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ABSTRACT

Energy storage problems are hard sequential decision-making prob-

lems often modelled as markov decision processes. Exact solution using

dynamic programming quickly becomes implausible with large state spaces

hence approximate dynamic programming using policy iteration (API) is

often employed in such cases. API does not always work, one reason being

that the approximation architectures used are often linear for computational

tractability reasons. We propose a mathematical model which allows easier

implementation of non-linear approximations with API. We use neural net-

works along with monte-carlo simulation to predict the future values for the

generated states during the improvement step of the API algorithm. Our

initial experiments suggest that the proposed method provides good results

which can be further improved with more fine tuning of the neural network

parameters.
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CHAPTER ONE

INTRODUCTION

1.1 Background and Motivation

The traditional electricity market enables the flow of electricity from

huge power stations through national or regional transmission networks to

local distribution networks which then supply the electricity to the con-

sumers. In other words, generators trade their produced electricity from

their power plants on the wholesale market from which suppliers buy and

sell electricity to their customers at competitive prices. The electricity mar-

ket is however undergoing major transformation with the continuous preva-

lence of smart grids which provide a more optimized way of monitoring and

adjusting electricity flows and enable easier integration of distributed gen-

eration systems and renewable energy sources (e.g. wind farms and solar

panels).

Also, there has been an increased interest in providing feasible regu-

lations, policies and cost-incentives by some countries to increase the use

of renewable energy technologies in electricity generation and supply due

to benefits such as energy security, reliability and reduced emissions. For
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instance, renewable energy sources provided about a quarter of the total

electricity generation in the UK compared to 5% in 2016 (Ofgem, Accessed

December 2018). Renewable energy sources such as wind farms or solar pan-

els are much less controllable and highly volatile as they depend on external

factors like weather, seasons and time of the day. These resources can be

paired with energy storage devices like batteries to increase the value of the

energy generated and optimize existing grid connections. Battery storage

provides many benefits such as peak shaving, time shifting, the provision

of operating reserve and the reduction of curtailment, electricity price ar-

bitrage and balancing costs (Eyer et al., 2004; Eyer and Corey, 2010; Zhou

et al., 2018). It is therefore no surprise that there are projections of likely

increment in the global deployment of battery technology as a grid-scale

energy storage device with the 70% decrease in the prices for battery cells

between 2012 and 2017 (PV Magazine, Accessed February 2019).

The combination of smart metering systems, smart grids, decentralised

renewable generation and energy storage systems provide end-users the op-

portunity to reduce their reliance on the national grid, produce their own

energy, manage their electricity usage in response to different prices through-

out the day (also known as demand response) and sell the excess to the grid

in order to reduce their energy bills. For example, customers may decide

to reduce the amount of energy they purchase during peak demand hours

and rather use excess stored energy from the renewable source or battery

to satisfy demand (also known as peak shaving). They may also decide to

shift the demand (say do the laundry at another time) to less expensive,

off-peak periods or even make use of lower tariffs to buy energy to store for

peak demand periods or sell stored energy at higher tariffs. Aside this, the

rapid penetration of electric vehicles is projected to have a major impact

on the electricity market since they can be considered as short-term mobile

battery storage for the grid. Electric vehicle owners may choose to recharge
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their batteries during lower demand periods (typically at night) and then

potentially sell power back into the grid when the demand is high. With

all these new technologies and options, the grid can be regarded as om-

nidirectional hence permitting the flow of electricity from the distribution

networks to consumers and vice versa. Therefore, we see the emergence

and development of new market models and algorithms such as storage-

as-service business models, peer-to-peer trading (P2P) electricity trading

models, machine learning energy trading algorithms (e.g. auto-trading and

algo-trading) and blockchain applications in energy trading.

Electricity customers are faced with the issue of making real-time trad-

ing decisions due to these new and exciting opportunities which allow them

to become active participants in the electricity market. For instance, house-

holds that own energy storage systems such as batteries or electric vehicles

and renewable energy sources like solar panels must be able to determine

the optimal energy resource management and operation policy for the dis-

tribution of energy in order to satisfy the total household electricity demand

and reduce their bills. This problem of optimally managing a storage device

(e.g. battery) that interacts with both the grid and an uncertain renewable

energy source (e.g. solar or wind) to satisfy demand whilst considering the

electricity spot prices can also be referred to as the energy storage problem.

In this regard, the energy storage problem is that of deciding when to buy

or sell electricity from or to the grid, when to use the the renewable energy

source and when to charge or discharge the battery.

Since the energy storage problem is a very complex decision problem,

we concentrate on its basic sub-problem (also known as the single-node en-

ergy storage (SNES) problem). Halman et al. (2018) described the SNES

problem as the decision problem faced by a single energy-producing node in

a smart grid which does not explicitly consider the goals of the system op-
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erator. The SNES problem has garnered a lot of attention from researchers

from fields such as operations research, computer science and electrical en-

gineering (Löhndorf and Minner, 2010; Powell, 2011; Hannah and Dunson,

2012; Powell, George, et al., 2012; Jiang et al., 2014; Natarajan et al., 2014;

Xiaomin et al., 2014; Zhou et al., 2016; Halman et al., 2018) and can be

modelled as a stochastic dynamic program due to the uncertainties involved

in the decision-making process. Many of these existing studies in literature

have suggested a variety of approaches to solve their proposed stochastic

dynamic programming mathematical models as well as performed numeri-

cal analysis on the resulting optimal or heuristic policies. The most popular

approach encountered so far in these literature is the Approximate Dynamic

Programming (ADP) approach which can be employed with several tech-

niques and approximation architectures. An example technique with ADP

is the Approximate Policy Iteration (API) method and we propose a novel

API algorithm which employs neural networks to approximately solve the

SNES problem in this work. To the best of our knowledge, the only other

paper which combines neural networks within API is that of Liu and Wei

(2014) but the neural network structure and implementation employed by

them differs from ours.

1.2 Research Aim

The main aim of our research is to evaluate the performance of our

novel mathematical model and API algorithm against benchmark problems

to ensure that our proposed approach works and can produce optimal or

close-to-optimal results.
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1.3 Research Contribution

Most literature mainly used the mathematical model described in Sec-

tion 4.2 with minor variations depending on the problem definition and as-

sumptions. These papers usually assumed equal buying and selling prices

on the electricity spot market so as to make the problem easy to solve. To

the best of our knowledge, no research has been conducted to see the effect

of different buying and selling prices on the proposed mathematical models

and algorithms of this problem even though the buying and selling prices

are less likely to be equal in real world applications. Therefore in this work,

we consider a more general version of the SNES problem with different buy-

ing and selling prices with the presumption that a good performance of our

proposed novel algorithm on this harder version of the SNES problem may

lead to a much better performance in the easier version with equal prices.

Also, we capture the decisions using much simpler decision variables,

mainly inspired by Secomandi (2010) rather than representing them as pos-

sible energy transfers that can occur from the main components of the single

node energy storage problem as shown in Figure 1. This reduces the dimen-

sionality of the feasible decision space and enables the determination of the

optimal decision within reasonable time.

In addition to the use of fewer and simpler decision variables, we em-

ploy a relaxation approach by capturing the transmission losses associated

with the battery energy transfers in the objective function as costs rather

than in the constraint equation as energy units as done in most previous

studies (Halman et al., 2018; Jiang et al., 2014; Salas and Powell, 2013). In

optimization literature, relaxations are often useful in obtaining very close-

to-optimal solutions and also serve as useful indicators of the quality of a

solution. We highlight here that valuing losses in monetary units rather
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than in energy units is plausible especially when the battery operation is

outsourced. Hence, our proposed model is also easily usable in the scenario

where the decision-maker uses a storage-as-a-service business model and

does not directly own the energy storage system.

In his work on the commercial management of a commodity storage

asset, Secomandi (2010) proposed that the feasible decision space structure

can be divided into three possible optimal regions: buy and inject (BI), do

nothing (DN) and withdraw and sell (WS). Extending Secomandi’s work

to our case, we identify and divide the decision space structure from our

proposed model into eight possible optimal regions (buy and inject (BI),

buy and withdraw (BW), sell and inject (SI), sell and withdraw (SW), sell

(S), buy (B), inject (I) withdraw (W)) and also describe the scenarios under

which we may observe these decision regions as optimal.

1.4 Thesis Structure and Outline

The thesis is structured as follows: Chapter 2 provides a literature re-

view of various papers in the energy storage field, with emphasis on energy

storage modelling techniques. Topics such as Dynamic Programming (DP),

Markov Decision Processes (MDPs) and Approximate Dynamic Program-

ming (ADPs) are discussed as part of our methodology in Chapter 3. In

chapter 4, we first present and highlight the differences between an example

mathematical model from literature and our proposed model as well as de-

scribe our novel API algorithm. Chapter 5 then describes the experimental

set-up which includes the data, benchmark problem instances and metrics

used in evaluating the performance of our proposed API algorithm. We also

discuss our findings from the conducted numerical experiments. Finally, we

outline some ideas for further work that can be conducted to improve this
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research in Chapter 6.
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CHAPTER TWO

LITERATURE REVIEW

Evangelopoulos et al. (2016) provided an extensive review of the mod-

els, optimization methods and areas of further research in the optimal op-

eration of smart distribution networks (OOSDN) field. Much work has also

been done investigating the economic prospects and value of energy storage.

Staffell and Rustomji (2016) showed that battery storage in the UK could

triple their profits by participating in the reserve market in addition to pro-

viding arbitrage. Also, results from Granado et al. (2016) indicated that

the integration of energy storage and renewable energy sources with smart

grids reduces energy costs by 7-10% in electricity and 3% in gas charges, a

further proof of the value of energy storage. Barbour et al. (2018) argued

the need for the development of specific market mechanisms and energy

policies for the deployment of community energy storage systems due to

the higher internal rate of return (IRR) associated with community energy

storage investments (El-Batawy and Morsi, 2018). As such, Lüth et al.

(2018) proposed two market designs for peer-to-peer (P2P) trading in the

presence of storage devices and Zhang et al. (2018) developed a P2P system

architecture and energy trading platform. Results from Lüth et al. (2018)

showed that there is a potential end-user savings of 31% due to P2P trade
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and storage. Furthermore, results from Zhang et al. (2018) proved that P2P

energy trading facilitates local power and energy balance.

Since this thesis concentrates more on the modelling and optimization

of energy storage problems, we provide a review on some of the problems,

solution approaches and policies that have been considered in the next sec-

tions of the literature review. This chapter is then concluded with a review

on the work that has been done on Approximate Dynamic Programming ap-

proaches because of its frequent application as a solution method for energy

storage problems.

