
An Architecture for Dependable Connectivity in
OSGi-Enabled Dynamic Distributed Systems

Ali Raza
School of Computing and Communication

Lancaster University
Lancaster, UK

a.raza15@lancaster.ac.uk

Keivan Navaie
School of Computing and Communication

Lancaster University
Lancaster, UK

k.navaie@lancaster.ac.uk

Richard Nicholson
CEO Paremus
London, UK

richard.nicholson@paremus.com

Abstract — From air pollution monitoring to debatable

surveillance for better security, dynamic distributed systems led
to the birth of versatile smart environments. Dependability of
such systems is challenged by the reliability of the communication
links between various sub-systems. In this paper, we address this
issue by designing a TCP/IP based Client-Server architecture
using diverse channels, to ensure zero tolerance with regards to
outage of service. The prototype system uses Raspberry Pi 3, as a
remote client, to intelligently communicate with the server node
by choosing one or a set of available communication links, e.g.,
Ethernet (LAN), Wireless-LAN (Wi-Fi), and Bluetooth channels.
We further implement the system using Open Services Gateway
Initiative (OSGi), a modular and interpolate-able code
foundation, to withstand the challenges faced by the modern
software industry e.g. complexity and scalability. Prototype
system was successfully tested for hardware and software fault
tolerance using different test scenarios to ensure uninterrupted
service delivery. In the end, we also present a machine learning
technique to mitigate the effects of severe channel hostilities for
diverse channels system. The results show improvement in the
quality of data transmission by exploiting the flexibility of
alternate channels. We demonstrate this intelligent and seamless
communication link switching technique using Support Vector
Machine (SVM) in MATLAB.

Index Terms—Dynamic distributed systems, dependability,
Support Vector Machine (SVM), reliability, security, software
complexity, modular programing

I. INTRODUCTION

Highly dynamic distributed systems such as Internet of
Things (IoTs) [1] and Cyber Physical Systems (CPSs) [2] will
elevate the way of living in the developed world [3]. The most
imminent challenge faced in the commercialization of these
technologies is the reliability and evolvability of such systems.
Heterogeneous devices including sensors, actuators and
computing nodes connected by the CPSs must qualify the strict
requirements on latency, range, throughput and high levels of
security, which is crucial for the success of applications like
personal healthcare and autonomous driving [4]. Similarly,
legacy systems for industrial automation can't adapt to the
changing conditions and emerging technology needs. Hence,
they are becoming inadequate due to strong pressures of cost,
quality and customizations of products in highly flexible and
responsive production systems [5]. The market and business
evolution are pushing modern systems to be more flexible and
scalable to handle agile fluctuations with real-time reactivity.
These considerations lead this work to investigate how strong

modularity and reliability techniques could be combined to
realize dynamic, robust and evolve-able distributed systems.

Distributed systems are susceptible to faults. Since the early
90s, significant progress has been made to make the system
immune to hardware faults. However, resilience in the
application layer was often ignored. Fault tolerant application
design is equally important because even if a system is immune
to network break-down, it may still collapse due to the faults in
the software architecture [6]. It is also important to differentiate
between failure avoidance and recovery characteristics. In a
complex software system, automated and rapid recovery of low
level service allow higher level service to appear to be “fault-
tolerant”. Research by Berkley/Stanford Recovery Oriented
Computing (ROC) group [7] demonstrated that rapid recovery
from failure is more important that fewer failures but with
longer recovery times [8]. Now, with a multi-fold increase in
complexity of embedded software, this problem has
exacerbated more than ever before. Therefore, by focusing on
Mean Time To Recovery (MTTR) instead of Mean Time To
Failure (MTTF) higher availability of CPSs application could
be provided and the dependability metric for such systems
should swivel around both hardware and software fault tolerant
designs. In this paper, our focus is on dependability of
communication among sub-systems along with modular
application design for dynamic distributed devices.

