightly higher threshold would have increased the length of this particular storm.

Panel c shows the average number of gridded vectors per radar per 2 minute SuperDARN convection map. It shows that for driven times when no storm occurs, we are likely to observe less scatter, whereas the PDF for the main phase data shows that we are likely to observe more scatter. Times of high geomagnetic activity (cyan trace) most closely resemble the initial and recovery phase, which are times when the average number of vectors per radar falls below 10. A higher number of vectors corresponds to more
that enhanced electron densities provide enhanced propagation conditions, leading to more
direct propagation paths. Either way, this shows that we are likely to get much better
coverage of SuperDARN data during the main phase of a storm. This is further discussed
in section 4.2.

Panel d shows the probability distribution functions for the maximum line-of-sight
velocity observed per 2 minute interval by all SuperDARN radars. It shows clearly that
we are most likely to observe high velocities during the main phase. As this parameter
represents the upper limit of observed velocities, it indicates that ionospheric convection
is highest during the main phase of the storm in comparison to the initial and recovery
phases. Highly driven times, where no storm occurs (dark blue) and times of high ac-
tivity, irrespective of storm phase (cyan) tend to have a lower limit for the observed iono-
spheric convection speeds. The median observed velocity in panel e shows the same pat-
tern as panel d; the main phase velocities are higher than the velocities for the initial
and recovery phase, but what is different in both cases, is that the highly driven times
and times of high geomagnetic activity, have a secondary peak. Whilst in panel d this
is lower than the main storm peak, in panel e this is higher than the main peaks for the
storm phases. This indicates that there is a considerable chance that during driven times
and times of high geomagnetic activity, a higher average convection strength is observed
than during storms, whilst the maximum observed velocity is more likely to be lower.

We suggest that these two distributions are different than the storm distributions as the
distributions are chosen independently of the time history of the system. Overall, the
median velocity in panel e shows that the upper limit of observed ionospheric convec-
tion (panel d) is a good proxy for the overall observed ionospheric convection strength.

Panel f shows the minimum magnetic latitude where scatter observations are made.
Each trace shows a triple peak structure, with the main peak in the centre, except the
highly driven times and the initial storm phase, which peak at higher latitudes. This means
that on average, we are more likely to see radar backscatter during initial phases and driven
times confined to higher latitudes, ~60°, whereas for the other distributions, we can say
that the extent of the backscatter has expanded to lower latitudes as ionospheric irreg-
ularities are observed there. This is supported by the findings from panel g, which shows
the magnetic latitude of the HMB. The probability distribution function is particularly
high at lower latitudes during the main phase of a storm and geomagnetically active times
in general and extends down to 40° magnetic latitude. This is to be expected, as this
coincides with when we are most likely to measure ionospheric backscatter at geomag-
netic latitudes of ~40°.

Panel h shows the CPCP, which is most likely to be highest during the main phase
of a storm and during geomagnetically active times, with a peak at approximately 90kV.
The recovery phase and initial phase of a storm have the lowest CPCP (with a broader
peak at ~ 40kV), whereas driven times are somewhere in between the two, peaking at
~70kV. This means that convection is particularly high during the main phase of geo-
magnetic storms and matches our findings from panels d and e. Panel i shows the min-
imum and maximum of the electrostatic potential, which indicates if the dusk or dawn
cell is dominant. The overall trend from panel h is mirrored here, with the peaks for the
main phase and geomagnetically active times lying the furthest apart. What we see here
very clearly is a dominance in the minimum of the potential for all traces, meaning that
the dusk cell is dominant. This trend is least obvious for the recovery and initial phase,
which are thus the most likely to show a balanced convection pattern where the dusk
and dawn cells have the same size. We attribute this to the occurrence of sub-auroral
polarisation streams (SAPS) (Foster & Vo, 2002) which we discuss further in section 4.3.

Panel j shows the clock angle of the interplanetary magnetic field. The dark blue
curve is set to zero between ±90° by our criteria. Both the main phase of the storm and
geomagnetically active times maximise for southward IMF, near a clock angle of ±180°.
As the red and cyan curves peak at more southward pointing solar wind clock angle than
the dark blue curves, it indicates that storms and geomagnetically active times are ac-
tually likely to be more extremely driven than the selected driven times. This is because
we explicitly exclude storms, and hence the most strongly driven times, from our enhanced
driving category, which will thus also include a large proportion of periods where solar
wind driving is only moderately enhanced (we only specified that the absolute of the clock
angle > ±90°). In contrast, the initial and recovery phases peak at ±90°, indicating that
these periods often have a strong IMF B_Y component attributed to them, with no par-
ticular preference between positive or negative.

Panel k shows the electric field of the solar wind with respect to Earth. The peaks
of the probability distribution functions for the main phase and the geomagnetically ac-
tive times are the highest here, which supports the conclusions drawn from panel j that
these are times of more extreme solar wind driving. The narrowest peak is the dark blue one, for times of high solar wind driving. Although the peak is slightly lower than the main phase and geomagnetically active time peaks, the broader nature of the latter two imply that enhanced geomagnetic activity occurs for a wide range of solar wind driving conditions. As expected from our inspection of panel j, the initial and recovery phase are more likely to have lower solar wind driving associated with them.

Panel l shows the AU and AL indices, which shows that the geomagnetically active times and storm main phases have a remarkably similar distribution, whereas solar wind driven times without a geomagnetic storm show on average less extreme auroral indices. The initial and recovery phase, are even less likely to see extreme measurements of AL and AU, indicating that the auroral electrojets are weaker during these times.

