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Abstract
Human movement plays a key role in the spread of infectious diseases, leading to
spatial heterogeneities in disease transmission. An understanding of the causes
of these heterogeneities is important in the design, application, and evaluation of
public health interventions. In this thesis, we developed a range of statistical models
to elucidate spatial dependencies of infection patterns in different populations, and
embed existing mobility models within a principled statistical framework. We
applied a spatio-temporal generalized linear mixed model to include both climate
and non-climate effects on malaria incidence in Malawi while implicitly accounting
for spatial dependency and the role of human movement. We further developed
methods for real-time assessment of an epidemic by adding spatial information in
the calculation of reproductive numbers to account for spatial heterogeneities. A
detailed review of mobility models and their use in infectious disease modelling was
performed to identify current gaps and opportunities in the field. Finally, a model
describing the rate at which human social contact is made in different locations was
developed to identify individual-level differences in mobility. The implications for
understanding epidemic process and informing control are discussed. With increas-
ing availability of fine-scale mobility data, studying and understanding mobility
patterns and their relationship with infectious disease spread will play a key role
in developing efficient surveillance and control of emerging and re-emerging diseases.
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Chapter 1

Introduction

1.1 Motivation

The movement of humans from one geographical location to another is a key social
characteristic that underpins the spatial extent and spread of many infectious
diseases (Read et al. 2012; Sorichetta et al. 2016; Reiner et al. 2014; Riley 2007;
Sattenspiel and Lloyd 2009; Soto 2009). For a susceptible person to contract a
directly transmitted infectious disease such as influenza, they must first encounter
an infectious individual. Mobility, due to social and economic reasons among
others, promotes contact rates between susceptible and infected individuals, and
can enable the spread of disease to areas with high susceptibility. For vector-borne
diseases (VBD) such as malaria and dengue, the role of social connections in
driving infections is reduced by the vector movement (Reiner et al. 2014) although
it remains an important driver (Stoddard et al. 2009; Cosner et al. 2009). Therefore,
the study of and characterization of human mobility behaviour can play a key role
in understanding the spread of both direct and indirectly transmitted infectious
diseases and, as such, understanding mobility may help improve control. Movement
restrictions, such as curfews, quarantine or travel bans, have been used as non-
pharmaceutical interventions to control epidemics. These measures essentially
aim to limit infectious contacts by reducing human movement. In this thesis,
we focus on estimating the mobility of people from a geographical context from
three different perspectives: (1) by estimating the pattern of spatial dependency in
malaria incidence in Malawi; (2) through the development of an existing method of
epidemic assessment to account for and estimate the extent of spatial connectivity
of cases; (3) statistical modelling of the spatial dispersal of potentially infectious
contacts as measured by a study in China.

2



Chapter 1. Introduction 3

1.2 Human mobility, networks, connectivity and
disease spread

Mobility can be defined as the movement of people from a place of origin to another
destination. It can broadly be categorised into short term and long term movements.
In short-term movements, people spend a short amount of time at the destination,
usually less than a day, before returning to their place of origin; commuting is
another term widely used to refer to these short-term movement patterns. This type
of mobility can include movements such as going to the workplace, shopping etc. On
the other hand, longer-term movement, where the person making the trip spends a
long time at the destination, typically from months and beyond, is better described
as migration. Both types of movement can contribute to the geographical spread
of a disease, but for many epidemic circumstances the shorter-term movement
are thought to dominate disease dynamics. In this thesis, we concentrate on the
short-term movements.

Human mobility enhances connectivity between distant communities of people,
thereby promoting the spread of infections. Due to different individual characteris-
tics, movement trajectories, which are paths followed by individuals as they move
through space over time, may also be unique. For example, some may travel very
far to make few contacts, while most may travel only to nearby locations and make
many contacts (Read et al. 2014; Brockmann et al. 2006). Despite this variation,
human travel patterns can be generalized. It has been observed that humans tend
to follow simple reproducible movement patterns, a property that can play a key
role in epidemic control (Gonzalez et al. 2008).

The connections between individuals that permit direct transmission or enable
indirect transmission can be represented by a network. Various forms of networks
have been proposed to describe different forms of human connectivity (Keeling and
Eames 2005). Local properties of networks such as the number of contacts are
important for disease spread and control. Higher order properties such as clustering,
community formation among others can be strongly influential in determining the
spread of infection between different parts of the network. However, the network
may not necessarily reflect the geographical distribution of individual’s home
locations. Mobility promotes the long-distance links (edges) between individuals.
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1.3 Examples of human movement driving dis-
ease spread

Infectious diseases continue to be a threat to human health all over the world
(Christian et al. 2013). Both developed and undeveloped countries have their own
unique set of infectious disease burdens. The threat of emerging and re-emerging
diseases is one of the biggest challenges in today’s world (Morens and Fauci 2013;
McCloskey et al. 2014). Globalization has made communication, whether by air,
road or rail easy such that any one area of the world is well connected to another
(Tatem et al. 2006). This means that populations of people are always in touch
with outside populations and therefore, directly transmissible infectious diseases,
not native to a location can easily be passed on to another population through
human interaction.

Historically, human mobility through long range trade, has been found to be
responsible for driving the spread of diseases such as plaque in pre-industrial Europe
(Yue et al. 2017). In recent years, severe acute respiratory syndrome (SARS) was
the first major emerging disease outbreak in this millennium and demonstrates the
importance of long-range human mobility in spreading infections between countries.
First discovered in Southern China in 2002-2003, the epidemic soon went global with
cases reported as far as Canada within a relatively short period of time (Parashar
and Anderson 2004; Svoboda et al. 2004). The recent 2013-16 West Africa Ebola
virus disease (EVD) outbreak also spread beyond West Africa to Europe and the
United States, though it did not lead into an outbreak in these countries (WHO
2016). The Middle East Respiratory Syndrome coronavirus (MERS-COV) was
first identified in Saudi Arabia but spread to over 25 countries including South
Korea where it caused a large nosocomial outbreak. The disease spread to South
Korea through a returning individual who had visited the Middle East (Hui et al.
2015). Risk of further spread from the Middle East was particularly high due to
the presence of large air transport hubs and annual gatherings of millions of people
from around the world during the Haj and Umrah pilgrimage (Gardner et al. 2016).

The Zika epidemic also rapidly spread across countries mainly with air travel
playing a prominent role in this rapid inter-country transmission (Bogoch et al.
2016). In South East Asia, Tian et al. (2017) found the growth in incidence of
Dengue virus serotypes 1,2 and 3 to be associated with air travel. In addition, travel
and migration also plays a role in the increasing levels of antimicrobial resistance
(Bogoch et al. 2016).

For vector-borne infectious diseases, movement of people enables the disease-
transmitting agents to go further than they would naturally do (Tatem et al.
2006). In the case of malaria, for example, mosquitoes which act as vectors can
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be introduced into an area that previously did not support mosquitoes hence
introducing or re-introducing malaria into the area. Mosquitoes themselves have
a limited range of migration (Kaufmann and Briegel 2004), thus human mobility
plays a key role in malaria transmission.

1.4 Characteristics of human movement

Human mobility exhibits spatial, temporal and connectivity characteristics (Karamshuk
et al. 2011). The spatial component captures characteristics such as distance trav-
elled. The temporal component pertains to how mobility behaviour varies with
time, such as time spent at a particular location. Lastly, connectivity refers to the
interactions that may occur between individuals in a location, including between
those normally resident and travellers. In terms of distance covered, the majority
of the population do not travel very far from their origin. A recent study has
found that most social contacts in China are within 1km of a person’s home with
some occurring over 500km away (Read et al. 2014). The distances travelled by
individuals have been found to be well approximated by a power law distribution,
p(∆r) ∼ (∆r)−(1+β), where ∆r is the travel distance and the exponent β < 2
(Brockmann et al. 2006). This observation for the distance travelled is supported
by spatial interaction models such as the gravity model which show reduction in
interaction as distance between location pairs increases. This distribution describes
the general observation that most of the time, people make short journeys with
a few occasional long journeys. For the temporal characteristics, the time spent
making contacts at a destination has also been studied (Tilahun and Levinson
2017) and it has been shown to follow a power law distribution (Song et al. 2010).

One of the key challenges in applying the power law in modelling distance
travelled is that it is rarely known whether an observed quantity is indeed from
a power law distribution (Clauset et al. 2009; Hanel et al. 2017). Estimating the
parameter β is also a difficult task (Bauke 2007). Furthermore, the decision that
a quantity of interest is drawn from a power law should be backed up by robust
tests. In Brockmann et al. (2006), no formal tests were carried out to ascertain
whether the observed values came from a proper power law distribution. Clauset
et al. (2009) developed methods for parameter estimation and determining if the
data comes from a power law: after testing on datasets previously categorized as
power laws, some were ruled out to have come from this distribution.
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1.5 Implications for disease control

Networks possess two key characteristics of resilience and fragility. The resilience is
shown in the sense that when a particular location in the network, with few edges
(i.e. low edge to node ratio), is disrupted, the network does not break down and
continues to function (Gao et al. 2016). On the other hand, when a single node with
so many connections is taken out, the whole network is disrupted. This knowledge
can play a key role in the control of infectious diseases by informing the targeting
of interventions. Human interaction is known to follow a scale-free distribution.
In a sexually transmitted disease such as HIV/AIDS, targeting individuals with
multiple sex partners can lead to quicker results in stopping the epidemic. In the
same way, there exist super-spreaders of diseases, those with multiple infectious
contacts with susceptible people (Stein 2011). These individuals are responsible
for the rapid spread of a disease in a susceptible population. Better interventions
that target these superspreaders can more quickly bring epidemics under control.

1.6 Types of human movement

1.6.1 Individual and mass movement

In most applications of human mobility, movements are aggregated at the spatial
unit level. This mass movement from one location to another is known as flux
and these movement patterns can be described in terms of a Markov chain. The
places visited by the moving person make up the state space of the Markov chain.
If the population-scale probabilities of an individual moving from one place to
another are known, a transitional matrix for movement between locations can be
constructed. An assumption that the probability of a person moving to a location
j depends on their current location i only and not where they have been in the
past (i, j = A,B,C,D; i 6= j) is made. Figure 1.1 represents a simple Markov chain
representation for commuting flows between 4 hypothetical locations A,B,C and
D.
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Figure 1.1: Markov chain representation of commuting flow between four hypo-
thetical locations

The movement is represented as a graph where the nodes (i.e. the cities) are
the state spaces and the edges are the journeys between locations. Of note here
are the individuals that move around within their current locations; they do not
make any journeys between locations.

At the aggregate level, the sizes of populations in different locations may play
a key role in the movement of people (Congdon 2010). Some locations may have
a higher attractive power to ’pull’ people from the surrounding areas due to the
presence of more opportunities for people, such as jobs, school and shopping. These
mass movements between locations are described by the gravity and radiation
models which will be discussed in detail in Chapter 4.

1.7 Modelling approaches for infectious diseases

Different mobility patterns could lead to different interaction patterns between
individuals. Social behaviours governing both mobility and interaction patterns,
therefore, can determine the landscape of the contact network upon which infections
may spread. For directly transmitted infectious diseases, these behaviours can
ultimately determine how rapidly the disease will spread. Sexually transmitted
diseases, for example, are determined by the connectivity and network structure
that is formed between sexual partners. In order to account for all the possible
spatial heterogeneities in disease transmission, modelling approaches, whether
statistical or process based are used.

1.7.1 Statistical models

Statistical models consider the relationships between the outcome of interest and a
set of covariates. Generalised linear models (GLMs) (McCullagh and Nelder 1989)
play a central role in modelling this relationship which can be represented by the
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functional relationship
y = f (x,Θ) + ε, (1.1)

where y is the response variable, x is a set of covariates, Θ is a set of corresponding
parameters and ε is the error term. The GLM can be extended to include unobserved
spatial effects by the inclusion of random effect terms into the standard GLM.
The random effects terms capture the unobserved characteristics of the population
that are thought to contribute substantially to the response variable and hence
lead to better estimates. Human mobility patterns, in situations where explicit
information is not available to include in the model as a covariate, can be captured
by the random effects. This is a key strength of statistical models over process
based models.

1.7.2 Process based models

Process-based models can handle the network structure, human mobility patterns
and connectivity behaviour. Example include network-based metapopulation
models which are widely used (Eames and Keeling 2002; Eubank 2005). These
models explicitly describe how transmission of an infection occurs. The key
components of the transmission processes have to be quantified and represented
in the model. Therefore, they are relatively harder to fit to the data compared to
statistical models. If all the key process parameters are available, these models
can have very high predictive power as they are closer to the real-life situation.
However, these parameters are rarely known when fitting the model. Another
challenge for process-based models is validation. Usually, there are not enough data
for different scenarios for validation. Compared to statistical models, process-based
models are usually fitted to small datasets.

1.8 Statistical modelling of spatial processes of
infectious diseases

Two of the main statistical modelling approaches for point processes are discussed
in this thesis. In the first case, the points are aggregated at discrete spatial
locations of interest thereby yielding counts. These are known as areal data and
inference is based on these spatial units. Counts take on non-negative integer
values which are better described by the Poisson distribution hence a Poisson GLM
is typically used to model the contribution of other covariates to the observed
counts. When the variance and mean are not the same, a phenomenon known as
over-dispersion, negative binomial regression can instead be used. Disease mapping



Chapter 1. Introduction 9

studies commonly use these regression approaches to estimate disease risk in a
spatial region. Examples include (Waller et al. 1997; Kelsall and Wakefield 2002).

In some settings, the data are not aggregated, and it is assumed that they are
continuous in space rather than discrete. Point process approaches are the models
of choice in this case. Depending on the application, either purely temporal or
spatial point process are observed. Sometimes it is necessary to model the joint
spatio-temporal process. In the spatio-temporal case, the rate at which points
(events of interest such as new disease cases) occur in a spatial region within a
specified time window is modelled. Examples of spatio-temporal point process
models include (Diggle 2006; Diggle et al. 2010).

In this thesis, we apply both modelling approaches to areal and point process
data with applications to infectious diseases. We apply the former to estimate
and map malaria risk at the district level in Malawi and the spatio-temporal
point process methods for evaluating infectious disease spread and understanding
human social contact patterns which are crucial for the propagation of directly
transmissible infectious diseases.

1.8.1 Mapping disease incidence in Malawi

For common VBD such as malaria, understanding the relationship between climate,
socio-economic factors among others with malaria incidence is important from a
public health perspective. A special interest in many malaria-endemic countries
today is on understanding the interactions between malaria (and other VBD such
as dengue) with climate change. The World Health Organization (WHO) estimates
that more than half of the world’s population is currently at risk of climate-sensitive
VBD with over one million deaths every year (Campbell-Lendrum et al. 2015). It
is further estimated that a 1.0− 3.5◦C increase in average global temperatures by
the year 2100 will increase the likelihood of many VBD in new areas (Githeko et al.
2000).

It is worth remembering that statistical models do not explain all the variation in
the outcome. For example, modelling malaria incidence over time and space in terms
of climate will not be able to attribute all the incidence pattern to climate changes.
The addition of other covariates may improve model fit and prediction. Hence
we may add non-climatic covariates such as socioeconomic factors. Sometimes,
information necessary to improve the model may not be available forcing modellers
to use proxies. In such cases, the model will be compromised due to lack of
information, leading to big error component. In a spatio-temporal model for
malaria and climate interactions, we might improve the model by adding non-
climate confounders, if available.
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One piece of information that is likely to contribute to VBD spread is human
mobility (Stoddard et al. 2009). Detailed information on mobility patterns is
difficult to find in many settings, especially in the developing world. Near real-time
mobility data is even harder to find, thus limiting modelling to low-resolution
temporal and spatial scales. Therefore, a crucial driver of VBD is not usually
included in models due to its scarcity. One solution to this problem is to use
random effects to capture some unobserved characteristics of the population. An
assumption that these will cover several effects including the role of mobility can be
made, though this effect cannot be isolated on its own in the absence of observed
data. Human mobility, though a useful predictor, is not included in our models in
Chapter 2. We will make an assumption that its effect is captured by the inclusion
of spatially structured random effects.

1.8.2 Modelling infectious disease potential

To understand disease spread, a metric known as the effective reproduction number
(Rt) is used to quantify the transmission potential. Rt is defined as the average
number of secondary cases that an infected individual will infect by the end of their
infectious period. If Rt > 1, it means the epidemic is growing while Rt < 1 implies
the epidemic is getting under control and will eventually be contained. The Rt

only tells of how the infection is progressing over time. While this is useful, spatial
heterogeneities in disease spread are not integrated in the Rt estimate. The Rt can
yield unreliable results in locations with high levels of heterogeneity.

In this thesis, we extend the method for Rt estimation to capture this spatial
heterogeneity. The point process approach discussed above is used to describe the
rate at which new cases develop in a location because of possible contact with
infectious individuals from the same or another location. This spatio-temporal
point process approach is well placed to capture the spatial heterogeneity in disease
spread.

1.9 Outline of the thesis

This thesis is organised as a compilation of papers: In Chapter 2, we present the
spatio-temporal statistical model for modelling climate and non-climate drivers
of malaria in Malawi. This chapter sets the scene for the importance of spatial
processes in infectious diseases, and human mobility as a possible catalyst for
infectious disease spread. In Chapter 3, we introduce a new method for estimating
spatial-temporal reproductive numbers as a way of improving upon the current
methods which do not take into consideration the spatial heterogeneity in disease
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transmission. We apply the method to the West Africa Ebola outbreak of 2013-
16. Chapter 4 is a detailed review of human mobility models, their history and
their application in infectious disease modelling. Chapter 5 introduces a model for
individual-level differences in movement patterns. These individual-level movements
have implications in the spread of diseases such as influenza. A case study of
geographically-located human interaction patterns in Guangdong province of China
is used as an application. Chapter 6 discusses the results of the thesis in the context
of all the component papers/chapters. It also discusses the contributions of the
thesis and explores areas of future work in the field of human mobility modelling
from the perspective of infectious disease epidemiology.
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Abstract

Background: Malaria transmission is influenced by a complex interplay of factors
including climate, socio-economic, environmental factors and interventions. Malaria
control efforts across Africa have shown a mixed impact. Climate driven factors
may play an increasing role with climate change. Efforts to strengthen routine
facility-based monthly malaria data collection across Africa create an increasingly
valuable data source to interpret burden trends and monitor control programme
progress. A better understanding of the association with other climatic and non-
climatic drivers of malaria incidence over time and space may help guide and
interpret the impact of interventions.
Methods: Routine monthly paediatric outpatient clinical malaria case data were
compiled from 27 districts in Malawi between 2004 and 2017, and analysed in com-
bination with data on climatic, environmental, socio-economic and interventional
factors and district level population estimates. A spatio-temporal generalized linear
mixed model was fitted using Bayesian inference, in order to quantify the strength
of association of the various risk factors with district-level variation in clinical
malaria rates in Malawi, and visualised using maps.
Results: Between 2004 and 2017 reported childhood clinical malaria case rates
showed a slight increase, from 50 to 53 cases per 1000 population, with considerable
variation across the country between climatic zones. Climatic and environmental
factors, including average monthly air temperature and rainfall anomalies, nor-
malized difference vegetative index (NDVI) and RDT use for diagnosis showed a
significant relationship with malaria incidence. Temperature in the current month
and in each of the 3 months prior showed a significant relationship with the disease
incidence unlike rainfall anomaly which was associated with malaria incidence at
only three months prior. Estimated risk maps show relatively high risk along the
lake and Shire valley regions of Malawi.
Conclusion: Our modelling approach can identify locations likely to have unusually

18
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high or low risk of malaria incidence across Malawi, and distinguishes between con-
tributions to risk that can be explained by measured risk-factors and unexplained
residual spatial variation. Also, spatial statistical methods applied to readily avail-
able routine data provides an alternative information source that can supplement
survey data in policy development and implementation to direct surveillance and
intervention efforts.