II. SURVEY OF PREVIOUS WORK

The term “dependability” according to the Telecom
Glossary of American National Standard Institute (ANSI) is
interpreted as “the ability to deliver service that can justifiably
be trusted”. Public service applications such as ISDN and
ATM provide a high level of network reliability. In such
systems, network failure is avoided using advanced redundancy
techniques [9]. It is also shown that such systems are also
tolerant to software faults which guarantees strict service
availability to meet the requirements of telecommunication
standards.

Similarly, a heterogeneous network of several
interconnected devices, mobile objects and the cloud forms a
Mobile-Cyber Physical System (M-CPS) [10, Fig. 1]. Authors
in [10] states that “the foremost requirement for M-CPSs is its
reliability”. They further interpret dependability as availability,
reliability, safety, integrity, maintainability of the system.

Fig. 1. An overview of Mobile Cyber-Physical Systems (MCPSs) [10].

Latest research argues that dependability will play a major
role towards the wide acceptance of M-CPSs. Primarily, the
argument is based on highly dependable system operation
limited by reliable connectivity. The author of [11] proposes a
wireless bus for robust the connectivity of M-CPSs. Therefore,
the widespread acceptance of technology is highly dependent
on the ability to deliver promised services reliably.

Open Services Gateway Initiative (OSGi) is the open
industry standard for modularity. It provides an underpinning
to build and host next generation lightweight and adaptive
applications for ongoing operation and maintenance. OSGi
directly addresses the durability challenge identified by
Defense Advanced Research Project Agency (DARPA) [12]. In
a software engineering research proposal, DARPA says,
“Modern-day software systems, even those that presumably
function correctly, have a useful and effective shelf life orders
of magnitude less than other engineering artefacts… While an
application's lifetime typically cannot be predicted with any
degree of accuracy, it is likely to be strongly inversely
correlated with the rate and magnitude of change of the
ecosystem in which it executes”. Using OSGi, applications can
stop, restart, update and change unexpectedly at the runtime.
Therefore, modularity through OSGi specifications provides
the foundations for adaptable, interoperable, evolvable platform
for Smart Cities and Industry 4.0.

In today’s software industry, complexity is one of the most
perpetuating problems [13]. Modularity in software design
restricts the complexity of software, and hence keeps it
manageable to operate and/or upgrade. Guardian reported,
“Digital infrastructure exceeding limits of human control,
industry experts warn” [14].

OSGi services are abundantly found in smart homes.
Researchers at Austrian Institute of Technology (AIT) exploits
modularity and flexibility of OSGi platform to facilitate
independent living of elderly people. In [15], the potential of
OSGi services for in-home networking is unveiled for
interconnection of different home appliances. It is further
shown that OSGi services can be used with multiple

heterogeneous technologies because OSGi services can be used
to provide application programming interface (API), not just
the underlying implementation!

This work is intended to show dependable connectivity
using OSGi enabled modular and scalable programming, to
cater both dimensions of the identified problem, i.e., hardware
and software faults, in distributed systems milieu. Rest of this
paper is organized as the following. We present the system
Architecture and prototype design in Section III. Then the test
results are provided in Section IV, followed by intelligent
switching technique in Section V. Finally, we conclude our
work in Section VI.

III. ARCHITECTURE AND PROTOTYPE DESIGN

A. Software Architecture

A Client-Server architecture for distributed systems has
numerous applications and it is common in the related
literature. Authors of [16] presents a client-server model for the
wireless connectivity of mobile robots. They utilize this model
for distributed mobile robots to work autonomously. The leader
robot transmits the sensed information to server where most of
the processing and decisioning of path planning takes place.
Fig. 2 presents the architecture of OSGi Client-Server system
using redundant channels. Rather than a single communication
channel - the idea of the project was to introduce diverse/
optionality via selection from a few potential channels. The
client then initiates a connection to the server using a specific
port number and most robust communication channel for
security and reliability, respectively.