As already discussed in section 2, we use lower limits for the solar wind conditions (V_{SW}, IMF B_{TOT} and clock angle) to find the periods of high solar wind driving when geomagnetic activity is low. As is shown by Fig. 3 (panels i and j) however, the solar wind driving for these times is not as high as during the main phase of geomagnetic storms. This essentially tells us that when solar wind driving is very high, a geomagnetic storm occurs. From here on, we therefore simply refer to these times as ‘driven times’.

3.3 Spatial distribution of ionospheric convection

Figure 4 shows five maps in geomagnetic latitude - magnetic local time (MLT) coordinates that present where the fastest line-of-sight velocities were observed by SuperDARN for the different categories introduced above. Each map is centred on the northern geomagnetic pole with noon to the top of the page. Each grid is normalised by the number of total maps of observations, such that the colours represent the probabilities of observing the fastest flows at each grid point. The grey grid points indicate locations where measurements exist, but no maximum velocities were observed in any of the considered maps. Overall, all maps show some banding, as there are characteristic locations on a geomagnetic map where more scatter is observed due to half-hop and one-and-a-half-hop distances of the radars.

Fig. 4a shows the observations from the initial phase. The data in this map cover the narrowest range of latitudes, with most of the fast flows being observed within 20° to the pole. The fastest flows may occur at almost all local times, with a clearly discernible
patch near midnight and slightly more extended patch near noon. Fig. 4b shows the storm main phase, where the majority of fast flows are observed at lower latitudes than in panel (a). Interestingly, the region of fastest flows on the dayside has moved slightly later in MLT, with the fastest flows now rarely occurring on the nightside, although there is some evidence for two bands of fast flow in the pre-midnight sector, at 55°-60° and at around 70°. Fig. 4c shows the recovery phase, which is very similar to the initial phase, although a larger extent of coverage overall (in grey) occurs on the dayside than in Fig. 4a. The dual-bands of pre-midnight fast flows observed during the main phase are also still apparent, although the occurrence of the equatorward band is quite low. Fig. 4d shows the observations for driven times, when no geomagnetic storm occurs. This shows similarities to Fig. 4a and c in terms of fast flow location, i.e. a higher probability of observing the fastest flows on the dayside than the nightside, with the flows generally located closer to the pole than during the main phase of a storm. Lastly, panel (e) shows the observations for intervals of enhanced Sym-H index, irrespective of the storm phase. This shows similarities to Fig. 4b with a high density of fast flows at lower latitudes. Interestingly, the lower latitude band of pre-midnight fast flows is the dominant region of fast flow in this case, suggestive of a population of flows driven during enhanced geomagnetic activity that are not storm related. We consider the implications of these results further in section 4.3.

Another factor than can affect the nature of the convection patterns is the spatial distribution of the observations that are used to derive them. When very few SuperDARN measurements are present in a map, the map parameters will tend to reflect the climatological map used in the RST map-fitting procedure more closely (in this case the model from Thomas and Shepherd (2018)). As such, it is important to test how robust the distributions such as the ones shown in Fig. 3 in panel f are to changes in the number of observations. Figure 5 shows the magnetic colatitudes of the observed HMB versus different levels of data coverage in the SuperDARN maps (i.e. higher number of gridded radar measurements, n, corresponds to better coverage). Each panel shows a different storm phase and the grey dashed lines indicate the number of maps which exceed the threshold criteria. With this, we can investigate the dependence of the HMB on the number of scatter points per SuperDARN map. The colour coding shows observational density per bin. We see immediately, that the median, shown in Fig. 2, is a good representation, even for maps with low data coverage. All three storm phases show that as the...
n-threshold increases to higher numbers, the median also increases slightly, but remains approximately within the interquartile range at lower n (e.g. n=100). This means that the Heppner-Maynard boundary is quite well predicted, even at lower n. At very low n (n≤50), there is a lot more variability in the parameter, but the median predicts the HMB well. This means that the estimation of HMB in Thomas and Shepherd (2018) is fairly robust, even for low n for geomagnetic storms. There are some features that do seem to be dependent on the number of measurements. The recovery phase panel in Fig. 5 shows a curious 2 peak structure at n≤350. Comparing the colatitudes at which these peaks are observed with the observations of latitudes in Fig. 2f, we see that this is due to the time-history of the convection pattern during the recovery phase. In the beginning of the recovery phase, the Heppner-Maynard boundary is at low latitudes due to the solar wind driving during the main phase of the storm. As the solar wind driving decreases, the Heppner-Maynard boundary will move to higher latitudes (lower colatitudes), where it then rests and as such we have a secondary distribution in the recovery phase panel in Fig. 5 at lower n. This matches what we see in panels b and c in Fig. 2. Furthermore, the peaks become more defined when the observations per map become greater than 200. This suggests a data coverage threshold may exist at this value. In our subsequent analysis we therefore impose a restriction on the minimum number of data points per map (n≥200). This gives us a good balance between the number of maps included whilst still well constraining the HMB. Furthermore, the same threshold has often been used in the past to filter maps for reliability (e.g. Imber et al., 2013).

