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We report the occurrence of vibrational resonance (VR) for a particle placed in a nonlinear
asymmetrical Remoissenet-Peyrard potential substrate whose shape is subjected to deformation.
We focus on the possible influence of deformation on the occurrence of vibrational resonance (VR)
and show evidence of deformation-induced double resonances. By an approximate method involving
direct separation of the timescales, we derive the equation of slow motion and obtain the response
amplitude. We validate the theoretical results by numerical simulation. Besides revealing the
existence of deformation-induced VR, our results show that the parameters of the deformed potential
have a significant effect on the VR and can be employed to either suppress or modulate the resonance
peaks, thereby controlling the resonances. By exploring the time series, the phase space structures,
and the bifurcation of the attractors in Poincaré section, we demonstrate that there are two distinct
dynamical mechanisms that can give rise to deformation-induced resonances, viz: (i) monotonic
increase in the size of a periodic orbit; and (ii) bifurcation from a periodic to a quasiperiodic
attractor.

PACS numbers: 05.40.-a 05.45.-a 87.19.ln

I. INTRODUCTION

In physics, resonance traditionally refers to a match-
ing of frequencies giving rise to the amplification of a sys-
tem’s response. Recently, however, resonance has been
used more broadly to describe situations where the ad-
justment of a parameter that is not necessarily a fre-
quency optimises the amplification or response of a sys-
tem [1]. In the phenomenon of stochastic resonance [2],
for instance, it is the noise intensity that is the parame-
ter in question and only in special cases [3] is there also
any matching of frequencies. Recent research has proven
that many different kinds of external force can also in-
duce resonances and that the latter can manifest in di-
verse forms, such as chaotic resonance [4–6], stochastic
resonance [2, 7], coherence resonance [8, 9], ghost res-
onance [10], parametric resonance [1], vibrational reso-
nance [11], anti-resonance [12] and autoresonance [1].

Here we focus on a resonance phenomenon, vibrational
resonance (VR), first identified and demonstrated numer-
ically by Landa and McClintock [11] and confirmed theo-
retically by Gitterman [13] and by Blekhman and Landa
[14, 15]. VR occurs in bi-harmonically driven non-linear
systems when there is a large difference between the fre-
quencies of the two driving forces – one of which is a
fast oscillation at frequency much higher than that of
the slower ”signal”. In VR, the noise in the stochas-
tic resonance case [2, 7, 16–18] or chaotic system for
chaotic resonance [4–6] is replaced by a high-frequency
input leading, for appropriately chosen parameters, to an
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enhancement in the system’s response to the slow signal.
Such amplification takes place when the response ampli-
tude becomes minimum at the bifurcation of the effec-
tive potential. Following the foundational studies on VR
[11, 13, 15], vibrational resonance has attracted a lot of
research attention and has been reported in bistable sys-
tems [11, 15, 19], multistable systems [20–22], excitable
systems [23], ratchets [24], quintic oscillators [25], over-
damped systems [11, 21, 24], coupled oscillators [21, 26],
delayed systems [21, 26–28], asymmetric Duffing oscil-
lators [29], fractional order damped oscillators [30–32],
feedback networks [33], neuron models [23, 34, 35], a syn-
thetic gene network [36], biological nonlinear maps [37],
and systems with nonlinear dissipation [38–40], as well as
in harmonically trapped potential systems [41]. In addi-
tion, experimental evidence for VR has been reported in
bistable and multistable vertical-cavity surface-emitting
lasers (VCSELs) [19, 22, 42, 43].

The wide incidence of VR embodied in the above re-
sults is intriguing and stimulating, but we note that all
of these examples relate to systems that are assumed to
have rigid potentials. There are many real systems, how-
ever, for which this will not be a good approximation be-
cause their potentials undergo deformation – manifested,
for example, through variations of crystalline structure,
or due to shape distortion, or conformational changes as
found in, for instance, a liquid drop, freely suspended in
another fluid under the influence of an electric field [44–
46]. In shape-deformable systems, considerable devia-
tion in the shape of the nonlinear on-site potential from
the local potential exist and have for long been used in
the context of solitary waves [47, 48]. Remoissenet and
Peyrard [47, 48] proposed deformable models of nonlin-
ear systems with deformable periodic substrate potential
VRP (x, r), where the parameter, r is the deformable po-
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tential parameter which determines the shape of the po-
tential. The potential VRP (x, r), now often known as the
Remoissenet-Peyrard-potential, plays a significant role in
one-dimensional atomic chains and has become a subject
of diverse research focus [49–61]. Earlier studies, for in-
stance, Nana, et al. [49] used Melnikov theory to predict
the onset of chaotic behaviour of a particle in an asym-
metric doubly-periodic potential. Similarly, Djuidje et
al. [50], observed periodic stick-slip, erratic and intermit-
tent motions, characterized by forced fluctuations, and
sliding phenomena for all values of the shape parame-
ter in the range |r| < 1. Huang et al. [51, 52] reported
that directed transport of Brownian particles moving in
one- and two-dimensional asymmetric deformable poten-
tials in the presence of asymmetric unbiased fluctuations
depends strongly on the potential deformation. Mali
et al. [53] observed the appearance of large subharmonic
Shapiro steps due to deviations from the sinusoidal po-
tential. More recently, stochastic resonance [54], Farey
sequences and Shapiro steps [55], anomalous transport
and diffusion phenomena [56–58], current reversals [59],
and jump diffusion [60], as well as Devil’s staircases [61],
have all been investigated. In general, the dynamical and
statistical properties are strongly dependent on the vari-
ation of the biharmonic parameter, the shape parameter
and the phase-lag.
In this paper we investigate the phenomenon of vi-

