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Abstract. Program synthesis aims to produce source code based on a
user specification, raising the abstraction level of building systems and
opening the potential for non-programmers to synthesise their own be-
spoke services. Both genetic programming (GP) and neural code synthe-
sis have proposed a wide range of approaches to solving this problem,
but both have limitations in generality and scope. We propose a hy-
brid search-based approach which combines (i) a genetic algorithm to
autonomously generate a training corpus of programs centred around
a set of highly abstracted hints describing interesting features; and (ii)
a neural network which trains on this data and automatically refactors
it towards a form which makes a more ideal use of the neural network’s
representational capacity. When given an unseen program represented as
a small set of input and output examples, our neural network is used to
generate a rank-ordered search space of what it sees as the most promis-
ing programs; we then iterate through this list up to a given maximum
search depth. Our results show that this approach is able to find up to
60% of a human-useful target set of programs that it has never seen
before, including applying a clip function to the values in an array to
restrict them to a given maximum, and offsetting all values in an array.

1 Introduction

The ever-increasing complexity of writing software – in design, implementation,
and ongoing maintenance – has led researchers to consider how programs can
be synthesised automatically from a given specification. This could allow system
designers to operate at a higher level of abstraction, defining and verifying func-
tionality rather than implementing the fine details, and also has the potential to
allow non-programmers to create custom software.

The state of the art in code synthesis has generally considered the problem
for domain-specific languages, such as string manipulation, and also tends to
restrict the scope of the problem to programs without loops. DeepCoder, for ex-
ample, uses these restrictions to demonstrate that neural network training over
a randomly sampled corpus can find speed versus exhaustive search for a simple
language [1]. FlashFill, meanwhile, demonstrates that inductive programming
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can follow user examples to propose possible functions for Excel data transfor-
mations within a limited set of operators [8]. Despite these promising results, the
limitations of domain specificity and linear logic result in significant restrictions
on the kinds of program that can be constructed by code synthesis.

We propose a programming-by-example approach which uses neural-network-
based program prediction to operate on a simplified general-purpose program-
ming language, with a current focus on integer manipulation, which is capable
of producing functions that contain loops and conditional branches. The user is
required to supply up to 10 input/output examples which describe the program
they wish to create, and programs generated in our intermediate language can be
directly and automatically converted to Java or C code. Our neural network is
trained on a corpus of synthetic, self-generated examples, the initial population
of which is biased using one sample human-useful program. When given a new
I/O target pair, the neural network is used to generate a search space which we
exhaustively iterate through to a given search depth to find a matching program.
In detail, our approach works as follows:

– We use a genetic programming approach to generate a training corpus of
programs, based on a seed program which reflects some of the common ab-
stract features believed to be useful in human-required programs. This seed
program could be supplied by a human as an over-specified initial program.

– We train a neural network with the resulting corpus, such that the input
layer is provided with input/output examples, and the output layers must
generate the corresponding program by selecting one line of code per output
layer. The neural network is able to both recognise programs that it has
already seen and infer programs that it has not.

– We use a technique that we term automated corpus refactoring in which the
neural network re-trains itself by adjusting its own training corpus based on
the kinds of programs it was able to locate from that corpus; we demonstrate
that this technique can provide significant improvement in the capabilities
of the system to find more unseen programs.

Our results show that we are able to automatically generate 60% of a target
corpus of unseen programs based only on 10 I/O examples, including counting
how many of a specific value appear in an array, and shifting the contents of an
array left or right. We believe that our work is the first to demonstrate that a
neural network can be trained to output general-purpose programs that include
loops and branch statements, starting only from an automatically generated-
corpus based a small set of abstract features that useful programs tend to have.
We provide all of the source code for our system, along with instructions on how
to repeat our experiments1.

In the remainder of this paper we first survey related work in Sec. 2, then
present our approach in Sec. 3. In Sec. 4 we evaluate our system on both abstract
program learning and a specific set of human-useful programs such as searching
and array reversal. We then conclude and discuss future work in Sec. 5.

1 https://bitbucket.org/AlexanderWildLancaster/automaticrefactoringsynthesis.git
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2 Background

Program synthesis has long been studied in computer science; in this section we
discuss the most relevant research in genetic programming, inductive program-
ming, and neural code synthesis and imitation.