2.1 Energy Storage Problem Variations and

Solution Approaches

The energy storage problem is strongly linked to inventory optimiza-

tion problems as they both deal with determining the decisions for meeting

demand from various supply sources. The demand and supply could either

be deterministic or stochastic and these have been well studied under the

inventory optimization theory concepts (Zipkin, 2000; Porteus, 2002). This

problem can also be related to research conducted in commodity trading lit-

erature such as Rempala (1994) and Secomandi (2010) due to the possibility

of trading energy with the grid. In particular, Secomandi (2010) focused

on the commercial management of a commodity storage asset and deter-

mining the optimal inventory-trading policy under capacity constraints and

stochastic spot prices.

Similar to the settings of the problem discussed in this thesis, Zhou et

al. (2018) investigated the management of a merchant wind farm co-located

with a grid-level storage facility and connected to the market via a trans-
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mission line. In contrast to majority of research conducted on this problem,

they considered negative electricity prices which happens in most dereg-

ulated markets and quantified their effect on the value of energy storage.

They formulated the problem as a finite-horizon Markov decision process

and conducted a numerical study to assess the performance of their sug-

gested heuristics against the optimal policy.

According to Halman et al. (2018), the assumption of the same buy-

ing and selling price on the spot market makes the stochastic version of

the SNES problem solvable in polynomial time via dynamic programming.

However, the stochastic version of the problem becomes #P-hard when dif-

ferent buying and selling prices are used in the model. This may be the

reason why most literature consider the same buying and selling price in

their models. They also showed that the deterministic case of the single-

node energy storage problem can be solved strongly in polynomial time.

They provided a Fully Polynomial-Time Approximation Scheme (FPTAs)

which is an extension of the framework by Halman et al. (2009) to consider

continuous state and action spaces for the case in which energy can only

be bought from the grid. Halman et al. (2018) also suggested that their

traditional FPTAs used with a piecewise linear convex objective function

(for a minimization problem) provided stronger approximation guarantees

than the (
∑
,
∏

)-FPTAs developed in Halman et al. (2009).

Teleke et al. (2010) considered a rule-based dispatch scheme for the

finite-horizon energy storage problem without taking into account the effect

of prices or the variability of wind. Moazeni et al. (2015) suggested the need

to consider the effect of risk on the optimal policy following the results from

the risk analysis they conducted on an optimal deterministic risk-neutral

policy and a simple myopic policy.

In the case of problems with infinite horizon, Harsha and Dahleh
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(2015) utilized a stochastic dynamic program formulation to minimize the

average cost derived from the installation and management of a storage de-

vice integrated with a renewable energy source to meet uncertain demand

under dynamic pricing. They also showed that the optimal management

policy has a dual threshold structure which is also discussed in Rempala

(1994) and Secomandi (2010) under the commodity trading context.

2.2 Energy Storage Problem Policies

Since the single-node energy storage problem is seen as a stochastic

optimization problem, a solution requires the computation of the optimal

policy and the optimal profit. A policy is simply defined as any mapping,

rule or function that determines a decision xt based on a state St. A policy

that depends on only the available information in a state St at time t is

referred to as an admissible policy or Ft-measurable (Powell and Meisel,

2016).

The choice of a policy requires a good balance between its computa-

tional complexity and solution quality and robustness. Most papers tend to

focus on one class of policy even when the problem structure suggests that

other policies could be potential solutions due to the challenge of analysing

policies. Therefore in Powell and Meisel (2016), researchers are advised to

simulate variations of their selected policy class and compare to a standard

benchmark such as a deterministic lookahead to ensure that they have the

best policy within their selected policy class.

Powell (2011) explained four fundamental classes of policies which

have also been reviewed by Powell and Meisel (2016) and Durante et al.

(2017). These policy classes are discussed below.
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2.2.1 Myopic Policies/ Cost Function Approximations

(CFA)

These are widely used in resource allocation problems as elementary

policies which optimize the current costs or rewards without explicitly using

any forecasted information.

They are however replaced in Powell and Meisel (2016) and Durante et

al. (2017) with Cost Function Approximations (CFA) policies. CFA-based

policies could be seen as either myopic policies with tunable parameters or

deterministic lookahead (which can accommodate forecasts) with tunable

parameters to handle uncertainty. According to Durante et al. (2017), CFAs

rely on policy search to optimize any parameters involved in maximizing its

parameterized cost function approximation. Simão et al. (2017) employed

the CFA approach in their robust power system control to specifically tune

the reserves in order to cater for the intermittent nature of renewable energy

sources.

2.2.2 Lookahead Policies

These policies make decisions now by maximizing over some horizon

both current and future actions based on an approximate model of the prob-

lem. They are typically used for non-stationary problems with available

good forecasts such as unit commitment by independent system operators

(ISOs) (Powell and Meisel, 2016). They can either be deterministic looka-

head policies which have long been used as heuristics in planning natural

gas storage (Lai et al., 2010) or stochastic lookahead models which have

been over the years used for hydroelectric power planning (Jacobs et al.,

1995). Arnold and Andersson (2011) used deterministic lookahead policies
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also known as Model Predictive Control (MPC) policies to operate a stor-

age hub comprising of battery, hot storage devices and uncertain renewable

resources, whilst considering electricity prices and natural gas prices.

2.2.3 Policy Function Approximations (PFA)

PFAs map states to actions without the use of any form of optimization

method. They may come in the form of lookup tables (e.g. if temperature

= 80, increase generating reserves), parametric functions (e.g. charge the

battery when the electricity price is below a threshold θcharge and discharge

when it is above θdischarge) or through non-parametric models such as kernel

regression. Han and Weinan (2016) used an artificial neural network (ANN)

which is a form of a non-linear PFA to optimize the flow of power between

a wind farm, the grid and a storage device to satisfy a time varying load.

2.2.4 Value Function Approximations (VFA)

These policies capture the future value (cost or reward) of being in a

state at a point in time. In other words, VFA-based policies approximate

the impact of current decisions on the future by maximizing the one-step

contribution of the decision in addition to the approximation of the future

contribution of that decision (Powell and Meisel, 2016; Durante et al., 2017).

VFAs like PFAs may also use lookup tables (e.g. state space aggregation,

hierarchical aggregation, representatives), parametric models (e.g. basis

functions, piecewise linear functions, neural networks) and non-parametric

models (e.g. kernel regression, support vector machines) as their approxi-

mation strategies. Value function approximation is widely used in approx-

imate dynamic programming research papers such as Jiang et al. (2014),

Natarajan et al. (2014) and Xiaomin et al. (2014).
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2.3 Approximate Dynamic Programming

(ADP) In Energy Storage

Approximate dynamic programming (ADP) has been used extensively

as a modelling framework for most energy storage problems.

For instance, Jiang et al. (2014) considered the use of ADP since

the implementation of exact backward dynamic programming especially for

large-scale problems can quickly become intractable and computationally

intensive. However, for the same wind-farm battery storage system config-

uration, whereas Jiang et al. (2014) utilized forward approximate dynamic

programming methods, Durante et al. (2017) applied the backward approx-

imate dynamic programming method also seen in Senn et al. (2014) and

Cheng et al. (2018) to overcome the computational problems associated

with exact backward dynamic programming. In contrast to forward ADP,

which estimates the value functions while stepping forward in time, back-

ward ADP like dynamic programming performs a single backward pass but

fits an approximate model based on a small sample of states. Aside Du-

rante et al. (2017) and Cheng et al. (2018), backward ADP has been seldom

used in the energy storage field. Durante et al. (2017) showed that his back-

ward ADP methodology consistently produces higher quality solutions than

forward ADP methods such as the ones used in Jiang et al. (2014).

Powell, George, et al. (2012) proposed another type of modelling and

algorithmic strategy based on the ADP framework, known as the Stochas-

tic Multiscale model for the Analysis of energy Resources, Technology, and

policy (SMART) to model long-term investment decisions and economic

analyses of portfolios for energy technologies in the presence of uncertainty.

They showed that their algorithm exhibits robust behaviours when applied
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to stochastic problems. SMART can also be applied to deterministic prob-

lems which makes it comparable to the solution from a deterministic linear

model.

2.3.1 Value Function Approximation Methods In ADP

Value function approximations in approximate dynamic programming

enables the creation of a policy by approximating the value of being in a

state. Some academic papers have focused on the different methodologies

used in developing the value function approximations employed in ADP.

In particular, Jiang et al. (2014) compared the performance of various

approximation architectures implemented with ADP approaches such as

Approximate Policy Iteration (API), Approximate Value Iteration(AVI) and

Direct Policy Search on benchmark instances for the finite-horizon energy

storage problem. They used non-parametric models such as Support Vector

Regression (SVR), Gaussian Process Regression (GPR), Local Polynomial

Regression (LPR) and Dirichlet Cloud-Radial Basis Function (DCR) in their

API method whereas Liu and Wei (2014) applied neural networks in their

proposed policy iteration method for solving the infinite horizon optimal

control problem for non-linear systems.

Scott and Powell (2012) also focused on the use of a parametric linear

model with pre-specified basis functions, least-square temporal difference

(LSTD), and Bellman error minimization with approximate policy iteration

to solve the same energy allocation problems considered by Jiang et al.

(2014). A similar approach is used by Löhndorf and Minner (2010) to find

the optimal infinite horizon storage and bidding strategy in the day-ahead

market for a renewable power generation and energy storage system.

Jiang et al. (2014) presented a version of the approximate value iter-
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ation algorithm (AVI) known as Monotone-ADP which exploits the mono-

tone nature of the problem. Their AVI algorithm required a lookup table

representation of the state space unlike their proposed API method. In his

PhD thesis, Dong (2010) stated that the resulting lookup table for a prob-

lem with a fairly large state space under optimal policies will be huge even

though the values in many states are unlikely to be used. He suggested the

use of simulation based value iteration algorithm that updates the approx-

imation iteratively and reduces the computational efforts needed. Another

commonly used strategy in ADP is to aggregate the state space so as to

reduce its size. In aggregation, the value of aggregated states are rather

estimated instead of the value of individual states as each individual state

is made to belong to an aggregated state. Examples of aggregation methods

used are fixed level aggregation (Bean et al., 1987), adaptive state aggre-

gation (Bertsekas and Castanon, 1989; Singh et al., 1995) and hierarchical

aggregation (Mes and Rivera, 2016).

It can be deduced from Nascimento and Powell (2010), Jiang et al.

(2014) and Jiang and Powell (2015) that pure lookup AVI table perform

poorly in practice due to very slow convergence rate despite the existence

of convergence theory. However results from Jiang et al. (2014) show that

structured lookup table AVI outperform other more general approaches like

API paired with a generic approximation technique but is limited to moder-

ately sized-problems. Therefore Hannah and Dunson (2012) approximated

the value functions by employing Dirichlet process mixture models which

scales well to large state spaces.