brational resonance for a deformable substrate poten-
tial, both theoretically and numerically, and we attempt
to elucidate the mechanism through which it occurs.
More specifically, we will examine the dynamics of a bi-
harmonically driven particle moving in an appropriately
nonlinear asymmetrical deformable potential (ASDP) of
the kind considered by Remoissenet and Peyrard [48]
whose shape is subjected to continuous variation. The
rest of the paper is organized as follows. In Sec. II, we
present a detailed description of the model under consid-
eration. In Sec. III, a theoretical analysis of VR is pre-
sented. In Sec. IV, our numerical results are discussed
and compared with the theoretical results. The paper is
summarized and conclusions drawn in Sec. V.

II. MODEL AND ITS DYNAMICS

We consider the motion of a bi-harmonically driven
single particle moving deterministically in an asymmetric
potential and modeled by the dynamical equation,

ẍ = −λẋ−
dVRP (x, r)

dx
+ f cos(ωt) + g cos(Ωt), (1)

where VRP (x, r) is the ASDP and λ is a constant damp-
ing parameter. The two frequency periodic functions
f cos(ωt)+g cos(Ωt) denotes the bi-harmonic forces with
f and g being the amplitudes of the slow and fast driving
signals, respectively. The frequencies of the slow driving
signal ω and fast driving signal Ω are such that Ω ≫ ω.
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FIG. 1: (Colour online) The asymmetric deformable potential
Eq. (2) for different values of r and V0 = 10.

Also, in the analysis of VR it is assumed that f, g > 0
and can differ by orders of magnitude.
The on-site dimensionless potential VRP (x, r) is given

[48] by

VRP (x, r) =
V0

(2π)2
(1− r2)2(1− cos(2πx))

(1 + r2 + 2r cos(πx))2
, (2)

where r is the deformation potential parameter satisfy-
ing −1 < r < 1 and V0 is the potential height. For a
constant barrier height V0 = 10, VRP (x, r) reduces to the
standard sinusoidal (symmetrical) Sine-Gordon potential
when r = 0, as shown in Fig. 1(b). For other values of r
within its allowed range, various deformed and asymmet-
rical potential shapes can be obtained as shown in Fig.
1(a,c,d). We note that the potential barriers are of the
same height but can have two, inequivalent, sequential,
either flat or sharp bottom wells. This implies that the
model admits two energetically-equivalent ground states
with physically-inequivalent dynamical properties. The
flat and sharp bottom wells, i.e. the local minima are lo-
cated at x = 2πk, k = 0,±1,±2, . . ., while the local max-

ima are located at x = (2k + 1)π ± 2 cos−1
(

2r
1+r2

)

, k =

0,±1,±2, . . .

III. THEORETICAL ANALYSIS OF

VIBRATIONAL RESONANCE

It is easy to show that Eq. (1) can be expressed as

ẍ = −λẋ −
V0(1− r2)2

π

sin(πx)[2r + (1 + r2) cos(πx)]

[1 + r2 + 2r cos(πx)]3

+ f cos(ωt) + g cos(Ωt), (3)

Because the system (3) is subject to two periodic forces,
f cos(ωt) and g cos(Ωt) with Ω ≫ ω, its motion consists
of a combination of slow motion χ(t) at frequency ω com-
bined with faster motion ψ(t, τ = Ωt) at frequency Ω.
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Thus, we may employ here the method of direct separa-
tion of the dynamics, to obtain a set of integro-differential
equations, one of which describes the slow motion of the
system whose response can be modulated by varying the
parameters of the high-frequency input drive. By solving
the equation for the slow motion, the response ampli-
tude Q, defined as the ratio of the amplitude A to the
frequency f , can be obtained. Thus, the solution x(t)
of system (3) can be considered as a superposition of
only the solutions χ(t) of slow evolution with frequency
ω plus that of the fast oscillations ψ(t) at frequency Ω
with Ω ≫ ω, in the form

x(t) = χ(t) + ψ(t,Ωt); (4)

where we assume that χ(t) is periodic with period T = 2π
ω

and ψ is periodic in the fast time τ = Ωt with period 2π
with its mean value with respect to fast time τ given by

〈ψ〉 =
1

2π

∫ 2π

0

ψ dτ = 0. (5)

For consistency of analysis, we set all the trigonometric
functions in the denominator of dV

dx
in Eq. (3) to be of

order unity. By making the substitutions

C1 =
V0 (1− r2)2

π
, C2 = (1 + r2), C3 = 2r (6)

in Eq. (3), we have

ẍ+ λẋ +
C1 sinπx[C3 + C2 cosπx]

(C2 + C3 cosπx)3
(7)

= f cosωt+ g cosΩt.