Genetic programming (GP) applies a paradigm of mutation and crossover,
seen in biological reproduction, to source code in order to formulate a particular
program. A wide range of research has examined topics from improving effi-
ciency to the ability to navigate noisy landscapes and generality of solution [3].
The genetic tools provided by this research have also shown adoption in real-
world commercial applications in the sub-field of genetic improvement [12] (GI).
However, despite its successes, there are also clear limitations in its use for syn-
thesising programs starting from no initial code. The work “Why We Do Not
Evolve Software? Analysis of Evolutionary Algorithms” [16] presents arguments
against the current state of the art in genetic algorithms, and the work “Neutral-
ity and Epistasis in Program Space” [13] explores why this may be. Specifically,
GP and hence GI rely on finding paths in the fitness landscape of program space
from a starting position to the desired functionality. If a program’s functionality
precludes this incremental path-finding, perhaps because it is a function which
cannot ‘partially succeed’ and must be fully implemented to show success, ge-
netic methods cannot navigate towards it in program space and instead must rely
on pure chance to find it. This is more likely to occur in the cases this paper in-
vestigates, which have very low numbers of user provided specification-examples,
and therefore very low granularity in terms of success/failure metrics. This work
focuses instead on using neural techniques to interpolate between learned and
recognised functionalities within program space, which does not require a navi-
gable fitness landscape. We show that genetic methods remain critical, however,
in the generation of the training corpus used by the neural network, to guide the
exploration of program space in a humanly-useful direction.

Inductive programming has been successfully used for a variety of code syn-
thesis tasks, most notably in the FlashFill approach to spreadsheet function
generation [8]. In this work, a set of examples is provided by a user, and a se-
quence of inductive logic passes are applied to incrementally reduce the search
space of possible programs which match the examples in a broadly similar way
to SMT solving [4][5]. This approach depends heavily on the use of a highly
restricted and specialised language over which to search, often with the induc-
tive logic passes being designed specifically with that language in mind. These
approaches can synthesise functions very quickly and without training data, but
rely on carefully crafted programming languages with associated inductive logic
rules, making them hard to generalise to a broader class of synthesis problems.

Neural networks have been applied to the code sythesis problem in two differ-
ent ways: imitation and synthesis. Neural program imitation works by encoding
a program itself as a set of weights in a neural network – literally training a
neural network to imitate a program. This has been demonstrated in work such
as the Neural Turing Machine [6], the Neural GPU [10] or the Differentiable
Neural Computer [7]. These examples show that, from a large number of pure
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I/O examples and with no prior knowledge of what any other program looks like,
a resulting ‘program’ can be learned which has high accuracy though remains
probabilistic. The main drawbacks are the volume of I/O examples needed (tens
of thousands) which arguably are no easier to generate than the algorithm it-
self; the lack of generality such that the encoded program can correctly operate
on longer input lengths that those it was originally trained on; and the lack of
scrutability since the program cannot be output as conventional source code,
instead being encoded opaquely within the weights of a neural network.

Neural program synthesis, by comparison, trains a neural network on a set
of programs by showing it the source code and corresponding I/O pairs, then
attempts to generate the source code for unseen programs by issuing new I/O
pairs. This is usually done by having the neural network identify a search region
in which the program is likely to appear (for example by selecting which opera-
tors are most likely) and then searching exhaustively through this region. This
approach has the benefit that the neural network outputs source code which can
be examined, and that generated programs are both deterministic and tend to
generalise across different input sizes. The downside is that a training corpus
must be generated which is in some way informative of reaching useful unseen
programs. To date, neural program synthesis has been applied to highly sim-
plified programming languages and has used uniform random sampling of the
program space to generate a training corpus (and approach that scales for simple
languages) [1, 14]. We explore the application of the neural synthesis approach
to a far more general programming language; given the non-viability of random
sampling in the resulting search space for this language, we propose a novel so-
lution to the corpus generation problem for training, by using weighted genetic
sampling combined with iterative automatic refactoring of the neural network’s
own training corpus based on its self-assessed success.