The ADP proposed by Nascimento (2008) iteratively constructs piece-

wise linear and concave value function approximations to help determine the

solution of complex storage problem. He also proved that his algorithm con-

verges to an optimal policy by learning the optimal value functions for im-
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portant regions of the state space selected by the algorithm. Nascimento and

Powell (2013) provided an extension to the algorithm and results presented

in Nascimento (2008) by considering problems with highly-dimensional con-

tinuous decision vectors. Similar to Nascimento (2008) and Nascimento and

Powell (2013), Salas and Powell (2013) exploited the concavity nature of the

Value Function Approximations to speed up the convergence of their pro-

posed finite-horizon ADP algorithm. Their work unlike most papers was

specifically aimed at handling multiple storage devices for grid-level stor-

age since results from recent research conducted in the vehicular electronics

and energy systems field have shown the potential benefits of using inte-

grated energy storage systems (Vazquez et al., 2010; Kraning et al., 2011;

Kuperman and Aharon, 2011; El-Batawy and Morsi, 2018).

A fundamental challenge with ADP which is discussed in Powell (2011)

and Mes and Rivera (2016) is the exploration versus exploitation problem.

This refers to the issue of deciding whether to visit a state for no apparent

reason or to make use of current estimates of the value function in order to

select the best decision. For instance, the ADP used in Nascimento (2008)

employed a pure exploitation scheme in which the states that were visited

depended on the decisions produced by solving the approximate problem.
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CHAPTER THREE

METHODOLOGY

Like many sequential decision problems, energy storage problems are

often modelled in most academic literature as Markov Decision Processes

(MDPs) and solved using the Approximate Dynamic Programming (ADP)

method (Halman et al., 2009; Jiang et al., 2014; Jiang and Powell, 2015;

Zhou et al., 2018). We explain the theories behind MDPs and ADPs in this

chapter since we also take a similar approach in our work.

3.1 Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) are discrete time stochastic con-

trol processes which are useful for studying optimization problems solved

via dynamic programming and reinforcement learning. MDPs like any other

sequential (multi-stage) stochastic optimization model consist of five funda-

mental elements: states, actions or decisions, exogenous information, transi-

tion function and cost/contribution function. We provide a brief description

of each element below.
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3.1.1 State Variable

Definition 3.1.2 The state variable St is the minimally dimensioned func-

tion of history that is necessary and sufficient to compute the decision func-

tion, the transition function, and the cost (or reward or contribution) func-

tion (Powell, 2011).

In resource management problems, state variables can be categorized

into three types:

• The resource/physical state, Rt: depicts the status and attributes

of the physical resources being managed. In the case of the SNES

problem, this could be the amount of energy stored in the battery.

• The information state, It: refers to any other information apart from

the physical state that is needed to make a decision, compute the

transition, cost/contribution function. Examples in our case are the

spot prices of electricity, the demand and wind profiles.

• The belief/knowledge state, Kt: is a set of probability distributions

which describes one’s knowledge of unobservable parameters. The

remaining lifetime of a battery is an example of a knowledge state.

For most resource allocation problems, Rt and It are often used as the state

variables. Hence a typical representation of the state variable is given by

St = (Rt, It).

3.1.3 Decision Variable

Decision variables refer to the quantities that need to be determined in

order to solve the problem. In stochastic programming or markov decision
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processes, they are often represented by two notational systems: xt for

decisions in the form of vectors and at for scalar, discrete actions.

3.1.4 Exogenous Information

Exogenous information are random variables whose information be-

come available over time from some external source. In our case, our ex-

ogenous information can be the energy demand, the electricity spot prices

or the amount of energy produced by our renewable source.

It is important to distinguish the modelling of the flow of exogenous

information from the flow of physical resources. Therefore Powell, Simao,

and Bouzaiene-Ayari (2012) advise modellers to think of decisions as occur-

ring in discrete time, while exogenous information arrive in continuous time

using Wt = new information that first becomes available between t− 1 and

t. The random exogenous information flow could either be modelled using

some probability distribution or through sample realizations.

3.1.5 Transition Function

The transition function, St+1 = SM(St, xt,Wt+1), describes the evolu-

tion of the system from one state to another based on the selected decisions

and exogenous information.

For many problems, the exogenous information flow can be described

as a Markov information process since the exogenous information Wt arriv-

ing during time interval t+ 1 depends on the state St at the end of the time

interval t, but is conditionally independent of all prior history given St. In

this case the transition function can be stored in the form of a one-step

matrix using P(St+1|St, x) which is the probability of transitioning to state
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St+1 if the system is in state St and decision xt is taken.

The transition probability only depends on the current state and is

independent of all the previous states and actions. This property is known

as the Markov property, hence the name Markov Decision Processes. The

one-step transition matrix could either be given as data or derived using as-

sumptions from the underlying exogenous information process of the prob-

lem. Similar to Powell (2011), the techniques considered in this thesis will

directly use the transition function since the one-step transition function

can be computationally intractable for a very large state space,.

3.1.6 Contribution Function

The contribution function C(St, xt) at time t is the reward of making

decision xt in state St.

In summary, at each time step in the markov decision process, the

system with a state space S is in a particular state St ∈ S. In that state St,

a decision xt is selected from the feasible decision region Xt which results in

rewards or costs, by computing the contribution or cost function C(St, xt).

Using the transition function directly or the one-step transition matrix, the

system is then sent to a new state St+1 which is conditionally independent

of all the previous states and actions.

Definition 3.1.7 A policy π ∈ Π can be seen as a decision function Xπ(St)

that returns a decision xt ∈ Xt for all states St ∈ S, with Π being a set of

potential decision functions (Mes and Rivera, 2016).

The goal is to find the policy that determines the best actions and

maximizes the objective function.
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3.2 Determining The Optimal Policy

Dynamic programming solves complex MDPs by breaking them into

smaller sub-problems. According to Bellman (1957), the optimal policy for

a problem modelled as a markov decision process is the one that provides

an optimal solution to all the sub-problems of the MDP. The optimal policy

therefore can be found by solving the Bellman equation which enables the

computation of the value function in a recursive approach.

Vt(St) = max
xt∈Xt

(
C(St, xt) +

γ
∑
s′∈S

P(St + 1 = s′|St, xt)Vt+1(s′)
)
∀t ∈ T (3.2.1)

The value function defined in Equation (3.2.1) consists of two parts:

the reward for being in state St and taking decision xt, and reward at the

next state St+1 derived from the decisions that were taken at state St. With

dynamic programming, the value of Vt+1 is assumed to be known and using

the Bellman equation, we step back in time to compute the value function

Vt for all the states in the state space. The optimal decision is therefore the

decision that gives the maximum Vt for each state.

However, the computation of the Bellman equation via dynamic pro-

gramming is generally difficult and possibly intractable for many large prob-

lems due to a particular drawback of DP known as the curses of dimension-

ality. Powell (2011) states the three main curses of dimensionality in DP

as follows:

• the possibility of a large state space S which may affect the evaluation

of the value function Vt(St) for all the states within reasonable time.
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• the possibility of a large feasible decision space Xt which may hinder

the determination of the optimal decision for all the states within

reasonable time.

• the possibility of a large outcome space which may cause the compu-

tation of the expectation of the ’future’ profits to be intractable.

The size of the outcome space depends on the dimension of the random

information Wt. Using the transition function directly, Equation (3.2.1) can

be rewritten as:

Vt(St) = max
xt∈Xt

(
C(St, xt) +

γ
∑

ω∈Ωt+1

P(Wt + 1 = ω)Vt+1(St+1|St, xt, ω)
)
∀t ∈ T (3.2.2)

where Ωt+1 is the set of all possible outcomes of Wt+1 and P(Wt + 1 = ω) is

the probability of outcome ω ∈ Ωt+1.

The Approximate Dynamic Programming (ADP) modelling frame-

work, which is based on Markov Decision Processes (MDP) can be used

to tackle the issue of curses of dimensionality associated with employing

Dynamic Programming (DP) in large, multi-period stochastic optimization

problems. In the next section, the basic idea behind ADP is explained.

3.3 Approximate Dynamic Programming

(ADP)

The central idea of ADP is to use an approximation of the value func-

tion to make decisions. ADP steps forward in time and then updates the

estimated value functions iteratively.
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The Bellman equation (3.2.2) is often expressed in its expectational

form (Equation (3.3.1)) when used in ADP.

Vt(St) = max
xt∈Xt

(C(St, xt) + γEω{Vt+1(St+1|St, xt, ω)})∀t ∈ T (3.3.1)

It is often difficult to deal with an expectation operator within a max-

imum operator especially in the case of simulation. This problem can how-

ever be solved in ADP by using the post-decision state formulation of the

Bellman equation.

Definition 3.3.1 The post-decision state Sxt is the state immediately after

decision xt is taken and before the arrival of new information Wt+1.

Substituting Equation (3.3.3) into Equation (3.3.2) gives Equation

(3.3.4).

V x
t−1(Sxt−1) = Eω{Vt(St|Sxt−1, ω)}∀t ∈ T (3.3.2)

Vt(St) = max
xt∈Xt

(C(St, xt) + γV x
t (Sxt ))∀t ∈ T (3.3.3)

V x
t−1(Sxt−1) = Eω

{
max
xt∈Xt

(C(St, xt) + γV x
t (Sxt |Sxt−1, ω))

}
(3.3.4)

According to Mes and Rivera (2016), solving Equation (3.3.3) as a

deterministic optimization problem provides decisions that can be used to

update the estimates V
n−1

t−1 (Sxt−1) of V x
t−1(Sxt−1) iteratively over a number of

iterations N , in which the random information ω are generated using Monte

Carlo simulation.

The steps mentioned above is a simple description of the Approximate

Value Iteration (AVI) algorithm. However, a known problem associated

with AVI algorithms, which has been shown in some research papers such as

Farias and Roy (2000) is their lack of convergence. Therefore, Approximate
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Policy Iteration (API) Algorithm is employed in this thesis instead of the

AVI algorithm because of its ability to offer convergence guarantees (Powell,

2011).

Whereas AVI algorithms aim at approximating the value functions

associated with an unknown policy, Approximate policy iteration (API)

starts with a chosen policy function, fixes an approximation architecture to

the selected policy and finally constructs an updated policy at each iteration.

A detailed explanation of our proposed API algorithm will be presented in

Section 4.5.

3.3.2 Why ADP?

ADP is highly recommended and considered for stochastic problems

with very large-scale instances such as the energy storage problems because

of its ability to handle two of the three dimensionality issues.

Firstly, the construction of the post-decision state Sx,nt can be used

to handle the problem of having a large outcome space. This is because

the presence of the post-decision state eliminates the need to evaluate the

Bellman’s optimality equation for all possible sample realization outcomes

of the exogenous information, ω ∈ Ω.

Secondly, the approximate value functions V
n

t (Sx,nt ) that are learned

during the iteration process can allow generalization across the states so

that instead of learning the values of each state individually, the already

visited states may be able to provide some information about the value of

the states that are yet to be visited. This helps in dealing with the problem

of the large state space.
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CHAPTER FOUR

MATHEMATICAL MODELS AND API

ALGORITHM

In this chapter, we describe the SNES problem, present and highlight

the differences between an example mathematical model in literature and

our proposed mathematical model and analyse the feasible decision space

of our model. We then conclude this chapter with a detailed description

of our novel Approximate Policy Iteration with Neural Network (APINN)

algorithm.