Expanding the denominator in Eq. (7) gives

ẍ+ λẋ + xU/xL = f cosωt+ g cosΩt. (8)

where xU = C1 sinπx[C3 + C2 cosπx] and xL = (C3
2 +

3C2
2C3 cosπx + 3C2C

2
3 cos

2 πx + C3
3 cos

3 πx). Employ-
ing the following trigonometric identities: sin θ cos θ =
1
2 sin 2θ, cos2 θ = 1

2 (cos 2θ + 1), cos3 θ = 1
4 (cos 3θ +

3 cos θ) together with the definitions: γ1 = C1C3, γ2 =
C1C2

2 , γ3 = (C3
2 +

3C2C
2

3

2 ), γ4 = 3(C2
2C3 +

C3

3

4 ), γ5 =
3C2C

2

3

2 , γ6 =
C3

3

4 , in Eq. (8) and simplifying, the equation
of motion after some factorisation becomes

ẍ + λẋ +
γ1 sinπx + γ2 sin 2πx

γ3 + γ4 cosπx + γ5 cos 2πx+ γ6 cos 3πx

= f cosωt+ g cosΩt. (9)

Eq. (9) is the simplified form of Eq. (3) which is to be
solved. We insert Eq. (4) into Eq. (3), using the expan-
sions

sinπx = sinπχ cosπψ + sinπψ cosπχ

sin 2πx = sin 2πχ cos 2πψ + sin 2πψ cos 2πχ

cosπx = cosπχ cos πψ − sinπψ sinπχ (10)

cos 2πx = cos 2πχ cos 2πψ − sin 2πψ sin 2πχ

cos 3πx = cos 3πχ cos 3πψ − sin 3πψ sin 3πχ.

We average both sides with respect to the fast time by
using Eq. (5) and the mean values

〈g cosΩt〉 = 0,

〈sinnπψ〉 =
1

2π

∫ 2π

0

sinnπψdτ = 0, (11)

〈cosnπψ〉 =
1

2π

∫ 2π

0

cosnπψdτ = J0(nπψ0).

Here, J0(ψ0) is the zeroth-order Bessel function of the
first kind with ψ0 being the amplitude of ψ, such that

sinπχ〈cos πψ〉+ 〈sinπψ〉 cosπχ = J0(πψ0) sinπχ

sin 2πχ〈cos 2πψ〉+ 〈sin 2πψ〉 cos 2πχ = J0(2πψ0) sin 2πχ

cosπχ cosπψ − sinπχ〈sinπψ〉 = J0(πψ0) cosπχ (12)

cos 2πχ cos 2πψ − sin 2πχ〈sin 2πψ〉 = J0(2πψ0) cos 2πχ

cos 3πχ cos 3πψ − sin 3πχ〈sin 3πψ〉 = J0(3πψ0) cos 3πχ.

We can then write the equation of slow motion as

χ̈+ λχ̇+ χU
1 /χ

L
1 = f cosωt, (13)

where χU
1 = γ1J0(πψ0) sinπχ + γ2J0(2πψ0) sin 2πχ and

χL
1 = γ3 + γ4J0(πψ0) cosπχ + γ5J0(2πψ0) cos 2πχ +
γ6J0(3πψ0) cos 3πχ. Eq. (13) is the first of the set of cou-
pled equations for the variable χ. The second equation,
for the fast motion ψ, is then obtained by subtracting
Eq. (7) from Eq. (9). By using the inertial approxima-

tion ψ̈ ≫ ψ̇ ≫ ψ, the equation of fast motion ψ can then
be approximated as that of a damped and periodically-
driven and rapidly oscillating particle whose long-term
solution is periodic in fast time τ = Ωt as:

ψ̈ + γ0ψ̇ = g cosΩt, (14)

which has a steady state solution

ψ = ψ0 cos(Ωt+ θ) =
g

Ω
√

Ω2 + γ20
cos(Ωt+ θ); (15)

where

sin θ =
−γ0

√

Ω2 + γ20
, cos θ =

−Ω
√

Ω2 + γ20
. (16)

ψ0 may be approximated by assuming Ω ≫ γ0, so that

ψ0 =
g

Ω2
(17)

whence

χ̈+ λχ̇+ χU/χL = f cosωt. (18)

where χU = γ1J0(
πg
Ω2 ) sinπχ + γ2J0(

2πg
Ω2 ) sin 2πχ and

χL = γ3 + γ4J0(
πg
Ω2 ) cos πχ + γ5J0(

2πg
Ω2 ) cos 2πχ +

γ6J0(
3πg
Ω2 ) cos 3πχ. Eq. (18) is the equation of slow oscil-

lation with the parameters of the fast signal embedded,
thus providing the tools for weak signal modulation at
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FIG. 2: (Color Online) Effective potential of the deformed
system (20) for r = 0.9 and for four different values of the
amplitude, g = 0, 50, 100 and 200 in (a)–(d) respectively. Ω =
20ω and ω = 1.5

the lower frequency through the parameters of the fast
signal, i.e. for VR. The effective potential of the system
obviously depends on the parameters Ω and g and can
be obtained from

dVeff
dχ

= V U
eff/V

L
eff ; (19)

where V U
eff = γ1J0(

πg
Ω2 ) sinπχ + γ2J0(

2πg
Ω2 ) sin 2πχ and

V L
eff = γ3 + γ4J0(

πg
Ω2 ) cosπχ + γ5J0(

2πg
Ω2 ) cos 2πχ +

γ6J0(
3πg
Ω2 ) cos 3πχ. Expressing J0n = J0(

nπg
Ω2 ), with

n = 1, 2, 3, the effective potential then becomes

Veff(χ) =
J01V0(1− r2)2

J03(2π)
2

(1− cos 2πχ)
J02

J01

(1 + r2 + 2r cosπχ)2
.