3 Methodology
In this section we describe the overall architecture of our system. This involves
first generating a training corpus, using a synthesis system similar to a genetic
algorithm, which uses a fitness function to select parents to reproduce with
mutation. This corpus is then used to train a neural network, using the program’s
behaviour (its I/O mappings) as features, and source code as output labels. The
neural network is then able to recognise seen algorithmic behaviour and return
source code which can reproduce that behaviour. Rather than simply read off the
highest-ranked program, we select N options for each line, and search through a
set of programs, to account for imperfections in the neural network’s outputs.

3.1 Simplified Language

We designed a simplified C-like programming language, generated functions of
which can easily be converted into Java or C-code with a cross-compiler. We
designed this language to allow rapid test/execute cycles when generating a
training corpus and then searching through a projected search space given by
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our neural network. This is possible because the language is directly interpreted,
rather than compiled to disk and then executed, and allows us to run around
23,500 programs per second.

Fig. 1. The operators available in our simplified language.

To simplify the design of our neural network, we map our language onto
the output neurons using a uniform set of possibilities per line. In detail, we
logically imagine that each line of a program can have the same 1, 332 different
options, derived from 15 operators (see Figure 1), from variable declaration to
addition or a loop header. Once a program has been chosen, we check to see if it is
syntactically coherent and automatically correct programs that are not. In C-like
programs this creates two main corrections: cases in which there are too many
‘closing braces’, and cases in which there are too few (an unterminated loop). For
the former case we simple replace hanging braces with a no-op. In the latter case
we insert a closing brace at the very end of a program for any un-closed control
blocks; in addition, any un-closed loops are converted to conditional blocks rather
than loops. By taking this approach to neuron behaviour uniformity, the neural
network does not itself have to learn special cases which limit what each line
can be based on prior lines, which would create a much more complex network
structure (and, we speculate, a more difficult learning problem).

As further restrictions for this study, in all of our tests, we use programs 9
lines long, padded with the NO OP operator. We allow 6 integer variables to be
accessed by our programs, of which two are fixed and unable to be written to. All
of our tests involve passing a single array and a single standalone integer into the
program. The two fixed integer variables are the input integer and the length
of the input array. The program then has read and write access to both the
input array and a second array used as output. These limits allow a wide range
of functionalities, while still imposing limits to maintain the problem within
computationally tractable sizes.

3.2 Neural Network and Search Architecture

Our code synthesis architecture combines a neural network, used to derive an
ordered ranking of possible options, with a search process which iteratively tries
these ranked programs up to a configurable search depth.

For this particular study we assume every program can take two parameters:
an integer array of length 8 as the first parameter, and an integer as the second.
We also assume that every program returns an integer array of length 8. Every
cell in an array can hold a value between -8 and 8, while the integer parameter
can hold a value between 1 and 4. Reducing the range of the integer parameter
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to only positive non-zero values simplifies the search space, as they can always
meaningfully use the parameter to refer to an array index.

While our language is capable of representing much more diverse function
specifications and numerical ranges (equivalent to C), we use these restrictions
as a first step to simplify the search space and neural network complexity. The
crucial extension we are targeting is the ability to use LOOP and IF statements,
allowing more complex programs in terms of flow than are possible in other code
synthesis approaches. We accept a trade off in terms of program length in return
for being able to handle a new class of program.

The neural network is then designed as a standard feed-forward architecture
as follows. The input layer uses 1,700 input neurons to take 10 I/O examples
concatenated together. The output structure uses 9 layers, one for each potential
line of a program; each such layer consists of 1,332 neurons, one for every possible
way the respective line could be written (including the possibility of a no-op).
Internally we use 8 residual layers, each consisting of two dense layers with a
width of 512 and an additive layer skip (shown to improve deep networks [15, 11]),
and using the ReLu activation function. Dropout was used on all layers, with a
probability to keep of 0.75. We used softmax activation for our output layers, and
a crossentropy loss function. Our optimizer was the Tensorflow implementation
‘RMSPropOptimizer’, with learning rate 10−5 and momentum 0.9.