Fig. 2. OSGi based client-server architecture [23]

The architecture is designed to use client as an information
transmitting terminal which may be connected to a sensing
device. The client has an Application Programming Interface
(API) and a set of Commands which supports the transmission
process in the application design. The sensed information is
sent to the server using diverse channels. The algorithm
attempts to use Ethernet, Wi-Fi and Bluetooth in accordance to
the robustness of each channel. In the available channels,
Ethernet can provide the highest data rate and lowest Bit Error
Rate (BER), hence it is regarded as primary channel of

communication. In case of node failure, alternative channels
(Wi-Fi and Bluetooth) are tried in order.

Later, to interpolate OSGi applications, the client and server
systems were embedded with Automatic Repeat Request
(ARQ) algorithms [20]. ARQ protocols helps to mitigate the
effects of channel distortions. We used Selective Repeat
Protocol (SRP) [20] to efficiently utilize the bandwidth of
active channel of communication. The SRP helps to selectively
re-transmit a packet of data that is corrupted due to channel
hostility.

B. Prototype Design

Raspberry Pi is a powerful yet inexpensive device, and is
being used in communication, safety, weather sensing and
energy-savings in IoTs environment. In [18] Raspberry Pi is
used as Web node sensor for IoTs application in home
automation. Authors of [19] shares an exhaustive list of
applications areas of Raspberry Pi as a prototype in sensor
networks. In recommendations, it is proposed that Pi can also
be used in e-health and education besides sensors networks. As
depicted in the prototype design, Fig. 3, Raspberry Pi 3 is used
as remote client system to communicate with a computing
system acting as a server system using an OSGi enabled
platform.

Fig. 3. Hardware system testing prototype

Private networks for Ethernet, Wi-Fi and Bluetooth
connectivity were deployed for security in comunication. By
enabling internet sharing in the laptop (Fig. 3), a Etherent
conection was provided to the Raspberry Pi using RJ-45 cable.
Mobile hotspot in laptop was used to provide IEEE 802.11n
supported Wi-Fi service. Energy efficient bluetooth radio v4.0
was used for Bluetooth pairing between the devices.

Further, the two terminals requires OSGi client and server
applications. JAR files were remotely prepared and transferred
to respective terminals. In our OSGi application design, each
connection could be identified using a unique IP address. At
the client terminal, the API has two fields with the following
syntax:

send <IP Address> <Data>
‘send’ is identified as a transmission command by the client
terminal, whereas two API fields contains the IP address of a
connection and the transmitting data, respectively. Complete
stages of prototype development are summerised in Fig. 4.

Fig. 4. Stages in prototype development

IV. PROTOTYPE TESTING AND RESULTS

A distributed system is fully immune to hardware faults if
the events of hardware failure are mutually exclusive for
different communication nodes. According to [9], all the
communication nodes should have independent failure modes
for reliable communication. Our OSGi based hardware fault
tolerant system is designed to exhibit independent failure
events in alternate channels. Moreover, modular software
approach provides robustness at the application layer. System
is tested in the following scenarios:

A. Case One

Each communication node was independently tested to
serve as a medium of communication between client and server
terminals. Firstly, to ping the server system, test data was
transmitted from the client using each of the three channels
separately to ensure all the three channels were properly set.
Later, after integrating all the redundant channels in the system,
arbitrary data was transmitted using Ethernet, and an
acknowledgement (ACK) was received from the server for the
sake of confirmation (Stop-and-Wait ARQ). To emulate the
failure of a communication node, Ethernet cable was suddenly
unplugged. With an attempt to use a faulty node, an error was
thrown with network latency of 10 ms. In-spite of network
breakdown, uninterrupted transmission could be continued
using Wi-Fi by the virtue of quickly recoverable and fault-
tolerant OSGi applications.

When a network failure was emulated in the Wi-Fi
network, on average the network latency was 2 seconds until
another channel could be used to continue transmission.
Similarly, successful testing was carried out using different
combinations of faultless and faulty channels, to ensure that
each node works during a failure event, independent of the
other, along with successful toggling between alternate
channels. Modular programming successfully enabled the
application to quickly recover from unexpected network
disruptions. Therefore, it prevents the system failure at the
application layer while migrating from one communication
node to another. Hence, obtained results serve as an evidence
of software and hardware fault tolerance in the proposed
model.