(20)
Fig. 2 shows a typical plot of this effective potential
Eq. (20) at r = 0.9 and ω = 1.5 for four values of the
amplitude of fast input signal, g = 0, 50, 100 and 200
in the panels (a)–(d), respectively. It is evident that,
for g = 0, the effective potential shown in Fig. 2(a) is the
same as the system potential shown in Fig. 1(d), as would
be expected from Eq. (20). Comparison of all panels in
Fig. 2 shows that as the amplitude g is increased from 0
to 200, the separation between mirrored/adjacent peaks
of the system effective potential increases with ampli-
tude. Moreover, the heights of Veff(χ) for the parameters
r = 0.9, g = 50 are significantly higher than the other
pairs, as shown in Fig. 2(b). To give further insight into
the structure of the effective potential, Fig. 3 shows the
effect of the parameters of the fast input signal on the
Veff(χ) for different values of Ω. In Fig. 3(a), the non-
deformed potential equivalent of the Sine-Gordon poten-
tial (i.e. r = 0), is displayed for four values of amplitude
g(= 0, 50, 100, and 150) at fixed Ω = 30 with lines la-
belled as 1, 2, 3 and 4 respectively. Whereas the shapes
of the peaks remain the same with increase of g, the
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FIG. 3: (Color Online) Effective potential of the deformed
system (20) for different parameters. (a) At r = 0, Ω = 30
for four values of amplitude g (= 0, 50, 100, and 150) with line
labels 1,2,3 and 4 respectively. In (b)–(d), r = 0.9, g = 0 but
Ω = 15, Ω = 20 and Ω = 30 respectively.

wells are significantly depressed. In Fig. 3(b)–(d), the
deformed effective potential is plotted for fixed values of
r = 0.9 and amplitude g = 50 and three different frequen-
cies, Ω = 15, Ω = 20 and Ω = 30. Evidently, increased
variations in the fast signal frequency Ω produce a re-
versed effect on the Veff(χ) as expected from the relation
(17).
Next, we describe the system’s vibrations in terms

of the deviation of slow motion χ from the equilibrium
points χ∗, using the deviation variable Y (= χ − χ∗) in
Eq. (18). The equilibrium points around which slow os-
cillation can occur are χ∗

min(max) = 2nπ, where n is an

integer. Thus, we can write

Ÿ + λẎ + V u
J0
/V L

J0
= f cosωt, (21)

where V u
J0

= γ1J01(sinπY cosπχ∗ + sinπχ∗ cosπY ) +
γ2J02(sin 2πY cos 2πχ∗ + sin 2πχ∗ cos 2πY );
V L
J0

= γ3 + γ4J01(cos πY cosπχ∗ − sinπY sinπχ∗) +
γ5J02(cos 2πY cos 2πχ∗ − sin 2πY sin 2πχ∗) + Jγ6

and

Jγ6
= γ6J03(cos 3πY cos 3πχ∗ − sin 3πY sin 3πχ∗).

Using the equilibrium points χ∗ = χmin(max), and
J0n cosnπχ∗ = |J0n |, Eq. (21) can then be written as

Ÿ + λẎ + YU/YL = f cosωt, (22)

where YU = γ1|J01 | sinπY + γ2|J02 | sin 2πY and Lγ3 +
γ4|J01 | cosπY + γ5|J02 | cos 2πY + γ6|J03 | cos 3πY . Now,
using the approximation f ≪ 1, |Y | ≪ 1, sinnπY = nπY
and cosnπY = 1, Eq. (22) can then be written as a
linearly damped-driven oscillator,

Ÿ + λẎ + ω2
rY = f cosωt, (23)

where ω2
r =

γ1|J01
|+2γ2|J02

|

γ3+γ4|J01
|+γ5|J02

|+γ6|J03
|π. The steady state

solution Y (t) of Eq. (23) which describes the ultimate
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behaviour of the system in the long-time limit t → ∞
is Y (t) = AL cos(ωt + Φ), and the resonant frequency

is given as ωr =
√

γ1|J01
|+2γ2|J02

|

γ3+γ4|J01
|+γ5|J02

|+γ6|J03
|π. The sys-

tem’s response amplitude Qanalytical which is defined as
the ratio between the output and the forcing signals can
be computed from Eq. (23) as;

Qanalytical =
AL

f
=

1
√

(ω2
r − ω2)2 + λ2ω2

. (24)

The analytically computed response, Qanalytical is then
compared with corresponding numerical computation,
Qnumerical which is obtained by solving the actual equa-
tion of the system (i.e. Eq. (3)) directly from computa-
tional methods in Sec. IV on response curves.

IV. NUMERICAL RESULTS AND

DISCUSSIONS

Our main objective here is to validate the theoretical
analysis presented in Sec. III by solving for the response
amplitude at frequency ω, which provides an idea of how
the low frequency signal is amplified by the high fre-
quency signal, thereby characterizing VR. Furthermore,
the implication of VR in the deformable substrate are
discussed. First, we express Eq. (3) as coupled first-
order autonomous ordinary differential equations (ODEs)
of the form:

dx

dt
= y,

dy

dt
= −λẋ+ f cosωt+ g cosΩt (25)

−
V0 (1− r2)2

π

sinπx[2r + (1 + r2) cosπx]

(1 + r2 + 2r cosπx)3
.