The neural network is trained by (automatically) generating a corpus of ex-
ample programs; the mechanics of this generation are described in detail in the
next section. For each generated program in this corpus we randomly generate
10 input/output examples for that program. During training, our randomly gen-
erated I/O examples are fed into the neural network’s input layer as 170 integer
values (each I/O is being composed of 8 values for the input array, one value for
the input integer, and 8 values for the output array, this creates 17 values for
one I/O example and thus 170 values in total for 10 I/O examples). We choose
to encode integers as 10-bit binary numbers for input to the neural network,
which was experimentally shown to perform better than using scalar inputs, and
so our network has a total of 1,700 input neurons. The network is trained by
back-propagating the corresponding output layer neuron values from the actual
source code of the corpus program associated with these I/O examples.

Once training is complete, in the testing phase we supply only the 10 I/O
examples for a desired program and we use the neural network’s probability dis-
tribution over its output layer neurons to create a ranked list of programs to
search across, from most to least likely. The highest-confidence program would
therefore be generated by selecting the highest activity neuron from each output
layer. Each layer mapped to a line in the program being generated, and each neu-
ron mapped to one of the 1,332 valid statements which could appear on that line.
The 9 highest-activity neurons, one from each of the 9 output layers, therefore
map to 9 statements which then make up the highest-confidence program.

To generate a volume of program space, the N highest ranked neurons are
chosen per line, giving N ways that particular line could be written in the sam-
pled program. The search volume would therefore consist of every combination
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of these options, i.e., number of options per linenumber of lines. For the exper-
iment in this paper, when not otherwise noted, we used 4 options per line for
standard programs, and 6 when searching within the human-useful program set.

3.3 Corpus Generation

In a simple DSL, a training corpus for a neural network could be generated by
sampling uniformly at random from the space of all possible programs [2]. For
our purposes, however, the search space of our more general-purpose language is
far too large for uniform random sampling to be effective. When sampled in this
way, the resulting corpus of programs is highly repetitive, each program has a
high probability of being made up of only (or mostly) lines of code that have no
effect, and very few programs contain condition or loop elements (which feature
heavily in human-useful programs).

As an alternative to uniform random sampling we designed an approach
which combines genetic programming with a set of abstract search biases and
a dissimilarity measure. Our generator starts with a seed program, which is an
abstract problem reflecting the kinds of search biases that we need; for example
a program that uses a loop and a conditional branch, and which reads all of
the input array values once and writes each cell of the output array. Starting
from this seed program, the genetic algorithm creates iterative populations of
mutations. Within a population, we promote code length and an even distribu-
tions of all operators, and we penalise writing to loop iterator variables. Finally,
mutated programs are only accepted into a population if their are behaviourally
dissimilar to the rest of the population. This similarity is measured by feeding
25 randomly generated inputs to each program, and marking the programs dis-
similar if any of their output arrays contain a single different value as a result of
the inputs. Programs are also rejected if any program reads from or writes to the
same memory address in an array twice, further reducing the search space. To
gain good learning coverage of flow control, we seed five separate sub-corpuses to
form our overall corpus. The first had 0 flow control operators. The second had
1 loop only. The third had 1 loop and 1 CONDITIONAL GREATER THAN 0
operator. The fourth had 1 loop and 1 CONDITIONAL EQUALITY operator.
The fifth had 1 loop, 1 CONDITIONAL EQUALITY and 1 ELSE operator.

The result of this generation process was a diverse set of 10, 000 functionally
distinct programs, split between the 5 sub-corpuses of 2, 000 each. In this work
we determine functional similarity by feeding both programs a set 25 randomly
generated inputs and checking for any difference. We then split these programs
amongst training, testing and validation for the neural network. Training re-
ceived 8, 000 programs, the other two corpuses received 1, 000 programs each.
As a result, each corpus’ programs were functionally dissimilar, with no pro-
gram functionality was replicated between corpuses. Note that none of our set
of human-useful programs is involved in training the neural network; all such
programs are therefore unseen by the system.
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3.4 Automatic Corpus Refactoring
Our corpus generation approach tries to train the neural network with a diverse
set of programs that facilitate its ability to synthesise human-useful programs.
However, corpus generation itself does not necessarily maximise the neural net-
work’s internal generality or its use of available model representation space.