1 Introduction

While malaria has declined across Africa, analyses exploring the impact of nationally
implemented control interventions have shown a mixed impact, with recent analyses
of malaria prevalence data across Africa since 1900 showing a complex range of
driving factors including climate, socio-economic and environmental factors that
may all depend on time and local context (Snow et al. 2017). Climate affects many
aspects of the transmission dynamics of malaria by its effects on the vector biology
(Parham and Michael 2010; Wu et al. 2016; Altizer et al. 2013; Githeko et al.
2000; Cash et al. 2013), and is expected to play an increasing role with progressive
climate change. While global malaria control progress is monitored through malaria
prevalence estimates from household surveys, national programmes in endemic
countries often use facility based data to set impact targets and monitor progress,
as this data is available on an ongoing basis and relates to disease burden rather
than transmission. With efforts to strengthen the quality of routine facility-based
monthly malaria data collection across Africa and progress in analytical methods to
analyse collated data from multiple sources, this becomes an increasingly important
data source.

Vector population larvae development depends on sufficient rainfall, yet excess
rainfall can reduce numbers due to excessive water flow (Paaijmans et al. 2007).
Temperature also plays a crucial role as the main vectors, such as tropical Anopheles
mosquitoes, require temperatures between 16◦C and 32◦C to complete their life
cycles. At higher and lower temperatures, there is high mosquito mortality (Lafferty
2009). Consequently, malaria displays seasonal patterns in response to changing
climatic conditions.

In addition to climate, socio-economic factors play a critical role in malaria
transmission (Yadav et al. 2014; Nkegbe et al. 2017). Therefore, addressing malaria
through the design of optimal interventions can benefit from a clear understanding
of the impact of both climate and non-climate factors.

Use of climate data to improve our understanding of the observed trends and
patterns in climate-sensitive diseases has not been widely undertaken in many
African countries due to incomplete or unreliable climate and disease incidence
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data. The use of climate data derived from remote sensing provides an opportunity
to investigate the impact of climate on malaria, even for areas where climate data
from weather stations are sparse or non-existent.

Statistical models for aggregate and point-level data have been used to improve
our understanding of the interactions between vector-borne diseases (VBD) and
environmental conditions (Diggle et al. 2002; Lowe et al. 2011; Kazembe et al.
2006). Furthermore, work has been carried out towards the development of early
warning systems for VBD such as malaria and dengue (Lowe et al. 2011; Lowe
et al. 2014; Thomson et al. 2005; Thomson et al. 2006; Connor and Mantilla 2008).
In many settings, however, non-climatic conditions also play a key role in driving
VBD and these act as confounding factors (Tompkins et al. 2016; Lindblade et al.
2000; Bødker et al. 2000). A purely climate-based model may thus not be sufficient
to capture the complex relationships between VBD and the total environmental in
general (Stewart-Ibarra and Lowe 2013).

We previously explored the roles of climate, geographic and socio-economic
factors on malaria in Malawi and mapped disease incidence for the period 2004-2011
(Lowe et al. 2013). Since then, national control efforts have scaled up substantially,
including the successful scale up of effective artemisinin-based combination therapy
(ACT) since 2009, of malaria rapid diagnostic tests (RDTs) since 2011, and use of
regular national net distribution campaigns since 2012 to move towards universal
net coverage. Overall, malaria prevalence in children below 5 years of age has
declined from 43% in 2010 to 24% in 2017 (NMCP 2011; NMCP and ICF 2018).

This study aims to add to the evidence on the linkages between climate and
malaria in Malawi and shows how the contribution of relevant non-climatic con-
founding factors can be visualised in a way that may help inform national malaria
control programmes on options to take those factors into account and mitigate
the impact of climate change. Using age-stratified malaria data from Malawi
with climatic and non-climatic covariates we built a spatio-temporal statistical
model implemented in a Bayesian inferential framework and mapped explained
and unexplained components of the spatio-temporal variation in malaria incidence.

2 Methods

Malawi context

Malaria is endemic to Malawi but with spatially varying levels of transmission
(Townes et al. 2013), across a varied geographical landscape, from lowlands to
highlands. Lakeshore districts generally have higher malaria prevalence than
other districts. The country is divided into 5 climatic zones by the government’s
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meteorology department across 28 districts. Districts along the lake are generally
of low altitude and have high average temperatures with average elevation ranges
from 500m above sea level along the lake and Shire valley to over 1500 in the central
areas. Rainfall across Malawi varies, with average annual precipitation around
2500mm in highland areas and 700mm in low-lying areas (Ngongondo et al. 2011).

2.1 Data sources

Data were obtained from a variety of sources and collated at the district level, as
shown in Table 2.1. For our analysis, we excluded the district Likoma, an island in
Lake Malawi, to give a contiguous study region. In these analyses we focused on
known determinants of malaria prevalence and clinical diseases.
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Table 2.1: Data sources. Climate and non-climate data variables, their descrip-
tion and source.

Data Description Spatial
resolution

Temporal
resolution

Source

Malaria cases Total cases (confirmed and
suspected) reported by
health centres in each
district

District Monthly HMIS

Rainfall Rainfall estimates
(mm/month)

1km grid Monthly CHIRPS

Min. temp Temperature estimates (◦C) 1km grid Monthly NOAA NCEP
Max. temp Temperature estimates (◦C) 1km grid Monthly NOAA NCEP
NDVI NDVI estimates 1km grid Monthly LandDAAC
Population Population estimates District Yearly NSO

population
projections

Literacy Proportion of population
aged five and above that can
read and write in any
language

District Yearly WMS

Urban Proportion of the population
that stay in urban centres

District Yearly WMS

ITN Proportion of household
using ITN. The numerator is
the number of sampled
households that reported
owning at least one ITN
while the denominator is the
total number of households
sampled in the district.

District Yearly DHS

Health centres Number of health centres
that report data

District MoH

Area Total district area District Unpublished
reports

2.1.1 Malaria data

We extended the previous database (Lowe et al. 2013) by adding routine malaria
data for the period 2012 to 2017. We used the reported district-level monthly
counts of confirmed and suspected malaria cases collected between July 2004 and
December 2017, checked and cleaned by the National Malaria Control Programme
(NMCP) for completeness and consistency. Case data are recorded on paper forms
at a health facility within a district, then aggregated monthly at the facility level.
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Facility data are subsequently aggregated to the district level and entered into an
electronic database, the District Health Information System (DHIS) (DHIS 2018).

2.1.2 Climate data

We used satellite-derived climate archives from the library hosted at the Inter-
national Research Institute (IRI). Monthly rainfall anomaly values averaged at
the district level were obtained from the climate hazards group infrared precip-
itation with station data (CHIRPS) (CHIRPS 2018) which has limited station
data in some countries. These data do not access extensive station data from
Malawi national archives as they are not linked together. In addition, the weather
station network across Malawi is sparse. Temperature anomalies were obtained
from the National Oceanic and Atmospheric Administration national centres for
environmental prediction (NOAA NCEP) (NOAA 2018). This data is based on the
Climate Prediction Center (CPC) monthly global surface air temperature data set
at 0.5 degrees from 1948-present. Normalised difference vegetative index (NDVI)
data were collected from the LandDAAC MODIS satellite at a resolution of 1km
(LandDAAC MODIS 2018). For the model-fitting, all gridded data were averaged
over spatial areas corresponding to the districts in Malawi.

2.2 Statistical framework and model

To estimate the variation in disease risk, we modelled the standardised morbidity
ratio (SMR). This is the ratio of observed to expected malaria cases within a single
spatial unit in a single time-period and provides an estimate of the disease risk.
The expected cases in each district were calculated by multiplying the district
population with the annual observed risk. The annual observed risk is given by the
total number of cases across all districts over the entire time period divided by the
total population over the same period. SMR greater than 1 at a given time period
suggests an excess risk of malaria in a district. More details on calculation of the
expected cases are provided in Appendix A.

To describe the spatial and spatio-temporal variations in disease incidence we
used a Poisson-log-linear mixed effects model. Let yst be the observed counts
in spatial unit s = 1, . . . , N and time t = 1, . . . , T , and est denote the expected
number of disease cases; the expected cases are calculated using standardization
methods to take account of demographic differences in the populations across the
different spatial units but without taking into account the effects of hypothesised
risk factors or residual spatio-temporal variation (Lawson 2013). We then assumed
that
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Yst|est, Rst ∼ Poisson(estRst), (2.1)

where Rst is the relative risk of disease in spatial unit s at time t. In the log-linear
mixed model,

log(Rst) = x′stβ + Ust (2.2)

where xst is a vector of covariates (fixed effects) with associated regression parameter
β and the random effects Ust follow a multivariate Normal distribution with
zero mean vector and covariance matrix V (θ) structured to include spatial and
temporal components of variation. The relative risk Rst is thereby decomposed
into the explained and unexplained risks, exp(x′stβ) and exp(Ust) respectively. The
unexplained risk component captures residual variation after accounting for all the
covariates in the model.

2.2.1 Model framework for the Malawi malaria data

The specific model formulation for the Malawi malaria data has been described
in our earlier paper (Lowe et al. 2013). In brief, we first extended our notation
for the model defined by 2.1 and 2.2 to distinguish between cases under and over
5 years of age. Let Yjst be the monthly malaria count for age group j = (1, 2)
corresponding respectively to ages 5 or more and 0 to 4, district s = 1, . . . ,m = 27
and time t = 1, . . . , n = 162 months. Similarly, let ejst be the corresponding
expected malaria count.

With this extended notation, we write the relative risks as θjst = x′st + Ust,
where

Ust = Ps +Dt +Gst (2.3)

In equation 2.3, the terms Ps, Dt and Gst denote purely spatial, purely temporal and
residual spatio-temporal components of variation in risk, respectively. Following
(Leroux et al. 2000) and (Lee et al. 2015) we assume that the Gst are mutually
independent, Gst ∼ N(0, τ 2

I ), and that the spatial random effect, P = (P1, . . . , Pm)
and the temporal random effect, D = D1, . . . , Dn form Gaussian Markov random
fields (Rue and Held 2005). Specifically, the model defines spatial neighbourhood
relationships through a symmetric m×m matrix W with elements wij = 1 if the
spatial units i and j are neighbours, and wij = 0 otherwise; we specify i and j to be
neighbours if they share a common boundary. Similarly, temporal neighbourhood
relationships are defined by a symmetric n×n matrix V; following (Lee et al. 2015)
we specify vij = 1 if |j − i| = 1 and vij = 0 otherwise. Now, writing P−s for the
(m− 1) element vector obtained by removing the sth element from P , and similarly
D−t for the (n− 1)-element vector obtained by removing the t− th element from
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D the model can be defined through its full conditional distributions,

Ps|P−s ∼ N
(

ρS
∑m
j=1 wsjPj

ρS
∑m
j=1 wsj + 1− ρS

,
τ 2
S

ρS
∑m
j=1 wsj + 1− ρS

)
(2.4)

Dt|D−t ∼ N
(

ρT
∑n
j=1 vtjDj

ρT
∑n
j=1 vtj + 1− ρT

,
τ 2
T

ρT
∑n
j=1 vtj + 1− ρT

)
(2.5)

(2.6)

Both the Ps and Dt are mean-centred such that ∑m
s=1 Ps = ∑n

t=1 Dt = 0
We use the following diffuse prior specifications for the fixed effect parameters β

and the random effect parameters ϑ = (τ 2
S,τ

2
T , τ

2
I , ρS, ρT ). Firstly, for the elements of

β we specify independent Normal priors, βi ∼ N(0, 1000) : i = 1, . . . , p. Secondly,
for the variance components τ 2

S,, τ 2
T , and τ 2

I we specify independent inverse-Gamma
priors, τ 2 ∼ IG(1, 0.001). Finally, for the autocorrelation parameters ρS and ρT
we specify independent uniform priors, ρ ∼ U(0, 1).

2.2.2 Model fitting for malaria data in Malawi

To account for differences in malaria diagnostics over time, we defined a binary
variable (0 before adoption of RDTs, and 1 after adoption). Markov Chain Monte
Carlo (MCMC) techniques were used to simulate from the posterior distribution
using a combination of Gibbs and Metropolis-Hastings algorithms to estimate
model parameters. We generated a chain of length 300,000 after a burn-in of
50,000 iterations, retaining every fiftieth iteration to obtain a sample of 5000
approximately independent realisations from the joint posterior distribution of β,θ
and U for post-processing.

2.2.3 Convergence diagnostics

We carried out several tests for convergence. Trace plots for each covariate in the
model were inspected. In addition, we plotted the empirical cumulative distributions
of the upper and lower halves of the chains after discarding the burn-in. If the
two curves overlap, it indicates that convergence was achieved. Lastly, the Geweke
statistic also showed that our chains had converged. Details on the convergence
diagnostics are presented in Appendix B.
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3 Results

3.1 Data analyzed

Malaria case data for 27 districts analysed in this study were obtained from the
HMIS for a period of 162 months ranging from July 2004 to December 2017. Prior
to 2011, there was no widespread use of RDT as the policy had not been adapted.
The use of RDT was adopted in 2011 leading to a marked improvement in the
quality of the data. With time, the completeness of the data reported in the HMIS
has been steadily going up, now standing at over 90%. Different districts have
different numbers of health facilities that report data in the HMIS ranging from 4
facilities per district to over 40.

3.2 Clinical malaria patterns

The malaria case rates between the 2005 and 2017 period are shown by climatic
zone in Figure 2.1. During this period the annual malaria incidence over time
showed a decrease in incidence between 2009 and 2013 followed by a temporary
increase from 2014 to 2015. Overall, there is a general reduction in malaria rates
over the 2005-2017 period).
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Figure 2.1: Malaria incidence patterns. (A) Mean under five monthly malaria
cases for Malawi by climatic zone between July 2004 and December 2017 (B)
Location of climatic zones within Malawi, (C) Altitude pattern within Malawi

Detailed seasonal patterns of malaria case rates, rainfall and temperature are
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shown for each climate zone in Figure 2.2. Across zones and geographical areas,
there are similar patterns of seasonality. Peak temperatures occur between October
and November, before the start of the rainy season. Rainfall peaks in January,
with a lag period of 0 to 3 months of peaking malaria incidence.
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Figure 2.2: Relationship between monthly mean temperature, rainfall and
malaria Monthly average malaria incidence, rainfall and temperature at the
climate zonal level. (A) Northern zone (B) Central zone (C) Southern zone (D)
Shire Valley (E) Lake Shore. The red dotted line is the mean temperature while
the blue dotted line is the mean rainfall. The disease incidence is shown by the
black solid line

Figure 2.3 shows the marginal spatial and temporal variations in malaria SMR
across Malawi. The temporal variation (Figure 2.3a) indicates similar patterns of
seasonality and inter-annual variation in both age groups. The spatial variation in
the SMR for the age group 5 years and below (Figure 2.3b) shows higher malaria
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incidence in some of the districts along the Lakeshore and Shire Valley regions. For
the over-five age group (Figure 2.3c), a similar pattern is observed.
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Figure 2.3: Malaria SMR averaged over time and space for the period July 2004
- December 2017 (A) averaged across the country for each month, (B) averaged
over time for each district for the under 5 years age group, (C) averaged over
time for each district for the age group 5 years and over

3.3 Model estimates

3.4 Association between climate and non-climate factors
with clinical malaria

We first fitted a non-spatial Generalized Linear Model (GLM) to investigate
the association between the outcome and different covariates and find significant
predictors to include in the Generalized Linear Mixed Model (GLMM). The following
covariates were included in the GLMM: mean rainfall and temperature anomalies;
rainfall anomalies lagged by 1 to 3 months, temperature anomalies lagged by 1 to 3
months, NDVI, Literacy (as a proportion of the district population) and population
density. We also included an indicator variable to specify the time before and after
adoption of RDTs.
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In the spatio-temporally structured model, clinical malaria incidence was as-
sociated with rainfall at 3 month lag, temperature including all lags and NDVI.
Relative risks, 95% Bayesian credible intervals and Geweke convergence statistic G
(Geweke et al. 1991) for the regression parameters are shown in Table 2.2.

Table 2.2: Parameter estimates for the mixed model. Estimates for relative
risk for climatic and non-climatic parameters respectively with associated 95%
credible intervals and the Geweke convergence diagnostic.

RR 95% CI G
Rainfall 1.00 (1.00,100) -0.20
Rainfall lag 1 1.00 (1.00,1.00) -0.40
Rainfall lag 2 1.00 (1.00,1.00) -0.10
Rainfall lag 3 1.03 (1.01,1.05) 0.20
Temperature 1.03 (1.00,1.05) -1.40
Temperature lag 1 1.03 (1.00,1.06) 0.7
Temperature lag 2 1.05 (1.03,1.08) -1.8
Temperature lag 3 1.04 (1.01,1.07) -1.7
NDVI 1.74 (1.45,2.07) 0.70
Literacy 1.00 (1.00, 1.00) 0.5
Pop. density 1.00 (1.00, 1.00) -0.80
RDT 1.27 (0.96, 1.68) 0.3

After allowing for residual spatio-temporal dependence, rainfall was no longer
statistically significant in the current month. However, there was a slight positive
relationship between malaria incidence and rainfall in the three months prior. A
unit increase in rainfall anomaly was associated with a 3% increase in malaria
burden (RR=1.03, CI:1.01,1.05). For temperature anomalies in the current month,
with every one-degree Celsius increase, estimated malaria incidence increased by 3%
(RR=1.03, CI:1.00-1.05). Malaria was also associated with temperature anomalies
at 1-3 month lags with increase in malaria of 3%, 5% and 4% respectively. NDVI
was also positively associated with malaria incidence, i.e. an increase in vegetative
cover is associated with a 74% increase in malaria incidence (RR=1.74, CI: 1.45-
2.07). It was also observed that population density did not show an association
with malaria (RR=1.00, CI: 0.99-1.00). Lastly, a 27% (RR=1.27, CI: 0.95-1.68)
increase in incidence was observed in the post RDT adoption period compared to
before. The Geweke diagnostic scores indicate convergence, (−1.96 ≤ G ≤ 1.96).