Next, numerical integration of Eq. (25) was performed us-
ing the fourth-order Runge-Kutta scheme with step size
∆t = 0.01T over a simulation time interval Ts = nT ;
T = 2π

ω
being the period of the oscillation where ω is

the low frequency input signal and n(= 1, 2, 3, . . .) is the
number of complete oscillations. We used zero initial con-
ditions, a relaxation time of 20T and fixed the values of
the potential amplitude and drive parameters at V0 = 10,
f = 0.1, λ = 0.5 and Ω = 20ω. These choices ensure
that only periodic or quasiperiodic motion is admissible.
The other system parameters, ω, g, r are chosen within a
regime so as to optimize VR for n = 100. For instance, we
illustrate in Fig. 4(a) a bifurcation diagram obtained by
calculating the time-asymptotic motion of system (25),
and visualizing the trajectories as a series of points in
(x, y) phase-space, where y = ẋ is the particle’s velocity;
and recording only one point per period of the external
drive, i.e. a point is plotted when ωt = δ + n 2π where
δ is the Poincaré phase. In Fig. 4(a), y = ẋ is plotted
as a function of f . For increasing values of f , the peri-
odic orbit dominates the dynamics in the low frequency
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FIG. 4: (Color Online) (a) Bifurcation of the velocity dx/dt,
as a function of the forcing strength f with fixed parameters
λ = 0.5, and ω = 1.5, Ω = 20ω, r = 0, and g = 0; (b) periodic
attractor for f = 0.1 and (c) chaotic attractor in the Poincaré
section f = 1.5.

regime: 0 < f < 1.37 from which the value of f was
chosen. For larger values of f , small periodic windows
are sandwiched by wider chaotic regimes. Fig. 4(b) and
(c) illustrates two Poincaré plots showing periodic and
chaotic orbits, respectively.
The numerically obtained Q-factors are compared with

the corresponding analytical values by superposing the
response curves for a range of system parameters. The
response amplitude Q at the frequency ω is computed
from the Fourier spectrum of the output signal, where
Qs and Qc are

Qs =
2

nT

∫ nT

0

x(t) sinωtdt (26)

Qc =
2

nT

∫ nT

0

x(t) cosωtdt.

Conventionally, the amplitude is given by,

A =
√

Q2
s +Q2

c . (27)

and the phase shift as,

Φ = tan−1

(

Qs

Qc

)

. (28)

The response amplitude is thus given as

Qnumerical =

√

Q2
s +Q2

c

f
. (29)

We begin our examination of the phenomenon of res-
onance in the system by first considering the case of
the non-deformed potential, r = 0 presented in Fig. 5
for both the theoretical Q (Qanalytical) computed from
Eq. (24) and the numerical Q (Qnumerical) obtained from
Eq. (29). Fig. 5(a)–(d) shows the superimposed response
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FIG. 5: (Color Online) Dependence of the response ampli-
tude Q on the amplitude g of the high-frequency signal for
r = 0, λ = 0.5, f = 0.1, and Ω = 20ω, for different values of
ω (= 0.65, 0.1, 1.5, 2). The continuous lines represent numeri-
cally computed Q-values from Eq. (29) while the broken lines
represent the corresponding analytical values computed from
Eq. (24).

curves depicting the dependence of response amplitude
Q on the amplitude g of the high-frequency signal for
four values of ω (= 0.65, 0.1, 1.5, 2) respectively. The
continuous lines are the response curves of numerically
computed Q-values while the broken lines represent cor-
responding analytical values. The other parameter values
are λ = 0.5, f = 0.1, and Ω = 20ω. The system is driven
into a resonant state by varying the amplitude of the fast
signal and the number of peaks is dictated by the lower
frequency of the input signal. Here, we see that the VR
effect can be induced in the system even in the absence
of potential deformation with increasing slow frequency
ω. Moreover, there is close agreement between the theo-
retical and numerical results.

To examine the effect of deformation on the system’s
response, we show the dependence of the response am-
plitude Q on the amplitude g of the high-frequency sig-
nal for five values of the deformation parameter, r (=0,
0.005, 0.007, 0.1, 0.2) in Fig. 6(a)–(e). Here, the choice
of ω = 1.5 enables us to reproduce Fig. 5(c) as Fig. 6(a)
to ensure that the effect of deformation on the system
is appropriately observed. The continuous lines repre-
sent numerically computed Q-values from Eq. (29) while
the broken lines represent the corresponding analytical
values computed from Eq. (24). The effect of the defor-
mation potential parameter r on the response curves is
obvious. As r is gradually increased from zero (as pre-
sented in Fig. 6(a)) through low values r = 0.05 and
r = 0.07 shown in Fig. 6(b) and (b) respectively, there
is slight change in the shape of the system’s response
particularly around the two peaks, but the VR peaks are
not significantly affected. The system’s response becomes
significantly altered at higher values of r(= 0.1 and 0.2)
as shown in Fig. 6(d) and (e), respectively. The effect of

0
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0

2Q
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2

0 200 400 600g
0

2

(a) r=0

(b) r=0.05

(c) r=0.07

(e) r=0.2

(d) r=0.1

FIG. 6: (Color Online) Dependence of the response ampli-
tude Q on the amplitude g of the high-frequency signal for
λ = 0.5, f = 0.1, and Ω = 20ω and ω = 1.5 for five values of
r (= 0, 0.005, 0.007, 0.1, 0.2). The continuous lines represent
numerically computed Q-values from Eq. (29) while the bro-
ken lines represent corresponding analytical values computed
from Eq. (24).