We use a novel approach to enhancing the generality and model efficiency of
the neural network, by altering the corpus based on the network’s own success
rate – an approach we term automatic corpus refactoring.

The neural network is first trained using the corpus generated as above. It is
then asked to locate every program in the training corpus by being given the set
of I/O pairs which should result in the given program being found. Because the
neural network outputs a ranked list of potential programs, the actual program
match may be 10’s or 100’s of programs down this ranked list. However, during
experiments we observed that a functionally equivalent program would often exist
earlier in the ranking than the exact-match program in the training corpus.

In corpus refactoring, we test to see if such a functionally equivalent program
exists earlier in the ranking, and if so we replace the training program with this
equivalent version. We then retrain the neural network again (with weights re-
initialised) based on this new corpus. We can perform this refactoring iteratively,
using a new corpus to again replace programs with earlier-found equivalents,
until the performance converges to a maximum. As our results demonstrate,
refactoring in this form increases performance not just on the training corpus,
but also on the testing corpus and on the number of human-useful programs
that were correctly constructed – in other words, by adjusting its own training
corpus without actually adding any new information, the system is able to find
more programs in total than it previously could.

4 Results
This work investigates the effects of automated corpus generation and modifica-
tion techniques, in the context of trained code synthesis system.

We firstly examine the system’s overall code synthesis performance in its in-
tended normal configuration. This allows us to examine its performance, when
attempting to solve a human-defined testing corpus of unseen programs. We
examine the effects of our automatic refactoring (AR) technique over a set of
iterations, to isolate its performance from the initial success of the corpus genera-
tion and neural network training steps. AR allows us to improve the performance
of a system by adapting its training corpus in response to its current behaviour.

We then investigate the genetic corpus generation approach in further depth,
by performing ablation studies on its ‘requirements’ and fitness function. Fol-
lowing these two studies, we attempt to shed light on the performance gains
produced by the AR technique, by examining the changes it makes the corpus.

We evaluate our approach with a set of ‘human-useful’ programs that the
synthesis system is required to find – which we distinguished from the set of
programs that the synthesis system finds during its own automated corpus gen-
eration phase. For all of our experiments we used Python 3.6.7, Tensorflow 1.12.0
and JVM openjdk 10.0.2 2018-07-17.
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4.1 Program Synthesis

To test general program synthesis capability we ran our end-to-end approach
10 times to gain average results. We do this because there are two sources of
stochasticity in our approach: the way in which the corpus generation phase
works, which is based on randomised mutations; and the way in which the neural
network is initially configured, which uses randomised starting weights prior to
training. We run corpus generation, five rounds of automated corpus refactoring,
and then present the input/output examples for our set of (previously unseen)
human-useful programs to see how many the system can find.
Program name Without AR With AR GP n=60
Absolute 18.18% 52.94% 0.00% The output array is the absolute value of the elements in the input array
Add one 18.18% 52.94% 85.00%The output array is the value of the elements in the input array plus one

Add param 72.73% 88.24% 96.67%
All negatives to zero 90.91% 94.12% 0.00% The output array is the maximum of (the value in the input array;zero)

Array length 90.91% 94.12% 100.00%

Count param 90.91% 88.24% 8.33%

Iterator up to param 63.64% 41.18% 100.00%

Keep above param 0.00% 0.00% 0.00%

Max(value, param) 0.00% 5.88% 0.00%

Min(value,param) 0.00% 5.88% 0.00%
Modulo 2 0.00% 0.00% 0.00% The output array's values are the modulo 2 of the values in the input array

Modulo param 90.91% 94.12% 21.67%

Multiply by param 90.91% 94.12% 0.00%

Negative 54.55% 94.12% 1.67% The output array's values are the negative values of the values in the input array

Offset by one 27.27% 11.76% 66.67%

Offset by param 0.00% 0.00% 0.00%

Return max 0.00% 0.00% 0.00%

Return min 0.00% 0.00% 0.00%
Reverse 0.00% 0.00% 0.00% The output array is the reverse of the input array

Sum values 54.55% 76.47% 26.67%

Average 38.18% 44.71% 25.33%

The output array is the value of the elements in the input array plus the 
parameter integer