Next we inspect flow reversal boundary (FRB), which corresponds to the inner flow boundary where antisunward flows turn to become sunward. At dusk and dawn, this coincides with the location of the maximum and minimum potentials. Whereas the HMB gives us an indication of the size of the whole convection pattern, the locations of the FRB at dusk and dawn gives us an indicator of the size of the polar cap. Figure 6 shows the location of the flow reversal boundary (FRB) against the Heppner-Maynard boundary (HMB) for the three different storm phases. As stated above, for this analysis we only use SuperDARN maps where the number of observations per map, n≥200. We take the colatitude of the FRB as the average of the colatitudes where the minimum and maximum of the electrostatic potential pattern lie, which is equivalent to the boundary between the anti-sunward and sunward flows. Because the asymmetries in the dusk and dawn cell locations are usually within 5° (see Figure S1 in supplementary material), which
accounts for most of the spread here, we find that taking the average location between
the dusk and dawn cell works well. The dashed line shows the line of unity and the black
line shows the line of best fit, obtained by linear regression. We see immediately, that
although there is a positive linear correlation between the two flow boundaries, the HMB
changes are more extreme than the FRB changes. This means that although the two will
change together (i.e. as one increases, the other one increases), the HMB will always change
by a larger amount. As Figure 6 shows, this is most pronounced during the recovery phase,
where the gradient is flattest. The correlation coefficients are 0.3, 0.5, and 0.2, for the
initial, main, and recovery phases, respectively. The best correlation is obtained for the
main phase of the storm, where the relationship between the HMB and FRB is the most
clear. For information, the linear regression coefficients are provided in table S2 in the
Supporting Information. For the recovery phase (see bottom panel in Fig. 6), we see that
the majority of the data is clustered around two points with a similar FRB (∼17-10°),
but a distinctly different HMB (∼24° and ∼37°). We see that these correspond to the
two peaks in the recovery phase identified in Fig. 5.

To explore the origin of the two HMB peaks in the recovery phase in Fig. 6, we present
in Figure 7 the HMB for the recovery phase of the geomagnetic storms versus the au-
roral electrojet indices AU, AL and AE. These results clearly show that the HMB peak
at 24° colatitude corresponds to times of low electrojet indices (AU < 150nT, AL >
−200nT and AE < 500nT), whereas the data from the HMB peak at 37° colatitude
in Fig. 6, corresponds to much larger ranges of activity of the auroral electrojet indices.
This tells us that when the HMB is at lower latitudes, the auroral electrojet indices are
enhanced, which occurs during the expansion and recovery phases of substorms.

Figure 8 shows the relationship of the HMB and FRB throughout the storm phases,
but only looking at maps where n ≥200. In each case the median is shown in black and
the lower (25%) and upper (75%) quartiles in grey. The left panel shows the HMB co-
latitude in red and the FRB colatitude in blue. The right panel shows the difference be-
tween the two throughout the storm phases, colour-coded in the same way as Fig. 2. We
see that during the main phase, the convection pattern expands to lower latitudes as both
the HMB and FRB colatitudes increase. Not only do they both expand to lower latitudes,
but the distance between them also increases. This matches the findings of Fig. 6, which
showed that as both the HMB and FRB increase or decrease, the HMB is likely to be
changing latitudes at a greater rate. At the beginning of the recovery phase we see both
the HMB and FRB decrease abruptly and as a result the distance between them decreases also. We then see the separation between the HMB and FRB decrease further during the recovery phase until similar levels to the initial phase are reached. The FRB however stays fairly constant throughout each phase, except for at the phase changes. This shows that the gradual changes we see throughout each phase in the separation between the HMB and FRB are due to the HMB moving more rapidly than the FRB. It is worth noting that in comparison with Fig. 2, we have only considered maps where \(n \geq 200 \), which means that the HMB trace has changed slightly. Most notably, the difference between the main phase and the initial phase is larger as the convection patterns, and thus the boundaries, are better defined. During the recovery phase, the interquartile is less well defined, as less data are available. It thus looks as though the interquartile range is more variable, though on average, covers a similar latitude range as previously.

4 Discussion

We have presented ionospheric convection parameters from geomagnetic storm phases, times when solar wind driving is comparable to storms, and high geomagnetic activity, irrespective of storm phase. We show that during the main phase the cross polar cap potential doubles from 40 kV (initial and recovery phases) to 80 kV during the main phase, reaching in some cases in excess of 100 kV. Thus, the main phase shows most enhanced convection. It also shows the highest number of observations per radar, the largest latitudinal extent of the convection, and the fastest flows at lowest latitudes. The geomagnetically active times, irrespective of storm phase, are most similar to the storm main phase, whereas the initial and recovery phase show a weaker response, distinctly different from the main phase. Driven times, when no storm occurs, is somewhere in between two storm populations. We theorise that this is because the strongest driving will always lead to a storm, but that the driving is reduced during the main and recovery phases. We find a positive linear relationship between the HMB and the FRB, although they do not change at the same rate. The HMB changes are larger, especially at the beginning of the main phase, creating an overall larger offset between the HMB and FRB during the main phase than during the other two storm phases. During the recovery phase of a storm, the HMB shows a clear double-peak distribution, which is due to time-variability of the system, such as that associated with substorms. We show that solar wind driving is key to the measured response, but there is a time history effect which gives finer
details and differences. We will now discuss these results in greater detail, in particular, how they relate to other relevant studies and prior results.

4.1 Storm duration effects

No obvious relationship between storm strength and the storm phase durations or overall storm duration was observed, except for the duration of the recovery phase and the minimum of the Sym-H at the beginning of the main phase. The Sym-H minimum at the beginning of the main phase is correlated with the amount of driving of the magnetosphere, such as has previously been shown by Gillies et al. (2011). Similarly, the duration of the recovery phase is related to how driven the magnetospheric system is prior to the main phase (e.g. a more intense storm means a longer recovery phase than a less intense storm). As this is not a new result (Gillies et al., 2011), we have not considered this further.

4.2 Number of SuperDARN backscatter echoes

The number of ionospheric scatter echoes increases as we proceed into the main phase of a geomagnetic storm. This is illustrated in Fig. 2, panel b. We reiterate that this actually shows the number of gridded radar velocity vectors, which are derived from averaging multiple Doppler shifted radar echos, but it should scale with the latter such that it can be used as a simple proxy. As the radars are operational all the time and data gaps are rare, we conclude that either the number of scatter points increases because the number of ionospheric magnetic field-aligned irregularities increases or because that enhanced electron densities provide improved propagation conditions, leading to more direct propagation paths and thus enhanced scatter. Although the area observed by the radar ranges stays constant over time, the changes in the latitudinal extent of the convection pattern will change. This may affect the number of backscatter echoes observed, though we do not expect large direct effects of this as radar backscatter is often observed at latitudes below the HMB. The indirect effects, such as the expansion of the convection pattern pulling higher density patches on the dayside to higher latitudes are likely to be larger.