0
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2

0

2
Q

0

2

-0.8 0 0.8r
0

2

(a) g=0

(b) g=100

(e) g=250

(d) g=200

(c) g=150

FIG. 7: (Color Online) Dependence of response amplitude
Q on the deformation parameter r for λ = 0.5, f = 0.1, and
Ω = 20ω and ω = 1.5 for five values of g (= 0, 100, 150, 200 and
250) in Figs. 7(a)–(e) respectively. The continuous lines repre-
sent numerically computed Q-values form Eq. (29) while the
broken lines represent corresponding analytical values com-
puted from Eq. (24).

r on Q becomes well pronounced at r = 0.2 for which a
single peak appears as Fig. 6(e) in contrast with the dou-
ble peaks observed for in Fig. 6(a)–(d) r(= 0, 0.005, 0.007
and 0.1). This implies that r can be used to modulate
the system’s response in the resonant state. Comparison
between the theoretically and numerically computed Q
shows good agreement, with negligible deviation between
Qanalytical and Qnumerical. However, at larger values of r,
the deviation becomes quite significant which could intu-
itively be ascribed to the approximations leading to the
linearized equation of motion given by Eq. (23).
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In the preceding discussions, we showed clearly that
the VR phenomenon can occur in both the non-deformed
and deformed systems. We now proceed to verify the
existence of deformation-induced resonances in the pres-
ence of bi-harmonic driving signals. Fig. 7 shows the
dependence of response amplitude Q on the deformation
parameter r for five values of g(= 0, 100, 150, 200 and
250) and fixed frequency, ω = 1.5 in panels (a)–(e) re-
spectively. The continuous lines represent numerically
computed Q-values from Eq. (29) while the broken lines
represent the corresponding analytical values computed
from Eq. (24). Obviously, the system’s response presents
a single peak for g = 0 corresponding to the natural res-
onance and oscillates in this state for g ≤ 100. Notice
that in Fig. 7(a) the peak only appears at large values
of r, typically, r > 0, implying that this is a case of
deformation-assisted resonant activation. However, at
g ≥ 150, double resonances are observed as shown in
Fig. 7(c)–(e) – the second resonance peaks being VR in-
duced by the high-frequency harmonic driving. In gen-
eral, as the value of the amplitude g increases from g = 0
through g = 150 giving rise to single resonance peak to
g = 250, a second peak and more pronounced peak be-
gins to emerge with increasing values of g. Notably, at
g = 150, the second peak is fully formed (See Fig. 7(c))
and two well-pronounced double resonant peaks become
fully developed at g = 250. Zooming on Fig. 7, we il-
lustrate two remarkable effects of turning-on the high-
frequency periodic forcing (i.e. g > 0) that are clearly ev-
ident: (i) strong enhanced vibration-induced resonances
and weak modulation/enhancement of natural resonance.
While the peaks of the former are significantly modulated
(See Fig. 8(a)), the peaks of the latter are weakly en-
hanced (Fig. 8(b)). In addition, appreciable agreement
between the numerical response factors Qnumerical and
the analytical response factors Qanalytical are obtained at
lower values of g.

Fig. 9 shows the response Q as functions of both the
deformed potential parameter r and the amplitude g of
the fast signal in the range (r, g) ǫ[(−0.8, 0.8), (0.0, 600)],
with ω = 1.5 and other parameters fixed as before. The
red areas in Fig. 9 are regimes of strong resonance, while
the regimes with no enhancement are plotted in blue.
Elsewhere, however, weak resonance peaks and slight el-
evations also appear and are indicated with other colours
sandwiching from blue and red in the colour bar. The
plot reveals regimes in which a good choice of the pair
(r, g) leads to either single (see regimes where only red
spans across the range of r values) or double-resonance
peaks (seen in portions of the plot where two red colors
are sandwiched by blue colours). For instance, only one
well-pronounced peak is seen at g = 100 while double
peaks are seen at g = 250 for the range −0.8 ≤ r ≤ 0.8;
which is consistent with the analysis presented in Fig. 6
and 7 where both enhancement and control are achiev-
able by means of careful selection of system parameters.