The first value of the output array is the length of the input array, the remaining 
values are 0
The first value of the output array is the number of times the parameter integer 
appears in the input array, the remaining values are 0
The first N values of the output array are set to their index, the rest are zero, 
where N is the parameter integer
The first N values of the output array are the corresponding values in the input 
array, the rest are 0, where N is the parameter integer

The output array's values are the maximum of either (the input array's 
corresponding value;the input parameter)
The output array's values are the minimum of either (the input array's 
corresponding value;the input parameter)

The output array's values are the modulo parameter of the values in the input 
array
The output array is the input array, but offset by N rightwards, losing the last 
value and setting the first value to zero, where N is the input parameter

The output array is the input array, but offset by one rightwards, losing the last 
value and setting the first value to zero

The output array is the input array offset by N rightwards, losing the last value 
and setting the first value to zero, where N is the parameter
The output array's first value is the highest value in the input array, the other 
values are 0
The output array's first value is the lowest value in the input array, the other 
values are 0

The output array's first value is the sum of all the values in the input array, the 
other values are zero

Fig. 2. Percentage find rates for two experiment sets, with and without the automated
corpus refactoring stage (the first set averaged over 11, and the second over 17 runs).
A simple genetic programming algorithm, using the same linguistic constraints, is used
as baseline. It can be seen that GP succeeds on simpler problems, but has lower per-
formance when a conditional statement is required.

The results are shown in Fig. 2, detailing both the find rate before any corpus
refactoring and also the find rate after the final round of refactoring. For each
successfully found program, the neural network has output source code which
correctly derives the output from each corresponding input. As an example,
for the program “max(value,param)”, the array could be [-5,3,-2,3,-4,1,5,8], the
parameter ‘1’, and the output [1,3,1,3,1,1,5,8]. From these results we can see
that our system locates an average of 38% of our human-useful programs as a
result of its initial corpus generation process; this rises to an average of 44%
(and a maximum of 60%) after five rounds of corpus refactoring. If we examine
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individual programs in this target set, we see that the majority of find rates tend
to increase, while a couple of find rates (for example the offset-by-one program)
notably decrease. We speculate that the decreases in some program find rates
may be caused by those programs lying outside the generalised space into which
the neural network moves during corpus refactoring.

We next examine the find-rate of the training, test and human-useful program
set over each iteration of automatic corpus refactoring. These results are shown
in Fig. 3 for the training and testing sets, and in Fig. 4 for the human-useful set.
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Fig. 3. Success rate on training (left) and test (right) corpus, over each iteration of
automatic refactoring, starting from the unmodified corpus, with Standard Deviation

Both the training and test data set show a steady increase in the find-rate of
programs from the respective set. For the training set, which shows a find-rate
increase from 0.4 to 0.65 (where a value of 1.0 would be all programs found),
the process of self-adjusting the training corpus in automatic refactoring clearly
shows an enhanced ability to correctly locate more entries in the training corpus.
The effect in the test corpus is similar, in this case showing an increase from
0.27 up to 0.36. However, in the case of the test data set the result is much more
significant. The increase in find-rate here (i.e., for programs which the system
has never seen before) indicates an unexpected phenomena: by having the neural
network’s training corpus refactored, without adding any data, this allows the
neural network to locate more unseen programs than it previously could. It is
worth noting that performance decreased in some cases. This is potentially due
to the neural network specialising to a particular form of program (the most
common) at the expense of others. While this specialisation is overall beneficial,
some degradation occurs in certain types of program. We will explore ways to
mitigate this effect in future, potentially using a mixture of experts approach
employing a set of trained neural networks specialised in different areas.