3.5 Mapping explained and unexplained variation in SMR

Figure 2.4 shows the decomposition of the overall risk into its explained and
unexplained components. Figure 2.4a shows the overall malaria risk, Rst averaged
over Malawi for the entire period. The final model predicts a higher than average
risk in the Lakeshore and Shire Valley districts and climatic zones. In addition, 3



Chapter 2. Malaria mapping in Malawi 30

of the districts in the central zone also show an elevated malaria risk compared to
other districts in the zone. Figure 2.4b and Figure 2.4c show the explained and
unexplained component of spatial variation in risk respectively, again averaged
over time. In terms of model performance, the unexplained variation exp(Ust)
is relatively high in some parts of the country indicating the presence of other
district specific non-observed variables. In Figure 2.4d, it is observed that the risk
explained by modelled climate covariates is almost constant across the country. In
our model, we found temperature and rainfall three months prior to be significant.
This shows that temperature and rainfall play a key role in malaria transmission
in most of the country with a slightly different effect in the most northern and
southern parts of Malawi. Lastly, non-climate covariates also contribute to the
observed malaria risk roughly following the expected pattern where some of the
districts along the lake and the Shire show elevated risk with notable lower risk in
the major urban centres such as Blantyre.
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Figure 2.4: Contributions to the overall malaria risk (A) overall risk Rst due
to combined effect of climatic, non-climatic covariates and non-observed covari-
ates, (B) explained risk, exp(x′stβ) due to observed climatic and non-climatic
covariates, (C) unexplained risk, exp(Ust) due to unobserved effects only, (D)
malaria risk due to observed climatic covariates only, (E) malaria risk due to
the non-climatic covariates only

4 Discussion

Our results show the added benefit of including climate and non-climate information
in modelling of malaria incidence data. Temperature and lagged rainfall were found
to be significant drivers of malaria. We fitted a spatio-temporal statistical model
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to quantify the effect of different climate and non-climate covariates on malaria
incidence and to predict the incidence over the period July 2004 to December 2017.

While the quality and suitability of routine facility-based data is often questioned,
our reported malaria incidence trends in time and space, in terms of seasonality
and climate zone, largely follow the expected patterns and align with previously
published malaria prevalence maps (Kazembe et al. 2006; Lowe et al. 2013). Our
approach uses more recent data and covers a relatively longer time period hence
similarities with the earlier maps. The Lakeshore and Shire valley areas are generally
low-lying areas with higher average temperatures and higher malaria incidence.

When using routine incidence data to monitor control impact and long-term
trends, control programmes need to take into account intervention implementation,
climate and non-climate covariates from different data sources to improve the
analysis and interpretation of disease incidence patterns.

In our study, incidence showed a steady decline in paediatric and adult data
from 2009 following the introduction and gradual scale up of efficacious artemisinin-
based combination therapy (ACT) treatment in 2008 and start of ITN distribution
to mothers and children. This decline was followed by a nadir and upsurge after
2013. While similar reversals and increases have been reported by countries in the
southern African region (Nkumama et al. 2017), their control programmes included
different control implementation stages during this period, suggesting other factors
could be at play. Analysing climate and non-climate factors, and visualizing the
explained and unexplained components of the observed variation in disease risk,
can give additional insight. While the introduction and scale up of malaria rapid
diagnostic tests (mRDTs) and inclusion of community-based malaria treatment
from 2012 could have led to increased health case seeking behaviour and capture
of cases that previously did not present to the health care system, the period after
2013 also documented higher average temperatures.

In terms of model performance, the unexplained variation is lower across the
country. This shows that most of the variation has been captured by the covariates
in the model. However, the substantial unexplained risk shows the importance of
including random effects in the model.

The non-significance of rainfall on malaria in the current month in our analyses
shows the complexity of the relationship between malaria incidence and climate in
general, but rainfall in particular. Studies in different settings have shown mixed
effects of rainfall on malaria; some have shown a positive association, whilst others
have shown a very weak or no association (Hoek et al. 1997; Lindsay et al. 2000;
Abeku et al. 2003). NDVI is also significantly associated with malaria. Seasonal
and year to year changes in NDVI are commonly associated with rainfall. Green
vegetative cover, which is prevalent in the rainy season, is positively associated
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with malaria incidence. Several other studies have shown vegetative cover to be a
significant predictor (Gaudart et al. 2009; Fastring and Griffith 2009). Temperature
plays key role in the development of malaria vectors and their activities that directly
or indirectly lead to the spread of malaria. It has been found to be a significant
ecological factor in several studies such as (Paaijmans et al. 2009; Beck-Johnson
et al. 2017; Stresman 2010) but its impact on malaria transmission in tropical
climates is usually considered a highland phenomenon (Lyon et al. 2017).

Both components of the decomposed risk (overall and covariate-explained)
could be affected by other important factors that were not considered in these
analyses. This include the completeness and quality control of monthly reports
from government and faith-based health facilities that do report into the DHIS2
system, but could also come from other health facilities, mainly private for-profit,
that do not report their data to the MoH via the DHIS2. While we did not have
access to data on reporting completeness or quality at district level, it is likely that
reporting rates influence the estimation of the malaria burden in Malawi.

While our analyses show how climate and non-climate data from multiple
sources can be used to improve the analysis and interpretation of routine malaria
data patterns, we are clear on the limitations and strengths of the Malawi data
over the reporting period and potential steps moving forward.

Self-treatment at home will never be captured in the HMIS. Any substantial
changes in the proportion of home-treatment within the country over time could
affect routine facility-based disease trends. In Malawi, however, the availability of
antimalarials in rural areas is limited and treatment is provided for free by the
government. The introduction and scale up of RDTs in 2011 and the programmes
and steps to link the reported diagnosis and treatment to consumables stock
management over the past year, provide reassurance on the reported cases moving
forward. Prior to 2011, when the MoH adopted the policy of testing all suspected
cases by RDT, (Ministry of Health (MOH) 2011), presumptive treatment of malaria
was widespread in Malawi. This may have affected the accuracy of the reported
cases in the period before 2011.

Selection bias in seeking health care due to differential access to health facilities
among different groups of people and variable distances between facilities and
homes is another common concern with routine facility-based data (Amouzou et al.
2013). People living very far away from health facilities from may not be adequately
represented in routine data. Actually, the inclusion of community-level treatment
of malaria cases based on mRDTs by community health workers in hard-to-reach
areas in Malawi has been included in reporting to the DHIS2 since 2012 and may
have contributed to the increase in reported cases across the country, but as they
are included within the health facility level reports for the relevant catchment area,
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it was not possible to confirm this in the current analyses.
We used satellite-derived climate data for our models, rather than directly

measured climate data from weather stations. Ideally, a high-quality gridded
climate database including rainfall and temperature (minimum and maximum)
from weather stations should be used to formulate models and produce malaria
risk predictions. National climate data sets which integrate global products and all
relevant local observations managed by the national meteorological agencies are
increasingly available in African countries (Dinku et al. 2016).

Intervention coverage status data was not available at district level for the
period of interest, as this data is not part of the routine data collection and is
assessed at regional level in the national household malaria indicator surveys. We
relied on crude intervention implementation proxies in the presented model.

Despite these limitations, the presented work shows the potential added value
of our spatio-temporal statistical modelling approach. Furthermore, there are
three promising developments in Malawi that will soon offer opportunities to apply
the framework with more detailed data on key covariates. First, as part of a
collaboration with the LINK programme in Malawi (LINK 2018) intervention
coverage maps will soon become available for key interventions including ACTs,
mRDTs and ITNs, allowing integrating coverage scale-up. Secondly, as the LINK
programme modelled spatio-temporal prevalence data at district level, we will
have the opportunity for more comparative analyses of modelled transmission and
burden data. Lastly, electronic facility level reporting of clinical cases into the
DHIS2 began in 2018, which will soon allow more granular mapping of disease
risk at health facility catchment area, providing the opportunity to analyse more
detailed spatial patterns moving forward. With these developments, the presented
model framework can be expanded towards more in-depth analyses of intervention
impact.

5 Conclusion

This work provides a modelling framework for integrating climatic and non-climatic
information into analyses of routine malaria case data at facility-level, in order to
improve understanding of climate effects on climate-sensitive VBD such as malaria,
while simultaneously controlling for non-climatic risk factors. The findings show
the value of collaborations between control programmes, health researchers and
climate experts in the collation, analyses and interpretation of routine malaria data.
Visualizing the findings in maps produced provide an easy to use tools for malaria
control programmes to support their interpretation of disease trends over time,
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which, with the development of user friendly analysis tools could be incorporated
into Technical Working Groups (TWGs) and standard programme review processes.
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Abstract

The effective reproduction number, R(t), is defined as the average number of
secondary infections caused by a newly infected individual at time t. It is an
important epidemiological measure of the growth of an infectious disease epidemic
as it can be used to monitor and characterize outbreaks, and to provide near-
real-time assessment of the efficacy of control interventions. When R(t) < 1 the
epidemic can be said to be under control. Most methods developed to estimate
reproduction numbers ignore geographical patterning of cases. The ability to
characterize the transmission potential within and between different sub-regions
that together make up the region of interest would be helpful to identify sub-regions
where R(t) > 1 and to prioritize control efforts during an outbreak. We present an
extension of established methods to estimate the reproduction number in a way that
incorporates spatial as well as temporal information on cases to derive estimates of
the epidemic growth across geographical space. To illustrate the methodology, we
apply the new method to case data from the 2014-15 West African Ebola epidemic.

1 Introduction

Quantifying the transmissibility of infectious diseases as they progress is paramount
in the planning and application of control measures. The effective reproduction
number R(t), defined as the average number of secondary infections caused by
a newly infected individual at time t, gives a measure of the overall state of the
epidemic, with R(t) > 1 indicating a growing epidemic and R(t) < 1 an epidemic
that is under control. Changes in R(t) reflect the changing dynamics of the epidemic
due to control measures, depletion of susceptible individuals in the population
and other factors including response of individuals to the epidemic, irrespective
of control effort. For instance, in the 2014-2015 West Africa Ebola epidemic it is
likely that some communities reduced their contact rates at particular times in
response to the state of the epidemic in neighbouring communities, while control
remained constant over the same time period.

40
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Several methods have been developed to calculate R(t). For example, Wallinga
and Teunis (2004) developed a likelihood-based method that infers the reproduction
number from the observed epidemic curves. By considering pairs of cases, they were
able to calculate the relative likelihoods of different infected individuals transmitting
the infection to a susceptible individual. This method, however, does not deal with
the problem of censoring, whereby observations beyond t are needed to calculate
the reproduction number at t. It also describes R(t) by considering cohorts of cases
whose symptom onset is on the same day, and therefore cannot say anything about
R(t) on days where there are no new cases. Cauchemez et al. (2006) have developed
a Bayesian method for estimating R(t) in real-time from the observed epidemic
curve together with partial tracing information. Fraser (2007) developed a method
for calculating both the cohort and instantaneous reproduction numbers. The
cohort reproductive number estimates how many people each case actually infects
and can only be applied retrospectively while instantaneous reproductive number
is the average number of secondary cases that each infected individual would infect
if the conditions remained as they were at time t. Cori et al. (2013) extended the
work of Fraser (2007) to develop a method for estimating an instantaneous R(t) in
near-real-time allowing for the effect of censoring.

In all the methods described above, the estimate of R(t) is an average over the
entire geographical region of interest, ignoring any heterogeneity in disease trans-
mission potential across geographical space. Possible causes of such heterogeneity
include spatial variation in demographic, environmental and socio-economic factors.
Estimates that takes into account spatial heterogeneity would help authorities
to prioritize the application of interventions, especially in resource-poor settings.
White et al. (2013) incorporated spatial information in the estimation of R(t) for
influenza in South Africa. They modified the method proposed by Wallinga and
Teunis (2004) by defining a spatial metric based on distances and travel patterns
between the South African provinces and allowing the transmission probabilities
between provinces to depend on this metric. However, their method does not
account for the censoring of future cases.

In this paper we consider the geographical region of interest to be partitioned
into m sub-regions, labelled x1, . . . , xm and develop an estimator for a spatio-
temporal reproduction number R(x, t), defined as the total number of secondary
infections caused by an individual in sub-region x who becomes infectious at time
t, allowing for the censoring of future cases.

The structure of the paper is as follows. In Section 2, we set out the definitions
that we need in later sections. In Section 3, we review the method proposed by
Wallinga and Teunis (2004) for calculating R(t). In Section 4, we show how this
method can be extended to incorporate spatial information and define a class of
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parametric models for the transmission from a primary case in one sub-region to a
secondary case in another region. In Section 5 we show how to fit the parametric
model whilst allowing for the censoring of future cases. In Section 6 we apply our
method to calculate reproduction numbers for the 2014-15 Ebola epidemic in West
Africa. The paper ends with a discussion in Section 7.

2 Definitions

We write n(x, T ] for the number of cases that occur within a geographical region
x and time-interval [0, T ]. Each case can be associated with a number of distinct
event-times, including: time of infection; time of symptom onset; time of reporting;
beginning and end of infectious period. In practice, not all of these quantities are
observable. Here, we assume that each case is associated with a single, observed
incident time ti : i = 1, ..., n, and that individual cases are ordered according to
their incident times. We also assume that each case has an associated symptom
onset time si : i = 1, . . . , n. In practice, times are always recorded in discrete units,
for example days; for the time being, we assume that coincident cases are ordered
arbitrarily.

The infector of case i is denoted by v(i). The ith generation interval, Ui, is the
time-lag between ti and its infector, hence Ui = ti − tv(i) : i = 2, 3, ..., n. This is
equal to ti − tj for some unknown value of j < i. Similarly, the ith serial interval,
Di, is the time lag between si and its infector, i.e Di = si − sv(i) : i = 2, 3, . . . , n.
The Ui and Di are therefore random variables, which we assume to be independently
and identically distributed according to a specified probability density functions
f(u) : u ≥ 0 and v(d) : d ≥ 0. In practice however, the actual infection times, ti
are not observed but rather symptom onset times si. Therefore, the serial interval
distribution is widely used in place of the generation interval and they are used
interchangeably. Depending on the substantive meaning of each ti, f(u) is known
as the generation interval distribution or the serial interval distribution (hereafter
SI distribution). The epidemic curve is the cumulative number of incident cases at
or before time t.

3 The Wallinga-Teunis method

The Wallinga-Teunis method (hereafter WT) estimates R(t) using a probability-
based argument. The method uses the epidemic curve and the SI distribution. It
assumes that recorded incident times are discrete. This is almost always the case
in practice; if not, it can be achieved by grouping the incident times into a discrete
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set of intervals. Given the recorded incident times, and assuming perfect mixing
within the population at risk, the probability pij that j is the infector of i is

pij = f(ti − tj)∑
r<i f(ti − tr)

: j = 1, ..., i− 1 (3.1)

An estimate of the total number of cases infected by case j is

R0j =
∑
i>j

pij. (3.2)

The corresponding estimate of the reproduction number at time t is

R(t) = m−1
t

mt∑
j=1

R0j, (3.3)

the sample mean of the R0j over the mt individuals j for whom tj = t. This
is called the cohort reproduction number as it estimates the average number of
infections per member of the cohort of cases incident at time t (Cori et al. 2013).

4 A spatial extension of the Wallinga method

Note, firstly, that the WT method can be derived from a simple application of
Bayes’ Theorem as follows. The conditional probability density of the incident time
ti, given that j, occurring at time tj < ti, is the infector of i, is f(ti − tj). Then,
Bayes’ Theorem states that

P(j is infector of i|ti) = f(ti − tj)P(j is infector of i)∑
k<i f(ti − tk)P(k is infector of i)

= f(ti − tj)∑
k<i f(ti − tk)

(3.4)

because, under perfect mixing, all preceding cases are equally likely a priori to be
the infector of case i .

Now, using xi to denote the sub-region in which case i occurs and writing qij
as a short-hand for the conditional probability that j is the infector of i given the
incident times and locations up to and including case i, the spatial counterpart of
(3.4) is

qij = f(ti − tj)p(xi, xj)∑
k<i f(ti − tk)p(xi, xk)

, (3.5)

where p(xi, xj) is a transmission probability, the a priori probability that the infector
of a case at location xi will be from xj. This formulation assumes perfect mixing
and the same SI distribution within each location. It reduces, as it must, to WT
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when there is only one location.
Now, writing R0j(x) for the expected number of cases in sub-region x infected

by case j, we have that
R0j(x) =

∑
i>j

qij. (3.6)

The estimated average number of subsequent cases at location x per incident case
at time t and location y, are then the sample means of the R0j(x) over the myt

individuals j at location y whose incident time is t, hence

R(x, y, t) = m−1
yt

∑
j

R0j(x)I(xj = y)I(tj = t), (3.7)

where I(·) is the indicator function. The spatial reproduction number, R(y, t),
defined as the expected number of future cases generated by an incident case at
location y and time t follows from (3.7) by summing over all locations x, hence

R(y, t) =
∑
x

R(x, y, t) (3.8)

In principle, we could implement (3.8) by specifying any mathematically valid
SI distribution f(u) and transmission probabilities p(x, y). For this to be a useful
exercise, we need to estimate these quantities, either using data from previous
studies together with scientific knowledge of the disease in question, or directly
from the current data. In Section 5 we consider the possibilities and limitations of
the latter approach.

5 Parametric model formulation

The quantities so far defined, namely the SI distribution f(u) and the transmission
probabilities p(x, y), do not define a complete model for an epidemic process;
rather, they are properties of the epidemic process. However, these properties
do determine the quantities that are of epidemiological interest here, namely the
spatial reproduction numbers R(y, t).

5.1 Modelling the transmission probabilities

Our proposed model assumes that the rate at which a susceptible individual in
location x gets an infection from an infectious individual in location y at time t
factorises as λ(x, y, t) = λ0(t)ν(x, y) where

ν(x, y) = exp(Ax +By + Cxy), (3.9)
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and therefore;
λ(x, y, t) = λ0(t) exp(Ax +By + Cxy) (3.10)

In equation 3.10, the terms Ax, By and Cxy represent the susceptibility of individuals
at location x, the infectiousness of individuals at location y and the connectivity
between locations x and y, and λ0(t) is the baseline hazard of infection at time t,
which we assume to be common to all locations.