Early SuperDARN results by Milan, Yeoman, Lester, Thomas, and Jones (1997) showed that the number of ionospheric backscatter echoes observed by HF radars changes
with location, geomagnetic activity, and season. Milan et al. (1997) found that the frequency and geomagnetic activity dependence of ionospheric backscatter occurrence depends on the range at which it is observed. They compare results from two radars and find that far-range backscatter is likely to decrease in occurrence with an increase in frequency or geomagnetic activity, whereas near range (E-region) scatter is likely to increase. This result was verified by Currie, Waters, Menk, Sciffer, and Bristow (2016) who also showed that it is the main cause of F-region scatter decrease. Here we filter for F-region scatter only by choosing only range gates of 800-2000 km and yet we see the opposite effect. Kane and Makarevich (2010) studied F-region SuperDARN radar echoes with respect to the start of storm sudden commencement, which is the increase seen in the magnetometer measurements or geomagnetic indices prior to a storm and roughly matches our initial phases. They found that \(\sim 12\) hours after the start of a storm, the number of observed echoes drops, but find that after storm sudden commencement, the number of radar echoes increases above quiet time numbers. Whilst we do not compare our number of radar echoes to a quiet day curve, we do however also see an increase in the number of radar echoes, but primarily in the main phase. Kumar et al. (2011) studied the spatio-temporal evolution of SuperDARN data during geomagnetic storms using the TIGER Bruny Island radar in the Southern hemisphere. They found that the highest echo occurrence coincides with the start of the storm, which would on average be slightly earlier than our main phase due to their differing criteria. They found that the lowest number of backscatter echoes are measured during the late recovery phase of a storm, which also matches our findings. Kumar et al. (2011) further showed that there is a varying response to F-region echo occurrence measured by the TIGER radar: Short and weak disturbances showed a larger increase in echo numbers at the start of the storm, whereas decreases in occurrences of echoes during the recovery phase were more pronounced for longer storms. Whilst we see the same general trends in the occurrences, we do not see an ordering of echo occurrences with size or duration of the storms. Similarly, Currie et al. (2016) studied the spatial and temporal evolution of backscatter echo occurrence using the TIGER radar in the Southern hemisphere and the Kodiak radar in the Northern hemisphere. They found that during the main phase of a storm, there is a decrease in mid- to far-range scatter, which even though they are similar radar ranges to our observations, we see an increase in the radar echoes. Currie et al. (2016) find that high E-region densities can overrefract rays, which stops them from reaching the F-region and
thus decreases the backscatter echo occurrences in the F-region. We infer that our differ-
ring results to Kumar et al. (2011) and Currie et al. (2016) are due to the way our ob-
servations differ: Whilst Kumar et al. (2011) and Currie et al. (2016) studied occurrences
from one and two radars, respectively, we study the observations made by all the Super-
DARN radars in one hemisphere. As a result of this, Kumar et al. (2011) and Currie et
al. (2016) study the increases or decreases in radar echoes as a function of location, whereas
we focus on the global picture here as we are able to observe over all MLTs, as well as
latitudes from 90-40°. The increases we see in F-region echo occurrences, in compari-
son to the decreases seen by Kumar et al. (2011) and Currie et al. (2016) during the storm
main phase, indicate that the effects observed by them, namely enhanced E-layers which
trap radar signals below the F-region, are not existent at all latitudes and MLTs. We
infer that the enhanced E-region layers take some time to propagate and cover larger ar-
eas, in particular lower latitudes (see Kumar et al. (2011)), which is why we only see a
overall decrease in F-region backscatter occurrences during the recovery phase when ob-
serving an entire hemisphere.

Wild and Grocott (2008) studied SuperDARN echoes with respect to substorm on-
sets and found that scatter maximizes just prior to substorm onset. In the nightside iono-
sphere, backscatter poleward of 70° magnetic latitude is reduced, whereas overall, the
radar observations shift to lower latitudes. Thomas, Baker, Ruohoniemi, Coster, and Zhang
(2016) used measurements from the global positioning system to show that during a ge-
omagnetic storm, especially during the main phase, the total electron content in the iono-
sphere increases on average, especially at the start of the main phase. We conclude that
in this analysis we are seeing a combination of different effects: As the total electron con-
tent in the ionosphere and the size of the convection cells increase, and convection in-
creases, towards and during the main phase of a storm, high density plasma from lower
latitudes convects into the polar cap (Thomas et al., 2013). Whilst Thomas et al. (2013)
showed that no ionospheric scatter from SuperDARN was observed in the storm enhanced
density region extending poleward from mid-latitudes on the dayside, we suspect that
plasma patches break off from this due to convection and the net result is a higher num-
ber of radar echoes observed on average during the main phase of a storm, which is shown
in Fig. 2 (panel b) and Fig. 3 (panel c). The higher ionospheric densities allow better
HF propagation conditions in the form of more ionospheric refraction. We also find in
Fig. 3 that the amount of scatter during the main phase of a storm is likely to be slightly
higher in comparison to driven times. We conclude that this is due to the number of ionospheric irregularities present being related to the level of driving (e.g. Milan et al., 1997), as we have shown that the driving during the main phase of a storm is on average higher than the selected driven times when no storm is observed.