B. Case Two

Application layer protocols were used to maintain the
integrity of transmitted data i.e. to withstand the effects of

channel hostility. Selective Repeat Protocol (SRP) was adopted
to due to performance reasons. Research shows that, SRP
enables efficient utilization of the most expansive resource in
the communication system – the bandwidth [20]. Using a large
window size, high data rates can be achieved because only
corrupted data packets are retransmitted, not the entire window
like in Go-Back-N. SRP is also desired because merely
Transport layer protocol is insufficient to guarantee the quality
of service in the wireless transmission of data. Therefore, the
application layer protocol was embedded and tested into the
system along with TCP/IP to provide better data rates and
guarantee Quality of Service (QoS) requirements in the system.

OSGi client and server applications were interpolated to
include SRP algorithm to investigate the scalability of
application designs. SRP was coded using an arbitrary window
size to test selective re-transmission for a corrupted packet.
Packet corruption was emulated using a software generated
distortion. As a result, non-acknowledgement (NAK) messages
were returned by the server. The client system re-transmits the
NAKed packets selectively and continues transmission until the
end of data. In the diverse channels scenario, if the same packet
is NAKed twice, it could be sent using an alternate channel.
Hence, in modular application design, use of SRP proves the
scalability of OSGi applications without increasing the
complexity. Table 1 summarizes the results in Section IV.

TABLE I. TABLE OF RESULTS

Test
Case

Results

Hardware Design Software Design

Case
One
(Hardw
are
Failure
test)

Immunity to communication
node failure (10ms to 2s

network latency)

Unexpected faults tolerant
software in the event of

network breakdown

Case
Two
(Scalab
ility
test)

Alternate channels offer
flexibility against data

corruption

Meets the complexity and
durability challenges with
interpolate-able app design

V. INTELLIGENT SWITCHING USING SUPPORT VECTOR

MACHINE (SVM)

To mitigate the effects of severe channel hostilities, we
further propose a machine learning technique to intelligently
use redundant connections for reliable and superior services
delivery. Using this technique, we try to determine if a channel
is severely noisy by inspecting the sequences of ACKs or
NAKs returned for the transmitted data. When the channel
conditions are bad for data, the receiver returns more or
consecutive sequences NAKs due to packet corruptions. As a
result, by learning from the pattern of NAKs, autonomous
switching of a communicating terminal can be triggered using
machine learning techniques.

The effect of increasing channel hostility can be observed
in the form of increasing number of NAKs returned for a
transmitted sequence. So, extracting the information about
number of NAKs in a frame is used to define so called tolerable
NAK frequency. Then, we develop a Support Vector Machine
(SVM) based binary classifier to learn and detect if NAK
frequency is within a tolerable range in an observed frame. If
the SVM algorithm classifies a frame as abnormal, having
intolerable NAK frequency due to channel adversities, then the
process of connection change is initiated using this detection.
Subsequently, transmission could be continued on an alternate
channel. The proposed technique is independent of
connectivity at physical layer which also makes it suitable for
deployment in diverse connections systems. Fig. 5 summarizes
the stages of development.

Fig. 5: Stages to implement machine learning technique

A. Support Vector Machine (SVM)

After the recent progresses in statistical learning, Support
Vector Machine (SVM) emerged as a new generation learning
technique. SVM provides state-of-the-art performance for
puzzling applications like hand-written character recognition,
image classification, text categorization and bio-sequences
analysis [21].

SVM can be applied when data has two classes. It works by
finding the optimal hyperplane which completely separates the
data points of one class from the other. The optimal hyperplane
is the one that exploits largest margin between two classes.
Here this margin is defined by maximum width of the slab
parallel to the hyperplane, without any in-between points (Fig.
6).