The total rate of transmission from y to x is proportional to NxNyν(x, y), where
Nx is the number of susceptibles at location x and Ny is the number of infected at
location y. The corresponding transmission probabilities follow as

p(x, y) = Nyν(x, y)/
∑
z

Nzν(x, z) (3.11)

It follows from (3.5) and (3.11) that if we know the population sizes Nx and can
estimate ratios of the quantities ν(x, y), we can estimate the probabilities qij, and
the spatial reproduction numbers follow by substitution into (3.6), (3.7) and (3.8).

One possible parametric version of (3.9) is a log-linear formulation,

ν(x, y) = exp(a′xα + b′yβ + c′xyγ) (3.12)

where now ax, by and cxy are vectors of explanatory variables with associated
parameters α, β and γ respectively. Given sufficient data, this model could be
further extended to allow individual-level explanatory variables, e.g. age or gender,
but we do not pursue this here.

The gravity model is the special case of (3.12) in which cxy = log d(x, y) where
d(·) denotes distance. In the absence of covariates, this equates to

ν(x, y) = exp(α + β)/d(x, y)γ. (3.13)

Other choices for term h(x, y) = c′xyγ in (3.9) can be obtained as special cases of a
general transmission kernel model, for which

ν(x, y) =
(
δ + d(x, y)

σ

)−γ

For example, δ = 0 and σ = 1 gives the power law, whilst α 6= 0 and σ 6= 0 gives a
lagged power law model Meyer, Held, et al. (2014).

5.2 Modelling the serial interval distribution

Parametric models for the SI such as the gamma, weibull and lognormal distributions
are widely used to model infectious diseases such as influenza (Cowling et al. 2009;
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Cauchemez et al. 2006). It is difficult to estimate both the SI distribution and the
transmission kernel from one dataset. Better results can therefore be expected if it
is possible to use either contextual knowledge or other data to specify one of the
two.

Here, we assume a gamma distribution for the SI distribution. This two-
parameter family can generate distributions with a range of positive skewness and
includes the symmetric Normal distribution as a limiting case. Other possible
families of distributions include the Weibull and log-Normal. These are also two-
parameter families that generate positively skewed distributions, and are hard to
distinguish empirically from the gamma distribution (Firth 1988).

5.3 Parameter estimation and model selection

To estimate the parameters of the model, θ say, from current data we use an
adaptation of the partial likelihood method introduced by Cox (1972); see also
Diggle et al. (2010). Consider the sequence of incident case times ti and associated
sub-regions xi : i = 1, ..., s. Write Ni for the number of individuals at risk in
sub-region xi, and Ii(t) for the number of infectious individuals in sub-region xi
at time t. Recall that we can impose a unique ordering of the cases according to
their incident times by randomly permuting any sets of cases with identical ti. The
partial likelihood for θ is the likelihood of the observed ordering of the xi, which
we derive as follows. The rate at which any sub-region xi acquires a new case at
time ti is ρi(t) = ∑s

j=1 ν(xi, xj)NiIj(ti). The probability that the ith time-ordered
case occurs in sub-region xi is

Pi =
(
ρi(ti)/

s∑
k=1

ρk(ti)
)

(3.14)

and the partial log likelihood is given by the expression;

PL(θ) =
n∑
i=1

log
(
ρi(ti)/

s∑
k=1

ρk(ti)
)

(3.15)

It follows from (3.15) that the partial likelihood can only identify a sub-set of
the model parameters θ, namely those that are not cancelled when taking ratios of
the ν(x, y). But in the current context this does not matter, because the ratios are
all we need to estimate. For example, under model (3.13)

PL(θ) =
n∑
i=1

log
( ∑s

j=1 d(xi, xj)−γNiIj(ti)∑s
k=1

∑s
j=1 d(xk, xj)−γNkIj(ti)

)

Partial likelihood is beneficial over full maximum likelihood estimation in several
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ways. Firstly, it is easier to implement especially in situations where there are
nuisance parameters which are unidentifiable. This property is attractive when
these parameters are not of interest hence reducing the computation burden. Partial
likelihood has also been found to perform better with smaller sample sizes compared
to the full maximum likelihood estimation which requires relatively larger sample
sizes to achieve less bias (Lin and Zhu 2012). Partial likelihood estimates have the
same asymptotic properties as maximum likelihood estimators. However, there
may be loss of efficiency and some parameters of interest may be unidentifiable
(Diggle 2006).

6 Application: the 2013-16 West Africa Ebola
epidemic

Ebola virus disease (EVD) is a highly infectious disease with a high fatality rate
Shultz et al. (2016). The West African Ebola outbreak of 2013-2016 was the
biggest Ebola outbreak in history and the first to attack West Africa. The disease
was first reported in Guinea in December 2013 (WHO 2014). The World Health
Organisation (WHO) declared the epidemic to be a public health emergency in
August 2014. Liberia, Guinea and Sierra Leone were the worst affected countries
in the region. Between December 2013 and April 10, 2016, a total of 28,616 cases
were reported with 11,310 deaths (WHO 2016). The peak of the epidemic was in
September 2014 when 950 cases were reported in one week (WHO 2016). The three
affected countries in West Africa all share land boundaries and therefore there was
potential for cross-border spread of the disease.

6.1 Exploratory analysis

The EVD had a mean incubation period of 11.4 days in each of the 3 countries.
Approximately 95% of patients experienced symptom onset within 21 days after
exposure (WHO 2014). The SI, estimated from a subset of the cases whose
information on symptom onset dates or suspected transmission chains were available,
was estimated to be 15.3 days with a standard deviation of 9.3 days (WHO 2014).
The longer SI compared to past outbreaks and the highly dispersed SI distribution
possibly point to difficulties in collecting unbiased data on exposure through contact
tracing during the 2013-16 outbreak or past outbreaks. It may also indicate a
higher proportion of transmission events occurring late during an illness due to
ineffectiveness of case isolation as a control intervention (WHO 2014).

In all countries, the disease was widely reported across the districts but some
had higher incidence than others. Therefore, the disease displayed high levels of
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Figure 3.1: Average EVD incidence per 1000 population for the entire epidemic
period at different spatial scales: (from left to right: Location of Liberia, Sierra
Leone and Guinea relative to each other, incidence at county level in Liberia,
districts level incidence in Sierra Leone and prefecture level incidence in Guinea

heterogeneity. Figure 3.1 shows the differences in the average incidences per 1000
population of EVD in the three countries over the whole epidemic period.

In each of the three maps, higher incidences were observed in the more densely
populated urban areas than in rural areas. For example, Montserraddo county in
Liberia, where the capital city Monrovia is located, recorded the highest incidence.
Temporal heterogeneities in incidence at the country level are shown in Figure
3.2. However, these national epidemic curves mask the heterogeneities within the
countries. Within-country heterogeneities are revealed in the epidemic curves for
the sub-national units of each country; see Appendix C.



Chapter 3. Spatial Rt estimation 49

W
ee

kl
y 

ne
w

 c
as

es

J F M A M J J A S O N D J F M A M J J A S O N D J F M

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

2014 2015 2016

Guinea
Liberia
Sierra Leone

Figure 3.2: Epidemic curves for EVD for each of the affected counties showing
temporal heterogeneity in disease incidence at the country level

We analysed case counts reported by the WHO as of May 2016 after the
epidemic ended in all the 3 countries (WHO 2017). Each reported case was
classified as confirmed, suspected or probable. Confirmed cases are lab-confirmed
while suspected cases are based on possible links with previously known cases. For
our analysis, we used the total number of reported cases (all categories). Official
district population estimates for the year 2014 were used in the analysis. These
data were collected from the national statistical agencies of the three countries.

The data were reported as total number of reported cases in one-week windows.
To account for the incubation period and any delay in seeking care after symptom
onset, we shifted back this reporting window by 17 days, corresponding to an
incubation period of 11 days and an average reporting delay of 6 days. We then
randomly sampled the date of infection in this one week window. This means cases
reported in the given one-week window to give imputed dates of infection. To check
the consistency of these imputed dates, we repeated the imputation process 100
times. The resulting epidemic curves are shown in Figure 3.3
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Figure 3.3: Epidemic curves for EVD epidemic in West Africa with imputed
disease onset times; (A) Guinea, (B) Liberia and (D) Sierra Leone. The faint
lines in each plot are calculated from the different imputations, whilst the solid
lines are loess smooths of pointwise medians; Cleveland (1979)

6.2 Estimates of country-level Rt

Figure 3.4 shows country-level Wallonga-Teunis estimates of Rt in each of the three
countries.
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Figure 3.4: Wallinga Tuenis estimates of the non-spatial reproductive number
for the 2013-16 EVD epidemic in West Africa, (A) Guinea (B), Liberia and (C)
Sierra Leone
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For Guinea, it can be seen that the epidemic reached its peak 10 months after
the first case was reported. The reproductive number is at its highest before this
peak, and thereafter takes excursions above and below 1 until the epidemic finally
dies out around day 600. There were episodes when the epidemic was under control
(Rt < 1) followed by out-of-control episodes.

In Liberia, the Ebola epidemic reached its peak almost midway through the
epidemic and remained out of control for a few more weeks, returning to an in-
control state (Rt < 1) at about 120 days. The epidemic then stayed under control,
although with varying Rt, until it died down completely after about 300 days.

For Sierra Leone, the epidemic grew throughout the first few months, reaching
the peak at around 120 days after the onset of the epidemic. Subsequently, Rt

dropped below one until around day 350, when it rose above the Rt = 1 threshold
for several weeks before again falling away until the epidemic ended around day
450.

In all countries, the 95% confidence intervals appear to be much narrower
during the peak months of the epidemic when there is a lot of data and thus less
uncertainty. On the other hand, there are observed wider confidence intervals
during the early and latter parts of the epidemics. This is due to the relatively
small number of cases for estimation of the Rt.

6.3 Spatial extension

6.3.1 Model parameters

Table 3.1 shows model parameter estimates for each of the fitted transmission
kernels.

Table 3.1: Partial maximum likelihood parameter estimates of the power law (PL)
3.13 and lagged power law kernels for the three countries and their associated
AIC values

Country Model Parameter Estimate 95% CI AIC
Liberia PL γ 0.87 (0.069,1.67) -6.08

LPL γ 0.001 (-0.0053,0.0073) -4.23
δ 0.37 (-1.55,4.24)

Sierra Leone PL γ 2.11 (0.17,11.61) 12.34
LPL γ 0.049 (-0.19,0.29) 30.18

δ -3.31 (-28.45,21.83)
Guinea PL γ 0.47 (0.066,2.36) -4.26

LPL γ 0.078 (-21.26,15.19) 179.45
δ -3.03 (-0.084,0.24)
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After maximizing the partial log likelihood, the partial likelihood estimates and
95% confidence intervals γ in the power law model were 0.87 (CI:0.069,1.67) for
Liberia, 2.11 (CI: 0.17,11.61) for Sierra Leone and 0.47 (0.066,2.36) for Guinea.

To choose between the power and lagged power laws, we compared the values
of the Akaike information criterion (AIC) for the two models in each country. In
each case, the parameter σ of the lagged power law was fixed at σ = 1 while δ
and γ were allowed to vary. Overall, the power law was found to fit better in
all three countries as indicated by its smaller AIC values. We therefore used the
power law to calculate the transmission probabilities and the spatial reproduction
numbers R(y, t). Figure 3.5 shows the plots for the power law kernels and their
95% confidence intervals. The confidence intervals are very wide.
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Figure 3.5: Power law transmission kernel as a function of distance for the three
countries with confidence intervals, from left to right: Liberia, Sierra Leone and
Guinea

6.3.2 Spatial estimates

The reproductive number estimate for a whole country without taking into account
the spatial heterogeneity is given by R(y, t) when y is the single spatial unit
corresponding to the whole country. Compared with the WT estimates of R(y, t)
in Figure 3.4, some similarities in the general shape of the curve can be seen. In
this section, we present only the spatial R(y, t) estimates for Liberia. Using our
approach, the estimates are given in Figure 3.6.
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Figure 3.6: Global spatio-temporal reproductive number number R(y, t) for
Liberia (blue colour) superimposed over the global Rt estimate using WT method

Compared to the WT estimate for Liberia, there is a general similarity in the
shape. However, the estimate of R(y, t) shows the epidemic was still out of control
as shown by values of R(y, t) > 1 for a longer period compared to the WT estimate.
This could because some counties started to report more cases later on in the
epidemic and their contribution to the overall Rt is taken into consideration. The
confidence intervals for the two figures seem similar in the sense that they are both
wide early in the epidemic before narrowing up and later widening again towards
the end.

Spatial estimates R(y, y, t) are reproductive numbers at time for a given location,
y, that are transmitted by an infectious case in the same location at time t. Figure
3.7 shows these estimates for each of 12 Liberian counties. Some of the confidence
intervals are narrow, indicating that imprecise estimates of the transmission kernel
can nevertheless lead to usefully precise estimates of reproductive numbers.
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Figure 3.7: Spatial reproductive number estimates, R(y, y, t) for locations y
corresponding to 12 out of the 15 counties of Liberia.

In comparison, the WT estimates within the same county show some noticeable
differences in shape and are shown in Figure 3.8. Of note is the fact that with the
WT estimates, the overall Rt for Liberia (Figure 3.6B) closely resembles the Rt

pattern for Monsterrado in Figure 3.7. Being the county with the highest burden
of EVD, this county contributes the most to the global Rt estimate. When spatial
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heterogeneities are taken into account, this effect is reduced as all counties now
contribute to the Rt.
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Figure 3.8: WT estimates Rt within selected counties of Liberia

Finally, we present estimates of the reproductive numbers R(x, y, t) at location
x transmitted by the infectious case in a different location y at time t. This
paints a very different picture from the within-country reproductive numbers
R(y, y, t). In the counties shown in Figure 3.9, R(x, y, t) < 1 except for locations
y = Montserrado where R(x, y, t) is sometimes greater than one. This could be
because there is little interaction between these locations. For example, Sinoe
and Maryland counties do not share a boundary, hence it is plausible that the
reproductive number between them is small. The generally higher estimates of
reproductive numbers from origin cases in Montserrado county indicate high levels
of interaction between Montserrado and other counties. Montserrado has the
highest population and contains the capital city Monrovia. Therefore, rate of
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human movement from this county is likely to be both higher overall, and spatially
more dispersed, than movement rates from other counties.
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Figure 3.9: Spatial reproductive number estimates in Liberia, R(x, y, t) at
location x transmitted from location y at time t.

7 Discussion

The extension of the reproductive number to a spatio-temporal framework provides
a more complete picture of the disease transmission process. Because Rt only looks
at changes with time, it cannot provide information on any spatial factors that
affect the transmission dynamics of a disease. Accounting for the spatial dimension
can lead to the identification of transmission hotspots, as indicated by high values of
the reproduction number estimates in Figure 3.7. The average spatial reproduction
numbers between pairs of districts can also help to identify those districts that
are the primary drivers of the outbreak. Constantly high values from one district
to another indicate particularly important transmission routes between districts.
Rarely are infectious diseases homogenous in their spread over a geographical region.
Hence, our methodology will help in the design and application of interventions
designed to control outbreaks.

The epidemics in the three countries show broadly similar spatial and tempo-
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ral characteristics. For example, urban areas with high connectivity show high
transmission potential. This indicates similar driving forces, such as demographic
factors or cultural practices; the three countries share boundaries and have similar
socio-demographic characteristics.

Our methodology is applicable to different infectious diseases. Highly infectious
diseases with relative short incubation periods are best suited to the method, since
their serial interval distribution can often be known to a good approximation. Also,
reporting delays that are short relative to th corresponding incubation period are
less likely to hide intermediate events in a chain of infections. In addition to Ebola,
examples that meet these conditions include measles and influenza. For infections
with long incubation periods, it becomes a challenge to identify a chain of infection
of who infected whom, which plays a key role in the WT method and the spatial
extension described here.

Parametric modelling of transmission rates between spatial locations allows for
a principled statistical inference framework to be used in model-fitting. The partial
likelihood method has previously been used to model disease transmission, and in
other areas of application such as ecology (Diggle 2006; Diggle et al. 2010; Lawson
and Leimich 2000). The partial likelihood approach is also more straightforward
computationally than full maximum likelihood, at the cost of some loss of efficiency.

As is always the case, the precision of estimated quantities of interest, here the
spatial reproduction numbers, improves with the richness of the available data.
Typically, in an emergent outbreak only reported onset times are readily available.
This applies when cases are notified through the official government health care
system, when there is usually not enough time or resources to gather additional data.
Individual-level and location-specific covariates are not usually of primary concern
during the epidemic in the absence of local research institutions. Information
of this kind must then be gathered from other sources. Smaller, more efficient
organizations, such as within-country research institutes working closely with the
governments, can provide the means to collect additional covariates, enabling more
precise estimation of epidemiologically relevant quantities such as reproduction
numbers.

In future work, we aim to extend the model to continuous geographical space
to deal with studies of ongoing epidemics in which individual cases cases can be
geo-located in real-time.
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Abstract

The spread of human infectious diseases is driven by human movement at global
and local scales, through air travel, commuting, and the interaction of people.
The development of a quantitative understanding of human movement patterns
is, therefore, essential to effectively predict and control the rapid dissemination
of diseases. The use of mobility models for understanding infection patterns
is relatively recent in epidemiological studies, leading to the development and
implementation of a range of ad hoc approaches when developing mobility models
for infectious diseases. Yet models of human mobility describing the movement of
people from one location to another have a long history of use in other disciplines.
Here, we review the range of different approaches used for modelling human
movement across different spatial and temporal scales, and the data types that
can be used to parameterize them. We identify two main modelling approaches,
namely, the gravity and radiation models. We describe the approaches taken for
statistical model fitting and parameter estimation procedures for these models, and
discuss their performance and highlight important limitations. Finally, we identify
key challenges remaining for the formulation, parameterization and use of human
mobility models within an epidemiological modelling framework.

1 Introduction

Human behaviour underpins the spread and persistence of infectious disease epi-
demics. Among these behaviours, movement or travel, from one location to another,
is recognized to be a significant factor in the spread of diseases and their control
(Wesolowski et al. 2012; Funk et al. 2010; Cliff and Haggett 2004; Grietens et al.
2015). For example, the spread of seasonal influenza has been shown to be driven
by daily commuting patterns, providing connections between cities and permitting
the virus to access new populations of susceptible individuals (Viboud et al. 2006).
Human movement has also been shown to be a key component in the transmission
dynamics of smallpox in an event that the virus is introduced into a population
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(Riley and Ferguson 2006). With increasing globalization, understanding the role
that human movement plays in the dissemination, dynamics and persistence of
infectious diseases is crucial to the predication of future outbreak and the design of
effective control solutions.

There is a rich history of studies considering human movement patterns, and
the development of a quantitative understanding of those patterns, often in fields
relatively far removed from epidemiology. Movement patterns have been described
as a class of models known as spatial interaction models (Haynes, Fotheringham,
et al. 1984). These models describe the total movement of people, as well as the
flow of commodities, capital or information, from an origin location to a destination
location (Sen and Smith 2012). Spatial interaction is used to describe a wide
range of behaviours such as migration of individuals between locations, or the daily
commuting patterns of workers.