We see a similar effect in the human-useful programs over successive refac-
toring iterations, as shown in Fig. 4. Again, all of these programs are unseen
by our system during training, but reshaping the training data enables more of
them to be successfully synthesised. This suggests that the use of our automated
refactoring approach perhaps causes the neural network to become more gen-
eralised in its capabilities. However, the data in Fig. 2 provides a more mixed
picture: here we see that find-rates for most programs increase after refactoring,
but some find rates actually decrease. We explore this further in the next section.
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Fig. 4. Success rate on human-useful corpus, over each iteration of the automatic
refactoring process, with unchanged corpus as first data point. Corpus size is 20, so
each increment of 0.05 corresponds to an average of one program found. 1st Standard
Deviation displayed

4.2 Requirements in corpus generation

We now examine the effects of the initial requirements on corpus generation.
These requirements are used as input to the genetic algorithm to guide its gen-
eration of a set of programs on which the neural network is trained. As a con-
sequence of this training, the neural network is then able to find (or not find) a
set of previously unseen human-useful programs. The precise nature of these re-
quirements for corpus generation are therefore an important, if indirect, element
of how successful our synthesis approach is at finding programs after training.

In this section we examine how the use of different requirements affects syn-
thesis success. Our complete set of requirements, used across all of the experi-
ments reported so far, includes three major categories as follows.

Array Access This requirement is that all programs containing a loop operator
must access every element of the input array. This requirement was included to
overcome a perceived problem in the input-access of generated programs. These
would often access their inputs in ways which human-written programs rarely
would, such as only reading a single element of the input array, or altering their
loop iterator and as such skipping elements.

Program Flow This requirement involved subdividing the corpus into 5 sub-
corpuses, each with its own requirement as to how the flow-control operators
should be used. The first corpus required all its programs to have no flow-control
operators at all. The second corpus required only a single loop operator. The
third required a single loop operator and the first type of conditional operator.
The fourth required a single loop operator and the second type of conditional
operator. The fifth type required a single loop, the first type of conditional oper-
ator and an else block. For each of these corpuses, a single “seed” program was
supplied. This program was what we considered to be the “maximally simple”
implementation of the requirements; as an example of this the loop-only require-
ment, from the second corpus, would read in all input values, then write them
out unchanged to the output array. The seed programs were implemented due
to the genetic search’s inability to start generation without them.

11



[pre-print version] Appears at SSBSE 2019

Genetic Fitness Function Lastly, our genetic algorithm fitness function rewards
particular operator ratios: all operators are expected to be used at least once,
with flow control operators in particular weighted twice as highly as others.
This was done to promote the use of flow-control, while penalising operators
repetition. This was necessary to move away from the “maximally simple” seed
programs to those with more commonly useful features.
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Fig. 5. Average performance for sets of corpuses with varying requirements for con-
stituent generated programs.

We examine the effects of the above requirements by selectively switching
them off during corpus generation and comparing how many of our human-
useful program set is found as a result. The results are shown in Fig. 5, in which
each experiment was run 5 times and we average the data.

The first test shows our full set of requirements, as used in the earlier ex-
periments reported in this section. This achieves the highest performance of any
experiment, finding an average of 8.4 programs (σ = 1.5) from our human-useful
target set. The second experiment removes the array access requirement, but
keeps the program flow and fitness function heuristics. This performs slightly
worse, achieving an average of 7 human-useful programs (σ = 1.4), indicating
that most of our programs are in an area of the total search space in which
the input array is uniformly accessed. In the third experiment we removed both
the array access requirement and the program flow corpus generation technique,
leaving only the fitness function heuristics. This resulted in the worst overall
success, with only an average of 4 programs found from our set (σ = 0.71).

We then removed all requirements and the fitness function heuristics, which
actually shows a slight increase in performance with an average of 4.4 (σ = 0.98)
programs found. Finally, we experiment with only using the array access and pro-
gram flow requirements but remove the fitness function heuristics, which results
in the second-best performance overall – indicating that these requirements are
more important to success than the fitness function heuristics.

Altogether, these results support the hypothesis that achieving good perfor-
mance on the human-useful corpus requires a set of corpus generation biases that

12
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are reflective, at a very abstract level, of the typical form of useful programs.
The way in which these abstract requirements are communicated to a synthesis
system in a human-natural way is a key area of future work.