4.1 SNES Problem Description and

Notation

A household which has an energy storage system (battery) colocated

with a renewable energy source like solar panels or wind farm has to ensure

that their total electricity demand for a fixed number of time periods in the

future is fully satisfied either from the solar panel, battery or the electricity

spot market (national grid). Aside this, energy from the renewable energy

source can also be used to directly charge the battery system. The battery’s
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energy may be sold to the power grid at any given time to yield some revenue

and electricity from the grid may be bought to replenish the battery at a

cost. The energy left over in the battery at the end of each time period in

the finite time horizon is assumed to be lost. At every time step, we must

decide how to allocate the energy from these available sources to ensure the

entire demand is met at a reduced electricity cost.

We formulate the problem as a finite-time horizon markov decision

process. The decision epochs of the MDP is represented by a discrete time

index, t ∈ T , where t could be measured in hours or days in our case. The

objective is to find a policy that maximizes the expected profits over the

finite time horizon.

4.1.1 The state of the system

• Rt: amount of energy in the battery at time t

• Et: newly available energy from the renewable source at time t

• Dt: energy demand of the household (or some other type of energy

sink) at time t

• Ct: buying price of electricity at time t

• Pt: sale price of electricity at time t

Rt represents the physical state since it is the main physical resource

being managed. Dt, Et, Ct and Pt are examples of information states from

the definition given in Section 3.1.1. Hence, the state of our system is St =

(Rt, Dt, Et, Ct, Pt). Since the information states are from external sources,

they can be referred to as the exogenous information for our system. The

exogenous information process is denoted by the vector Wt = (D̂t, Êt, Ĉt, P̂t)

where:
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• Êt refers to the change in the renewable energy amount between times

t−∆t and t

• D̂t refers to the change in the demand between times t−∆t and t

• Ĉt refers to the change in the buying price between times t−∆t and

t

• P̂t refers to the change in the selling price between times t−∆t and t

Wt can be characterized by different stochastic and deterministic mod-

els and some of these models are given in Section 5.3.2.

Additionally, we provide the general assumptions which hold for both

the example mathematical model in literature and our proposed mathemat-

ical model described in Sections 4.2 and 4.3 respectively.

Assumption 4.1.2 Wt is assumed to be Ft-measurable hence can capture

only the information that becomes available between times t−∆t and t.

Assumption 4.1.3 The exogenous information process Wt is independent

of the physical state Rt. In other words, the amount of energy in the

battery at time t does not influence the process that generates the exogenous

information.

Assumption 4.1.4 The grid is assumed to be an infinite source of power

hence we do not place any constraint on the amount of energy that can be

imported from or exported to the grid.

4.2 Sample Mathematical Model

The mathematical model described below is from Halman et al. (2018)

and is similar to that used in Jiang et al. (2014) and Natarajan et al. (2014).
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However, the buying and selling price on the spot market is assumed to be

the same in Jiang et al. (2014), whereas the selling price is assumed to

be always less than or equal to the buying price in Halman et al. (2018).

Also, Jiang et al. (2014) did not consider the storage rent in their contribu-

tion function, but like Scott and Powell (2012) they included an additional

revenue in every time period for satisfying the demand which according to

Halman et al. (2018) could make the problem easy to solve as the value

function becomes non-negative.

Representing the grid by letter G, battery by letter R, demand by D

and the renewable energy source by E; the decision variables at each time t is

denoted by the non-negative vector xt = (xGRt , xGDt , xEGt , xERt , xEDt , xRGt , xRDt ),

where xijt indicates energy transferred from device i to device j at time t.

Figure 1 below shows a sketch of the main components of this system

as well as the possible energy transfers that can occur in this system.

Figure 1: Main components of the Single-Node Energy Storage problem as
illustrated by Halman et al. (2018).

The amount of energy in the battery at time t is denoted by Rt and

the transition function used to determine the energy in the battery storage

at the next time period Rt+1 is given by:
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Rt+1 = Rt − xRDt − xRGt + (1− ηI)(xGRt + xERt ). (4.2.1)

The decision vector xt should satisfy the following constraints:

xERt + xGRt ≤ min{γI , Rmax −Rt} (4.2.2)

xRDt + xRGt ≤ min{γW , Rt} (4.2.3)

xEGt + xERt + xEDt ≤ Et (4.2.4)

xEDt + (1− ηW )xRDt + xGDt = Dt (4.2.5)

xt ≥ 0 (4.2.6)

Constraints (4.2.2) and (4.2.3) ensure that the injection or withdrawal

amounts into or from the battery do not exceed the maximum charging

and discharging rates respectively. With constraint (4.2.4), the maximum

amount of energy used from the renewable resource is restricted by Et.

Constraint (4.2.5) guarantees that the entire demand is fully met and con-

straint (4.2.6) shows that the decision variables are non-negative continuous

variables.

Assumption 4.2.1 The selling price Pt is always less than or equal to the

buying price Ct (Pt ≤ Ct).

The profit in each time period t given the state St, the decision vector

xt and the exogenous information Wt is:

gt(Rt, xt,Wt) = Pt((1−ηW )(xRGt )+xEGt )−Ct(xGRt +xGDt )−chRt+1 (4.2.7)

The goal of this model is to determine the optimal policy that can
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attain the maximum profit over all the time periods in the given finite time

horizon.

We will describe our proposed novel mathematical model and API ap-

proach and highlight the key differences between both mathematical models.

4.3 Proposed Mathematical Model

Contrary to the sample mathematical model given above, our decision

variables do not represent the energy flows amongst the main components

of the SNES problem. Instead, we are interested in determining a discrete

non-negative integer valued vector xt : (xst , x
b
t , x

r
t ), where xst , x

b
t , x

r
t indicates

the amount of energy sold to the grid, purchased from the grid and stored

in the battery respectively in time period t. We define our decision variables

as integer variables since we consider energy as being measured in discrete

units even though most papers define their decision variables as continu-

ous variables for the sake of computational convenience (Jiang et al., 2014;

Durante et al., 2017; Halman et al., 2018). Having three decision variables

instead of seven variables as in the case of Halman et al. (2018)’s model

reduces the dimensionality of the decision space and this may facilitate the

determination of the optimal decisions within reasonable time.

The decision vector xt should satisfy the following constraints:

xbt − xrt − xst = Dt − Et − xrt−1 (4.3.1)

xrt − xrt−1 <= γI (4.3.2)

xrt−1 − xrt <= γW (4.3.3)

xrt ≤ Rmax (4.3.4)

xbt , x
s
t , x

r
t ≥ 0 and integer (4.3.5)
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Constraint (4.3.1) expresses the total energy balance and ensures that

all the demand in each time period is fully satisfied. With constraints (4.3.2)

and (4.3.3), the amount of energy injected into the battery or withdrawn

from the battery will not exceed the maximum charging (γI) and discharging

(γW ) rates of the battery respectively. Also, constraint (4.3.4) guarantees

that the amount of energy stored in the battery at any point in time t does

not exceed the maximum amount of energy the battery can contain due to

its size (Rmax). Finally constraint (4.3.5) ensures that the decision variables

are non-negative integers.

A major contribution of our proposed model based on an idea from

Secomandi (2010) is that the charging and discharging losses (ηI , ηW ) due

to the transmission of energy into and from the battery are included in the

contribution function as cost. This is a form of relaxation for our constraints

which can help our model achieve very close-to-optimal solutions.

Assumption 4.3.1 The selling price Pt is always less than the buying price

Ct (Pt < Ct).

The profit in each time period t given the pre-decision state Rt, deci-

sion vector xt, exogenous information (Dt, Et, Ct, Pt) and the post-decision

state Rx
t is:

gt(xt,Wt) = CtDt + Ptx
s
t − Ctxbt − chxrt − [SηI(Rx

t −Rt)
+ +

SηW (Rx
t −Rt)

−]−M(Rmax −Rx
t )

+, (4.3.6)

where S is the cost incurred due to the loss of energy from transmitting

energy into or from the battery, M represents a large number as often used

in optimization literature, Rt is the initial battery level at the start of the
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time period and Rx
t is the remaining battery level at the end of the time

period after the decision vector xt has been applied.

The profit is calculated as the revenue generated from the energy sold

minus the costs incurred from: buying energy; storing energy in the battery;

and the transmission losses generated from injecting or withdrawing energy

into or from the battery.

In any given time t the valuation of the loss S depends on whether the

decision-maker decides to buy or sell. Buying and selling at the same time

is sub-optimal since the selling price is always less than the buying price

(Pt < Ct). We now have to consider how to value these transmission losses.

One way is to value them at the buying price Ct in the case of buying energy

to fill the battery and at the selling price Pt when energy is withdrawn from

the battery to be sold. However, we valued all the transmission losses at

the buying price Ct in our preliminary experiments and analysis. Like Scott

and Powell (2012) and Jiang et al. (2014), an additional revenue is added to

the profit for the satisfaction of demand at each time period to enable easier

analysis and interpretation of our results and metrics from the experiments

performed on the model. In our case, the additional revenue is valued at

the buying price Ct.

To simplify the notation, we introduce two variables Nt = Dt − Et

and a = xrt − xrt−1. Using equation Equation 4.3.1 and this notation,we get

the equation xbt − xst = Nt + a which makes it easy to solve for the value of

variables xbt and xst since it is not optimal to buy and sell at the same time.

The following definition will be useful.

p(x,W ) = g(x,W ) + chx (4.3.7)

Note that with this notation the decision variable at any given time is the
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single-dimensional variable a which when positive means injection of energy

into the battery and when negative means withdrawal of energy from the

battery. One could therefore argue that the dimensionality of the decision

space is further reduced to one as a result of this.