1.1 Evidence for human mobility driving disease dynamics

Infectious diseases are responsible for high mortality and morbidity in many different
parts of the world, with a particularly high health burden in developing countries
(Mabey et al. 2004; Bygbjerg 2012; Dye 2014). Understanding the spread of these
diseases is of great importance in the design of interventions aimed at tackling
them.

Rapid improvement in travel due to increased frequency of trips and short
period of time taken poses a threat to epidemic outbreaks, (Ruan et al. 2015; Chen
2015). Mass gatherings and movement of people are likely to provide a conducive
environment for rapid disease spread. For example, the 2014 world cup in Brazil
presented a risk for the transmission of the dengue virus among the millions of
visitors that were expected to descend on Brazil for the games (Lowe et al. 2014).

Over the past few decades, there has been rapid population growth in many
developing countries, and an increasing number of people living in urban environ-
ments, creating an environment suitable for the rapid spread of diseases (Neiderud
2015). With increasing urbanization, cities are providing a conducive environment
where people can meet, and infectious diseases that rely on close-contact or location
of hosts may be transmitted (Dalziel et al. 2013). This sharp rise in population
density and urbanization has been matched by an equally marked increase in
the spatial mobility of populations(Cliff and Haggett 2004). Quantifying human
movement is, therefore, an important undertaking with implications in disease
control and prediction, particularly in identifying the risk to otherwise unaffected
regions through travel of incubating or infectious individuals. Plans to eliminate
malaria in South Africa by the year 2018 exemplify this, having identified the most
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effective strategy to reduce imported cases, by focusing efforts at the source of
infected travelers originating in Maputo Province of Mozambique (Silal et al. 2015).

Human mobility also assists the dispersal of directly-transmitted pathogens over
large geographical areas (Stoddard et al. 2009). For example, in the case of diseases
such as malaria and dengue, the mosquitoes which act as vectors are known to
have a limited range of migration Kaufmann and Briegel (2004). Therefore, human
movement plays a key role in the transmission of the disease within and between
communities (Harrington et al. 2005). In Pakistan, human mobility is responsible
for the emergence of new dengue epidemics in previously low-risk areas (Wesolowski
et al. 2015c). In Ethiopia, a recent study has found seasonal migrant workers to
be at particularly high risk of contracting malaria (Schicker et al. 2015). Similar
observations about migrant communities were also made in Myanmar (Wai et al.
2014).

1.2 Aims of the review

The overall aim of the review is to provide an overview of mobility models, their
development, and current status in epidemiological modelling. Specifically, it aims
to provide a summary of the main classes of models for human mobility; review
parameter estimation methods used in mobility models and review the application
of mobility models in infectious disease modelling.

1.3 Search criteria

We used a narrative literature review method to summarise and critique the
literature about human mobility modelling. The objective of this review was to
provide an overview of mobility modelling, highlight their application in different
fields particularly in infectious disease epidemiology and identify gaps for further
research. Therefore, a subset of articles that tackle these objectives at a detailed
level was selected and reviewed to achieve a fair, balanced and comprehensive
overview. Through this review, it is hoped that human mobility’s role in infectious
disease spread will be sufficiently understood.

1.3.1 Limitations of the search strategy

For this review, a systematic approach was not used. Therefore, some important
papers may have been missed. This review is not exhaustive or definitive. While
a systematic review would have been preferable, the wide application of mobility
models in different disciplines would have yielded a broad area to be covered. As a
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result, the current review was primarily driven by the objective to highlight their
application in infectious disease modelling which may have introduced some bias.

2 Measuring human movement

There exist a variety of methods to measure and characterise human movement
patterns. These range from purposive large-scale surveys, small scale tracking of
individuals, to secondary analysis of information collected for other purposes, such
as mobile phone call data. Here we review the major methods in the literature and
discuss their limitations.

2.1 Surveys and censuses

In many countries, information on mobility is often captured through censuses or
other large-scale surveys of the population. Censuses typically conducted once
a decade, can capture seasonal or longer-term changes in dwelling place as well
as migration patterns. The Malawian census captures movement across districts
and regions over the previous 10-year period; the census records the change of
residence by asking respondents about their residential history. Some censuses and
large-scale surveys also capture information about home and work place locations,
and so can provide information on movement between origin and destination
locations (for example, workflow data derived from the United Kingdom 2011
census (UK Data Service 2018). Such measurements may, of course, suffer from
recall bias when respondents provide that information. Survey data generally
captures individual-level information, enabling mobility by different demographic
groups to be assessed.

One of the challenges of mobility information derived from censuses is timeliness.
Since most censuses are conducted every ten years, studying inter-censual movement
patterns is impractical. Also, census information typically fails to capture very
fine temporally resolved data, often being limited to cross-sectional information
collected within a short time period. The inherent high costs of carrying out
comprehensive and representative surveys pose another challenge. Consequently,
mobility questions are usually incorporated into other household surveys such as
demographic and health surveys (DHS). Where this occurs, questions related to
mobility tend not to be very detailed in their coverage (Wesolowski et al. 2014b).

2.2 Mobile phone records

There has been a development in measuring human mobility at the population
scale using mobile phone data (Gonzalez et al. 2008; Chen et al. 2018; Jiang
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et al. 2017; Williams et al. 2015). Whenever an individual makes a mobile phone
communication (voice call, short message service (SMS), data, allowance top up,
electronic payment, etc), the senders and receiver’s identities, date and location of
the communication are recorded by the mobile companies. Their location can then
be approximated by the nearest cell tower through which the communication was
routed. By gaining the anonymized call detail records (CDRs) together with the
coordinates of all the cell towers, it is possible to estimate the location of phone
users. Individual travel trajectories may then be mapped over a specified period.
The ever-increasing use of mobile phones, even in developing countries, has made
it possible to measure human movement in many settings (Buckee et al. 2013).

Unlike census data, mobile phone data provides information on regular movement
patterns at different spatial and temporal scales, (Wesolowski et al. 2012). These
data make it possible to follow population changes over a short period such as a
week or a season (Deville et al. 2014). This approach offers additional benefits
compared to surveys, as the data collection may be automated, and routinely
recorded by service providers.

CDRs are increasingly being used to estimate human mobility patterns across
the globe for different purposes. However, the privacy of subscribers is a concern
when using mobile phone data (De Montjoye et al. 2013). This problem may
be addressed by ensuring data released by the mobile companies for research
purposes are anonymized, typically through the aggregation of information, yielding
information on the flows of individuals between locations rather than the spatial
trajectory of individuals. Additional challenges in using the data include storage,
representation, analysis, and computation complexity (Asgari et al. 2013). Phone
sharing, common in developing countries, and a bias towards wealthy urban males
are further challenges in using mobility information derived from mobile phone data
(Blumenstock and Eagle 2010). Finally, the absence of individual level information
(e.g., demographic information or health status) excluded due to privacy concerns,
or often not recorded by the service provider makes it extremely difficult to classify
mobility patterns by some key demographic characteristics known to be important
for disease transmission (such as age).

Despite these challenges, mobile phone data have been used for a wide range of
applications, particularly in developing countries where comprehensive datasets
on mobility patterns from other sources are not usually available. Bengtsson et al.
(2015) used CDR data for predicting the spatial spread of cholera. In Kenya, they
were used to map net malaria exporting and importing locations for more targeted
disease control (Wesolowski et al. 2012) and in Namibia for mapping malaria risk
for elimination interventions planning (Tatem et al. 2014). Mobile phone data
have also been used in Kenya to quantify seasonal movement patterns driving
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rubella disease transmission dynamics (Wesolowski et al. 2015a). During the West
Africa Ebola epidemic, these data were also utilized to understand the spread of
the disease (Wesolowski et al. 2014a). They have also been used to predict the
spread of dengue epidemics in Pakistan (Wesolowski et al. 2015c).

2.3 Other methods to measure mobility patterns

A number of additional methods have been used to capture movement patterns. For
example, Global Positioning System (GPS) enabled devices have been used to track
the movement of individuals (Searle et al. 2017). GPS tracking is a common method
that can record with high accuracy the location of the device (and the participant)
every few seconds. This has been utilized in vehicles, mobile phones as well as
dedicated devices (such as navigational aids). While GPS-enabled smartphones are
increasingly widespread, more recently the development of wearable fitness trackers
can also provide another source of location tracking (Meekan et al. 2017).

GPS tracking, however, has some limitations including data loss due to signal
drop-out, dead batteries and misuse of the device (Krenn et al. 2011). Some other
technical challenges such as signal noise, signal obstruction inside buildings are
also common limitations to GPS tracking (Paz-Soldan et al. 2014).

Social media is another source of mobility data that is increasingly being used.
With billions of people using social media platforms such Facebook (Facebook 2018),
Twitter (Twitter 2018) and Weibo (Weibo 2018), it is possible to identify individual
trajectories based on georeferenced posts users can make. Other opportunities
for capturing location and movement data include geotagged pictures taken by
mobile phone users. Photo sharing services such as Flickr (flickr 2018) provide
georeferenced pictures that have been used to infer mobility patterns (Zheng et al.
2012).

3 Models of human mobility

At best, information collected by the previously outlined methodologies can describe
a representative sample of entire population. Epidemic modelling is often concerned
with predicting infection risk and transmission events for the entire population
under study. Consequently, developing models of human mobility offers a way to
predict movements within the whole population, and to describe how movements
may impact disease dynamics and control. Such mobility models, therefore, provide
a way of quantifying the amount of travel between locations when direct observation
is not feasible. Two main model formulations have been proposed: the gravity model
(and derivates) and the radiation model. Both models attempt to describe the flow
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of people (though can also be applied to other entities or commodities) between an
origin location and destination location and relate this flow to properties of those
locations. Population density is the most common location property considered,
though some studies do consider alternatives. We discuss each model formulation
in turn.

3.1 The gravity model

The earliest known formulation of a model of human population mobility was made
in the 19th century by HC Carey (Carrothers 1956). In 1885, the concept was
later used to explain migration movements (Ravenstein 1885). Ravenstein noted
that migration movement tends towards cities with large populations and that
volume decreases with the distance between origin and destination. The concept
was later generalized in the early 1940s by Zipf and Stewart (Carrothers 1956).
These interpretations had a common formulation within their models, subsequently
termed the ‘gravity‘ model of mobility.

The gravity model, borrowed from Newton’s law of gravitation force, describes
the total flow of subjects between any two distinct locations while considering the
distance between those locations. Here, subjects may be human individuals, or
commodity units. Mathematically, it is typically represented in the form

Tij =
Pα
i P

β
j

dγij
, (4.1)

where Tij is the total flow of subjects from origin i to destination j during a specific
period. Pi and Pj are the total population sizes at the origin and destination
locations i and j respectively, and dij is a measure of the distance separating the
two locations. The parameters α, β, and γ are unknown and usually obtained from
fitting a linear regression model to the data (Wesolowski et al. 2015a).

Not all gravity models use population size, however, as the sole property of
locations. Population density is often employed for models where space is considered
as a discrete grid. Gravity models of international trade use information on gross
domestic product (GDP) of the two trading countries instead of population size
(Chaney 2018; Fratianni 2007; Bergstrand 1985)

These parameters are employed differently in various interpretations of the
gravity model, with some formulations disregarding them altogether. They have
been applied to the origin and destination populations to account for hidden
(unobserved) variables that may be specific to the local regions (Toole et al.
2015). For example, α can quantify a ’push’ or repulsion effect at the origin,
while β describes a ’pulling’ or attraction effect of the destination location. In
this interpretation, destinations with large populations have a stronger pull effect
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given by a higher value of β. This assumption is often justified by considering
the population size to be a proxy for work opportunities for commuters, or sales
opportunities for commodities. The parameter γ is the distance friction coefficient
(Chen and Xu 2013) and indicates the ease of connectivity between locations. For
example, two areas separated by a range of mountains may have a higher value
of γ compared to those connected by a fully surfaced tarmac road and without
geographical obstacles between them. There is an assumption in spatial interaction
models that distance functions capture the spatial dependence between origin and
destination pairs (LeSage and Pace 2008; Tsutsumi and Tamesue 2012). However,
this assumption has been challenged by others (Porojan 2001). The residuals from
the models showed spatial dependence hence the need to properly account for
the spatial dependence in the model. By tuning the values of the gravity model
parameters accordingly, the amount of flow will also be affected. Furthermore,
the parameter γ is assumed to be uniform for all locations pairs despite possible
differences in the strength of connectivity between pairs of locations.

At an international scale, the gravity model can be augmented by adding
covariate information such as whether countries share boundaries (Anderson and
Van Wincoop 2003). The distance term in the model can be defined in terms
of factors that provide resistance to trade (Silva and Tenreyro 2006). In gravity
models, there is friction that is provided by the competing destinations for the flow
emanating from the origin i.

3.1.1 Conservation constraints of the gravity model

The gravity model presented by equation 4.1 has its own deficiencies. Wilson (1967)
pointed out the model is unbalanced in that when both Pi and Pj are doubled,
for example, the total flow quadruples instead of doubling also. In the gravity
model, there are some constraints that may be enforced. The total flow between
the origin i and destination j should equal the total flow originating at the origin i,∑
j Tij = Pi. Likewise, it must be equal to the flow terminating at the destination

location j, i.e. ∑i Tij = Pj . To achieve that, Wilson (1967) introduced constants Ai
and Bj for the origin and destination respectively. A gravity model with constraints
and a general function for the distance was defined by Wilson (1967) as follows

Tij = AiBjOiDjf(dij) (4.2)

where Tij is the total flow, Oi is the total number of individuals leaving the origin
and Dj is the total number arriving at the destination. Ai and Bj act as balancing
factors designed to ensure that the conservation constraint is achieved (Dennett
2012; Grange et al. 2010). The function f (dij) is a measure of impedance and
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can depend on the distance between i and j, on travel time, on the cost of travel,
or a weighted combination of some factors (Wilson 1967). This function can be
specified in different forms such as the exponential decay function.

When the origin is adjusted by the correction factor Ai = 1∑
j
Djf(dij) , an origin

constrained gravity model is obtained (Wilson 1967). This makes sure that the
number of trips produced at the origin cannot exceed the number of people. In a
destination constrained model, the balancing factor Bj = 1∑

i
Oif(dij) is applied to

the destination so that the total flow does not exceed the number of opportunities
on offer (MacLachlan 2011). When either of these constraints have been applied, a
singly-constrained gravity model is produced. When both have been applied in a
model, a doubly-constrained gravity model is the result.

3.1.2 Variations of the gravity model

An area of active research over recent years in spatial interaction modelling has
been the formulation and estimation of gravity models, resulting in different
forms being used. One of the earliest modifications to the gravity model is the
linearization process whereby the model is transformed into a linear model following
the generalized linear model (GLM) framework (Ewing 1974). Parameter estimation
in the traditional gravity model formulation can be computationally intensive hence
the development of more efficient ways of estimating the parameters. Computational
limitations also drove research into alternative forms of estimating gravity models.
Presenting the gravity model as a linear model is appealing as it makes parameter
estimation and interpretation straightforward. As a result, the log-linearized form
has been used several times, despite well-documented limitations, including bias
introduced by the log transformation, heteroscedasticity, and sensitivity to zero
flows between origin and destination (Burger et al. 2009). Heteroscedasticity is
caused when the assumption of constant error terms for all origin and destination
pairs is violated. Furthermore, log-linearization can lead to the misspecification of
the function form leading to unreliable and imprecise gravity type models (Fik and
Mulligan 1998).

Equation 4.1 can be log-linearized as follows

log(Tij) = α log(Pi) + β log(Pj) + γ log(dij) (4.3)

Covariates that are known to affect the flow can then be added to the model in
the usual manner. For example, Wesolowski et al. (2015a) have incorporated the
proportional of the population that was male, and constraints on the number of
trips between locations as additional covariates. A gravity model implemented as a
regression model with covariates has been applied in West Africa to investigate the



Chapter 4. Mobility models review 70

role of socio-demographic and environmental factors on inter-provincial migration
(Henry et al. 2003). A further study has developed a Bayesian hierarchical model
for human mobility that accounts for attraction and repulsion effects across the
locations, as well as allowing for correlation between how attractive an area is and
how retentive it is, restricting flow from its locations (Congdon 2010). This model
is an improvement over the fixed effects gravity regression models that assume
independence between the origin and destination effects. The Bayesian framework
of the model makes the estimation of random effects easier.

As the model outcome variable is count data of individuals moving between
locations, where the flow between i and j is a non-negative value, the Poisson
regression model is a natural GLM to consider for modelling the mean flow,

log(µij) = β0 + β1 log(Pi) + β2 log(Pj) + γ log(dij) (4.4)

where β1 and β2 are regression coefficients. This GLM has the desirable character-
istic that flow can be interpreted in terms of probabilities taking all the properties
of Poisson regression such as risk ratio interpretation of coefficients. The decay
parameter γ would normally take a negative value.

An extension to the Poisson regression model includes additional terms of
attractivity/retentivity and an accessibility index, Aj:

log(µij) = β0 + β1 log(Pi) + β2 log(Pj) + γ log(dij) + δ log(Aj) + s1i + s2j (4.5)

where Aj = ∑
r 6=j

pr

drj
is the competing destination index that measures the proxim-

ity of destination location j to alternative destinations and thus captures people’s
propensity to choose one location over the other (Congdon 2010). Pr is the popula-
tion at alternative destination r while drj is the distance separating destination j
and any alternative destination r. Large values of Aj indicate the destination is
closer to other alternative destinations with large populations, while a small value
of Aj is indicative of a spatially isolated destination (Pellegrini and Fotheringham
2002). s1i and s2j are push and pull scores at the origin and destination respectively
which are treated as spatially correlated random effects in the model (Congdon
2010). Care should be exercised, however, when deciding on the functional form of
the model to be adopted. Fik and Mulligan (1998) recommend that the appropriate-
ness of an adopted functional form should be scrutinized to avoid misspecification.
For example, the common practice of rearranging gravity type models into a linear
form to simplify estimation and interpretation may be inappropriate (Fik and
Mulligan 1998). They provide evidence that the estimation and evaluation of
gravity type models are sensitive to the data transformation and use of a flexible
functional form.
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3.1.3 Transformations of gravity models

As a safeguard against misspecification, Kau and Sirmans (1979) suggested that
the functional form should be determined from the data and not specified a priori.
A method for finding the optimal form is the use of Box-Cox transformation (Box
and Cox 1964). The Box-Cox transformation is defined as;

y(θ) =


(yθ − 1)

θ
, if θ 6= 1

log y, if θ = 0

and is aimed at ensuring that the usual assumptions for the linear model, y ∼
N(Xβ, σ2In) is met. When the gravity model has been log-linearized, the Box-
Cox transformation can be employed to bring the transformed gravity model
into the proper log-linear model specification for counts by varying the Box-Cox
transformation parameters. In the gravity model setting, the transformations are
aimed at generating a general flexible functional relationship which captures the
underlying relationships between model components.