Fig. 6: Two class SVM classifier [24]

In the above figure, support vectors are the data points that

are closest to the separating plane, as pointed on the boundaries
of the slab. The circular points are marked under class +1
whereas rectangular ones indicate the class -1.

Suppose that for training, a set of points xj are mapped to
its’ respective class yj. Assuming that d is used to represent
dimension of the data under consideration, then xj ε Rd and y=
+/- 1. As a result, the equation of the hyperplane can be written
as [22]:

 f (x)= x’β + b = 0 (1)

where β ε Rd and b is a scalar
To find the optimal hyperplane, ||β|| must be minimized

using β and b such that for each data point (xj,yj)

 yj f(xj) ≥ 1 (2)

The support vectors indicated on the boundary of
hyperplane (Fig. 6) are those xj for which

 yj f(xj) = 1 (3)

For simplification, the problem can be reduced to
minimizing ||β|| such that optimal solution (β+, b+) enables the
classification of vector w as

 class (w) = sign (w’ β++ b+) = sign (f+(w)) (4)

where f+(w) is the classification score representing the distance
w from the decision boundary.

B. Data Engineering

We develop our SVM model using MALTAB. A set of data
comprising ACKs and NAKs was collected by carrying out a
simulation of data transmission over a noisy channel. As a
result, a sequence of 10000 ACKs and NAKs was used to train
the SVM model. One frame is defined using 10 such
consecutive sequences. Lastly, we extract the useful
information i.e. number of NAKs in each sequence. To
overcome the effect of burst errors, we analyze the collected
data to determine a limit for tolerable number of NAKs in each
sequence. The following plot shows per frame weight of NAKs
in our collected data.

C. Training the Model

After analysis, we defined a classification criterion for
SVM. In our algorithm, to reliably deliver the promised
services, NAK frequency must be maintained below 3. So, we
used SVM to detect 3 or more NAKs in a sequence and classify
such a frame under class -1. After such a detection, the process
of switching a connection, to use an alternate channel, can be
initiated by the system.

We train our SVM model using Linear Kernel Function.
Fig. 8 shows the position of support vectors at the boundaries
of two class levels (+1 and -1). A frame having tolerable NAK
frequency is mapped at +1 whereas a sequence with 3 or more

NAKs is identified as -1 by the trained model. The latter will
indicate the effect of changing channel conditions.

Fig. 7: Number of NAKs in each frame of training data

Fig. 8: SVM classifier after training

D. Deployment Scenarios and Monitoring

To demonstrate the results, we deploy SVM model in a
simulated environment. A diverse channels system is
developed using MATLAB. We developed two Additive White
Gaussian Noise (AWGN) based noisy channels - Channel A
and B. It is assumed that instantaneous conditions in two
channels are not necessarily the same. A binary sequence of a
1000 packet to be transmitted over channels A and B is
defined. To mitigate the effects of severe channel hostilities
and observe the improvement in transmission after deploying
SVM, following test scenarios were prepared:

1) Transmit all the data on Channel A without SVM.
2) Initiate the transmission process on Channel A, and

deploy trained SVM model at the transmitter. SVM model
inspects each frame of acknowledgements returned by the
receiver. As soon as number of NAKs exceed the tolerable
range in an examined frame, it is flagged by the model. Then,
the process of connection change is initiated. Further data is
carried on Channel B.

Fig. 9: Pattern of ACKs/NAKs on Channel A

Based on the above criteria, simulation results are discussed

between Fig. 9 to 13.
Fig. 9 shows the pattern of ACKs and NAKs when all data

was transmitted on Channel A without harnessing the
advantages of machine learning. The vertical lines show the
erroneous receptions resulting in NAKs caused by channel
distortion. Consecutive sequence of NAKs (condensed vertical
lines) indicate burst errors due to channel conditions. This
implies that more re-transmissions must be done to
successfully deliver all the packets to the receiver. This is not
desirable in highly reliable systems because propagation
delays would undermine the QoS.