Following Secomandi (2010), at any decision time, the sets of feasible

withdrawal and injection decisions, respectively, with current battery level

x are defined as AFW and AFI = [0, Rmax − x]. We denote the set of all

feasible actions by AF (x). Since the charging and discharging capacities are

inherently captured within these actions sets we drop the last term of the

profit function. The profit function pt(a,W ) can be rewritten as:

pt(a,Wt) = −(CtNt + aCt(1 + ηI)) buy and inject (4.3.8)

= −(CtNt + aCt(1 + ηW )) buy and withdraw (4.3.9)

= −(PtNt + aPt(1 + ηI)) sell and inject (4.3.10)

= −(PtNt + aPt(1 + ηW )) sell and withdraw (4.3.11)

= −(PtNt) sell (4.3.12)

= −(CtNt) buy (4.3.13)

= −(aPt(1 + ηI)) inject (4.3.14)

= −(aCt(1 + ηW )) withdraw (4.3.15)

An energy management policy can be obtained by solving this finite

horizon MDP using the following dynamic programming recursion.
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VT (xrT−1,WT ) = maxa∈AFW (x)min{−(CTNT + aCT (1 + ηW )),

−(PTNT + aPT (1 + ηW ))}

Vt(x
r
t−1,Wt) = maxa∈AF (x)vt(a, x

r
t−1,Wt), t ∈ T , (xrt−1,Wt) ∈ X ×Wt,

vt(a, x
r
t−1,Wt) = pt(a,Wt)− chxrt + δtEt[Vt+1(xrt−1 + a, W̃t+1)] (4.3.16)

The formulation should be interpreted as: in the last stage (t = T ) we

can buy or sell depending on the net surplus energy but injection into the

battery cannot take place whereas we have eight actions resulting from the

Cartesian product of {sell, buy, neither sell nor buy} and {inject, withdraw,

neither inject nor withdraw} in the remaining stages (t < T ).

4.4 Analysis of the feasible decision space

structure

This section analyses the feasible decision space structure of the policy

that can be generated from the implementation of our proposed model. Al-

though there are a number of studies in literature which focused on solving

or approximately solving the DP, we are not aware of any study that does

the aforementioned analysis except Secomandi (2010). Secomandi (2010)

focused on the determination of the inventory-trading policy that aids the

merchant in deciding whether to buy and inject into the warehouse or with-

draw and sell to the wholesale market given constraints such as injection

and withdrawal capacity limits, the current spot price and the inventory

level (space of the warehouse). In our setting, the inventory levels can be

likened to the minimum and maximum capacity of the battery (Rmin, Rmax)

and the withdrawal and injection capacity limits are depicted by the maxi-
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mum charging (γW ) and discharging (γI) rates of the battery. We provide

an extension to Secomandi (2010) in two ways.

1. We consider the demand and available energy production from the

renewable energy source in each time period.

2. Buying and selling happen at different prices.

Secomandi (2010) showed that when γI and γW are (much) less than

the maximum battery capacity, the optimal decision at each time period

depends not only on the spot price but also on the initial battery level.

This is a very important insight as it results in the feasible decision space

having a specific structure which can be split into three phases (inject,

do-nothing, withdraw) depending on the initial battery level. Departing

from this structure and employing sub-optimal decisions can result in very

low payoff. We therefore extend this same idea from Secomandi (2010) to

describe the feasible decision space structure in our case of different prices

and improved model formulation.

Observation 4.4.1 When buying and selling prices are equal, the optimal

decision in a period only depends on the initial battery level, prices, injection

and withdrawal rates but not on the demand and renewable energy source

(solar or wind) profiles.

Proof. This statement means that changing the renewable energy source

and demand levels in each period when the prices, battery level and injec-

tion and withdrawal rates are fixed will not shift the optimal decision from

injection to withdrawal and vice-versa. To see this note that if injection is

said to be the optimal decision in the current period for a given demand

and solar or wind profile, the injection may be done for two reasons: to

satisfy demand in the future or to sell in the future. Storing in the current
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period is equivalent to buying as both decisions do not earn revenue in that

period since the buying and selling prices are equal. Therefore, irrespective

of demand it is optimal to store as long as prices remain the same.

This aligns with the results in (Halman et al., 2009, 2018) which

showed that having the same buying and selling price makes the SNES

problem much easier to solve compared to the use of different buying and

selling prices. On the other hand, different demand patterns can result in

different optimal strategies when buying and selling prices are not equal.

Observation 4.4.2 When buying and selling happen at different prices

optimal decisions also depend on the renewable energy and demand profiles.

Proof. Consider for example the price profile given in Figure 2 where the

blue dotted lines indicate the selling price (Pt) and black thick lines represent

the buying price (Ct). Clearly, it is not optimal to buy in period one (t = 1)

to sell in period three (t = 3) or in period two (t = 2) since the buying price

in period one is larger than the selling price in period two and period three

(C1 > P2 and P3). Therefore, injecting is optimal at any initial battery

level only if the net demand (Dt−Et) in period three is positive (i.e. there

is still some remaining demand to be satisfied). In this case, it may be

optimal to buy and store in period one to satisfy the demand in period

three depending on the injection and withdrawal rates. On the other hand,

it may not be optimal to buy and inject in period one if the net demand

(Dt − Et) is non-positive (all the demand has been fully satisfied via the

renewable energy source) in period three. This illustrates the complexity of

our problem compared with Secomandi (2010).
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Figure 2: Example price profile for three periods

4.4.3 Negative surplus

In the case of negative surplus, that is when solar or wind energy plus

energy in battery is less than demand (Dt − Et − Rx
t−1 > 0), the feasible

decision space structure is similar to that in Secomandi (2010) with three

phases: buy-and-inject, buy, buy-and-withdraw. As indicated in Figure 3,

depending on the initial battery level and buying price the optimal decision

varies. We highlight here that the injection and withdrawal rates also play

a key role in determining the optimal decision out of the feasible decision

space (Secomandi, 2010).
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Surplus
BW(Ct) B(Ct) BI(Ct)

0

Figure 3: Illustration of the feasible decision space structure for a given
stage and prices in the case of negative surplus

We discuss some scenarios under which each of these three phases of

the feasible decision space structure is selected as the optimal decision.

Buy-and-inject

Energy is bought to satisfy the remaining demand and also top up the

battery if it is not at its maximum capacity and the buying price is low.

Note that the injection amount must be less than or equal to the maximum

injection rate (γI) and also the maximum capacity of the battery (Rmax)

should not be exceeded.

Buy

This refers to the scenario where it is optimal to satisfy the remaining

net demand without using the battery. This could happen if the battery

is empty (Rt = 0) and the buying price is so high that buying more than

what is needed to satisfy the remaining net demand as well as replenish the

battery when t < T will cause a lower payoff.
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Buy-and-withdraw

This could happen when the amount of energy that must be with-

drawn from a battery with enough stored energy to satisfy the remaining

net demand exceeds the maximum withdrawal rate (Dt−Et > γW ) or when

there is simply not enough storage in the battery to satisfy the remaining

net demand (Dt − Et > Rt).

4.4.4 Positive Surplus

In contrast to the negative surplus case, the structure of the feasible

decision space in any given period with positive surplus is much more com-

plicated and depends at a given time and given buying and selling prices,

on both the initial battery level and the total net surplus (Dt −Et −Rx
t−1)

as shown in Figure 4.

BI(Ct,Pt)

SI(Ct,Pt)

S(Ct,Pt) SW(Ct,Pt)

Et

Battery 

level (xr
t)

I(Ct,Pt)

W(Ct,Pt)

Figure 4: Illustration of the optimal policy structure for a given stage and
prices in the case of positive surplus

We also discuss some scenarios under which each of these six phases

of the feasible decision space structure is selected as the optimal decision.
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Buy-and-inject

This can happen when the buying price is low and the total demand

has been satisfied and there is still some storage capacity left in the battery

which can be replenished (Rt < Rmax). The injection amount however must

be ≤ γI .

Inject

This could happen when there is a high quantity of the available energy

from the renewable energy source (Et) such that it can satisfy the demand on

its own with some surplus even remaining (Et > Dt). In this case however,

it is more optimal to store all this surplus energy from the renewable energy

source due to the low selling price being offered on the spot market and also

the surplus energy amount from the renewable energy source is ≤ γI .

Sell-and-inject

In this case, a portion of the surplus energy from the renewable energy

source Et after all the demand has been satisfied (described above) is stored

in the battery and the other portion sold to the grid. This could be as a

result of the surplus energy amount being ≥ γI and since the injection

amount must be ≤ γI , not all of it can be added to the battery.

Sell

Over here, either the selling price on the spot market yields a better

payoff compared to storing the excess energy from the renewable energy

source Et or the battery is at its maximum capacity (Rt = Rmax).

Sell-and-withdraw

When the total demand has been satisfied and there is still some avail-

able storage in the battery, we can withdraw and sell to the grid provided
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the withdrawal amount ≤ γW and the selling price at the time results in

a higher payoff or it is the last time period (t = T ) and we do not want

to have energy in the battery since this will be lost and valued at an extra

cost.

Withdraw

In this case, we may require an amount of energy from the less than

or equal to γW in addition to the renewable energy to satisfy the entire

demand.

4.4.5 Zero Surplus

For a zero surplus, solar or wind energy plus energy in the battery

equals demand (Dt − Et − Rx
t−1 = 0). One scenario to consider is when

the battery is empty and the amount of energy in the renewable resource

is enough to handle the total demand. It may therefore be optimal to do-

nothing if the buying price on the market is quite high and will result in

a low payoff or it is the last time period (t = T ) and there is no need to

replenish the battery.

Another optimal decision that can be considered is to buy-and-inject

for all other time periods apart from the last time period provided the

injection limit γI is not exceeded and the buying price is quite low on the

market.
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4.5 Approximate policy iteration with

neural networks (APINN)

Policy Iteration (PI) is a well-known algorithmic technique used to

solve stochastic dynamic programs (DP). There are several results from

academic literature that exist on the convergence of PI for DPs (Bertsekas

and Tsitsiklis, 1996; Bertsekas, 2018). A policy is a mapping of the state

space to the action space and it is said to be feasible if it satisfies all the

constraints for the given problem.

PI has two main steps, evaluation and improvement. The idea is to

start with a feasible policy and iteratively improve it after evaluating at

each iteration. It is shown that the policy converges to the optimal policy

under certain mild assumptions. Exact policy iteration requires evaluat-

ing the entire state space multiple, if not many, times which is almost an

impossible task to achieve even for moderately large state spaces. This

made many researchers focus on approximate ways of implementing policy

iteration while still maintaining convergence. An extensive survey about

Approximate Policy Iteration (API) is provided in Bertsekas (2011).

One of the ways to avoid a full state space evaluation is to use simula-

tion. We took this approach in our study and used monte-carlo simulation

to generate a fixed number of sample states after which we applied a ma-

chine learning model to assist in the learning of the value function. The

machine learning model takes as input the current state and actions and

predicts the future profit.

Some studies refer to the machine learning framework used to learn

an approximate value function as approximation architectures (Jiang et al.,

2014). Many approximation schemes have been proposed in literature and
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have been discussed in Section 2.3.1. Most of these works use (some sort

of) linear approximation architectures such as the expression of the value

function as a linear function of known set of features which are also called

the basis functions. The policy evaluation data from simulation is then used

as input to fit coefficients for these features (Jiang et al., 2014; Jiang and

Powell, 2015) .

Bertsekas (2018) proposed the idea of using learning algorithms such

as neural networks to learn features in cases where they are not already

known. He also argued that the value function may be approximated more

accurately by non-linear functions of the features. Therefore in this study,

instead of using linear architectures, we employed neural networks for the

value function approximation due its ability to capture many kinds of dy-

namic or non-linear relationships and patterns in the underlying data. Aside

this, neural networks are known to have superior predictive properties, bet-

ter performance, and a higher robustness to over-fitting.