In real life applications, a functional form may best be chosen empirically based
on the relationship between the dependent and independent variables. Physical laws
can also dictate the form to be adopted (Box and Cox 1964). For instance, depending
on some relationship in the problem under consideration, such as y ∝ xφ1

1 , . . . , x
φp
p ,

a linear relationship may not be appropriate hence the need for transformations.
Consider the multiplicative gravity model,

Tij = KPα
i P

β
j d

γ
ijµij (4.6)

with the proportionality constant K. As in the usual linear model framework,
the random error term log (µij) is assumed to be normally distributed with constant
variance as well as being independent (Fik and Mulligan 1998). When expressed in
a log-linearized method, the model is

log (Tij) = log (K) + α log (Pi) + β log (Pj) + γ log (dij) + log (µij) (4.7)

In this formulation,γ < 0 to capture the expected decay with distance while
α > 0 and β > 0 capture origin and destination effects. After the Box-Cox
transformations are applied, the model is specified as

log
(
T θij
)

= log (K) + α logP (φ)
i + β logP (φ)

j + γ log d(φ)
ij + log (µij) (4.8)
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For the response variable, the transformation is

T θij =


(T θij − 1)

θ
, if θ 6= 1

log Tij, if θ = 0

while for the xjth independent variable (i.e. Pi, Pj and dij) is

xφj =


(xφj − 1)

φ
, if φ 6= 1

log xj, if φ = 0

θ and φ are the Box-Cox transformation parameters for the dependent and
independent variables respectively. The values of the parameter φ capture the
appropriate functional relationship to be determined together with the other
regression parameters. After the transformation, no restrictions are required to be
applied to the terms in the model. As a result, the underlying relationship dictated
by the physical laws, for example, is preserved. For this reason, the Box-Cox
transformations can capture the optimal functional forms which would otherwise
have been misspecified. With the correct Box-Cox parameters, the transformed
model can convert readily to the restricted untransformed model. For example,
when φ = 0, the model changes to the log-linear model.

3.1.4 Parameter estimation for gravity models

Several estimation methods for gravity models ranging from linear to nonlinear
methods have been proposed. LeSage and Pace (2008) extended the linear models
to take account of the spatial connectivity of the regions. Ordinary least squares
(OLS) is a widely used estimation method in scenarios where the gravity model
has been log-linearized. Both regression coefficients and the Box-Cox parameters
can be estimated by maximizing the likelihood function. Furthermore, one can
statistically test the appropriateness of transformations by making use of the
likelihood ratio test where the restricted model is the null model and is compared
to the transformed model. A significant likelihood ratio test then leads to the
adoption of the transformed model. These different estimation methods can broadly
be classified under statistical and economic approaches depending on how widely
used they are in a field. Since gravity models have been studied in economics
for a longer time than in epidemiology, estimation methods are more developed.
Methods such as Poisson Quasi-maximum likelihood (PQML) are widely used in
the economic literature (Arvis and Shepherd 2013). Bayesian methods have also
found considerable use, for example (Chakraborty et al. 2013; LeSage and Llano
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2016)
The log-linearization process may lead to failure in some cases. For instance,

it fails when zero flows between locations are observed, as the log of zero is
undefined. Another challenge encountered when the OLS method is used for
parameter estimation is heteroscedasticity, distorting the model output. In the
presence of heteroskedasticity, OLS approach does not perform very well which
results in the elasticities yielding misleading results. When used to model bilateral
trade, OLS was found to consistently overestimate effects of measures, such as
geographical distance and historical ties between countries. To surmount this issue,
a pseudo maximum likelihood (PML) can be applied to the multiplicative form
of the gravity model (Silva and Tenreyro 2006); this was found to perform better
than the OLS. Furthermore, it provided a method to handle zero flows between
origin and destination, a common feature of human mobility at larger scales. Silva
and Tenreyro (2011) further validated the PML estimator and they found it to
be better than the OLS even in situations where there is a high proportion of
zero flows. Siliverstovs and Schumacher (2009) compared the PML applied to the
multiplicative form of the gravity model with the OLS estimator applied to the
log-linearized version under disaggregate trade flows which also showed the PQML
performs better than the OLS under different scenarios.

Other parameter estimation approaches have been developed to solve challenges
that result from the inadequacy of OLS when applied to log-linearized variants of
the gravity models. Methods such as Nonlinear Least Squares (NLS) for estimating
the gravity model in its multiplicative form, Feasible Generalized Least Squares
(FGLS), Gamma Pseudo Maximum Likelihood (GPML) of Manning and Mullahy
(2001) have been developed. Martınez-Zarzoso (2013) formally tested these different
estimators and found the GPML to perform well, in some cases better than the
PQML, and recommended that tests be made to select the best estimator. The
results were not conclusive about the best estimator between PQML and GPML,
and therefore it has been suggested that model selection tests on observed flow
data are conducted on a case by case basis in order to select the best model
(Martınez-Zarzoso 2013). However, it is not clear how well these approaches can
perform in epidemiological applications.

3.1.5 Limitations of gravity models

Despite their increasing use, there are several challenges facing the development
and application of gravity models of human mobility. For example, the data needed
to parameterize the model are generally not available in most areas where there
are no observations suitable for model fitting (Chowell et al. 2016). Another
challenge concerns the issue of scale. Gravity models have been found to yield
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different results at different spatial scales, thus challenging the assumption that
they are suitable for universal application. Careful tuning for each application
and its specific spatial scale has been suggested to address this issue (Yang et al.
2014). There is uncertainty as to the exact form for the impedance function in the
gravity equation. Since the observed decay in interactions between people with
increasing distance is typically nonlinear, capturing this decline is crucial for correct
prediction from gravity models. Determining the shape and parameters of this
function poses a challenge (Halás et al. 2014). Some of the candidate functions for
the distance between the origin and destination include a simple Euclidean distance,
the exponential function and the inverse power law (Balcan et al. 2009). This wide
range of choice has the potential to affect the quality of the model and hence its
usefulness in different settings. A formal model selection approach is needed to
resolve this issue. Currently, it is not clear under which conditions different forms
of the impedance function should be used. In the original gravity law, the inverse
power law is used, but this formulation has been found to lack a theoretical basis
(from a sociological perspective).

Another challenge to model spatial interactions concerns the definition of
attraction measurement. It has been suggested that the attraction measure is a
function of the flow between the origin and destination rather than the flow itself
(Chen and Xu 2013). The gravity model also fails to account for any opportunities
in locations lying between the origin and the destination. For example, the presence
of a highly dense population between an origin and putative destination may be
expected to affect the flow between the origin and destination (Simini et al. 2012).

Gravity models also rely on parameters that must be estimated from observed
data. In the absence of such data, model fitting is impossible, and parameters
fitted to other populations are usually used. The presence of collinearity among
the gravity parameters also makes their estimation challenging (Xia et al. 2004).

3.2 The radiation model

The radiation model (RM) proposed by Simini et al. (2012) provides an alternative
approach to the gravity model to describe human movement between locations.
Unlike the gravity model, the RM is based on the intervening opportunities model
of Stouffer (1940) and thus takes account of the populations between origin and
destination locations. The RM attempts to address some of the limitations associ-
ated with the gravity model, and also borrows from the concepts of radiation and
absorption in physics. As in the gravity model, the populations at the origin and
destination act as masses. In the RM, individuals move from an origin at a rate
proportional to the population and are ’absorbed’ by other locations at the rate
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proportional to their respective populations - absorption by a location defines an
individual’s destination. The probability of an individual arriving at any location,
therefore, depends on their probability of not being absorbed prior to arriving there
(Toole et al. 2015). The model takes the form

Tij = Ti
minj

(mi + sij)(mi + nj + sij)
, (4.9)

where Tij is the total flow from location i to j, Ti is the total flow emanating
from the origin i, mi and nj are the population sizes at the origin and destination
respectively. Note, the model is described by Simini et al. (2012) as ’parameter
free’, though Ti is needs to be estimated or provided for the model to work. Lastly,
sij is the total population size contained within the circle of radius rij centered
at origin i, excluding the populations at locations i and j. This model has its
conceptual origin in describing the job-hunting market, and is based on the premise
that individuals are likely to opt for locations that maximise better job prospects
and closeness to their homes. The model assumes that the number of opportunities
in a location is proportional to its population size. Therefore, individuals are more
likely to find a job in a location with a high population and be ’absorbed’ by that
location. On the other hand, if the area around the origin i has a high population,
an individual would be able to find a location with good job opportunities before
reaching a putative destination location j further away; the sij in the radiation
model accounts for this intervening population. As such, the radiation model does
not rely directly on the distance between the origin and the destination per se.
Instead, it depends on the opportunities available between the two locations. It is,
therefore, more robust to the misspecification of the impedance function than the
gravity model. Its parameter free nature also avoids the model fitting challenges
faced by gravity models. Despite this, it has been shown to perform better than
the gravity model in certain applications (Simini et al. 2012).

One significant challenge with the application of the radiation model is the value
of the outflow term, Ti which is unspecified. Hence applying the radiation model
at the spatial scale of interest may be a challenge due to this missing information.
In their paper, Simini et al. (2012) applied the radiation model to USA commuting
data in different states, where census derived information on outflow rates are
known.

The radiation model has not been widely used to date in infectious disease
modelling due to the challenges in how it can be used to model epidemics (Roberts
et al. 2015). In a recent study, the radiation model was used to understand mobility
patterns to aid application of interventions for malaria elimination (Marshall et
al. 2018). It has also been used for understanding the role of human mobility
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in the transmission of Schistosomiasis in Burkina Faso (Perez-Saez et al. 2015).
Other applications of the radiation model for modelling infectious disease dynamics
include (Dalziel et al. 2013; Tizzoni et al. 2014).

4 Application of spatial interaction models in
epidemic modelling

Mathematical models of infectious disease modelling are commonly used to inform
public health policy, from improving an understanding of the mechanisms driving
epidemic processes to identifying the optimal intervention for controlling the
disease. Owing to their central role in determining the spatial spread of disease, it
is important that the mobility models which describe movement are of a suitable
model structure, parameterized and validated, to provide a relevant and accurate
description of movement.

Jandarov et al. (2014) and Xia et al. (2004) applied the gravity model to study
the epidemic coupling for measles through gravity time series SIR model. The
gravity model for city to city contacts was also used in transmission models to
derive the force of infection of pandemic influenza in cities in England, Wales
and the US (Eggo et al. 2011). In Vietnam, age-structured gravity models were
incorporated with SEIR models to simulate the spread of influenza between cities
(Boni et al. 2009). Gravity models have also been applied to estimate the spread of
vector-borne diseases (Barrios et al. 2012) and predict the global spread of influenza
(Li et al. 2011). Sarzynska et al. (2013) linked gravity and metapopulation models
for the spread of dengue fever in Peru. Balcan et al. (2009) applied mobility models
to investigate the shaping of spatio-temporal pattern of global epidemics.

Commuting data from surveys and censuses have been used to model human
movement in epidemic models. Charaudeau et al. (2014) used district level commut-
ing data derived from census to show that commuting is correlated with influenza
like illnesses in France. In South Korea, Lee et al. (2018) used a metapopulation
model linked with commuting flow to study the spatio-temporal pattern of the
spread of H1N1 influenza in 2009. District level commuting and case data were
aggregated to the regional level to investigate patterns of disease spread. Dalziel
et al. (2013) used individual commuting data from the 2006 Canadian census to
investigate the differences in human mobility and its relationship with epidemic
dynamics. The observed differences in mobility between cities was found to be
enough to cause differences in epidemic dynamics among cities (Dalziel et al. 2013).
Riley and Ferguson (2006) used UK census-derived commuting data to describe
the spatio-temporal dynamics of smallpox if it were introduced in the community.
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In addition to the commuting data, mobile phone data has also been used in
epidemic modelling. Finger et al. (2016) developed a model incorporating human
mobility information derived from mobile phone CDRs to investigate role of mass
gatherings on the spread of cholera in Senegal. In Haiti, CDRs were used to track
movements of about 3 million subscribers for modelling spread of the 2010 cholera
outbreak. A similar study has been conducted in Pakistan to model the dynamics
of Dengue (Wesolowski et al. 2015c). The Ebola disease outbreak in West Africa
between 2013 and 2016 saw a collaboration between mobile companies that provided
mobile phone data and researchers in trying to understand the extent to which
human movement contributed to the spread of the deadly epidemic (Wesolowski
et al. 2014a). Valdez et al. (2015) also investigated the impact of human movement
on the Ebola epidemic by investigating the role of travel between counties in Liberia
on the epidemic.

4.1 Limitations of mobility models in epidemic modelling

Several challenges and limitations remain regarding the use of mobility data and
models for simulating the spatial spread of infections.

A key challenge is the relative lack of detailed movement data with which to
parameterize the necessary models. Individual level data on human movement is
difficult to measure and rarely reported, presenting problems in understanding
individual-level variation in mobility patterns and identifying individual-level char-
acteristics that may explain such differences. Adults and children may have very
different mobility patterns (Read et al. 2014), and such patterns may be key in
understanding the evolution of seasonal diseases such as influenza (Bedford et al.
2015). Despite the increasing use of CDRs for mobility studies, privacy issues
generally prevent the release of individual-level information. CDR data is generally
released to researchers in an aggregate form from cell phone service providers,
and often cannot be used to inform movement between national borders. Daily
commuting information has been widely used for epidemic modelling, but again
this is often only available in an aggregated form, and does not typically provide
information on non-work related movement.

A related challenge is the availability of contemporary movement data for
locations experiencing an outbreak. Much of the high-resolution mobility data
available is for developed countries, though increasingly this information is being
made available for developing countries. During the 2013-16 West Africa Ebola
epidemic, lack of good quality mobility data made modelling of transmission difficult.
International airline passenger data were used to model the risk of international
spread of Ebola from West Africa (Bogoch et al. 2015; Read et al. 2015), but data
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capturing the local movements of people by bus or foot across the porous borders of
Guinea, Liberia and Sierra Leone were not available. Local movements are thought
to have played a key role in transmission of Ebola, (Cori et al. 2017).

The different model structures used by mobility studies outlined previously,
highlight an important challenge for modelling mobility for epidemics, namely,
what is the appropriate model structure and covariates for accurately predicting
the movement of individuals? The two main model structures used, the gravity
and radiation models, make different predictions of the flow of individuals between
locations, which may have important consequences for estimating infection risk in
particular populations (Wesolowski et al. 2015b).All applications of mobility models
in epidemiology (to the best of the authors’ knowledge) use a measure of population
density as location-specific covariate; no studies have systematically explored a
wider range of possible alternative location covariates. Many alternative covariates
exist, such as environmental measures, and possible interactions between different
covariates should also be considered. Many studies use geographical distance
between locations as a property of both locations. However, other properties may
be more appropriate, particularly for applications at small geographical scales, such
as across-city movement. Journey time and travel cost may be worth exploring as
potential explanatory variables, and different transport options (walking, cycling,
driving or using public transport) may require different models to optimally explain
mobility patterns. By extension, the movement of different types of individuals
(for example, different age or socioeconomic groups) may also be best described
using different models. There is a relatively low use of formal statistical testing
and model selection approaches in spatial interaction modelling.

Issue of spatial scale is another important limitation to the application of gravity
and radiation models in epidemic modelling. These models have been shown to
not perform uniformly at different spatial scales, and it may be that different
spatial scales require multiple models, instead of a single formulation. For example,
when modelling within and between cities and between countries epidemic spread,
the models may need further tuning to more accurately capture the underlying
mobility patterns in the different settings: poorly predicting movement at one scale
may render epidemic predictions inaccurate. For example, some researchers have
suggested that the radiation model is most suited to predicting human mobility
between larger spatial regions such as counties, and may not be applicable in
predicting human mobility at finer spatial scales, such as between districts within
cities, (Liang et al. 2013; Kang et al. 2015; Masucci et al. 2013; Yang et al. 2014).
Yan et al. (2014) modified the standard radiation model for mobility prediction
in cities using different mobility datasets such as passenger taxi commuting data
in Beijing and Shenzen, mobile phone data in Abidjan, Cote d’Ivoire, and tracker
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survey data in Chicago. They developed a population-weighted opportunity (PWO)
radiation model which was found to predict mobility better than the standard
radiation model in these different city settings. This model widens the possible
destination areas of individuals, unlike the RM which assumes that people tend
to choose the nearest locations with the biggest benefits. In this PWO model,
the whole city encompasses the possible destination locations for individuals. Yan
et al. (2014) introduced a scaling parameter to the original radiation model which
takes the role of capturing the influence of the region scale and the degree of
heterogeneity in the distribution of facilities that may be visited. As the bulk of
social interactions are often made very close to home (Read et al. 2014), there is a
need for future studies of mobility to focus on a spatial scale appropriate to the
infection process.

A further challenge is the incongruity often seen between the types of movement
described by mobility models and those used in epidemic simulations. Gravity
models describe the flow of individuals between an origin and a destination, while
epidemic models typically describe the movement of individuals. There is also a
challenge in defining the quantity being modelled. Gravity models tend to focus
on the flow of commuters, ignoring trajectories of individuals through space (en
route to their workplace, and back); as such the intermediate locations they pass
through to get to their destinations are not considered. As these other locations
may also present an opportunity for infection, the spatial spread of infection
may be poorly estimated. For seasonal influenza, it is thought that transmission
outside the household is split evenly between the general community and school
and workplaces (Ferguson et al. 2006). With sufficiently detailed data, multiple
models of mobility for different purposes (work, shopping, leisure, etc) could be
estimated, and epidemic prediction made using an ensemble of these different
models. Additionally, models which describe the trajectory of individuals through
space during a day could be developed.

Human behaviours often have strong seasonal components, such as travel
during weekdays and weekends, or movements related to national holidays. Such
seasonal patterns are known to be important for describing disease dynamics, and
it may be important to capture these changing features within mobility models.
Similarly, changes in covariate measures during the course of an epidemic may be
important to incorporate into mobility models (e.g., if there are sudden changes in
population density, or restrictions on movement). Additionally, travel behaviour of
individuals may change in response to an epidemic (Funk et al. 2010), as was seen
in Mexico during the early days of the influenza pandemic in 2009. During the
SARS outbreak of 2003, there was widespread disruption on social behaviour and
businesses including tourism with a drop in hotel occupancy of over 60% (Heymann
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and Rodier 2004). In Hong Kong, there was a reduction in the rates of travelling
(Lau et al. 2005). To adequately capture such changing epidemic features requires
the development of dynamic models of mobility.