Fig. 10: NAKs frequency per frame on Channel A

The histogram of number of errors observed in each frame

on Channel A is depicted in Fig. 10. Burst errors due to
channel disturbances results in 3 or more errors in a small
proportion of inspected frames.

Fig. 11: Pattern of ACKs/NAKs on Channel A and B

Fig. 11 shows the behavior of Channel B towards the same

data. As the system detected the first burst of errors due to
channel harshness, connection change was triggered using
SVM. As a result, data transmission was shifted to the
alternate channel. Simulation results showed marked
improvement in reducing the number of errors (fewer and
spaced vertical lines) and hence the number of re-
transmissions on Channel B. Therefore, SVM model helps to
predict the severe channel hostilities by inspecting the weight
of NAKs.

Fig. 12: Per frame NAKs frequency on Channel B

The histogram in Fig. 12 shows that there was a maximum

of 1 error in 10 frames whereas majority of frames were
reported error free. This clearly demonstrates the advantages
of intelligent channel switching using SVM model. It enabled
efficient utilization of redundant resources leading to smooth
transmission of data after switching onto Channel B.

Fig. 13: NAKs frequency comparison on Channel A and B

Fig. 13 is a comparative graph of number of errors

occurred on each channel. Channel A corrupted 64 packets
whereas only 12 packets were corrupted on Channel B after
SVM detected the first burst of errors on Channel A. Hence,
re-transmissions rate on Channel A is at-least 4 times higher
than that of Channel B.

VI. CONCLUSIONS AND RECOMMENDATIONS

Dependable connectivity is a growing notion in academic
research. Soon, this idea will draw more attention of the
researchers associated with M-CPSs and IoTs. This concept is
the spine of a system which has zero tolerance regarding the
outage of service. The adopted approach is unique and different
because it combines dependable connectivity along with
interpolate-able OSGi technology which allows quick recovery
under unforeseen circumstances and reduce the pain and cost of
software maintenance by mitigating the complexity hazards of
multi-purpose commercial applications. The prototype design
of distributed system is both integrate-able and scalable in size,
geography and administrative dimensions. Many
heterogeneous devices can be brought together using the
presented architecture in OSGi environment. Choice of
different channels could be crucial depending upon application
areas. In modern cities, Ethernet and Wi-Fi would connects
most of the devices whereas Bluetooth may be preferable in
energy-constrained environments.

SVM is the most efficient machine learning method and
confers many advantages to our system. It can be used to
model and adapt against channel specific error patterns or
severe channel hostilities and develop appropriate algorithms.
Consequently, it would also reduce the receiver complexity as
less repeats transmissions would optimize sorting and
computational processes. Hence, SVM will enhance reliable
delivery of services by intelligently and seamlessly switching
connections.

ACKNOWLEDGMENT

The authors would like to thank Paremus Ltd UK for
arranging OSGi training course at London. We are also grateful
to anonymous reviewers for their comments to improve this

works. This work was partly supported by the EU Horizon
2020 project no. 690750-ATOM-H2020-MSCA-RISE-2015
and partly by the EPSRC IAA in Lancaster University.

REFERENCES

[1] P. Ray, "A Survey on Internet of Things Architectures", EAI
Endorsed Transactions on Internet of Things, vol. 2, no. 5, p.
151714, 2016.

[2] X. Hu, J. Cheng, X. Li, W. Tan, Q. Liu and Z. Sheng, "Mobile
Cyber-Physical System", Mobile Information Systems, vol.
2017, pp. 1-2, 2017.

[3] J. Shi, J. Wan, H. Yan and H. Suo, "A survey of Cyber-Physical
Systems," 2011 International Conference on Wireless
Communications and Signal Processing (WCSP), Nanjing, 2011,
pp. 1-6. doi: 10.1109/WCSP.2011.6096958

[4] A. Burg, A. Chattopadhyay and K. Lam, "Wireless
Communication and Security Issues for Cyber–Physical Systems
and the Internet-of-Things", Proceedings of the IEEE, vol. 106,
no. 1, pp. 38-60, 2018.