4.3 Occurrence and location of enhanced convective flows

Ionospheric convection is excited by reconnection (Cowley & Lockwood, 1992). When dayside reconnection is dominant, the polar cap expands and when nightside reconnection is dominant, the polar cap contracts. As expected, the ionospheric flows increase accordingly in each case (Walach, Milan, Yeoman, et al., 2017). We would thus expect higher ionospheric convection flows and CPCP for intervals of both higher solar wind driving and enhanced geomagnetic activity. This is shown in Fig. 2, where we see the cross polar cap potential (panel d) and the maximum measured line-of-sight velocities (panel e) increase as solar wind driving (panels k, i, and j) increases. This is also shown in Fig. 3, where we see higher cross polar cap potential (panel h) for times when the solar wind driving is highest (panel j and k). Interestingly, panels (d) and (e) in Fig. 3 do not show this very clearly. If we compare the different storm phases alone, we see that the median measured line-of-sight velocities and the maximum measured line-of-sight velocities are on average highest for the main phase, which matches the aforementioned trends. If we look at the two blue traces in isolation, we see a similar thing: the light blue traces are on average slightly higher than the dark blue ones, which again matches the trends seen in other panels. We do not, however, see this trend when comparing all the traces (i.e. the storm phases in panels (d) and (e) to the blue traces). We suggest a reason for this discrepancy is the time-history of the system. During a geomagnetic storm, the magnetospheric system undergoes a progression through different distinct phases over a prolonged period of time. By definition this includes a pre-conditioning of the magnetospheric and ionospheric system and puts the system into a state where the time-history of the driving and reaction of the system shapes the response. The main difference between the storm-time data and the comparative datasets is this time-history of the system, or in the latter case, the lack thereof. When we collect data for the two blue curves in Fig. 3, no time-history is considered and data is collated where the chosen criteria occur, whereas all the storm data includes by definition a record of the time history of the
system. This may explain why the curves in fig. 3 panels (d) and (e) show a different distribution for the storms in comparison to the other two datasets.

The results presented in Fig. 4 demonstrated a number of differences in the location of the fastest flows between our different categories. The initial phase of a storm is associated with intervals of at least modest solar wind driving (see e.g. Figure 3k) which explains the fast flows near noon, which are expected following dayside reconnection. Initial phases are often also associated with solar wind pressure enhancements (e.g. Hutchison, Wright, & Milan, 2011) which are also known to trigger nightside reconnection (Hubert et al., 2006) and thus drive fast flow on the nightside, as seen here. During the main phase we expect strong solar wind driving, and as such the fastest flows are observed on the dayside. This phase is also associated with an expansion of the convection pattern, as noted in Figure 3g and in agreement with previous studies of polar cap dynamics during storms (e.g. Milan et al., 2009).

The main and recovery phases also displayed some evidence for fast flows at lower-latitudes in the pre-midnight sector. We suggest that these flows are associated with SAPS, which take the form of enhanced westward flows in the midnight-sector thus enhancing the low-latitude region of the dusk convection cell (as noted above in reference to Fig.3). SAPS are known to occur in association with enhanced geomagnetic activity (e.g. Huang & Foster, 2007; Kunduri et al., 2017) and hence an increase in these flows for our storm main phase category is not unexpected. It is worth noting that the SAPS-type flows become the dominant fast flows in the ‘enhanced Sym-H’ category. SAPS are observed during substorms (e.g. Grocott et al., 2006) as well as geomagnetic storms and hence some of the intervals included in this category may correspond to times of enhanced activity that do not meet the criteria to be classified as a storm. This would also be consistent with the reduced occurrence of fast dayside flows in this category; storm main phases are always expected to be accompanied by enhanced solar wind driving and hence enhanced dayside flows, whereas arbitrary intervals of enhanced geomagnetic activity may not.

It is also worth considering that the difference between the storm main phase and the geomagnetically active categories may be related to the lack of time-dependence in the latter category, as mentioned above. The main and recovery phases are distinctly different, both in terms of the location of enhanced dayside flows, and in the latitude of
the pre-midnight fast flow band. Confusing these two phases in any analysis of the ionospheric flows is therefore problematic. In particular, the pre-midnight fast flow bands are both clearly present in the geomagnetically active category, and we suggest that this reflects both the SAPS-type flows associated with the region 2 current system that maps to the inner magnetosphere and the flows driven by reconnection associated with region 1 currents at the open-closed field line boundary. Although clearly linked, there is no requirement for enhancement in these two systems to always be the same (Coxon, Milan, Clausen, Anderson, & Korth, 2014).

4.4 Latitudinal extent of radar observations and the Heppner-Maynard boundary

The minimum latitude at which scatter is observed gives us an idea of how far the convection patterns may expand to, but also what data coverage we can expect for different times. We see from Fig. 2g that the range of latitudes where we observe scatter during the main phase of the storms increases, so we might expect the convection pattern to increase also. This is supported by panel f in Fig. 3, which shows that during the main phase of a storm, we are more likely to see ionospheric scatter at latitudes below 55°. This is particularly important when we compare this to panel g in Fig. 3 or panel f in Fig. 2, which show the magnetic latitude of the Heppner-Maynard boundary. As discussed above, we have added an improvement to the RST code in our analysis that allows the Heppner-Maynard boundary to expand down to 40°, instead of the previously hard-coded limit at 50° that has been used in previous studies. It can be clearly seen that this is crucial for geomagnetic storms, where the convection pattern does often extend below 50° of latitude, especially when the Sym-H index is enhanced, such as during the main phase of a storm. As we only observe moderate geomagnetic storms during this solar cycle, it is possible that this limit could be even lower during extreme geomagnetic storms, though the SuperDARN field-of-views do not extend below 40° of latitude.