5 Conclusion

A wide range of mobility models have been developed by researchers in other disci-
plines, and it may benefit infectious disease modelling to consider alternative model
structures and covariates. Key challenges remain, however, for the improvement
of mobility prediction models and their integration within transmission models.
The large amount of detailed information afforded by the widespread use of mobile
technology offers an important future resource for the further development of
mobility models, if privacy issues can be overcome. However, there is currently
a need for greater statistical rigour regarding the construction and selection of
mobility models and their covariates.
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Abstract

Human movement plays a key role in the spread of infectious diseases. Various
models have been proposed which purport to capture the average travel behaviour
of individuals using underlying population density measures and are routinely used
to predict movement patterns in epidemic forecast models. These models rarely
distinguish between different types of individuals, nor do they incorporate individual
and population level heterogeneities in travel behaviour. Here, we propose a model
of movement which explicitly models an individual’s multiple trip to destinations.
We apply this model to data collected over the first year of a longitudinal cohort
study set in and around Guangzhou Province, China.

1 Introduction

Human mobility leads to contacts which contribute to the spread of directly trans-
mitted infectious diseases (Wesolowski et al. 2012; Viboud et al. 2006; Prem et al.
2017; Belik et al. 2011; Findlater and Bogoch 2018). Quantitatively understanding
the spatio-temporal patterns of mobility is important for epidemic modelling and
forecasting as well as public health control. Contacts can also help in better under-
standing the spread of epidemics. How far people travel from home and their rate
of social interactions along their journey dictate the spread of extent of epidemics
such as influenza, SARS and measles.

Several studies have been conducted to understand human social contact pat-
terns and their relationship with infectious disease spread. For example, the
polymod diary study which was carried out in Western Europe (Mossong et al.
2008). The study described social mixing, contact patterns and contact durations
among participants across European countries. The study found that contact
patterns displayed a strong assortativity with age. For example, school children
and adults were observed to highly mix with people of the same age (Mossong
et al. 2008). In another study, (Read et al. 2014) found no difference in contact
rates between people in urban and rural settings in Southern China, but there were
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observed differences in how far from home those contacts were made. Despite these
results, it is likely that differences in mixing patterns exist between individuals.
Therefore, individual level covariates can help shed more light on the underlying
contact patterns.

To model human mobility, one of the common models in use is the gravity
(Carrothers 1956). This model has been widely used in economics and trade.
For example, to model the trade volume between two countries (Chaney 2018;
Bergstrand 1985; Fratianni 2007; Anderson and Van Wincoop 2003). The gravity
models tend to treat all individuals the same and do not make different models
for different types of individuals (e.g. adult vs children) despite the important
differences that may exist with possibly some implications for infectious disease
spread.

Little work has attempted to reconcile spatial movement of individuals with
social contacts and efforts to obtain information on contacts with their spatial
information (e.g. distance from home or point location) have been sparse (Read
et al. 2012). There is relatively little information on how contacts are distributed in
space, yet the combined process of mobility and social interaction is fundamental
to epidemic spread and non-pharmaceutical control of epidemics.

Here, we analyse information on journeys between pairs of locations made by
participants of a cohort study in Southern China that measured social interactions
and the spatial locations at which they occurred to examine the drivers of the
socio-spatial process and identify key individual-level covariates that significantly
affect this process.

2 Methods

2.1 Notation

We consider a set of n locations, i : i = 1, 2, . . . , n, each georeferenced to the
central points, xi, of a set of grid-cells that partition the study-region. The distance
between xi and xj is denoted by dij = ||xi − xj||, where || · || is a context-specific
metric, for example straight-line distance, road distance or travel time using public
transport. Here, we use straight-line distance for simplicity.

Our data consist of a sequence of observations of an individual with known
home location making a social encounter in a set of locations within the larger set
of n locations. This information was collected by asking individual members of
the study-population where they met people. In what follows, we assume that no
individual is sampled more than once or, equivalently, that multiple journeys by
the same individual are independent events.
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We denote sampled individuals by k = 1, . . . ,m, each with an associated vector
of covariates ak. We denote by bi a vector of covariates associated with the location
i. We write ik for the home-location of individual k, and jk for their destination, if
any.

2.2 Model

We assume that journeys made between locations i and j by individual k follow
independent Poisson processes with intensities λijk per day, where

log λijk = a′kα + b′iβ + b′jγ + h(dij;φ). (5.1)

In (5.1), h(d;φ) is a specified function of distance, with parameters φ; we give
examples in Section 2.4.2.

We write θ = (α, β, γ, φ) for the complete set of model parameters. It follows
from (5.1) and the independence assumption that the probability individual k
makes no journey on the day in question is

qk(θ) = exp
−∑

j 6=ik
λik,j,k

 , (5.2)

and the probability that individual k makes a journey from their home-location, ik,
to another location, jk, is

pk(θ) = {1− qk(θ)} ×
λik,jk,k∑

` 6=ik λ(ik, `, k) . (5.3)

2.3 Likelihood ratio inference

We write the observed set of sampled journeys as S = {(ik, jk) : k = 1, ...,m},
where ik = jk indicates that the sampled individual made no journey on the day in
question. Then, the log-likelihood for θ given S is

L(θ) =
m∑
k=1

I(ik, jk) log qk(θ) + {1− I(ik, jk)} log pk(θ), (5.4)

where I(i, j) = 1 if i = j and zero otherwise.
Maximum likelihood estimates, θ̂, can be obtained by maximising L(θ) with

respect to θ. The large-sample variance matrix of θ̂ is the matrix V (θ̂, where V (θ)
has elements

vrc = −∂
2L(θ)
∂θr∂θc

. (5.5)
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Nested sub-models can be compared using the generalised likelihood ratio
statistic, D = 2{L(θ̂ − L(θ̂0)}, where θ0 denotes θ with p if its elements assigned
fixed values. If the sub-model implied by the constrained parameter vector θ0 is
correct, the approximate sampling distribution of D is chi-squared on p degrees of
freedom.

2.4 Data

We used data from the fluscape study which is a longitudinal cohort study with
annual follow ups. The aim of the study was to relate risk of infection with social
contact patterns in Guangdong Province, China (Jiang et al. 2016). In the survey,
respondents were asked about the people that they had contacted the previous
day from morning till evening. These included all the people the respondent had a
face-to-face conversation or touch (Read et al. 2014). Individual level characteristics
of the respondents were collected in addition to location specific covariates. The
respondents were also asked about the characteristics of their contacts; such as
age, total duration of the contact among other characteristics. The coordinates of
the home locations of the survey respondents and the contact locations were both
recorded during the survey. Data were collected from 2734 unique respondents. In
this study, we used data from only 3 of the 4 surveys. Some background information
of the study is described in Lessler et al. (2011)

Population density data were collected from WorldPop project at 100m resolu-
tion (World Pop 2018). We extracted the population densities of the home and
contact locations.

2.4.1 Data processing

We processed the data by taking the following steps; Firstly, we reduced the
resolution of the population density raster data from 100m x 100m by aggregating
the pixels to obtain grid cells at roughly 1km x 1km resolution. During the
aggregation process, the grid populations were summed to obtain higher population
figures for the new grid cells. We obtained the home and contact location population
densities by extracting populations using the coordinates of the two locations. In
this analysis, we only considered the contact locations that were reported by
participants as the potential destinations; we did not include locations for which
no participant reported a contact. This is clearly a subset of potential locations in
which individuals could have made a contact. The fitted models, therefore, describe
the rate at which individuals made visits or return visits to a limited number of
locations, and are not strictly comparable to general mobility models. To reduce
the computational burden, we also restricted contacts to those within 500km of the
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subjects’ homes. In this study, most of the contacts were reported at an average
distance of 9km from home with occasional trips to further locations. We removed
112 contact locations from the analysis that were beyond 500km of participant’s
home location.

Figure 5.1 shows the location of the study area within Guangdong Province,
the recorded home locations, reported locations where contacts events occurred
and the underlying population densities.
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Figure 5.1: Study area within Guangdong Province in Southern China showing
the home and contact locations over the study period. The blue dots are home
locations while black dots represent the contact locations. Background colours
green, through yellow to red show increasing population density on a log scale
(density from 1 per sq. km to 22,000 per sq. km).The brown boundary shows
the limit of our analysis

2.4.2 Model fitting

We fitted several models with different characteristics and different levels of com-
plexity to aid in the model selection. Our model fitting approach was driven by our
prior knowledge of the known human mobility relationships with key individual
level characteristics such as age and occupation that are likely to have an effect of
how people move from place to place. The first model, M1, was a gravity-like model
with the population densities at origin and destination i and j and the distance as
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the covariates. In the second model, M2, we fitted a similar model to M1 but now
with an intercept term. Model 3 was also defined in a similar manner to M1 but
with age group as a scaling effect. In our fourth model, M4, we considered another
gravity-like model with age group affecting all mobility coefficients. This was done
by fitting interaction terms between age groups and each of the covariates of the
gravity-like model (i.e. populations densities at i and j and distance dij). The
fifth model, M5, built on the gravity-like model by adding the effect of occupation
category of participants as a scaling effect. This was done in order to investigate
the effect of occupation on an individual’s propensity to revisit contact locations.
A summary of the fitted models is presented in Table 5.1.

Table 5.1: A summary of the different models fitted to the data and their
description

Model Formulation Description
M1 log λijk = βipopi + βjpopj + γdij Basic gravity like

formulation, no intercept
M2 log λijk = αk + βipopi + βjpopj + γdij Basic gravity like

formulation with intercept
term

M3 log λijk = αkAgeGroupk+βipopi+βjpopj+γdij Gravity like formulation
with rate scaling by age
group

M4 log λijk = βikpopi ∗ AgeGroupk + βjkpopj ∗
AgeGroupk + γkdij ∗ AgeGroupk

Gravity formulation with
age group affecting all
mobility coefficients, no
intercept

M5 log λijk = αkJobk + βipopi + βjpopj + γdij Gravity like formulation
with scaling by occupation
category

3 Results

3.1 Study demographics

During the first year of the study, 1794 enrolled of which 924(51.5%) were men
and 870(48.5%) were females. In the second year, there were 2009 participants
comprising 1025 (51%) males and 984 (49%) females. During the third year, a total
of 1813 participants took part. Of these, 932(51.4%) were men and 878(48.4%) were
females. The mean age across the genders was roughly the same (42 for females
and 43 for mean). There were varied occupations for the study participants, such
as full-time employment, students, part-time among others. The majority of the
participants (76%) lived in rural areas around the urban centres.
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In this study, we only considered individuals who made a journey from i to j
to make contacts. The characteristics of this subset of individuals are shown in
Table 5.2

Table 5.2: Demographic characteristics of study participants with recorded
movements and contacts

Sex N(%)
Male Female

Age group
≤ 15 176(13.26) 119(9.72)
16-24 172(12.96) 120(9.80)
25-34 145(10.93) 178(14.54)
35-44 216(16.28) 236(19.28)
45-54 239(18.01) 242(19.77)
55-64 192(14.45) 174(14.22)
65-74 115(8.67) 96(7.84)
75+ 64(4.82) 56(4.58)

Location
Rural 1062(87.94) 944(77.12)
Urban 264(19.89) 279(22.79)
Emp. status
Full-time 447(33.69) 365(29.82)
Self-employed 184(13.87) 145(11.84)
Part-time 99(7.46) 75(6.13)
Retired 167(12.58) 145(11.84)
Student 206(15.52) 144(11.76)
Home Based 9(0.69) 232(18.95)
Sick/disabled 4(0.30) 4(0.33)
Unemployed 202(51.22) 106(8.66)
Other 9(0.69) 6(0.49)

Day
Weekday 1167(87.94) 1086(88.73)
Weekend 153(11.53) 128(10.46)

Figure 5.2 shows the differences in the distances covered by participants from
their homes to destination locations. It can be observed that most of the contact
events are within a relatively short distance from home at roughly around 6 km.
A majority of contacts took place closer to home while a few took place far away.
This pattern is similar across gender, occupation, day of the week, and location
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(rural or urban). This observation of a majority of contacts occurring in the vicinity
of the home locations has been highlighted in some works.
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Figure 5.2: Inverse cumulative distance functions for individual movements on
the log scale. The plots show the proportion of movements to make a contact
at a particular distance (d) or greater from home. (A) Distance kernels for
movements for males and females (B) Distance kernels for movements by day,
whether weekday or weekend (C) Distance kernels for movements by employment
status, and (D) Distance kernels by location, whether urban or rural

3.2 Model results

Table 5.3 is a summary of the different fitted models
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Table 5.3: Parameter estimates of the fitted models

Coeff M1 M2 M3 M5
Intercept 1.3(-2.2,4.7)
Origin pop -0.001(-0.002,-0.00) -0.001(-0.02,-0.00) -0.001(0.001,0.001) -0.001(-0.002,-0.00)
Destn. pop -0.004(-0.004,-0.003) -0.003(-0.003,-0.002) -0.003(-0.003,-0.001) -0.003(-0.003,-0.002)
Distance -0.005(-0.006,-0.004) -0.004(-0.006,-0.003) -0.005(-0.006,-0.003) -0.006(-0.008,-0.005)
Age group
≤ 15 0.94(0.90,1.02)
16-24 0.95(0.90,0.99)
25-34 0.94(0.89,0.98)
35-44 0.74(0.70,0.77)
45-54 0.80(0.77,0.83)
55-64 1.13(1.09,1.16)
65-74 0.71(0.65,0.77)
75+ 1

Occupation
Full-time 0.17(0.10,0.24)
Home-based 0.88(0.80,0.96)
Student 1.32(1.25,1.40)
Retired 0.70(0.62,0.78)
Self-employed 1.21(1.14,1.29)
Sick/disabled 1.00(0.70,1.31)
Part-time 0.72(0.62,0.82)
Unemployed 1

AIC 1.10 3.11 15.11 6.94

The estimates of the relationship between the populations and the distance
with the age categories is given the Table 5.4

Table 5.4: Mobility model coefficients for model M4 when including an interaction
effect between age group and population at origin, destination and distance

Coef popi (95%) popj (95%) dij (95%)
Age group
≤ 15 0.63(0.61,0.64) 0.31(0.30,0.33) 1.10(1.08,1.21)
16-24 0.97(0.86,0.99) 0.04(0.03,0.05) 0.59(0.51,0.66)
25-34 -0.11(-0.14,-0.09) 0.46(-0.49,5.00) 0.62(0.57,0.71)
35-44 0.33(0.23,0.54) 0.12(0.10,0.15) 0.96(0.91,1.01)
45-54 0.90(0.74,0.98) -0.45(-0.64,-0.34) 0.005(0.003,0.007)
55-64 0.38(-1.77,2.52) 0.23(-1.92,2.38) -0.17(-3.62,3.26)
65-74 0.53(0.51,0.54) 0.22(0.21,0.22) 0.79(0.67,0.93)
75+ 0.64(0.61,0.67) 0.12(0.11,0.14) 1.66(1.46,1.86)

AIC 42.62

In the gravity like model, M1, the rate of movement from i to j only depends on
the population densities at the origin and destination locations and their distance.
It is observed that the origin population has a small negative effect on the rate at
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which individuals make repeated visits to locations from their home locations. As
the population density at the origin increases, individuals reduce the rate at which
they revisit locations. This can be interpreted as a push effect that drives people
to make movements out of their home locations to make contacts elsewhere. In
model M1, this push effect is relatively weak leading to fewer repeated visits. The
destination density effect is also small and negative. An increase in the population
density at the destination does not lead to an increase in the attractive power.
This can be interpreted as a push effect. The effect of distance separating i and j
is also small. All the gravity parameters are significant in the model.

In model M2, the gravity-like model with an intercept term, shares some
similarities with the model M1. Model M2 again shows a negative effect for the
origin, destination and distance effects. Looking at the relatively large value of the
intercept term in this model, it suggests that there are other factors contributing
to the rate at which repeat visits occur in addition to the population densities and
the distances.

In model M3, the age group acts as a scaling effect. There is a positive effect of
age on all the age groups compared to those aged above 75 years. There is also
a general decreasing trend with age. The highest effect of age is observed in the
55-64 age group.

In model M4, there is an observed consistent pattern for the coefficients of
age group and origin population interaction (popi ∗ AgeGroupk). The estimates
of the age group and destination interaction (popj ∗ AgeGroupk) suggests that
population density at potential destinations has a significant ‘pull’ effect. For
distance, there is also a similar trend of positive interaction effects. In general,
the interaction parameter estimates indicate age is an important predictor of an
individual’s movement rate. The parameters are shown in the Figure 5.3.
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Figure 5.3: Parameter estimates of the fitted interaction model
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In model M5 with scaling by the occupation, there is an observed positive effect
for all occupation categories compared to the unemployed. Those on full time
employment have the lowest effect. Individuals in this occupation category likely
visit a single location all week and this causes their rate of returning to locations
to be lower than those that visit multiple locations. Students are observed to
have the highest rate of movement among all the job categories compared to the
unemployed. This pattern is also observed for home-based, retired and part-time
employees. Students are likely to visit more locations during the school week and
also revisit them.

4 Discussion

Our modelling framework establishes a statistical framework for integrating explicit
individual information to investigate mobility models which usually model mass
flow of people. It allows for testing whether the inclusion of such information
improves the model and whether different age groups have fundamentally different
mobility models, and so behave in different patterns. For example, there is an
underlying assumption that different age groups such as children and adults have
the same mobility patterns leading to the use of a single model to describe the
movement of both groups.

The framework also sets a foundation for the inclusion of longitudinal informa-
tion for individuals making it possible to investigate whether people consistently
follow a particular mobility model over a long period of time. This can be useful in
the control of infectious diseases as individual’s mobility patterns would be well
known leading to better design of interventions targeted at a particular age group.

The effect of individual level covariates such as age, sex, and occupation provides
a possible improvement to the models for aggregate flow such as the gravity model.
Our study takes individual level differences in mobility patterns into account
instead of modelling the total flow. In this study, we analyzed a subset of these
possible models, mainly looking at age and employment as key drivers of the rate
at which individuals visit known contact locations. The reduction in spatially
dispersed contact in the older age groups may likely slow down contact rates and
hence the reduce the risk of older people driving infections. For more effective
outbreak control, this knowledge can play a key role in the design of more effective
non-pharmaceutical control interventions such as movement restrictions which can
be put in place to target the most likely group to transmit infection. An example
of an intervention targeted at a specific groups is school closures (Cauchemez
et al. 2009; House et al. 2011). It is also possible to restrict contacts in locations
around communities where infections are known to be widely transmitted based on
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individual qualities. Ferguson et al. (2006) found that relatively high transmission
levels occur in communities around home locations where people live and not just
in work locations.