We give a formal description of our algorithm in Algorithm 1, where

NN in Step 5 stands for neural networks. The basic idea is that for each

improvement iteration n, the given policy is evaluated for the number of

samples Y over the entire finite horizon (t ∈ T ) and the result is used to

train the neural network model. After the evaluation process, the policy is

then improved at each time step t for a set of randomly generated exoge-

nous information, each possible value of the initial battery level in the set

[Rmin, Rmax] and a set of feasible storage actions by using Algorithm 2 and

the trained neural network model to select the optimal storage action (xrt )

and its corresponding decisions (xbt , x
s
t) that give the maximum total profit.

Using machine learning within API is not new and has already been

explored before, owing to the fact that learning high dimensional functions

is central to machine learning theory. In Jiang et al. (2014) several machine
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learning techniques like support vector machines are used for approximating

the value function shown in Step 5. Original ideas of using neural networks

within approximate policy evaluation was proposed within reinforcement

literature many years back in the work of Tesauro (Tesauro, 2002).

More recently, Bertsekas (2018) proposed API with neural nets to ap-

proximate cost function of policy evaluation and learning linearly linked

features using feature based approximation. Our work is based on exactly

similar ideas but we do not use any feature based combination to approxi-

mate the value function. Instead, we use deep neural networks as black box

models to predict function values. Bertsekas (2018) pointed out that using

neural networks which does not assume a linear combination of features

within API requires the development of models that enable dimensionality

reduction. This was achieved in our model as our battery injection and

withdrawal losses have been valued in monetary terms and moved to the

objective function ad this has enabled us to express the decision vector in

just one dimension as the amount of energy stored in the battery in each

time period (xrt ). The policy improvement stage is much simpler since we

now have a single dimensional optimization problem rather than a non-

linear multi-dimensional problem which is much harder to handle. We can

therefore easily derive the values for buying and selling decisions (xbt , x
s
t) for

a fixed value of storage xrt in a time period.

Observation 4.5.1 For any t either xbt = 0 or xst = 0.

Proof. The statement has to be true due to the assumption Pt < Ct which

makes it sub-optimal to buy and sell at the same time.

Lemma 4.5.2 Given xrt Algorithm 2 computes the optimal values of xbt and

xst .
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Algorithm 1 Approximate Policy Iteration with Neural Networks (AP-
INN)
(Inputs: sample size Y , improvement iterations N , policy π, neural network
architecture NN )

Step 0: Set initial policy π0, set n = 1
Step 1: Set y = 1
Step 2: Select initial battery level xrt−1

for i = 1 to T − 1 do
Step 3a: sample Wt

Step 3b: evaluation Apply policy:

(xrt , x
b
t , x

s
t) = πt(x

r
t−1,Wt), C

y
t = C(xrt−1,Wt), (4.5.1)

end for
Step 4: if y < Y , y = Y + 1 and return to Step 1.
Step 5: Approximate value function:

Ṽ x,n−1 = NN n(xrt−1, x
r
t , x

b
t , x

s
t , C

y
t ) (4.5.2)

Step 6: Improvement :

πnt (xrt−1,Wt) = argmax
xrt

[C(xrt−1,Wt) + Ṽ x,n−1] (4.5.3)

Step 7: if n < N , n = n+ 1 goto Step 1
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Algorithm 2 Compute-Actions

Input: Et, Dt, x
r
t , x

r
t−1

if t < T then
if xrt > xrt−1 then

if Et −Dt ≥ xrt − xrt−1 then
xst = Et −Dt − xrt + xrt−1; xbt = 0

end if
if Et −Dt < xrt − xrt−1 then
xbt = Dt − Et + xrt − xrt−1; xst = 0

end if
end if
if xrt < xrt−1 then

if Et −Dt ≥ xrt − xrt−1 then
xst = Et −Dt + xrt − xrt−1; xbt = 0

end if
if Et −Dt < xrt − xrt−1 then
xbt = Dt − Et + xrt − xrt−1; xst = 0

end if
end if
if xrt = xrt−1 then

if Et −Dt ≥ 0 then
xst = Et −Dt; x

b
t = 0

end if
if Et −Dt < 0 then
xbt = Dt − Et; xst = 0

end if
end if

else
if Et −Dt ≥ xrt − xrt−1 then
xst = Et −Dt − xrt + xrt−1; xbt = 0

end if
if Et −Dt < xrt − xrt−1 then
xbt = Dt − Et + xrt − xrt−1; xst = 0

end if
end if
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CHAPTER FIVE

EXPERIMENTS, RESULTS AND

DISCUSSIONS

This section is organized as follows: we first introduce the Integer

Program (IP) model that provides the optimal solution for the deterministic

benchmark problems used to test the performance of the proposed APINN

algorithm. The parameters selected for the proposed mathematical model,

APINN algorithm and neural network are then discussed and the numerical

results and findings are presented and analysed to conclude this chapter.

5.1 Integer Program (IP) Formulation

Studies such as Salas and Powell (2013) and Jiang et al. (2014) as-

sessed the performance of their proposed API algorithm by comparing the

policies generated from their algorithm to the optimal policies obtained

from the exact solution of some designed benchmark problems (either de-

terministic or stochastic) via linear programming (Salas and Powell, 2013)

or backward dynamic programming (Jiang et al., 2014). In our case, we fo-

cused on deterministic benchmark problems (i.e. demand, wind and prices
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in each period are known) which can be seen as a special case of the lot

sizing problem with losses and bounded inventory. Lot sizing problems are

very well studied in operations research literature including deterministic

and stochastic variants. We developed an integer programming (IP) model

to obtain the optimal solution for these deterministic benchmark problem

instances based on ideas gathered from these lot sizing research papers. The

IP formulation is given below:

Problem Parameters

Parameter Notation Parameter Description

T number of time periods

ch storage rent, in $ per MWh per time step

γI maximum charging rate of the battery

γW maximum discharging rate of the battery

Ct buying price of electricity at time t

Pt sale price of electricity at time t

ηI % of transmitted energy lost due to battery charging

ηW % of transmitted energy lost due to battery discharging

Let: A ={buy-inject, sell-inject, buy-withdraw, sell-withdraw, buy,

sell, inject, withdraw, do-nothing}; II = {buy-inject, sell-inject, inject};

WW = {buy-withdraw, sell-withdraw, withdraw}.
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We have the following variables for each time period t:

zjt = 1 if j is true, where j ∈ A,

= 0 otherwise.

wjt = total injection into battery when j is one of II,

= total withdrawal from battery when j is one of WW

xjt = total units stored (j = r) in period t

= total units sold (j = s) in period t

= total units bought (j = b) in period t

M = large positive number (often used in most integer programming formulations)

LS-L-BI
T∑
t=1

CtDt + max
T∑
t=1

(
Ptx

s
t − Ctxbt − chxrt − ηI

∑
i∈II

Ctw
i − ηW

∑
i∈WW

Ctw
i

)
subject to: ∑

i∈A

zit = 1 ∀t (5.1.1)

γI
∑
i∈II

zit ≥ xrt − xrt−1 ∀t (5.1.2)

γW
∑
i∈WW

zit ≥ −(xrt − xrt−1) ∀t (5.1.3)

wjt ≤Mzjt ∀j ∈ WW ∪ II and ∀t (5.1.4)∑
i∈II

wit ≥ xrt − xrt−1 ∀t (5.1.5)∑
i∈WW

wit ≥ −(xrt − xrt−1) ∀t (5.1.6)

xbt − xrt − xst = Dt − Et − xrt−1 ∀t (5.1.7)

Z ∈ {0, 1}, X,W ≥ 0 and integer (5.1.8)

Lemma 5.1.1 LS-L-BI is a valid IP formulation for the deterministic vari-

ant of the SNES problem.
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Proof. The additional revenue from satisfying the total demand (
∑T

t=1CtDt)

is added to the objective function to simplify the analysis of our performance

metrics. The objective function includes the revenue generated from the en-

ergy sold minus the costs incurred from: buying energy; storing energy in

the battery; and the transmission losses generated from injecting and with-

drawing energy into/from the battery. The aim is to find the the optimal

amount of energy bought, sold and stored in each time period that gives

the maximum contribution.

Constraints (5.1.1) and (5.1.4) ensure that exactly one type of deci-

sion is selected from the decision space A at each time t. Withdrawal and

injection limits are respected in each time period as a result of constraints

(5.1.2)-(5.1.3) and (5.1.5)-(5.1.6). The entire demand for each time period

t is satisfied and the energy flow is balanced due to constraint (5.1.7). As

shown in (5.1.8), the decision variables are non-negative integers whereas

the z-variables are binary.

5.2 Neural Network Parameters

We used the keras deep learning library in python to implement the

neural network model. The data used for training the neural network con-

sists of six columns, with the first five columns (time (t), previous battery

level (xrt−1), energy bought (xbt), energy sold (xst) and energy stored (xrt )

as the inputs and the last column (future contribution (V t)) as the output

which must be predicted. The data was then split with 70% of it as the

training samples and 30% as the test samples. We employed a feed forward

neural network with 10 nodes in each of the input layers, 10 nodes in the

second layer and a single node in the output layer for the predictions. The
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nodes mentioned above are of a dense layer type, i.e, all the nodes in the

previous layer are connected to the nodes in the current layer. We also

included two dropout layers set to 0.2 that randomly select neurons to be

ignored during training. This along with the L2 regularization with weight

penalties of 0.01 helped in the reduction of over-fitting and generalization

errors (Srivastava et al., 2014).

Each input was multiplied with its own assigned relative weight and

summed together. A bias was then added to the summation and the result

was transformed via the hyperbolic tangent (tanh) activation function to

produce the predictions. We used the mean squared logarithmic error as

the loss function to determine the errors between the predicted and actual

output value. For accurate predictions, the mean squared logarithmic error

must be minimized via back propagation which ensures that the current

error is propagated to the previous layer and is used to modify the network’s

weights and bias through an optimization function. This cycle is repeated

until the minima of the loss function is reached and the error for the output

node and the entire neural network is minimized to its lowest possible value.

In our study, the Adam optimization algorithm was chosen as our

optimizer because of its easy implementation, computational efficiency, lit-

tle memory requirement and intuitive hyper-parameters that require little

tuning (Kingma and Ba, 2017). Empirical results also demonstrate that

Adam works well in practice and compares favourably to other stochastic

optimization methods. We used the default settings for the Adam optimizer

suggested in the keras documentation for training our model.

We also implemented early stopping as another mechanism to prevent

over-fitting. The training sample was further split, with 80% as the training

set, and 20% as the validation set. The validation samples are predicted

and the validation loss is computed after each epoch (one pass across the
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samples in the training set). This process is continued until the validation

loss does not decrease for the patience period. The training is then stopped

and the weights of the model with the lowest validation loss is selected

(Yuan et al., 2007). We chose a batch size of 100, 15 epochs and an early

stopping patience of 5.