We now turn to explain the underlying dynamics as-
sociated with the occurrence of resonances. Here, it is
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 1.6

 0.2  0.4  0.6  0.8
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Q
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FIG. 8: (Color Online) Dependence of response amplitude
Q on the deformation parameter r for λ = 0.5, f = 0.1, and
Ω = 20ω and ω = 1.5 for five values of g (= 0, 100, 150, 200 and
250) in Figs. 7(a)–(e) respectively showing in (a) vibration-
induced resonance amplification and (b) weak modulation of
primary resonances by VR.

very convenient to employ the time series and phase
space plots, as well as the bifurcation of the attractors in
Poincaré section. Two distinct mechanisms that could
give rise to resonances in the bi-harmonically driven
oscillator moving in a deformable potential have been
identified: (i) monotonic increase in the size of a peri-
odic attractor; and (ii) bifurcation from a periodic to a
quasiperiodic attractor of larger period. In the first case
which is concerned with the occurrence of the system’s
primary resonance, the amplitude of the displacement of
a particle is modulated without bifurcation. The sys-
tem parameters is such that g = 0, for a fixed value of
r, with modulation of the oscillation amplitude by vary-
ing the frequency ω of the slow signal input, or g = 0,
for a fixed value of ω and modulation of the oscillation
amplitude by varying the parameter of the potential de-
formation, i.e. r. We illustrate this case in Figure 11.
Plotted in Figs. 11(a) and (b) are the time series and
phase portraits for λ = 0.5, f = 0.1, and Ω = 20ω, g = 0
and r = 0.7 and for ω = 0.65, 1.5, 5.0. The time series
in Fig. 11(a) clearly shows that the particle’s displace-
ment is modulated as ω decreases and in particular, for
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FIG. 9: [Color Online] 3-dimensional plot showing the de-
pendence of the response amplitude Q on the fast signal am-
plitude g and on the deformation parameter r for λ = 0.5,
f = 0.1, and Ω = 20ω and ω = 1.5.

ω = 0.65, A0.65 ≈ 6.5A1.5, where A0.65 and A1.5 are the
displacement amplitudes for ω = 0.65 and ω = 1.5, re-
spectively. The corresponding phase portraits shown in
Fig. 11(b) confirm the monotonic increase in the size of
the period 1 orbit. As another example of this scenario,
we illustrate in Figs. 11(c) and (d) the effect of amplitude
modulation for g = 0. Here, the magnitude of the defor-
mation parameter r is increased from 0 to 0.7 and corre-
spondingly, the amplitude of the particle’s displacement
is modulated as depicted by the time series in Fig. 11(c),
and a monotonic increase in the size of the period 1 orbit
is shown in the phase portrait in Fig. 11(d). The oc-
currence of resonance for g = 0 may be understood by
considering the deformed effective potential Veff(χ) given
by Eq. (20) as a combination of regular and deformed
potential substrates:

Veff(χ) = V1(χ, r)−k1 [1 + r0 cos(πχ)]
−2 cos(2πχ), (30)

where V1(χ, r) = k0

J02

J01
[1+r0 cos(πχ)]2

is the regular

part while the second term on the right, Vd =
k1 [1 + r0 cos(πχ)]

−2 cos(2πχ) is the deformed part, k0 =

V0
J01

J03

(1−r2)2

(2π)2 and k1 =
J02

J01

k0 is the amplitude of the

parametrically modulated periodic force, modulated by
r0 cos(πx), r0 = r(r+2) being the amplitude of modula-
tion. In the absence of the fast signal g cosΩt in Eq. (18),
i.e. when g = 0, the parametrically modulated periodic
force plays the role of a complementary harmonic force.
Thus, by varying the deformation parameter, r, the sys-
tem’s could be driven into its primary resonant state for
appropriately chosen parameters.
The second dynamical mechanism leading to reso-

nances, in this case VR, explains the vibration-induced
resonances and is connected to a bifurcation from a pe-
riodic to a quasiperiodic attractor of larger period. Two
typical scenarios for this case are illustrated in Fig. 12.
In Fig. 12(a) and (b), the parameters are fixed as before
while the values of g are increased from g = 0 to g = 100
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r

FIG. 10: (Color Online) Local bifurcation structures of the
velocity, y (blue dots) and the response amplitude (red lines)
as functions of the deformation parameter, r for (a) g = 0 and
(b) g = 200. Other parameters are fixed as follows: ω = 1.5,
λ = 0.5, Ω = 20ω, and f = 0.1. (c) Zoom of the bifurcation
region 0.5 ≤ r ≤ 0.53 in (b). (d) Response amplitude, Q for
g = 200 corresponding to (b). The inset in (d) is the zoom
of the multiple reversed period-doubling bifurcation region
−0.48 ≤ r ≤ −0.45.

for a non-deformed system (i.e. r = 0). For r = 0, g = 0,
the particle moves periodically with a small amplitude,
A0 ≈ 0.025. When g is increased from 0 to 100, the
motion of the particle becomes quasiperiodic with am-
plitude modulation. The corresponding phase portrait
depicts the creation of a higher-order quasiperiodic or-
bit at g = 50. Similarly, the periodic-quasiperiodic or-
bit bifurcation can also take place ∀ r > 0 as shown in
Fig. 12(c) and (d). In this latter case, however, the defor-
mation complements the role of the fast signal amplitude
g in the occurrence of VR, such that when r > 0, g > 0,
higher amplitude VR is obtained. Notably the ampli-
tude modulation shown in Fig. 12(c) and (d) can also be
achieved by fixing the value of g while varying r.