Modelling individual trips between locations i and j allows for the inclusion
of covariates at different scales (such as individual and location). Our approach
places great emphasis on model specification, parameter estimation and model
evaluation, avoiding model specification challenges commonly encountered when
the gravity model is expressed as a linear model to facilitate model parameter
estimation (Fik and Mulligan 1998). The formal model testing and the likelihood
based inference, possible within our framework, is another strength of our approach
over the common approaches that lack a well-established framework for inference.
It also provides a framework for handling longitudinal data.

The main limitation of the study is that we only considered the locations
where individuals reported contacts, excluding locations for which contacts were
not reported. Therefore, we did not model an individual’s activity space and
hence it is not possible to fully characterize a person’s mobility patterns. Another
limitation of this study is the lack of population data for Hong Kong and Macau
which are likely key destinations locations. These are big urban centres which are
likely to offer some job opportunities to people from the study area and therefore
attract commuters. This information was not available through WorldPop data
and therefore these locations could not be considered in our models. However,
travel from mainland China to these locations requires crossing a border and visa
approval, so it is unlikely that these destinations are viable as daily commuting
destination for the majority of our subjects and the population of Guangzhou.

For future steps, modelling the rate at which individuals make trips over an
entire geographical space would be a natural extension to the approach presented
in this paper. Such an approach would make it possible to cover all possible
destinations for an individual instead on only a subset of locations. By looking
at all possible destination locations, the model would simultaneously address
both long-range and short-range travels and implications for infectious disease
spread. Another future step to the model is allowing the model to handle repeated
observations through the inclusion of random effects for individuals.

5 Conclusion

In this paper, we presented a model for individual journeys between location pairs,
while taking into account the different individual, origin and destination character-
istics that may influence the rate of making these journeys. An understanding of
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these characteristics can help in further understanding the role of human movement
on disease spread but also how to control the spread of infectious diseases.
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Chapter 6

Discussion

In this thesis, we investigated how different interactions between populations lead
to differences in the spread of infectious diseases and reviewed and built models
that considered mobility from a range of perspectives. The malaria model of
Chapter 2 identified the spatial correlation of malaria cases, where human mobility
is one potential mechanism generating the spatial dependence. The extension of
reproduction number estimation (Chapter 3) to incorporate spatial information,
generates estimated effects of one location on another: human mobility is likely to
be a major factor driving these interactions. We utilized distance kernels only and
population densities to measure changing disease transmission potential between
a pair of locations. In Chapter 4, we reviewed different approaches to modelling
human mobility from a range of disciplines, how models are used and how they
are being applied in epidemiology. Finally, in Chapter 5, we considered detailed
information relating where individuals make social encounters (which have the
potential to spread close-contact infection) to their home locations, to identify a
parsimonious model of mobility relating to contact. We explicitly modelled the
individual rates of movement which are requirements for the spread of infections
such as influenza, measles, and Ebola among others. We have also considered other
factors, such as environmental and social characteristics, that may also lead to
differences in the transmission potential of a disease, with a case study of malaria
in Malawi. Studying and understanding the different processes that can drive the
geographical spread of infections is an important undertaking for the control of
infectious diseases.

Connectivity through mobility has been increasing, changing the face of the
world in the process since the 18th century. In pre-industrial times, water ways,
horses and carriages were the most common mode of transportation (Cliff et al.
1998). The industrial age brought rail transport, bicycles and steam ships which
greatly increased the distance covered and improved connectivity (Van Audenhove et
al. 2018). More industrialization in the 20th century brought air transport, further
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expansion of roads and rail, and the coming of personal cars which have become
a backbone of mobility. We are now living in an age of rapid industrialization,
increasing social media usage and unprecedented digitization through computer
use (Cliff et al. 1998; Van Audenhove et al. 2018). The world is becoming more
urban and it has been projected that by 2050, 68% of the global population will
live in urban centres, up from 55% in 2018 (UN 2018)

With increasing frequency of contacts and interaction between populations,
understanding the role that human movement plays in disease spread is vital
for designing, applying and evaluation of interventions. Communities that were
previously isolated are becoming more accessible due to improved transport and
communication links, as well as increasing urbanization. This increased rate of
urbanization has been found to affect emerging infectious diseases, establishing
conducive environments for new epidemics and zoonotic diseases (Neiderud 2015;
Hassell et al. 2017). For malaria, as many countries, including Malawi focus on
reducing transmission of malaria by 90% by the year 2030 (OrganizationWHO
2015), a key challenge will be sustaining the gains in reduction of incidence that
have so far been made (Snow et al. 2017). While changing climate will affect the
attainment of this goal of reducing transmission, human movement is also likely to
play a key role as it helps determine the risk of introduction and reintroduction
of malaria into new areas or areas where eradication has been achieved (Marshall
et al. 2016; Martens and Hall 2000; Prothero 2001). In our modelling approach,
the effect of human movement on malaria risk was implicitly modelled through the
inclusion of random effects to capture unmeasured effects.

An understanding of human mobility and contact patterns can help to un-
derstand the likely pathways of disease spread and thus help in the design and
implementation of interventions such as quarantine which is aimed at minimizing
the contact between susceptible and infected individuals (Day et al. 2006). Quar-
antine limits the movement of people exposed to a contagious infection to see if
they develop the disease. Curfews limit the movement of people in the general
population. School closures are another intervention designed to reduce the effective
number of contacts.

Data on human movement and mobility are therefore crucial for understanding
and forecasting infectious disease spread. To achieve this goal, high resolution
spatial and temporal data are needed. Individual-level mobility data are important
to tease apart the mobility differences that exist between people which are critical
to understanding and predicting the spread of diseases such as Ebola. The models
described in this thesis capture both individual, population and location-specific
information that may be responsible for the heterogeneities that exist. Therefore,
the inclusion of individual and location covariates in the modelling framework is
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beneficial for a better understanding of disease transmission and improved ability
to apply the models to predict connectivity in populations where the measurement
has not been undertaken.

Digital data sources such as mobile phone CDRs have opened the possibility of
using huge datasets of finely resolved individual-level information for measuring
human movement patterns (Pappalardo et al. 2015; Chen et al. 2016). There has
been an increasing interest in the use of these data for disease surveillance (Hay et al.
2013; Bansal et al. 2016). Using big data characterized by fine spatial granularity
provides opportunities as they increase accessibility to populations over space and
time; data on personal beliefs, behaviours, and health outcomes are now available
at unprecedented breadth and depth (Lee et al. 2016). Another source of digital
data in addition to CDR is satellite imagery which can also provide insight into
infectious disease dynamics (Lessler et al. 2016). Satellite imagery provides high
spatial resolution of important drivers such as environmental, and climatic factors
and population density for all locations across the globe (Sorichetta et al. 2015).
These data sources are widely used in statistical models to produce maps of disease
incidence, prevalence or risk (Hay and Snow 2006). Such data sources with global
coverage have allowed analyses leading to an understanding of disease risk even
in areas with weak disease surveillance systems. There is room for incorporating
these detailed spatial data into mechanistic models that capture changes in disease
risk. In the future, as digital data become more accessible in developing countries,
detailed analysis to understand disease dynamics at fine scales will be possible.
These data sources would further enrich the range of models that can be fitted.

However, a big challenge in using CDR data is privacy concerns (Gonzalez et al.
2008). This ethical challenge may prevent the successful utilization of the data
in disease modelling studies. The highly resolved data may also lead to massive
datasets which may lead to computational challenges. However, there is a chance
to leverage the tools available to researchers such as high-performance computing
to analyze these data and provide insights into disease transmission. With CDRs,
it is not possible to measure human movement at a resolution finer than the cell
tower resolution (Wesolowski et al. 2016).

Another challenge is the crude nature of the data and the lack of individual-level
characteristics necessary to model the individual level differences in mobility. The
CDR, which is very detailed data source, are usually aggregated due to privacy
concerns. Though it is technically possible to obtain individual-level trajectories
with CDR data, it is not usually done in practice. Studies such as Wesolowski et al.
(2012) used aggregate data to quantify the impact of human mobility on malaria
transmission. In situations where individual-level data have been successfully
collected through surveys, for example, other concerns such as representativeness
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arise. Robust study designs and novel data collection methods are needed to capture
detailed data on mobility such as contact location and duration. In resource-limited
settings, it may be challenging to design such mobility studies at a large scale
leading to low sample sizes. For example, the use of digital trackers, though
excellent in capturing individual travel patterns, may be expensive to implement at
a large scale. The resulting data may therefore not fully represent the underlying
population. Use of digital data collection methods is also prone to technological fail
and wrong use of the gadgets thus leading to unreliable results. For example, the
use of GPS trackers may not work well in obstructed environments such as inside
houses. The data also generally lacks repeated measurements of individuals. This
makes it difficult to track individual-level changes in mobility behaviour over time.

In addition to the ethical and technological challenges, the CDR data also
needs validation. In some cases, it has been shown that travel distances tend to
be lower when measured by CDR (Zhao et al. 2016). The general differences in
ownership of mobile phones among different groups that may have different mobility
rates make a generalization to the wider population a challenge (Wesolowski et al.
2013). The assumption that CDRs present a representative sample may not hold
in some settings due to some known biases that exist such as higher mobile phone
ownership among wealthier urban males (Wesolowski et al. 2014b). Therefore,
there is a need to validate the CDR data using additional data on socio-economic
status, mobile phone ownership, and usage to determine their representativeness
(Wesolowski et al. 2013). Comparatively, mobility data from surveys have the
advantage of being more representative as the design of the data collection process
is under the control of the researchers. The surveys also make it possible to collect
individual-level information leading to deeper understanding of the population
under study. Therefore, combining CDR and survey data provides the best of both
data approaches.

Another challenge in dealing with epidemic data is that there is a lack of
a standardized data reporting format which may negatively affect analyses to
evaluate and guide the application of effective interventions (Cori et al. 2017).
Consequently, some important data may not be collected due to lack of resources
and adequate time. This lack of adequate data presents a challenge in epidemic
modelling. Finnie et al. (2016) have developed a standard for the transmission and
storage of epidemiological data.

To facilitate and promote the use of mobility data in epidemiology, there is a
need to make the data more accessible particularly for researchers in developing
countries where there is the most potential for infectious disease health applications.
One way of achieving this is by having a database for human movement linked to
disease outcomes. For a start, this mobility data can be derived from censuses and
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large-scale surveys such as DHS and then linked with existing disease surveillance
systems such as DHIS, a web-based database for routine data. For example, climate
data has been integrated with the DHIS in Tanzania as a way of facilitating the use
of climate information in the health sector (Thomson 2018). A similar initiative
can be done to integrate the hospital-based data with mobility data can help
public health officials in disease surveillance. By making the mobility data freely
accessible, its application in epidemiology would likely increase.

At present, it is also challenging to obtain mobility data for an extended period
due to costs and complexities in analyzing the data among other reasons. For
example, CDR data are typically released for a period ranging from months to
a few years. With very short time series, it may be impossible to investigate
seasonality patterns in people’s mobility patterns. As a result, it is difficult to
assess the presence of inter-annual variability in mobility patterns which may be
of interest. Ideally, mobility data should be for a relatively long period of time to
permit investigation seasonality at different temporal scales. When coupled with
long time series of epidemiological data, it may lead to the establishment of an
early warning system for diseases such as malaria and dengue which takes human
movement into consideration

For successful studies on human mobility and its impact on disease spread, it
is important to engage the various stakeholders such as mobile phone operators
early on to raise awareness to the potential use of the CDR data in epidemiology.
Ideally, this should be done way before a study to obtain buy-in. In most settings,
human mobility studies using CDR have not yet been done and local mobile phone
operators have not been engaged, leading to an information gap. If the companies
are aware of the potential use of their data, they may be receptive when approached
to provide data for a project.

For future research, it is important to focus on individual level differences on
mobility patterns. Infectious diseases are spread when a susceptible person comes
into contact with an infectious individual. Therefore, an understanding of mobility
patterns at the individual level can help better understand the transmission of the
disease at the population level. More research into statistical and mathematical
models that use individual-level data is therefore needed. Research should also focus
on study and sampling designs for mobility studies which are most cost-beneficial
to allow widespread adoption in resource-limited settings. This will allow for the
use of modern data collection methods even in low resource settings.

There is also a need for other techniques to understand the hidden patterns
in huge datasets such as mobility data from CDRs. Machine learning algorithms
provide a way to understand these massive data for understanding human movement
patterns at different spatial and temporal scales and provide a mechanism for making
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predictions based on the observed data (Toch et al. 2018). Fortunately, the power
of machine learning increases with an increase in the size of the data. Therefore,
massive datasets present an opportunity rather than a challenge. For human
mobility studies, both supervised and unsupervised machine learning approaches
can be applied. In unsupervised machine learning, the focus lies on finding the
hidden structure and can therefore play a key role in understanding patterns of
mobility in huge datasets. On the other hand, supervised machine learning is
concerned with making predictions (Kotsiantis et al. 2007; Klassen et al. 2018).
Both approaches are important, and a successful application of machine learning
can, therefore, help bring out complex mobility patterns useful for predicting
disease spread. In addition to machine learning, there is a need for widespread use
of simulation studies at different scales which can then be validated by available
datasets.

Data visualization for human movement is another area that must be focused
on in the future. Advanced data visualization techniques need to be developed for
complex mobility data for the purpose of communicating with a wider audience.
The use of common static visualization tools may not best capture the complexities
of human movement behaviour. For this reason, there is a need to develop web-
based interactive visualization tools that can accept different mobility parameters
and produce different mobility patterns based on different scenarios.

There is also a need for further work on understanding human mobility patterns
in times of disasters such as flooding, drought, and wars which cause widespread
displacement both within and between countries (Song et al. 2017). This can be
achieved by investigating different scenarios in the modelling framework. This
understanding can help understand the negative impacts both within and between
countries to help authorities plan for interventions. For example, this knowledge
may help authorities in resource allocation and anticipate the introduction of
possible disease outbreaks. As data during these events may be difficult to obtain,
prior knowledge of the effects of disasters on human mobility has the potential to
improve governments’ response. In many parts of the world, displacements are
becoming more widespread due to conflict and natural disasters such as flooding
caused by climate change.

More work is also needed on mobility modelling to capture a comprehensive
pattern for an individual and relax assumptions that the person’s current location
is independent of past locations. A thorough mobility approach needs to capture
this inherent dependency in the mobility structure. Models are also needed that
model the entire space that a person may visit and not just discrete set of visited
locations. In this way, the resulting model would capture an entire activity space
for an individual. This approach is likely to provide a detailed insight into human
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mobility patterns.

Conclusion

In conclusion, the thesis makes the following contributions: (1) a modelling frame-
work for integrating climate and non-climate drivers into the analyses of routine
malaria data at the facility level and mapping the estimates for easy to use tools
for malaria control programmes. Depending on data availability, the model can
also explicitly incoporate mobility information; (2) a methodology for calculating
localized spatial-temporal reproductive numbers accounting for spatial interaction
effects; (3) provides a detailed historical account of spatial interaction models and
presents an overview of their current use in epidemic modelling, as well as future
directions for research; (4) a modelling framework for individual differences in
movement while taking into account the different personal and location-specific
characteristics that are likely to drive observed differences in movement rates.

When ethical and other barriers are overcome in the future, it is likely to lead
to improved detail and accessibility of data and our understanding of mobility
patterns and the application to epidemics is likely to increase leading to improved
control.
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Appendix A

Malaria mapping in Malawi

The expected malaria case-counts est were calculated by multiplying the overall
malaria risk for Malawi, π and the population of each district pst , i.e. est = pstπ.
The overall malaria risk for Malawi is given by dividing the total number of cases
in Malawi with the total population, i,e, π =

∑
yst∑
pst

where yst is the observed
malaria counts in district s at time t and pst is the corresponding population.
The logarithm of the expected malaria counts is then included in the model as
offset with a coefficient of 1 and hence no effect on the response variable. The
standardised morbidity ratio (SMR) is given by the ratio of observed estimated
cases, i.e. SMR = yst

est
. The maximum likelihood estimate (MLE) of the risk Rst of

a district in a GLM without random effects is the corresponding SMR, i.e. Rst = yst

est
.

In the mixed model setting, the posterior mean of the relative risk for each district
is therefore a weighted average of the SMR for the district and the prior mean of
the relative risk in the overall spatial region giving rise to smoother estimates than
those provided by raw SMR estimates.
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Appendix B

Model diagnostics

Figure B1 is the traceplot showing convergence.

Figure B1: Trace plots for the covariates in the final model
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Epidemic curves
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Figure C1: Weekly epidemic curves for the districts in Guinea

The epidemic curves for Liberia are shown in figure

146



Appendix C. Epidemic curves 147

20 40 60 80 100 120

0
5

10
15

20
25

30

Bomi

Time (weeks)

C
as

es

20 40 60 80 100 120

0
10

20
30

40

Bong

Time (weeks)

C
as

es

20 40 60 80 100 120

0
1

2
3

4
5

6

Gbarpolu

Time (weeks)

C
as

es

20 40 60 80 100 120

0
5

10
15

20
25

30

Grand Bassa

Time (weeks)

C
as

es

20 40 60 80 100 120

0
10

20
30

40
50

60

Grand Cape Mount

Time (weeks)

C
as

es

20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

2.
0

Grand Gedeh

Time (weeks)

C
as

es

20 40 60 80 100 120

0
2

4
6

8

Grand Kru

Time (weeks)

C
as

es

20 40 60 80 100 120

0
20

40
60

80

Lofa

Time (weeks)

C
as

es

20 40 60 80 100 120

0
50

10
0

15
0

Margibi

Time (weeks)

C
as

es

20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

2.
0

Maryland

Time (weeks)

C
as

es

20 40 60 80 100 120

0
50

15
0

25
0

35
0

Montserrado

Time (weeks)

C
as

es

20 40 60 80 100 120

0
20

40
60

80

Nimba

Time (weeks)

C
as

es

20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

River Gee

Time (weeks)

C
as

es

20 40 60 80 100 120

0
5

10
15

20
25

30

Rivercess

Time (weeks)

C
as

es

20 40 60 80 100 120

0
2

4
6

8
10

12

Sinoe

Time (weeks)

C
as

es

Figure C2: Weekly epidemic curves for districts in Liberia

For Sierra Leone, the epidemic curves are
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Figure C3: Weekly epidemic curves for Sierra Leone districts



Appendix D

Spatial reproductive number
estimates

In this section, we present the estimates for Guinea and Sierra Leone
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Figure D1: Overall estimate of the the spatial reproductive number R(x, y, t)
for Guinea

And for Sierra Leone
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Figure D3: Spatial temporal estimates R(y, y, t) within districts in Guinea

For Guinea,WT estimates is given in the figure
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Figure D4: WT estimates for selected districts in Guinea

The spatial Rt for Sierra Leone are shown in the figure D5
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Figure D5: Spatial temporal estimates R(y, y, t) within districts in Sierra Leone

The Wallinga Tuenis estimates for the districts in Sieraa Leone are given in
figure D6
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Figure D6: WT estimates for districts in Sierra Leone
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