4.3 Effects of Corpus Refactoring

In this section we examine the effects of automated corpus refactoring in more
detail, to better understand why it enables more programs to be found without
adding any new data to the system. We characterise this as not adding new data
because, even though the training corpus is modified, it is modified only as a
result of the neural network’s own output from the initial training corpus; the
only thing being ‘added’ is therefore the neural network’s apparent preference
for which precise form of a target training program to use, but this preference is
itself entirely derived from the original training corpus and the neural network’s
inherent behaviour. We therefore attempt to better understand why this effect
occurs, in so far as is possible with the black-box nature of neural networks.

In broad terms, the use of feeding output of one neural network as training
labels to another has been demonstrated previously in teacher-student distilla-
tion network training [9]; in our case however we believe the success is in fact
due to an interplay between the network and the search process. We analyse
this effect using the entropy shown by output layers before and after automatic
refactoring. These experiments help to verify whether or not the neural network
is ‘self-generalising’ as a result of its search process, or if in fact it is specialising
to certain kinds of program in which it tends to become an expert.

In our experiments we measure the entropy of each output layer of our neu-
ral network, where each layer corresponds to one line of code. As discussed in
Sec. 3.2, each output layer of the network can select from one of a fixed set
of possible operations for that line of code – where each option is represented
by one neuron. The highest-activated neuron in an output layer is taken as the
network’s best guess for this line of code. We hypothesise that one of the reasons
for corpus refactoring finding extra programs is that the network becomes better
generalised in its representation of algorithms. We test this theory by examining
the entropy of each output layer – in other words, across all programs, how ‘spe-
cialised’ is each output layer to always choosing the same operation for their line
of code, versus their ability to represent a balanced spread of output options.
The more balanced the spread is for each output layer, without losing the ability
to synthesise programs, the more generalised the neural network may be.

We use the Theil inequality metric to measure the ‘inequality’ of each line.
Maximum inequality (only one option ever used) would be minimum entropy
(perfectly predictable). To compute this we find the probability of every option
for every line being chosen, across all the programs in the training corpus. If every
option were chosen with equal probability, they would each be the average, µ,
which is equivalent to 1/N , where N is the number of options per line.

Fig. 6 shows the results of this experiment. On the left we see the entropy
of each output layer before any refactoring has taken place, and on the right
we see entropy after five refactoring iterations. We see a clear trend towards a
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Fig. 6. Reverse entropy of operator distributions by line, as measured by the Theil
index. Lower values imply a more even distribution of operator use for a particular,
therefore higher entropy.

more balanced ability for each output layer to select a broader range of options,
supporting our hypothesis that our refactoring process may aid in generalising
the capacity of the neural network.

We can also infer from these experiments that program length becomes more
consistent after refactoring. This is to say, if we count the number of non-empty
lines (which can appear on any line post-refactoring), we tend towards a closer
average across all programs (the length goes from 7.11 lines with a standard de-
viation of 1.82, to a line average of 7.78 with a standard deviation of 1.41). This
suggests that the refactoring process tends to choose longer forms of programs
to effectively specialise the network towards programs of a certain length. This
is an unexpected duality: as a result of corpus refactoring our network seems
to train towards specialising to a certain length of program, which simultane-
ously generalising itself within that program length by increasing the ability for
different lines to take more diverse operations.

5 Conclusion

We have presented an investigation into combining automated corpus generation
using a genetic algorithm, with a neural network search technique, to synthesise
code in a simplified general-purpose language when given a set of I/O challenges
describing the intention of the program.

Our corpus generation is based on a set of highly abstract requirements which
align the set of self-generated training programs with roughly the features found
in human-useful programs. Our neural network then automatically refines this
corpus based on measures of its own success by locating alternative implementa-
tions of each program which proved to be higher-ranked in the neural network’s
own prediction. Together, this technique is able to locate up to 60% of our human
useful target programs (which include the synthesis of looping and conditional
branch statements) – none of which appeared in the training data.

Our future work will proceed in two main directions: firstly to further explore
how initial corpus generation can be easily directed by non-experts when a par-
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ticular I/O example cannot be synthesised; and secondly to expand the range
of program types that we can synthesise to include those that feature function
composition and object instantiation/use. We also intend to further investigate
the properties of the neural network itself, to explore how well it generalises in its
recognition capabilities to I/O examples of different lengths to those in training,
and how the effects of automatic corpus refactoring may be further exploited.
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