We can demonstrate the importance of this issue quantitatively. If we had used a 50° limit for the Heppner-Maynard boundary, the boundary would have been placed too high during ~17% of all considered 2-minute intervals, which is a considerable proportion of the observation time (for the separate curves this approximately corresponds to: 15% (initial phase), 21% (main phase), 21% (recovery phase), 21% (geomagnetic activ-
ity), 7.5% (solar wind driving)). For the geomagnetic storms alone this corresponds to approximately 19% of the time.

In our analysis, the HMB is susceptible to missing data at lower latitudes. This is because there are fewer radars covering the midlatitudes, such that geographical coverage from the midlatitude radars is not as good as from the polar radars (see e.g. Thomas & Shepherd, 2018). The midlatitude radars of course add better coverage, but there are not enough of them to make observations at all longitudes at 40° magnetic latitude. Thomas and Shepherd (2018) noted that the boundary may be misplaced during times when midlatitude radar data is used, and scaled the HMB manually, which is the first large-scale SuperDARN study ever to reflect midlatitude data in the HMB. Having enabled automatic adjustment of the HMB below 50° in our study, we do risk misplacement of the boundary. We therefore explored whether using a radar data coverage threshold would result in a more robust definition of the HMB. We found that a narrowing of the peak in the location of the HMB occurred for $n \geq 200$.

4.5 Relationship between the Heppner-Maynard boundary and the flow reversal boundary

We have shown that the FRB and HMB expand equatorward during the main phase of a geomagnetic storm, with a subsequent series of smaller expansions and contractions during the recovery phase leading to an overall contraction. Whilst we expect the HMB to lie in the region of the equatorward edge of the auroral oval, the FRB should more closely align with the inner boundary (Walach, Milan, Yeoman, et al., 2017). Milan et al. (2009) presented observations of the auroral oval that revealed the same trend we see in the FRB. The results of Imber et al. (2013) showed that we would expect the HMB also to move with the auroral oval boundary and this is true: we see the same trends with the FRB and HMB, though the HMB moves more rapidly.

Walach, Milan, Yeoman, et al. (2017) showed that the inner auroral oval boundary is a good proxy for the FRB, as the polar cap is expanding and contracting due to solar wind driving and magnetospheric responses. Similarly, the results of Imber et al. (2013) showed that a circle fitted to the brightest parts of the auroral oval, which lies between the FRB and HMB (on average $\sim 2.8^\circ$ poleward of the HMB). In their large scale statistical study Imber et al. (2013) considered SuperDARN data only from 2000-2002,
before any mid-latitude radars had been deployed in the Northern hemisphere, and showed that even when the auroral oval is expanded to lower latitudes, there is a good correspondence in expansion and contraction between the auroral boundary and the HMB. They note that the small offset between the HMB and the oval latitude (∼2.8°) is greater when the oval is expanded, i.e., during more disturbed magnetic conditions. However, our observations of the FRB and HMB suggest that this offset is actually more extreme, with the FRB-HMB offset increasing to ∼20° as geomagnetic activity increases.

4.6 Mapping high-latitude ionospheric convection into the magnetosphere

Turner et al. (2019) studied the storm-time morphology of the radiation belts using data from the Van Allen probe mission (Mauk et al., 2013). They showed that during the main phase of a geomagnetic storm and what we have defined as initial phase, tens of keV electrons are enhanced at all considered L-shells (2.5 ≤ L ≤ 6, which corresponds to 39.2° ≤ geomagnetic colatitude ≤ 24.1° (see Shepherd, 2014)). They find that these enhancements then quickly decay away during the early recovery phase. In most storms (≥90%) higher energy electrons (hundreds of keV) are enhanced at lower L-shells (∼3 ≤ L ≤ ∼4), which corresponds to geomagnetic colatitudes of 30° to 35.3° in the AACGM coordinate system used here (Shepherd, 2014). These then also decay gradually during the recovery phase. Turner et al. (2019) also showed that relativistic electrons fluxes throughout the outer belt (3.5 ≤ L ≤ 6, corresponding to colatitudes of 32.3° to 24.1°) have a tendency to drop out during the main phase but are then replenished during the recovery phase in an unpredictable way. Their study also shows that electrons with energies >1 MeV are highly likely to show a depletion at all L-shells of the outer belt.

Using equation 1 from Shepherd (2014), we can put these L-shell dependencies into the context of our ionospheric convection observations and the locations of the HMB and FRB. We show that during the main phase of the storm, the HMB sits on average between L-shell 3 (colatitude ∼35°) and 2.4 (colatitude 40°) and the FRB sits at L-shell 14.9 (colatitude ∼15°) to 10 (colatitude 18°), though this can vary such that the HMB can extend to L-shells of up to 1.7 (colatitudes of up to 50°). This means that during the main phase of the storm, all L-shells considered by Turner et al. (2019), map to regions equatorward of the FRB, but poleward of the HMB in the ionosphere. We thus infer that all the radiation belt regions map to where the ionospheric return flows are occurring, which are the closed field line regions, as expected. Furthermore, we can com-
ment that the outer belt, in particular, matches to regions where we see faster flows in
the ionosphere. Comparing Fig. 4 panels (b) and (e) with the results of Turner et al. (2019),
we see that the lower latitude band of fast flows attributed to SAPS in our above dis-
cussion corresponds to L-shells \(\sim 3\) where the higher energy electrons were measured
to enhance and decrease during the storm main and recovery phases. This is consistent
with the suggestion made by Califf et al. (2016) that the SAPS electric fields could be
responsible for enhancements in 100s keV electron fluxes.