5.3 Experimental Design

5.3.1 Battery Storage Parameters

Parameter Name Parameter Notation Value

Minimum battery capacity Rmin 0

Maximum battery capacity Rmax 30

Maximum charging rate of the battery γI 6

Maximum discharging rate of the battery γW 3

% of transmitted energy lost due to battery charging ηI 5 %

% of transmitted energy lost due to battery discharging ηW 5 %

Storage rent ch 0.0005
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5.3.2 Exogenous Information Parameters

Parameter Name Parameter Notation Value

Minimum renewable energy source Emin 1

Maximum renewable energy source Emax 7

Minimum demand Dmin 1

Maximum demand Dmax 15

Minimum buying price Cmin 3

Maximum buying price Cmax 13

Minimum selling price Pmin 2

Maximum selling price Pmax 12

As mentioned in Section 4.1.1, various stochastic and deterministic

models can be used to describe the exogenous information process. Before

we show the models used in our case for the four exogenous information

processes, the discrete uniform distribution and the discrete pseudonormal

distribution described in Jiang et al. (2014); Salas and Powell (2013) are pre-

sented since they are the main probability distributions used in our sampling

process.

Discrete Uniform Distribution

The probability mass function for the Discrete Uniform Distribution

is:

uX(x) =
∆X

b− a+ ∆X
∀x ∈ X (5.3.1)

where each element in X = { a, a + ∆X, a + 2∆X, ...., b − ∆X, b} has the

same probability of occurring.
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Discrete Pseudonormal Distribution

Even though it is standard practice to denote the pseudonormal dis-

tributions as X̄ ∼ PN (µ, σ2, a, b,∆) since it is characterized by these five

parameters (Jiang et al., 2014), we provide the same simplified notation as

Salas and Powell (2013) which is X̄ ∼ N (µX , σ
2
X). The support of X is

defined as X = { a, a + ∆X, a + 2∆X, ...., b − ∆X, b}. For xi ∈ X , the

probability mass function is:

P(X = xi) =
fX(xi;µX , σ

2
X)∑

xj∈X fX(xj;µX , σ2
X)

where fX(xi;µX , σ
2
X) is the normal probability density function with mean

µX and variance σ2
X .

Demand process

Similar to Salas and Powell (2013) and Jiang et al. (2014), the demand

is assumed to be deterministic and is described by a sinusoidal distribution

to depict the seasonality structure of energy demand.

D̂t = b3− 4sin(
2π(t)

T
)c+ εDt (5.3.2)

where εDt is pseudonormally distributed N (0, 22) and discretized over the

set {0, ±1, ±2} and the demand sampling support is [1, 15]. The demand

at time t is then selected using:

Dt = min{max{D̂t, Dmin}, Dmax} (5.3.3)

Renewable energy source process

First-order Markov processes such as an order-1 autoregressive process

(Löhndorf and Minner, 2010; Zhou et al., 2018) or a first-order Markov
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Chain (Cheng et al., 2018; Jiang et al., 2014; Salas and Powell, 2013) can

be used for modelling the renewable energy profile. The latter is employed

in this study. Therefore, the renewable energy for the next time period is

given by,

Et+1 = min{max{Et + εEt+1, Emin}, Emax} (5.3.4)

where εEt are independent and identical random variables that can be either

uniformly distributed over the set {0, ±1} or pseudonormally distributed

and discretized over the set {0, ±1, ±2, ..., ±5 } with the sampling support

as [1,7].

Price process

The same models are considered for the buying price Ct and selling

prices Pt. The main difference is the values of the sampling support used. In

this thesis, first-order markov chain with jumps which enable the simulation

of price spikes are used to model the prices. This model has also been used

in Salas and Powell (2013) and Jiang et al. (2014). Other models which are

not considered in this study are first-order markov chain (Tseng and Barz,

2002; Mokrain and Stephen, 2006; Jiang et al., 2014; Salas and Powell, 2013)

and an inter-temporal independence model in conjunction with a lognormal

distribution (Xiaomin et al., 2014).

The sampling support for the buying price Ct is [3, 13] and that of

the selling price Pt is [2, 12]. Therefore, the prices at the next time period

is given by:

Ct+1 = min{max{Ct + εCt+1 + 1{ut+1 ≤ p}ε
CJ
t+1, Cmin},Cmax} (5.3.5)

Pt+1 = min{max{Pt + εPt+1 + 1{ut+1 ≤ p}ε
PJ
t+1, Pmin},Pmax} (5.3.6)
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εCt and εPt are pseudonormally distributed and discretized over the set {0,

±1, ±2, ..., ±8 }; εCJt and εPJt are pseudonormally distributed and dis-

cretized over the set {0, ±1, ±2, ..., ±40 }; ut is uniformly distributed

U(0, 1) with p = 0.031.

We designed five different uniform and pseudonormal distributions to

generate the samples for our exogenous information during the experimenta-

tion of our APINN algorithm. The demand is sampled from the determin-

istic sinusoidal distribution described above. The sampling process used

for renewable energy source, buying price and selling price for these five

experimental data classes are summarized in Table 5 .1 below:

Data Class εEt Ct/Pt Processes εCt /ε
P
t

S1 U(−1, 1) Markov Chain with jumps PN (0, 0.52)

S2 U(−1, 1) Markov Chain with jumps PN (0, 1.02)

S3 U(−1, 1) Markov Chain with jumps PN (0, 2.52)

S4 U(−1, 1) Markov Chain with jumps PN (0, 5.02)

S5 PN (0, 0.52) Markov Chain with jumps PN (0, 5.02)

Table 5 .1: Data Classes

In order to define the state space, the state variables are discretized

using step size ∆ = 1 and their minimum and maximum values. Therefore

the state space S := [Rmin, Rmax] × Ωt × T , where Ωt = [Dmin, Dmax] ×

[Emin, Emax]× [Cmin, Cmax]× [Pmin, Pmax], denotes the set of possible real-

izations of Wt. Hence Ωt = 15488 and S = 480128× T .

5.3.3 Initial policy

Policy iteration starts with an initial policy and improves it until it

converges to the optimal policy. In our initial policy (also known as the
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naive policy), energy is bought to satisfy the demand; the renewable energy

is sold and the previous battery storage amount is also stored in the current

time period. However in the last time period, the entire amount of energy

in the battery is withdrawn and sold in addition to the renewable energy

source if the previous battery level is less than the maximum discharging

rate (γW ) whereas the energy sold equals the renewable energy source plus

γW when the previous battery level is greater than γW . The naive policy is

outlined in Algorithm 3.

Algorithm 3 Naive Policy

if t < T then

xst = Et; x
b
t = Dt; x

r
t = xrt−1

else

if xrt−1 <= γW then

xbt = Dt; x
s
t = Et + xrt−1; xrt = 0

else

xbt = Dt; x
s
t = Et + γW ; xrt = xrt−1 − γW

end if

end if

Output: xbt , x
s
t , x

r
t

The reason for this choice of naive policy is to see if our APINN algo-

rithm can start learning even with a very bad policy. We acknowledge that

starting with a better policy can result in a better performance, but chose

to test our proposed algorithm with this initial bad naive policy since this

is the first time neural network is being used within our APINN algorithm.
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5.3.4 APINN Algorithm Parameters

Parameter Name Parameter Notation Value

Sample size Y 3000

Number of improvement iterations N 50

Number of time periods T 10 and 25

Time step ∆t 1

The sample size and number of improvement iterations influence the

computation times and solution quality of the proposed API algorithm.

Even though approximate policy iteration is known to require a few num-

ber of improvement iterations to reach convergence, we chose to run the

proposed APINN algorithm for 50 iteration steps to investigate the margin

of improvement from one iteration to another, in steps of 10. The algorithm

was ran for each of the 5 data classes described in Table 5 .1 and for two

sets of time periods (T = 10 and T = 25) and the policy generated after

each improvement step was stored for further analysis.

Recall that neural networks typically require large amount of data

to perform well and provide more accurate predictions. We realised that

setting the sample size Y to smaller values such as 1000 did not allow any

injection decisions to be taken in the policies generated by the proposed

algorithm even in situations where it was optimal to replenish the battery.

As such we selected Y as 3000 for all the experiments. Note that the sample

size of the data used to train the neural network model during the policy

evaluation stage at each time t is given by Y × T . At each time t, the

sample size of the data used to train the NN in the case of T = 10 is 30000

and when T = 25 is 75000. This data was then split into the training, test

and validation sets based on the percentages given in Section 5.2. Also,
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we randomly selected 0.1% of this sample size as the exogenous states to

be visited during the improvement stage. During the improvement step, at

each time step and for each of the states in the randomly selected exogenous

information and each battery level Rt in [Rmin, Rmax], we looped through

a set of feasible storage amounts and selected the one that satisfied all

the constraints of the problem and gave the maximum contribution as the

amount of energy we decide to store (xrt ) in that time t. Recall that with

our proposed mathematical model in Section 4.3, knowing the amount to

store (xrt ) in each time period can help to easily determine the other decision

variables (xbt , x
s
t ; see Equation (4.3.7)).

In the case of T = 10, at each time period t, the size of the state space

used for the improvement process is 930 (0.1% × 30000 × 31) whereas for

T = 25 is 2325 (0.1%× 75000× 31). Note that the value 31 used here is the

state space of the battery level [Rmin, Rmax] with ∆ R = 1. One may argue

that 0.1% of the sample size may not be a suitable representation of the

entire sample space. However, this value was chosen so as to further speed

up the improvement process even though we acknowledge that visiting more

states may provide better estimates to determine the optimal decisions.

5.3.5 Deterministic benchmark problems

For our deterministic benchmark problems, 300 instances were gen-

erated for each of the 5 experimental data classes described in Table 5 .1.

An instance includes a sample path for the exogenous information process

(Dt, Et, Ct, Pt) for each time period in the finite-time horizon (∀t ∈ T ).

Assumption 5.3.6 For the deterministic benchmark problems, the battery

is empty at the beginning of the first time period in the finite horizon.

The deterministic optimal policy value for each of these 300 instances
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was computed by implementing the IP model given in Section 5.1 with

the IBM CPLEX optimization solver. During the experimentation of the

proposed algorithm, the policy generated after each improvement step was

stored and used to determine the algorithm’s payoff for these 300 instances.

If the sample path for an instance can be found in the generated algorithm

policy, the corresponding actions were retrieved and the profit was computed

using the contribution function described in Algorithm 1. Otherwise, the

naive policy was applied to determine its contribution. The sum of the

profit for all the sample paths in an instance is the optimal policy value for

that instance.

5.3.7 Algorithmic performance metrics

The two metrics used to evaluate the performance of the policies gen-

erated from the proposed algorithm against the IP optimal solution for

the deterministic benchmark instances are relative regret and % optimality.