To complete the discussions, we present in Fig. 10 the
bifurcation diagrams (blue dots) and the response ampli-
tude (red lines) for g = 0 and g = 200 both as functions
of the deformation parameter r, while other system pa-
rameters are fixed. In the range −0.8 < r < 0, when the
high-frequency periodic forcing is turned-off (i.e. g = 0)
shown in Fig. 10(a), the strength of the deformation is
insufficient to trigger any motion, confining the particle
to a quiescent state with zero constant velocity. For r ≥ 0
the particle moves rapidly from the quiescent state with
increasing velocity, attaining its peak at r ≈ 0.36. Conse-
quently, the system resonates with the size of the periodic
orbit increasing monotonically as shown in Fig. 11 with-
out qualitative change in the system’s dynamics. This
resonant state for g = 0 is not vibration-induced, but
rather is the system’s primary resonance due to reso-
nance oscillation induced by the deformation parame-
ter, r. On the other hand, when g = 50 > 0 as illus-
trated in Fig. 10(b) there is clear evidence of qualitative
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FIG. 11: (Color Online) Time series and phase portraits for λ = 0.5, f = 0.1, and Ω = 20ω and g = 0. (a) and (b) r = 0.7 and
for increasing values of ω(= 0.65, 1.5, 5.0); (c) and (d) ω = 1.5 and for increasing values of r(= 0, 0.1, 0.6).
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FIG. 12: (Color Online) Time series and phase portraits for λ = 0.5, f = 0.1, and Ω = 20ω and ω = 1.5 and different values
of g(= 0, 50, 100). Green dotted lines (g = 0, periodic orbit), black solid line (g = 50, quasiperiodic orbit), blue dashed line
(g = 200, quasiperiodic orbit). (a) and (b) for r = 0; (c) and (d) for r = 0.7.

changes in the system’s dynamics. The local bifurcation
structure shows that the particle’s dynamics is predom-
inantly periodic-quasiperiodic bifurcation transitions for
−0.8 < r < 0.8. Higher order quasiperiodic orbits up
to period 15 in the range 0.5 ≤ r ≤ 0.513 and born
from Hopf bifurcations in the right branch may appear
as shown in the zoomed bifurcation regions of Fig. 10(c);
while multiple period-doubling bifurcation in the range
−0.48 ≤ r ≤ −0.45 (see Fig. 10(d)) in some r-parameter
regimes of the left branch may additionally occur (See
the inset of Fig. 10(d)).

The occurrence of a second peak (i.e. vibration-induced

resonances), giving rise to double resonance as illustrated
in Fig. 7 when g > 0 can be understood by zooming
on the parameter regime of the bifurcation diagram in
Fig. 10(b) for which the second resonance peak appears
as shown in Fig. 10(d). For r ≤ −0.47 and g = 0 shown
in Fig. 10(d), the particle is confined to a quiescent state
with zero constant velocity, so that no resonance is ob-
served. However, as the strength of the deformation in-
creases, such that r > −0.47 and g taken non-zero values,
the particle optimizes the fast signal’s amplitude, g to
accelerate via multiple reverse period-doubling/period-
adding bifurcations of its orbits thereby leading to VR in
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some r-parameter region where Q-values were near zero
for g = 0. The r-parameter region for which multiple
reverse period-doubling occurs is dependent on the val-
ues of g. Thus, we can affirm that the occurrence of the
double-resonances is closely connected to the multiple re-
versed period-doubling bifurcations.

V. CONCLUSIONS

Many real systems exist for which a fixed, regular, po-
tential will not be a good approximation because their
potentials undergo deformation as manifested in, for in-
stance, variations of crystalline structure, or conforma-
tional changes in a liquid drop freely suspended in an-
other fluid under the influence of an electric field. In
such shape-deformable systems, there may be consider-
able deviation in the shape of the nonlinear on-site poten-
tial from the local potential. For example, in material sci-
ence the deformation may appear as changes in the shape
or size of an object due to an applied tensile, compres-
sive, shear, bending or torsion force, or due to a change
in temperature. In both crystalline and non-crystalline
solids, the mobility of structural defects such as point
vacancies, grain boundaries, stacking faults, screw and
line dislocations and twins are features that could impact
significantly on structural vibrations. Hence detailed in-
vestigation of their effects is essential for a wide range of
applications of vibrational dynamics. Our investigation
of VR for a bi-harmonically driven particle moving in a
nonlinear asymmetrical deformable potential has led to
some interesting results. The system was similar to that
considered by Remoissenet and Peyrard [48]. Its shape
was subjected to continuous variation, and we investi-
gated the resultant effects on VR, based on a separa-

tion of timescales to derive the equation of slow motion,
and an approximation to obtain the response amplitude.
Both in the approximate analytic theory and in numerical
simulations, we found that the deformation parameters
have a significant effect on VR. Furthermore, they can
be employed either to suppress, induce or to modulate
the resonance peaks, i.e. to control the occurrence of res-
onances. The appropriate (r, g)-parameter space of the
system was scanned to locate the (r, g)-parameter values
for VR and to discover how its control could be achieved.
By exploration of the time series, the phase space struc-
tures, and the bifurcation of attractors in Poincaré sec-
tion, the underlying dynamics associated with the occur-
rence of VR was elucidated. We conclude that, for this
system with a deformable potential substrate, there are
two distinct dynamical mechanisms which can give rise
to resonances, depending on the parameters of the sys-
tem: (i) a monotonic increase in the size of a periodic
orbit; and (ii) bifurcation from a periodic attractor to a
quasiperiodic attractor of larger period.
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[54] G. Djuidjé-Kenmoé, Y. J. Ngouongo-Wadop, and T. C.
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