As is shown in Figs. 6 and 8, the offset between the FRB and the HMB varies with
geomagnetic activity levels, and even during the different storm phases. Whilst during
quieter times, such as the initial phase of a storm, this offset is \(\sim 15^\circ\), it increases to \(\sim 22^\circ\)
during the main phase, when solar wind driving is strongest and then decreases again
during the recovery phase. During the main phase, the convection pattern is the most
stable, as the difference between the FRB and HMB stays the most constant. This is a
significant result, as it has implications for inner magnetospheric dynamics. The HMB
is expected to map to the plasmapause, the outer edge of the plasmasphere (e.g. Chen
& Wolf, 1972; Maynard & Chen, 1975). This means that as the HMB moves equator-
ward, the plasmapause is expected to move closer towards the Earth. However, as the
ring current increases towards the end of the main phase, the outward pressure in the
inner magnetosphere where the ring current lies, increases (Parker, 1957), leading to com-
peting forces. Ultimately, the equatorward expansion of the HMB means that the stag-
nation point will be inside the plasmasphere, such that a plasmaspheric plume forms (Greb-
bowsky, 1970). An investigation of the low-latitude convection during plume observa-
tions is the subject of ongoing work.

4.7 Relationship to substorms and sawtooth events

It was noted above that the time-dependence of the magnetosphere-ionosphere sys-
tem is likely to be responsible for some of the differences in the convection observed for
our storm categories. We see indicators for this in Figs. 5, 6 and 8: During the recov-
ery phase of a storm, the HMB observations fluctuate between two latitudes. A lower
latitude right at the start of the recovery phase (\(\sim 37^\circ\) colatitude), which is similar to
the location of the HMB during the main phase of the storm, followed by a retreat of
the HMB to much higher latitudes and thus a smaller convection pattern (\(\sim 24^\circ\) colat-
itude). This change appeared to be quite abrupt in Fig. 2, but when only considering
maps where \(n \geq 200 \), the change is less abrupt. In this case, we see two clear distributions (e.g. the double peak in Fig. 5). We see in Figs. 2 and 8 that as the solar wind driving decreases and Sym-H becomes less enhanced, the HMB and the FRB move to higher latitudes similar to at the start of the initial phase. With reference to Fig. 7, we showed that the double-peak distribution in the HMB during the recovery phase is tied to two separate distributions in the auroral electrojet distributions. The high-latitude HMB distribution is limited to low electrojet indices: \(\text{AU} < 150 \text{nT}, \text{AL} > -200 \text{nT} \) and a low \(\text{AE} < 500 \text{nT} \), which corresponds to low auroral activity. The high HMB distribution on the other hand, corresponds to much higher activity levels. Furthermore, the fast and abrupt changes in the HMB, which we see in the recovery phase in Fig. 8 suggest that the convection pattern is rapidly expanding and contracting, and the majority of the time in the recovery phase is spent in either one of the two states. With the changes occurring very fast in relation to the duration of the recovery phases, we see the resulting double-peak distribution.

We conclude that this result may be related to a phenomenon known as sawtooth events or low-latitude onset substorms (Milan, Walach, Carter, Sangha, & Anderson, 2019; Walach & Milan, 2015). It is common for large, quasi-periodic substorms to occur with a low-latitude onset when the solar wind driving is high and prolonged, and the Sym-H index is enhanced, which are often also termed sawtooth events (Belian, Cayton, & Reeves, 1995; Cai & Clauer, 2013; Milan et al., 2019; Noah & Burke, 2013; Walach & Milan, 2015). Leading up to sawtooth events, solar wind driving and thus the dayside reconnection rate is very high, and as such the polar cap increases in size (Walach & Milan, 2015). Following this, a large dipolarisation, and thus dispersionless injection at geosynchronous orbit is seen, which is followed by a decrease in the polar cap flux (Walach & Milan, 2015). Walach, Milan, Murphy, et al. (2017) showed that as the polar cap decreases in size, after sawtooth event onset, the auroral intensity decreases also, but much more abruptly than for normal substorms. As discussed in section 4.5, we expect the HMB to move in the same way as the polar cap boundary, albeit at lower latitudes. Not only do the changes in the HMB latitude support the finding that these fluctuations are tied to recurring substorms at low latitudes or sawtooth events, but the coinciding auroral electrojet activity also matches that shown by Walach and Milan (2015). Sawtooth events and substorms show an abrupt step-change in the auroral electrojet indices at onset, which for substorms has been shown to be a change of the order of \(\sim 100 \text{nT} \) and for sawtooth
events $\sim 200 \text{nT}$ in AL (Walach & Milan, 2015). We infer from the findings shown in Fig. 7 that these changes in the HMB and coinciding changes in the auroral electroject indices are related to substorm or sawtooth event activity.

5 Summary

We have studied geomagnetic storms from 2010-2016 statistically, in terms of the solar wind driving and ionospheric convection and compared this to geomagnetically active times, as well as times when solar wind driving is high, but geomagnetic activity is very low. This study shows that when studying ionospheric convection during geomagnetically active times, it is crucial to consider data at mid-latitudes. We find that during 19\% of storm-time the Heppner-Maynard low-latitude boundary (HMB) of the convection is likely to be below 50°, which previous SuperDARN analyses did not take into account. Specifically, we show for the first time, that it is possible for the HMB to reach latitudes of 40° during the main phase of a storm. We also show that the highest line-of-sight velocities measured during the main phase of a storm move to lower latitudes in comparison to the initial phase of a storm. On the dayside, these are most likely to be observed in the post-noon sector, at latitudes around $\sim 70^\circ$. In the dusk to pre-midnight sector, they are most likely to be seen at lower latitudes ($\geq 60^\circ$), which is a distinct feature, unique in our dataset to geomagnetically active times ($\text{Sym-H} \leq -80 \text{nT}$) and main phases of storms, and likely related to the subauroral polarisation streams. Generally, the initial phase of a storm shows very similar features to the recovery phase, though the HMB and flow reversal boundary (FRB) are more likely to be observed at lower latitudes during the recovery phase. In fact, the HMB appears to have bimodal distribution during the recovery phase, favouring latitudes of $\sim 66^\circ$ and $\sim 53^\circ$, which we attribute to substorm or sawtooth event activity. Not only do the flow boundaries measured by SuperDARN move throughout the storm phases, but the return flow region (the region between the HMB and the FRB) also changes: we see it increase abruptly right before the main phase, then remaining fairly constant and elevated throughout the main phase, before becoming highly fluctuating and then gradually returning to the early initial phase levels. We show that the cross polar cap potential doubles from 40 kV (initial and recovery phases) to 80 kV during the main phase, reaching in some cases in excess of 100 kV. Overall, the SuperDARN observations during times of solar wind driving when geomagnetic activity is low, resemble the initial and recovery phase most closely. On the other
hand during geomagnetically active times, irrespective of storm phase, the observations
resemble the main phase, but lie somewhere between the data distributions of the main
phase, and the initial and recovery phases, as the associated solar wind driving tends to
be higher than for the storm initial and recovery phases.