These metrics were also employed in Salas and Powell (2013) and Jiang et

al. (2014) for the analysis of their results.

RelativeRegret =
Optimal Profit− APINN Profit

Optimal Profit
× 100, (5.3.7)

%Optimality =
APINN Profit

Optimal Profit
× 100. (5.3.8)

Note that relative regret plus % optimality equal 100%.

The % optimality (or relative regret) value of the policy under con-

sideration is the average % optimality (or relative regret) over the 300 de-
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terministic generated for that policy’s data class.

5.4 Numerical Findings

We first present the computation times of our APINN algorithm in

Table 5 .2.

N = 10 50

25 0.75 5

10 0.55 3

Table 5 .2: Computation times in hours

Computation times are dominated by the neural network prediction

times in the improvement stage. This is part of the reason for only using

a sample of the total state space at each improvement stage. However, the

improvement step can be sped up considerably by:

• efficiently using the structure of the objective function (contribution

function + future value) such that the future value predicted using

the keras model does not depend on the prices.

• computing the objective function for all actions simultaneously rather

than through a for loop. This is referred to as parallelizing and it

depends on the configuration of the GPU used to run the experiments.

Training the neural network model can also be time intensive, espe-

cially, when scaling up to hundreds of time periods. The mean-square-log-

error is approximately 1.5 in all rounds. Note that since we did not explore

the full state space when applying our policy, the naive policy is employed
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when we encounter a state which has not yet been visited in the improve-

ment stage.

We present the summary of the results for 10 and 25 time periods in

Table 5 .3 and Table 5 .4 respectively. In both cases, number of improvement

iterations N > 10 seem to be sufficient with the performance only improving

marginally from N = 20 onwards. The performance of the algorithm is

identical over all instances, with the algorithm always obtaining a solution

which is at least better than 60% optimality. Even though an average

performance slightly better that 80% optimality may seem discouraging

compared to the results from previous work, we must note that our problem

is more general and difficult to solve because of the discreteness of our

decision variables and the use of different buying and selling prices. In

addition to this, we start with a very bad naive policy and our neural

network parameters need more fine-tuning to provide better predictions.

Compared to the T = 10 case, there is only a small dip in the performance

when T = 25 and this gives an indication of promise that our approach

holds and could provide better results with a more exhaustive tuning of

the neural network parameters. In Tables 5 .3 and 5 .4, we can observe less

variance across the instances in each problem data class which suggests that

the algorithm is consistent.
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Data Class Metrics 10 20 30 40 50

S1 Relative Regret 27.27% 17.69% 17.64% 17.65% 17.64%

Opt Gap 72.73% 82.31% 82.36% 82.35% 82.36%

Worst case 27.97% 56.67% 56.67% 56.67% 56.67%

Best case 98.57% 99.24% 99.24% 99.24% 99.24%

Std. deviation 0.160 0.065 0.064 0.064 0.064

S2 Relative Regret 27.49% 17.11% 17.05% 17.03% 16.97%

Opt Gap 72.51% 82.89% 82.95% 82.97% 83.03%

Worst case 19.93% 62.52% 62.52% 62.52% 61.77%

Best case 98.28% 98.37% 98.37% 98.37% 98.37%

Std. deviation 0.167 0.067 0.066 0.066 0.067

S3 Relative Regret 26.60% 16.81% 16.82% 16.82% 16.83%

Opt Gap 73.40% 83.19% 83.18% 83.18% 83.17%

Worst case 27.70% 60.25% 60.25% 60.25% 60.25%

Best case 100.00% 100.00% 100.00% 100.00% 100.00%

Std. deviation 0.155 0.066 0.066 0.066 0.066

S4 Relative Regret 27.84% 17.57% 17.59% 17.59% 17.58%

Opt Gap 72.16% 82.43% 82.41% 82.41% 82.42%

Worst case 27.74% 57.42% 57.42% 57.42% 57.42%

Best case 98.91% 98.91% 98.91% 98.91% 98.91%

Std. deviation 0.163 0.066 0.066 0.066 0.066

S5 Relative Regret 28.67% 17.88% 17.88% 17.88% 17.88%

Opt Gap 71.33% 82.12% 82.12% 82.12% 82.12%

Worst case 31.21% 59.71% 59.71% 59.71% 59.71%

Best case 97.97% 97.97% 97.97% 97.97% 97.97%

Std. deviation 0.169 0.066 0.066 0.066 0.066

Table 5 .3: Results for 10 time periods
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Data Class Metrics 10 20 30 40 50

S1 Relative Regret 21.03% 20.63% 20.49% 20.44% 20.39%

Opt Gap 78.97% 79.37% 79.51% 79.56% 79.61%

Worst case 55.12% 63.51% 63.51% 66.12% 66.12%

Best case 89.95% 89.95% 89.95% 89.95% 89.95%

Std. deviation 0.049 0.043 0.042 0.041 0.040

S2 Relative Regret 21.30% 21.12% 20.96% 20.87% 20.87%

Opt Gap 78.70% 78.88% 79.04% 79.13% 79.13%

Worst case 53.50% 53.50% 54.52% 54.52% 54.52%

Best case 90.52% 90.52% 90.52% 90.52% 90.52%

Std. deviation 0.054 0.051 0.049 0.048 0.048

S3 Relative Regret 20.95% 20.69% 20.57% 20.48% 20.43%

Opt Gap 79.05% 79.31% 79.43% 79.52% 79.57%

Worst case 63.56% 65.77% 65.77% 66.75% 66.75%

Best case 90.62% 90.62% 90.62% 90.62% 90.62%

Std. deviation 0.046 0.043 0.042 0.041 0.040

S4 Relative Regret 21.14% 20.97% 20.86% 20.80% 20.76%

Opt Gap 78.86% 79.03% 79.14% 79.20% 79.24%

Worst case 55.74% 56.06% 56.06% 56.06% 56.06%

Best case 89.52% 89.52% 89.52% 89.52% 89.52%

Std. deviation 0.048 0.046 0.046 0.045 0.044

S5 Relative Regret 20.67% 20.63% 20.62% 20.62% 20.60%

Opt Gap 79.33% 79.37% 79.38% 79.38% 79.40%

Worst case 65.94% 65.94% 65.94% 65.94% 65.94%

Best case 88.35% 88.35% 88.35% 88.35% 88.35%

Std. deviation 0.042 0.042 0.042 0.042 0.041

Table 5 .4: Results for 25 time periods

In Table 5 .5 we compare the performance of our algorithm with the
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case when only the naive policy is used to deduce the actions. As can be

seen in almost all the data classes, the naive policy gives a relative regret

of more than 50% whereas our APINN algorithm gives a relative regret of

less than 18% in the 10 period case and less than 20% in 25 period case,

thereby closing a significant performance gap over the naive policy. The

results below also show that the naive policy is not applied too many times

in the improvement stage during the experiments which further proves that

our proposed APINN algorithm does indeed learn and improves upon the

naive policy.
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Data Class Metrics T=10 T=25

APINN Naive APINN Naive

S1 Relative Regret 17.69% 49.75% 20.63% 50.97%

% Optimum 82.31% 50.25% 79.37% 49.03%

Worst case 56.67% 22.21% 63.51% 30.56%

Best case 99.24% 76.79% 89.95% 65.96%

Std. deviation 0.065 0.097205915 4.33% 6.31%

S2 Relative Regret 17.11% 49.11% 21.12% 51.10%

% Optimum 82.89% 50.89% 78.88% 48.90%

Worst case 62.52% 19.93% 53.50% 34.45%

Best case 98.37% 77.15% 90.52% 65.07%

Std. deviation 0.067 0.100335853 5.11% 5.69%

S3 Relative Regret 16.81% 49.71% 20.69% 50.99%

% Optimum 83.19% 50.29% 79.31% 49.01%

Worst case 60.25% 18.14% 65.77% 26.00%

Best case 100.00% 76.62% 90.62% 65.44%

Std. deviation 0.066 0.099845797 4.33% 6.20%

S4 Relative Regret 17.57% 49.54% 20.97% 51.47%

% Optimum 82.43% 50.46% 79.03% 48.53%

Worst case 57.42% 22.87% 56.06% 32.23%

Best case 98.91% 77.62% 89.52% 65.63%

Std. deviation 0.066 0.102402335 4.64% 5.60%

S5 Relative Regret 17.88% 49.64% 20.63% 50.52%

% Optimum 82.12% 50.36% 79.37% 49.48%

Worst case 59.71% 26.09% 65.94% 34.66%

Best case 97.97% 77.27% 88.35% 64.69%

Std. deviation 0.066 0.103584375 4.20% 6.05%

Table 5 .5: Comparison of Naive and APINN policies
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CHAPTER SIX

FURTHER WORK

Our preliminary experiments show that approximate policy iteration

with neural networks can give good results but the full potential of this

approach can only be understood after experimenting with different neural

network architectures. It is well-known that larger and more complicated

neural networks are useful in improving approximation accuracy. However,

a more complicated network can result in over-fitting and more importantly

will increase the running time of the algorithm. We realized that changing

the keras optimizers did not really result in a better performance of the

algorithm. Experimenting with different learning rates and loss functions

can also help improve the prediction accuracy.

The sensitivity of the algorithm to problem parameters needs to be

studied. Preliminary experiments seem to suggest that there may be other

factors other than the battery capacity, injection and withdrawal rates that

can really impact the determination of the optimal policy and algorithm

performance.

The SNES deterministic benchmark problem described in Section 5.1

is a variant of the lot-sizing problem with losses, bounded inventory and
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constrained withdrawal and injection rates. To the best of our knowledge

this problem is yet to be studied in literature. The complexity of this

problem is unknown and algorithms for this problem are very relevant in

many contexts.

As shown in Section 4.4, having different buying and selling prices

make the problem harder compared to them being equal. In that respect,

it is imperative to also investigate and compare the performance of our

proposed algorithm when applied to the case of equal buying and selling

prices to that of the case of different buying and selling prices.

Scaling the algorithm to more time periods will require speeding the

algorithm in the improvement step. One idea towards this is to apply the

neural network once to create a look-up matrix which stores the predicted

value functions for all possible range of net demand, previous battery levels

and feasible storage amounts that satisfy the problem constraints. With

this approach, we do not have to apply the neural network continuously for

each sampled state and possible storage amount in each improvement step.

Even though most studies capture injection and withdrawal losses in

their models, we are not aware if any of these studies give insights into

the impact of these losses on the optimal policies. This is a crucial question

given that battery technology is improving with time and in the future these

losses may be insignificant.

The storage-as-a-service business model is increasingly becoming pop-

ular, where the battery is owned and operated by a third-party supplier. In

this case, a research idea will be to investigate the amount of storage the

customer may want to rent or determine the optimal price charged by the

supplier.
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