[5] P. Leitão, A. Colombo and S. Karnouskos, "Industrial
automation based on cyber-physical systems technologies:
Prototype implementations and challenges", Computers in
Industry, vol. 81, pp. 11-25, 2016.

[6] A.D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J.
Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D.
Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, N. Treuhaft.
Recovery-Oriented Computing (ROC): Motivation, Definition,
Techniques, and Case Studies. UC Berkeley Computer Science
Technical Report UCB//CSD-02-1175, March 15, 2002.

[7] "The UC Berkeley/Stanford Recovery-Oriented Computing
(ROC) Project", Roc.cs.berkeley.edu, 2018. [Online]. Available:
http://roc.cs.berkeley.edu/. [Accessed: 13- Jun- 2018].

[8] E. Rathgeb, Dependable Communication –vision or illusion.
IEEE Proceeding on Software Engineering and Advanced
Applications, 2006.

[9] K. Navaie and H. Aghvami, "Dependable Information Exchange
for Next Generation Mobile Cyber-Physical Systems", IEEE
Wireless Communications, vol. 24, no. 5, pp. 150-156, 2017.

[10] F. Ferrari, "Enabling dependable communication in cyber-
physical systems with a wireless bus", TIK-Schriftenreihe, vol.
141, 2013.

[11] "Building Resource Adaptive Software Systems (BRASS) -
DARPA-BAA-15-36 (Archived) - Federal Business
Opportunities: Opportunities", Fbo.gov, 2017. [Online].
Available:https://www.fbo.gov/index?s=opportunity&mode=for
m&id=61f6223b1e9a85a0fc35d338d54621b6&tab=core&_cvie
w=0. [Accessed: 19- Nov- 2017].

[12] "IT Complexity Report PDF - Trustmarque", Trustmarque,
2017. [Online]. Available: https://www.trustmarque.com/it-
complexity-report-pdf/. [Accessed: 19- Nov- 2017].

[13] J. Garside, "Nasdaq crash triggers fear of data meltdown", the
Guardian, 2017. [Online]. Available:
http://www.theguardian.com/technology/2013/aug/23/nasdaq-
crash-data. [Accessed: 19- Nov- 2017].

[14] T. Fuxreiter, C. Mayer, S. Hanke, M. Gira, M. Sili and J. Krofp,
"A modular platform for event recognition in smart homes -
IEEE Conference Publication", Ieeexplore.ieee.org, 2017.
[Online].Available:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp
=&arnumber=5556587&isnumber=5556525. [Accessed: 19-
Nov- 2017].

[15] P. Dobrev, D. Famolari, C. Kurzke and B. Miller, "Device and
service discovery in home networks with OSGi", IEEE
Communications Magazine, vol. 40, no. 8, pp. 86-92, 2002.

[16] T. Hayet and K. Jilani, "A navigation model for a multi-robot
system Based on Client/Server model," 2016 International
Conference on Control, Decision and Information Technologies
(CoDIT), St. Julian's, 2016, pp. 644-648.

[17] "Survey of prototyping solutions utilizing Raspberry Pi - IEEE
Conference Publication", Ieeexplore.ieee.org, 2017. [Online].
Available:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnum
ber=7973568&isnumber=7973374. [Accessed: 19- Nov- 2017].

[18] L. Zhao, C. Ladas, and R. Edwards. A selective-ARQ scheme
for improved TCP and UDP performance over wireless
networks. AIMEE, 2017.

[19] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning. Springer Science & Business Media, 2009.

[20] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods.
Cambridge University Press, 2000.

[21] R. Nicholson, "Paremus Service Fabric – OSGi™ Alliance",
Osgi.org, 2018. [Online]. Available:
https://www.osgi.org/paremus-service-fabric/. [Accessed: 14-
Jun- 2018].

[22] "Support Vector Machines", About Learning, 2018. [Online].
Available: https://amitranga.wordpress.com/machine-
learning/support-vector-machines/. [Accessed: 14- Jun- 2018].