Acknowledgments

All data used for this study is available open-source from non-profit organisations. So-
lar wind (1-Min averaged OMNI) data is available from https://cdaweb.sci.gsfc.nasa.gov/index.html/
along with all the geomagnetic indices. The authors acknowledge the use of SuperDARN
data. SuperDARN is a collection of radars funded by national scientific funding agen-
cies of Australia, Canada, China, France, Japan, South Africa, United Kingdom and United
States of America and we thank the international PI team for providing the data. The
authors acknowledge access to the SuperDARN database via the Virginia Tech Super-
DARN group and their website (http://vt.superdarn.org/). Other data mirrors are hosted
by the British Antarctic Survey and the University of Saskatchewan. The Radar Soft-
ware Toolkit (RST) to process the SuperDARN data can be downloaded from https://github.com/SuperDARN/rst.
M.-T. W. and A. G. were supported by NERC grant NE/P001556/1. M.-T. W. would
like to thank Farideh Honary, Mervyn Freeman and Steve Milan for the helpful discus-
sions and useful advice, as well as the members of the SuperDARN DAWG for their tire-
less effort and support.

References

Belian, R. D., Cayton, T. E., & Reeves, G. D. (1995). Quasi-Periodic Global Sub-

scale observations of ionospheric convection during geomagnetic storms.

Kumar, V., Makarevich, R., Kane, T., Ye, H., Devlin, J., & Dyson, P. (2011).
On the spatiotemporal evolution of the ionospheric backscatter during magnetically disturbed periods as observed by the tiger bruny island hf radar.

Journal of Atmospheric and Solar-Terrestrial Physics, 73(13), 1940 - 1952.

2018JA025280 doi: 10.1002/2018JA025280

-37-
Figure 2. Different parameters, showing the progression through the storm phase. Each panel shows the initial, main, and recovery phases of the storm on a normalised time scale with individual storms colourcoded by their absolute duration, which is indicated by the colour scale. The black lines show the lower and upper quartiles (25% and 75%), and the median. Panels a to l show, respectively: SYM-H index, average number of scatter points per radar; minimum and maximum potential from the SuperDARN maps; cross polar cap potential from the SuperDARN maps; maximum radar line-of-sight speed; magnetic latitude of the Heppner-Maynard boundary; magnetic latitude extent of coverage; total magnetic field in the IMF; magnetic field component of the IMF in the Z-direction; IMF clock angle; electric field of the solar wind; AL & AU indices.
Figure 3. Different parameters, showing the Probability distribution functions for the storm phases (orange: initial phase, red: main phase, green: recovery) in comparison with driven times, but where no storm occurs (dark blue), and geomagnetically active times, irrespective of storm phase (cyan). Panels a to l show: Sym-H index; Phase duration; average number of scatter points per radar; the maximum velocity measured by the radars; the median velocities; the minimum magnetic latitude where SuperDARN scatter is observed; the magnetic latitude of the Heppner-Maynard boundary; the cross polar cap potential; the maximum and minimum potential of the convection cells; the IMF clock angle; the electric field in the solar wind, with respect to the Earth; AL, and AU.
Figure 4. Polar maps in magnetic latitude - magnetic local time coordinates showing the locations of where the fastest flows are observed for each activity type (a: initial phase, b: main phase, c: recovery phase, d: driven times, e: enhanced Sym-H index, irrespective of storm phase). Noon is to the top, and dusk to the left. Grey gridpoints indicate locations where data was available, but none of the maximum velocities were measured.
Figure 5. Heppner-Maynard boundary (HMB) of the maps versus the number of observations per map (n). The median and the lower and upper quartiles are shown by the black dots and the colour saturation indicates observational density. The grey dashed curve indicates the number of maps per n per storm phase. The bin between $0 < n < 10$ was left intentionally blank and would correspond to the distribution shown in Fig. 3f.
Figure 6. Colatitude location of the flow reversal boundary (FRB) against the Heppner-Maynard boundary (HMB) during the three phases of geomagnetic storms (only using maps where $n \geq 200$). The dashed black lines show the line of unity and the black contours correspond to where the normalised datapoint density corresponds to 0.005, 0.01, 0.015 and 0.02.
Figure 7. Colatitude location of the Heppner-Maynard boundary (HMB) during the recovery phase versus AU, AL and AE (only using maps where $n \geq 200$).

Figure 8. Heppner-Maynard boundary (red) and flow reversal boundary throughout the different storm phases (blue) on the left and the difference between the two (right), colourcoded in the same way as Figure 2, but only using maps where $n \geq 200$. The solid lines show the median (black) and 25% and 75% quartiles (grey).